1 /* $OpenBSD: if_zyd.c,v 1.104 2014/07/13 15:52:49 mpi Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 22 */ 23 24 #include "bpfilter.h" 25 26 #include <sys/param.h> 27 #include <sys/sockio.h> 28 #include <sys/mbuf.h> 29 #include <sys/kernel.h> 30 #include <sys/socket.h> 31 #include <sys/systm.h> 32 #include <sys/malloc.h> 33 #include <sys/timeout.h> 34 #include <sys/conf.h> 35 #include <sys/device.h> 36 37 #include <machine/bus.h> 38 #include <machine/endian.h> 39 40 #if NBPFILTER > 0 41 #include <net/bpf.h> 42 #endif 43 #include <net/if.h> 44 #include <net/if_arp.h> 45 #include <net/if_dl.h> 46 #include <net/if_media.h> 47 #include <net/if_types.h> 48 49 #include <netinet/in.h> 50 #include <netinet/if_ether.h> 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_amrr.h> 54 #include <net80211/ieee80211_radiotap.h> 55 56 #include <dev/usb/usb.h> 57 #include <dev/usb/usbdi.h> 58 #include <dev/usb/usbdi_util.h> 59 #include <dev/usb/usbdevs.h> 60 61 #include <dev/usb/if_zydreg.h> 62 63 #ifdef ZYD_DEBUG 64 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 65 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 66 int zyddebug = 0; 67 #else 68 #define DPRINTF(x) 69 #define DPRINTFN(n, x) 70 #endif 71 72 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 73 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 74 75 /* various supported device vendors/products */ 76 #define ZYD_ZD1211_DEV(v, p) \ 77 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 78 #define ZYD_ZD1211B_DEV(v, p) \ 79 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 80 static const struct zyd_type { 81 struct usb_devno dev; 82 uint8_t rev; 83 #define ZYD_ZD1211 0 84 #define ZYD_ZD1211B 1 85 } zyd_devs[] = { 86 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 87 ZYD_ZD1211_DEV(ABOCOM, WL54), 88 ZYD_ZD1211_DEV(ASUS, WL159G), 89 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 90 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 91 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 92 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 93 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 94 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 95 ZYD_ZD1211_DEV(SAGEM, XG760A), 96 ZYD_ZD1211_DEV(SENAO, NUB8301), 97 ZYD_ZD1211_DEV(SITECOMEU, WL113), 98 ZYD_ZD1211_DEV(SWEEX, ZD1211), 99 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 100 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 101 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 102 ZYD_ZD1211_DEV(TWINMOS, G240), 103 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 104 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 105 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 106 ZYD_ZD1211_DEV(UNKNOWN2, NW3100), 107 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 108 ZYD_ZD1211_DEV(ZCOM, ZD1211), 109 ZYD_ZD1211_DEV(ZYDAS, ALL0298), 110 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 111 ZYD_ZD1211_DEV(ZYXEL, AG225H), 112 ZYD_ZD1211_DEV(ZYXEL, G200V2), 113 ZYD_ZD1211_DEV(ZYXEL, G202), 114 ZYD_ZD1211_DEV(ZYXEL, G220), 115 ZYD_ZD1211_DEV(ZYXEL, G220F), 116 117 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 118 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR), 119 ZYD_ZD1211B_DEV(ACCTON, WUS201), 120 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 121 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 122 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 123 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 124 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR), 125 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 126 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B), 127 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 128 ZYD_ZD1211B_DEV(MELCO, KG54L), 129 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 130 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05), 131 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 132 ZYD_ZD1211B_DEV(PLANEX4, GWUS54ZGL), 133 ZYD_ZD1211B_DEV(PLANEX4, ZD1211B), 134 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 135 ZYD_ZD1211B_DEV(SITECOMEU, WL603), 136 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 137 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 138 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 139 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 140 ZYD_ZD1211B_DEV(SONY, IFU_WLM2), 141 ZYD_ZD1211B_DEV(USR, USR5423), 142 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 143 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 144 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 145 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2), 146 ZYD_ZD1211B_DEV(ZYXEL, AG220), 147 ZYD_ZD1211B_DEV(ZYXEL, AG225HV2), 148 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 149 ZYD_ZD1211B_DEV(ZYXEL, M202) 150 }; 151 #define zyd_lookup(v, p) \ 152 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 153 154 int zyd_match(struct device *, void *, void *); 155 void zyd_attach(struct device *, struct device *, void *); 156 int zyd_detach(struct device *, int); 157 158 struct cfdriver zyd_cd = { 159 NULL, "zyd", DV_IFNET 160 }; 161 162 const struct cfattach zyd_ca = { 163 sizeof(struct zyd_softc), zyd_match, zyd_attach, zyd_detach 164 }; 165 166 void zyd_attachhook(void *); 167 int zyd_complete_attach(struct zyd_softc *); 168 int zyd_open_pipes(struct zyd_softc *); 169 void zyd_close_pipes(struct zyd_softc *); 170 int zyd_alloc_tx_list(struct zyd_softc *); 171 void zyd_free_tx_list(struct zyd_softc *); 172 int zyd_alloc_rx_list(struct zyd_softc *); 173 void zyd_free_rx_list(struct zyd_softc *); 174 struct ieee80211_node *zyd_node_alloc(struct ieee80211com *); 175 int zyd_media_change(struct ifnet *); 176 void zyd_next_scan(void *); 177 void zyd_task(void *); 178 int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 179 int zyd_cmd_read(struct zyd_softc *, const void *, size_t, int); 180 int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 181 int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 182 int zyd_cmd_write(struct zyd_softc *, u_int16_t, const void *, int); 183 int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 184 int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 185 int zyd_rfwrite(struct zyd_softc *, uint32_t); 186 void zyd_lock_phy(struct zyd_softc *); 187 void zyd_unlock_phy(struct zyd_softc *); 188 int zyd_rfmd_init(struct zyd_rf *); 189 int zyd_rfmd_switch_radio(struct zyd_rf *, int); 190 int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 191 int zyd_al2230_init(struct zyd_rf *); 192 int zyd_al2230_switch_radio(struct zyd_rf *, int); 193 int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 194 int zyd_al2230_init_b(struct zyd_rf *); 195 int zyd_al7230B_init(struct zyd_rf *); 196 int zyd_al7230B_switch_radio(struct zyd_rf *, int); 197 int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 198 int zyd_al2210_init(struct zyd_rf *); 199 int zyd_al2210_switch_radio(struct zyd_rf *, int); 200 int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 201 int zyd_gct_init(struct zyd_rf *); 202 int zyd_gct_switch_radio(struct zyd_rf *, int); 203 int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 204 int zyd_maxim_init(struct zyd_rf *); 205 int zyd_maxim_switch_radio(struct zyd_rf *, int); 206 int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 207 int zyd_maxim2_init(struct zyd_rf *); 208 int zyd_maxim2_switch_radio(struct zyd_rf *, int); 209 int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 210 int zyd_rf_attach(struct zyd_softc *, uint8_t); 211 const char *zyd_rf_name(uint8_t); 212 int zyd_hw_init(struct zyd_softc *); 213 int zyd_read_eeprom(struct zyd_softc *); 214 void zyd_set_multi(struct zyd_softc *); 215 void zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 216 void zyd_set_bssid(struct zyd_softc *, const uint8_t *); 217 int zyd_switch_radio(struct zyd_softc *, int); 218 void zyd_set_led(struct zyd_softc *, int, int); 219 int zyd_set_rxfilter(struct zyd_softc *); 220 void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 221 int zyd_set_beacon_interval(struct zyd_softc *, int); 222 uint8_t zyd_plcp_signal(int); 223 void zyd_intr(struct usbd_xfer *, void *, usbd_status); 224 void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 225 void zyd_rxeof(struct usbd_xfer *, void *, usbd_status); 226 void zyd_txeof(struct usbd_xfer *, void *, usbd_status); 227 int zyd_tx(struct zyd_softc *, struct mbuf *, 228 struct ieee80211_node *); 229 void zyd_start(struct ifnet *); 230 void zyd_watchdog(struct ifnet *); 231 int zyd_ioctl(struct ifnet *, u_long, caddr_t); 232 int zyd_init(struct ifnet *); 233 void zyd_stop(struct ifnet *, int); 234 int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 235 void zyd_iter_func(void *, struct ieee80211_node *); 236 void zyd_amrr_timeout(void *); 237 void zyd_newassoc(struct ieee80211com *, struct ieee80211_node *, 238 int); 239 240 int 241 zyd_match(struct device *parent, void *match, void *aux) 242 { 243 struct usb_attach_arg *uaa = aux; 244 245 if (!uaa->iface) 246 return UMATCH_NONE; 247 248 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? 249 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 250 } 251 252 void 253 zyd_attachhook(void *xsc) 254 { 255 struct zyd_softc *sc = xsc; 256 const char *fwname; 257 u_char *fw; 258 size_t size; 259 int error; 260 261 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zd1211" : "zd1211b"; 262 if ((error = loadfirmware(fwname, &fw, &size)) != 0) { 263 printf("%s: error %d, could not read firmware file %s\n", 264 sc->sc_dev.dv_xname, error, fwname); 265 return; 266 } 267 268 error = zyd_loadfirmware(sc, fw, size); 269 free(fw, M_DEVBUF, 0); 270 if (error != 0) { 271 printf("%s: could not load firmware (error=%d)\n", 272 sc->sc_dev.dv_xname, error); 273 return; 274 } 275 276 /* complete the attach process */ 277 if (zyd_complete_attach(sc) == 0) 278 sc->attached = 1; 279 } 280 281 void 282 zyd_attach(struct device *parent, struct device *self, void *aux) 283 { 284 struct zyd_softc *sc = (struct zyd_softc *)self; 285 struct usb_attach_arg *uaa = aux; 286 usb_device_descriptor_t* ddesc; 287 288 sc->sc_udev = uaa->device; 289 290 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev; 291 292 ddesc = usbd_get_device_descriptor(sc->sc_udev); 293 if (UGETW(ddesc->bcdDevice) < 0x4330) { 294 printf("%s: device version mismatch: 0x%x " 295 "(only >= 43.30 supported)\n", sc->sc_dev.dv_xname, 296 UGETW(ddesc->bcdDevice)); 297 return; 298 } 299 300 if (rootvp == NULL) 301 mountroothook_establish(zyd_attachhook, sc); 302 else 303 zyd_attachhook(sc); 304 } 305 306 int 307 zyd_complete_attach(struct zyd_softc *sc) 308 { 309 struct ieee80211com *ic = &sc->sc_ic; 310 struct ifnet *ifp = &ic->ic_if; 311 usbd_status error; 312 int i; 313 314 usb_init_task(&sc->sc_task, zyd_task, sc, USB_TASK_TYPE_GENERIC); 315 timeout_set(&sc->scan_to, zyd_next_scan, sc); 316 317 sc->amrr.amrr_min_success_threshold = 1; 318 sc->amrr.amrr_max_success_threshold = 10; 319 timeout_set(&sc->amrr_to, zyd_amrr_timeout, sc); 320 321 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 322 if (error != 0) { 323 printf("%s: setting config no failed\n", 324 sc->sc_dev.dv_xname); 325 goto fail; 326 } 327 328 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 329 &sc->sc_iface); 330 if (error != 0) { 331 printf("%s: getting interface handle failed\n", 332 sc->sc_dev.dv_xname); 333 goto fail; 334 } 335 336 if ((error = zyd_open_pipes(sc)) != 0) { 337 printf("%s: could not open pipes\n", sc->sc_dev.dv_xname); 338 goto fail; 339 } 340 341 if ((error = zyd_read_eeprom(sc)) != 0) { 342 printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname); 343 goto fail; 344 } 345 346 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 347 printf("%s: could not attach RF\n", sc->sc_dev.dv_xname); 348 goto fail; 349 } 350 351 if ((error = zyd_hw_init(sc)) != 0) { 352 printf("%s: hardware initialization failed\n", 353 sc->sc_dev.dv_xname); 354 goto fail; 355 } 356 357 printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 358 sc->sc_dev.dv_xname, (sc->mac_rev == ZYD_ZD1211) ? "": "B", 359 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 360 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 361 362 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 363 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 364 ic->ic_state = IEEE80211_S_INIT; 365 366 /* set device capabilities */ 367 ic->ic_caps = 368 IEEE80211_C_MONITOR | /* monitor mode supported */ 369 IEEE80211_C_TXPMGT | /* tx power management */ 370 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 371 IEEE80211_C_WEP | /* s/w WEP */ 372 IEEE80211_C_RSN; /* WPA/RSN */ 373 374 /* set supported .11b and .11g rates */ 375 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 376 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 377 378 /* set supported .11b and .11g channels (1 through 14) */ 379 for (i = 1; i <= 14; i++) { 380 ic->ic_channels[i].ic_freq = 381 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 382 ic->ic_channels[i].ic_flags = 383 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 384 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 385 } 386 387 ifp->if_softc = sc; 388 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 389 ifp->if_ioctl = zyd_ioctl; 390 ifp->if_start = zyd_start; 391 ifp->if_watchdog = zyd_watchdog; 392 IFQ_SET_READY(&ifp->if_snd); 393 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 394 395 if_attach(ifp); 396 ieee80211_ifattach(ifp); 397 ic->ic_node_alloc = zyd_node_alloc; 398 ic->ic_newassoc = zyd_newassoc; 399 400 /* override state transition machine */ 401 sc->sc_newstate = ic->ic_newstate; 402 ic->ic_newstate = zyd_newstate; 403 ieee80211_media_init(ifp, zyd_media_change, ieee80211_media_status); 404 405 #if NBPFILTER > 0 406 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 407 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 408 409 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 410 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 411 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 412 413 sc->sc_txtap_len = sizeof sc->sc_txtapu; 414 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 415 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 416 #endif 417 418 fail: return error; 419 } 420 421 int 422 zyd_detach(struct device *self, int flags) 423 { 424 struct zyd_softc *sc = (struct zyd_softc *)self; 425 struct ifnet *ifp = &sc->sc_ic.ic_if; 426 int s; 427 428 s = splusb(); 429 430 usb_rem_task(sc->sc_udev, &sc->sc_task); 431 if (timeout_initialized(&sc->scan_to)) 432 timeout_del(&sc->scan_to); 433 if (timeout_initialized(&sc->amrr_to)) 434 timeout_del(&sc->amrr_to); 435 436 zyd_close_pipes(sc); 437 438 if (!sc->attached) { 439 splx(s); 440 return 0; 441 } 442 443 if (ifp->if_softc != NULL) { 444 ieee80211_ifdetach(ifp); 445 if_detach(ifp); 446 } 447 448 zyd_free_rx_list(sc); 449 zyd_free_tx_list(sc); 450 451 sc->attached = 0; 452 453 splx(s); 454 455 return 0; 456 } 457 458 int 459 zyd_open_pipes(struct zyd_softc *sc) 460 { 461 usb_endpoint_descriptor_t *edesc; 462 int isize; 463 usbd_status error; 464 465 /* interrupt in */ 466 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 467 if (edesc == NULL) 468 return EINVAL; 469 470 isize = UGETW(edesc->wMaxPacketSize); 471 if (isize == 0) /* should not happen */ 472 return EINVAL; 473 474 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); 475 if (sc->ibuf == NULL) 476 return ENOMEM; 477 478 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 479 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr, 480 USBD_DEFAULT_INTERVAL); 481 if (error != 0) { 482 printf("%s: open rx intr pipe failed: %s\n", 483 sc->sc_dev.dv_xname, usbd_errstr(error)); 484 goto fail; 485 } 486 487 /* interrupt out (not necessarily an interrupt pipe) */ 488 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 489 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 490 if (error != 0) { 491 printf("%s: open tx intr pipe failed: %s\n", 492 sc->sc_dev.dv_xname, usbd_errstr(error)); 493 goto fail; 494 } 495 496 /* bulk in */ 497 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 498 &sc->zyd_ep[ZYD_ENDPT_BIN]); 499 if (error != 0) { 500 printf("%s: open rx pipe failed: %s\n", 501 sc->sc_dev.dv_xname, usbd_errstr(error)); 502 goto fail; 503 } 504 505 /* bulk out */ 506 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 507 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 508 if (error != 0) { 509 printf("%s: open tx pipe failed: %s\n", 510 sc->sc_dev.dv_xname, usbd_errstr(error)); 511 goto fail; 512 } 513 514 return 0; 515 516 fail: zyd_close_pipes(sc); 517 return error; 518 } 519 520 void 521 zyd_close_pipes(struct zyd_softc *sc) 522 { 523 int i; 524 525 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 526 if (sc->zyd_ep[i] != NULL) { 527 usbd_abort_pipe(sc->zyd_ep[i]); 528 usbd_close_pipe(sc->zyd_ep[i]); 529 sc->zyd_ep[i] = NULL; 530 } 531 } 532 if (sc->ibuf != NULL) { 533 free(sc->ibuf, M_USBDEV, 0); 534 sc->ibuf = NULL; 535 } 536 } 537 538 int 539 zyd_alloc_tx_list(struct zyd_softc *sc) 540 { 541 int i, error; 542 543 sc->tx_queued = 0; 544 545 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 546 struct zyd_tx_data *data = &sc->tx_data[i]; 547 548 data->sc = sc; /* backpointer for callbacks */ 549 550 data->xfer = usbd_alloc_xfer(sc->sc_udev); 551 if (data->xfer == NULL) { 552 printf("%s: could not allocate tx xfer\n", 553 sc->sc_dev.dv_xname); 554 error = ENOMEM; 555 goto fail; 556 } 557 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); 558 if (data->buf == NULL) { 559 printf("%s: could not allocate tx buffer\n", 560 sc->sc_dev.dv_xname); 561 error = ENOMEM; 562 goto fail; 563 } 564 565 /* clear Tx descriptor */ 566 bzero(data->buf, sizeof (struct zyd_tx_desc)); 567 } 568 return 0; 569 570 fail: zyd_free_tx_list(sc); 571 return error; 572 } 573 574 void 575 zyd_free_tx_list(struct zyd_softc *sc) 576 { 577 struct ieee80211com *ic = &sc->sc_ic; 578 int i; 579 580 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 581 struct zyd_tx_data *data = &sc->tx_data[i]; 582 583 if (data->xfer != NULL) { 584 usbd_free_xfer(data->xfer); 585 data->xfer = NULL; 586 } 587 if (data->ni != NULL) { 588 ieee80211_release_node(ic, data->ni); 589 data->ni = NULL; 590 } 591 } 592 } 593 594 int 595 zyd_alloc_rx_list(struct zyd_softc *sc) 596 { 597 int i, error; 598 599 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 600 struct zyd_rx_data *data = &sc->rx_data[i]; 601 602 data->sc = sc; /* backpointer for callbacks */ 603 604 data->xfer = usbd_alloc_xfer(sc->sc_udev); 605 if (data->xfer == NULL) { 606 printf("%s: could not allocate rx xfer\n", 607 sc->sc_dev.dv_xname); 608 error = ENOMEM; 609 goto fail; 610 } 611 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); 612 if (data->buf == NULL) { 613 printf("%s: could not allocate rx buffer\n", 614 sc->sc_dev.dv_xname); 615 error = ENOMEM; 616 goto fail; 617 } 618 } 619 return 0; 620 621 fail: zyd_free_rx_list(sc); 622 return error; 623 } 624 625 void 626 zyd_free_rx_list(struct zyd_softc *sc) 627 { 628 int i; 629 630 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 631 struct zyd_rx_data *data = &sc->rx_data[i]; 632 633 if (data->xfer != NULL) { 634 usbd_free_xfer(data->xfer); 635 data->xfer = NULL; 636 } 637 } 638 } 639 640 struct ieee80211_node * 641 zyd_node_alloc(struct ieee80211com *ic) 642 { 643 return malloc(sizeof (struct zyd_node), M_DEVBUF, M_NOWAIT | M_ZERO); 644 } 645 646 int 647 zyd_media_change(struct ifnet *ifp) 648 { 649 int error; 650 651 error = ieee80211_media_change(ifp); 652 if (error != ENETRESET) 653 return error; 654 655 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 656 zyd_init(ifp); 657 658 return 0; 659 } 660 661 /* 662 * This function is called periodically (every 200ms) during scanning to 663 * switch from one channel to another. 664 */ 665 void 666 zyd_next_scan(void *arg) 667 { 668 struct zyd_softc *sc = arg; 669 struct ieee80211com *ic = &sc->sc_ic; 670 struct ifnet *ifp = &ic->ic_if; 671 672 if (ic->ic_state == IEEE80211_S_SCAN) 673 ieee80211_next_scan(ifp); 674 } 675 676 void 677 zyd_task(void *arg) 678 { 679 struct zyd_softc *sc = arg; 680 struct ieee80211com *ic = &sc->sc_ic; 681 enum ieee80211_state ostate; 682 683 ostate = ic->ic_state; 684 685 switch (sc->sc_state) { 686 case IEEE80211_S_INIT: 687 if (ostate == IEEE80211_S_RUN) { 688 /* turn link LED off */ 689 zyd_set_led(sc, ZYD_LED1, 0); 690 691 /* stop data LED from blinking */ 692 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 693 } 694 break; 695 696 case IEEE80211_S_SCAN: 697 zyd_set_chan(sc, ic->ic_bss->ni_chan); 698 timeout_add_msec(&sc->scan_to, 200); 699 break; 700 701 case IEEE80211_S_AUTH: 702 case IEEE80211_S_ASSOC: 703 zyd_set_chan(sc, ic->ic_bss->ni_chan); 704 break; 705 706 case IEEE80211_S_RUN: 707 { 708 struct ieee80211_node *ni = ic->ic_bss; 709 710 zyd_set_chan(sc, ni->ni_chan); 711 712 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 713 /* turn link LED on */ 714 zyd_set_led(sc, ZYD_LED1, 1); 715 716 /* make data LED blink upon Tx */ 717 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 718 719 zyd_set_bssid(sc, ni->ni_bssid); 720 } 721 722 if (ic->ic_opmode == IEEE80211_M_STA) { 723 /* fake a join to init the tx rate */ 724 zyd_newassoc(ic, ni, 1); 725 } 726 727 /* start automatic rate control timer */ 728 if (ic->ic_fixed_rate == -1) 729 timeout_add_sec(&sc->amrr_to, 1); 730 731 break; 732 } 733 } 734 735 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 736 } 737 738 int 739 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 740 { 741 struct zyd_softc *sc = ic->ic_softc; 742 743 usb_rem_task(sc->sc_udev, &sc->sc_task); 744 timeout_del(&sc->scan_to); 745 timeout_del(&sc->amrr_to); 746 747 /* do it in a process context */ 748 sc->sc_state = nstate; 749 sc->sc_arg = arg; 750 usb_add_task(sc->sc_udev, &sc->sc_task); 751 752 return 0; 753 } 754 755 /* 756 * Issue a read command for the specificed register (of size regsize) 757 * and await a reply of olen bytes in sc->odata. 758 */ 759 int 760 zyd_cmd_read(struct zyd_softc *sc, const void *reg, size_t regsize, int olen) 761 { 762 struct usbd_xfer *xfer; 763 struct zyd_cmd cmd; 764 usbd_status error; 765 int s; 766 767 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) 768 return ENOMEM; 769 770 bzero(&cmd, sizeof(cmd)); 771 cmd.code = htole16(ZYD_CMD_IORD); 772 bcopy(reg, cmd.data, regsize); 773 774 bzero(sc->odata, sizeof(sc->odata)); 775 sc->olen = olen; 776 777 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, 778 &cmd, sizeof(cmd.code) + regsize, 779 USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS, 780 ZYD_INTR_TIMEOUT, NULL); 781 s = splusb(); 782 sc->odone = 0; 783 error = usbd_transfer(xfer); 784 splx(s); 785 if (error) { 786 printf("%s: could not send command: %s\n", 787 sc->sc_dev.dv_xname, usbd_errstr(error)); 788 usbd_free_xfer(xfer); 789 return EIO; 790 } 791 792 if (!sc->odone) { 793 /* wait for ZYD_NOTIF_IORD interrupt */ 794 if (tsleep(sc, PWAIT, "zydcmd", ZYD_INTR_TIMEOUT) != 0) 795 printf("%s: read command failed\n", 796 sc->sc_dev.dv_xname); 797 } 798 usbd_free_xfer(xfer); 799 800 return error; 801 } 802 803 int 804 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 805 { 806 struct zyd_io *odata; 807 int error; 808 809 reg = htole16(reg); 810 error = zyd_cmd_read(sc, ®, sizeof(reg), sizeof(*odata)); 811 if (error == 0) { 812 odata = (struct zyd_io *)sc->odata; 813 *val = letoh16(odata[0].val); 814 } 815 return error; 816 } 817 818 int 819 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 820 { 821 struct zyd_io *odata; 822 uint16_t regs[2]; 823 int error; 824 825 regs[0] = htole16(ZYD_REG32_HI(reg)); 826 regs[1] = htole16(ZYD_REG32_LO(reg)); 827 error = zyd_cmd_read(sc, regs, sizeof(regs), sizeof(*odata) * 2); 828 if (error == 0) { 829 odata = (struct zyd_io *)sc->odata; 830 *val = letoh16(odata[0].val) << 16 | letoh16(odata[1].val); 831 } 832 return error; 833 } 834 835 int 836 zyd_cmd_write(struct zyd_softc *sc, u_int16_t code, const void *data, int len) 837 { 838 struct usbd_xfer *xfer; 839 struct zyd_cmd cmd; 840 usbd_status error; 841 842 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) 843 return ENOMEM; 844 845 bzero(&cmd, sizeof(cmd)); 846 cmd.code = htole16(code); 847 bcopy(data, cmd.data, len); 848 849 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, 850 &cmd, sizeof(cmd.code) + len, 851 USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS, 852 ZYD_INTR_TIMEOUT, NULL); 853 error = usbd_transfer(xfer); 854 if (error) 855 printf("%s: could not send command: %s\n", 856 sc->sc_dev.dv_xname, usbd_errstr(error)); 857 858 usbd_free_xfer(xfer); 859 return error; 860 } 861 862 int 863 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 864 { 865 struct zyd_io io; 866 867 io.reg = htole16(reg); 868 io.val = htole16(val); 869 return zyd_cmd_write(sc, ZYD_CMD_IOWR, &io, sizeof(io)); 870 } 871 872 int 873 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 874 { 875 struct zyd_io io[2]; 876 877 io[0].reg = htole16(ZYD_REG32_HI(reg)); 878 io[0].val = htole16(val >> 16); 879 io[1].reg = htole16(ZYD_REG32_LO(reg)); 880 io[1].val = htole16(val & 0xffff); 881 882 return zyd_cmd_write(sc, ZYD_CMD_IOWR, io, sizeof(io)); 883 } 884 885 int 886 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 887 { 888 struct zyd_rf *rf = &sc->sc_rf; 889 struct zyd_rfwrite req; 890 uint16_t cr203; 891 int i; 892 893 (void)zyd_read16(sc, ZYD_CR203, &cr203); 894 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 895 896 req.code = htole16(2); 897 req.width = htole16(rf->width); 898 for (i = 0; i < rf->width; i++) { 899 req.bit[i] = htole16(cr203); 900 if (val & (1 << (rf->width - 1 - i))) 901 req.bit[i] |= htole16(ZYD_RF_DATA); 902 } 903 return zyd_cmd_write(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width); 904 } 905 906 void 907 zyd_lock_phy(struct zyd_softc *sc) 908 { 909 uint32_t tmp; 910 911 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 912 tmp &= ~ZYD_UNLOCK_PHY_REGS; 913 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 914 } 915 916 void 917 zyd_unlock_phy(struct zyd_softc *sc) 918 { 919 uint32_t tmp; 920 921 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 922 tmp |= ZYD_UNLOCK_PHY_REGS; 923 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 924 } 925 926 /* 927 * RFMD RF methods. 928 */ 929 int 930 zyd_rfmd_init(struct zyd_rf *rf) 931 { 932 struct zyd_softc *sc = rf->rf_sc; 933 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 934 static const uint32_t rfini[] = ZYD_RFMD_RF; 935 int i, error; 936 937 /* init RF-dependent PHY registers */ 938 for (i = 0; i < nitems(phyini); i++) { 939 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 940 if (error != 0) 941 return error; 942 } 943 944 /* init RFMD radio */ 945 for (i = 0; i < nitems(rfini); i++) { 946 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 947 return error; 948 } 949 return 0; 950 } 951 952 int 953 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 954 { 955 struct zyd_softc *sc = rf->rf_sc; 956 957 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 958 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 959 960 return 0; 961 } 962 963 int 964 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 965 { 966 struct zyd_softc *sc = rf->rf_sc; 967 static const struct { 968 uint32_t r1, r2; 969 } rfprog[] = ZYD_RFMD_CHANTABLE; 970 971 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 972 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 973 974 return 0; 975 } 976 977 /* 978 * AL2230 RF methods. 979 */ 980 int 981 zyd_al2230_init(struct zyd_rf *rf) 982 { 983 struct zyd_softc *sc = rf->rf_sc; 984 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 985 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 986 static const uint32_t rfini[] = ZYD_AL2230_RF; 987 int i, error; 988 989 /* init RF-dependent PHY registers */ 990 for (i = 0; i < nitems(phyini); i++) { 991 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 992 if (error != 0) 993 return error; 994 } 995 if (sc->rf_rev == ZYD_RF_AL2230S) { 996 for (i = 0; i < nitems(phy2230s); i++) { 997 error = zyd_write16(sc, phy2230s[i].reg, 998 phy2230s[i].val); 999 if (error != 0) 1000 return error; 1001 } 1002 } 1003 /* init AL2230 radio */ 1004 for (i = 0; i < nitems(rfini); i++) { 1005 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1006 return error; 1007 } 1008 return 0; 1009 } 1010 1011 int 1012 zyd_al2230_init_b(struct zyd_rf *rf) 1013 { 1014 struct zyd_softc *sc = rf->rf_sc; 1015 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1016 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 1017 int i, error; 1018 1019 /* init RF-dependent PHY registers */ 1020 for (i = 0; i < nitems(phyini); i++) { 1021 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1022 if (error != 0) 1023 return error; 1024 } 1025 1026 /* init AL2230 radio */ 1027 for (i = 0; i < nitems(rfini); i++) { 1028 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1029 return error; 1030 } 1031 return 0; 1032 } 1033 1034 int 1035 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1036 { 1037 struct zyd_softc *sc = rf->rf_sc; 1038 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1039 1040 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1041 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1042 1043 return 0; 1044 } 1045 1046 int 1047 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1048 { 1049 struct zyd_softc *sc = rf->rf_sc; 1050 static const struct { 1051 uint32_t r1, r2, r3; 1052 } rfprog[] = ZYD_AL2230_CHANTABLE; 1053 1054 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1055 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1056 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1057 1058 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1059 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1060 1061 return 0; 1062 } 1063 1064 /* 1065 * AL7230B RF methods. 1066 */ 1067 int 1068 zyd_al7230B_init(struct zyd_rf *rf) 1069 { 1070 struct zyd_softc *sc = rf->rf_sc; 1071 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1072 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1073 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1074 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1075 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1076 int i, error; 1077 1078 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1079 1080 /* init RF-dependent PHY registers, part one */ 1081 for (i = 0; i < nitems(phyini_1); i++) { 1082 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1083 if (error != 0) 1084 return error; 1085 } 1086 /* init AL7230B radio, part one */ 1087 for (i = 0; i < nitems(rfini_1); i++) { 1088 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1089 return error; 1090 } 1091 /* init RF-dependent PHY registers, part two */ 1092 for (i = 0; i < nitems(phyini_2); i++) { 1093 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1094 if (error != 0) 1095 return error; 1096 } 1097 /* init AL7230B radio, part two */ 1098 for (i = 0; i < nitems(rfini_2); i++) { 1099 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1100 return error; 1101 } 1102 /* init RF-dependent PHY registers, part three */ 1103 for (i = 0; i < nitems(phyini_3); i++) { 1104 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1105 if (error != 0) 1106 return error; 1107 } 1108 1109 return 0; 1110 } 1111 1112 int 1113 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1114 { 1115 struct zyd_softc *sc = rf->rf_sc; 1116 1117 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1118 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1119 1120 return 0; 1121 } 1122 1123 int 1124 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1125 { 1126 struct zyd_softc *sc = rf->rf_sc; 1127 static const struct { 1128 uint32_t r1, r2; 1129 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1130 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1131 int i, error; 1132 1133 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1134 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1135 1136 for (i = 0; i < nitems(rfsc); i++) { 1137 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1138 return error; 1139 } 1140 1141 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1142 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1143 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1144 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1145 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1146 1147 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1148 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1149 (void)zyd_rfwrite(sc, 0x3c9000); 1150 1151 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1152 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1153 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1154 1155 return 0; 1156 } 1157 1158 /* 1159 * AL2210 RF methods. 1160 */ 1161 int 1162 zyd_al2210_init(struct zyd_rf *rf) 1163 { 1164 struct zyd_softc *sc = rf->rf_sc; 1165 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1166 static const uint32_t rfini[] = ZYD_AL2210_RF; 1167 uint32_t tmp; 1168 int i, error; 1169 1170 (void)zyd_write32(sc, ZYD_CR18, 2); 1171 1172 /* init RF-dependent PHY registers */ 1173 for (i = 0; i < nitems(phyini); i++) { 1174 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1175 if (error != 0) 1176 return error; 1177 } 1178 /* init AL2210 radio */ 1179 for (i = 0; i < nitems(rfini); i++) { 1180 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1181 return error; 1182 } 1183 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1184 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1185 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1186 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1187 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1188 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1189 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1190 (void)zyd_write32(sc, ZYD_CR18, 3); 1191 1192 return 0; 1193 } 1194 1195 int 1196 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1197 { 1198 /* vendor driver does nothing for this RF chip */ 1199 1200 return 0; 1201 } 1202 1203 int 1204 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1205 { 1206 struct zyd_softc *sc = rf->rf_sc; 1207 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1208 uint32_t tmp; 1209 1210 (void)zyd_write32(sc, ZYD_CR18, 2); 1211 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1212 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1213 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1214 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1215 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1216 1217 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1218 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1219 1220 /* actually set the channel */ 1221 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1222 1223 (void)zyd_write32(sc, ZYD_CR18, 3); 1224 1225 return 0; 1226 } 1227 1228 /* 1229 * GCT RF methods. 1230 */ 1231 int 1232 zyd_gct_init(struct zyd_rf *rf) 1233 { 1234 struct zyd_softc *sc = rf->rf_sc; 1235 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1236 static const uint32_t rfini[] = ZYD_GCT_RF; 1237 int i, error; 1238 1239 /* init RF-dependent PHY registers */ 1240 for (i = 0; i < nitems(phyini); i++) { 1241 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1242 if (error != 0) 1243 return error; 1244 } 1245 /* init cgt radio */ 1246 for (i = 0; i < nitems(rfini); i++) { 1247 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1248 return error; 1249 } 1250 return 0; 1251 } 1252 1253 int 1254 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1255 { 1256 /* vendor driver does nothing for this RF chip */ 1257 1258 return 0; 1259 } 1260 1261 int 1262 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1263 { 1264 struct zyd_softc *sc = rf->rf_sc; 1265 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1266 1267 (void)zyd_rfwrite(sc, 0x1c0000); 1268 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1269 (void)zyd_rfwrite(sc, 0x1c0008); 1270 1271 return 0; 1272 } 1273 1274 /* 1275 * Maxim RF methods. 1276 */ 1277 int 1278 zyd_maxim_init(struct zyd_rf *rf) 1279 { 1280 struct zyd_softc *sc = rf->rf_sc; 1281 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1282 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1283 uint16_t tmp; 1284 int i, error; 1285 1286 /* init RF-dependent PHY registers */ 1287 for (i = 0; i < nitems(phyini); i++) { 1288 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1289 if (error != 0) 1290 return error; 1291 } 1292 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1293 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1294 1295 /* init maxim radio */ 1296 for (i = 0; i < nitems(rfini); i++) { 1297 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1298 return error; 1299 } 1300 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1301 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1302 1303 return 0; 1304 } 1305 1306 int 1307 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1308 { 1309 /* vendor driver does nothing for this RF chip */ 1310 1311 return 0; 1312 } 1313 1314 int 1315 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1316 { 1317 struct zyd_softc *sc = rf->rf_sc; 1318 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1319 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1320 static const struct { 1321 uint32_t r1, r2; 1322 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1323 uint16_t tmp; 1324 int i, error; 1325 1326 /* 1327 * Do the same as we do when initializing it, except for the channel 1328 * values coming from the two channel tables. 1329 */ 1330 1331 /* init RF-dependent PHY registers */ 1332 for (i = 0; i < nitems(phyini); i++) { 1333 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1334 if (error != 0) 1335 return error; 1336 } 1337 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1338 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1339 1340 /* first two values taken from the chantables */ 1341 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1342 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1343 1344 /* init maxim radio - skipping the two first values */ 1345 for (i = 2; i < nitems(rfini); i++) { 1346 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1347 return error; 1348 } 1349 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1350 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1351 1352 return 0; 1353 } 1354 1355 /* 1356 * Maxim2 RF methods. 1357 */ 1358 int 1359 zyd_maxim2_init(struct zyd_rf *rf) 1360 { 1361 struct zyd_softc *sc = rf->rf_sc; 1362 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1363 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1364 uint16_t tmp; 1365 int i, error; 1366 1367 /* init RF-dependent PHY registers */ 1368 for (i = 0; i < nitems(phyini); i++) { 1369 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1370 if (error != 0) 1371 return error; 1372 } 1373 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1374 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1375 1376 /* init maxim2 radio */ 1377 for (i = 0; i < nitems(rfini); i++) { 1378 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1379 return error; 1380 } 1381 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1382 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1383 1384 return 0; 1385 } 1386 1387 int 1388 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1389 { 1390 /* vendor driver does nothing for this RF chip */ 1391 1392 return 0; 1393 } 1394 1395 int 1396 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1397 { 1398 struct zyd_softc *sc = rf->rf_sc; 1399 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1400 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1401 static const struct { 1402 uint32_t r1, r2; 1403 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1404 uint16_t tmp; 1405 int i, error; 1406 1407 /* 1408 * Do the same as we do when initializing it, except for the channel 1409 * values coming from the two channel tables. 1410 */ 1411 1412 /* init RF-dependent PHY registers */ 1413 for (i = 0; i < nitems(phyini); i++) { 1414 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1415 if (error != 0) 1416 return error; 1417 } 1418 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1419 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1420 1421 /* first two values taken from the chantables */ 1422 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1423 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1424 1425 /* init maxim2 radio - skipping the two first values */ 1426 for (i = 2; i < nitems(rfini); i++) { 1427 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1428 return error; 1429 } 1430 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1431 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1432 1433 return 0; 1434 } 1435 1436 int 1437 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1438 { 1439 struct zyd_rf *rf = &sc->sc_rf; 1440 1441 rf->rf_sc = sc; 1442 1443 switch (type) { 1444 case ZYD_RF_RFMD: 1445 rf->init = zyd_rfmd_init; 1446 rf->switch_radio = zyd_rfmd_switch_radio; 1447 rf->set_channel = zyd_rfmd_set_channel; 1448 rf->width = 24; /* 24-bit RF values */ 1449 break; 1450 case ZYD_RF_AL2230: 1451 case ZYD_RF_AL2230S: 1452 if (sc->mac_rev == ZYD_ZD1211B) 1453 rf->init = zyd_al2230_init_b; 1454 else 1455 rf->init = zyd_al2230_init; 1456 rf->switch_radio = zyd_al2230_switch_radio; 1457 rf->set_channel = zyd_al2230_set_channel; 1458 rf->width = 24; /* 24-bit RF values */ 1459 break; 1460 case ZYD_RF_AL7230B: 1461 rf->init = zyd_al7230B_init; 1462 rf->switch_radio = zyd_al7230B_switch_radio; 1463 rf->set_channel = zyd_al7230B_set_channel; 1464 rf->width = 24; /* 24-bit RF values */ 1465 break; 1466 case ZYD_RF_AL2210: 1467 rf->init = zyd_al2210_init; 1468 rf->switch_radio = zyd_al2210_switch_radio; 1469 rf->set_channel = zyd_al2210_set_channel; 1470 rf->width = 24; /* 24-bit RF values */ 1471 break; 1472 case ZYD_RF_GCT: 1473 rf->init = zyd_gct_init; 1474 rf->switch_radio = zyd_gct_switch_radio; 1475 rf->set_channel = zyd_gct_set_channel; 1476 rf->width = 21; /* 21-bit RF values */ 1477 break; 1478 case ZYD_RF_MAXIM_NEW: 1479 rf->init = zyd_maxim_init; 1480 rf->switch_radio = zyd_maxim_switch_radio; 1481 rf->set_channel = zyd_maxim_set_channel; 1482 rf->width = 18; /* 18-bit RF values */ 1483 break; 1484 case ZYD_RF_MAXIM_NEW2: 1485 rf->init = zyd_maxim2_init; 1486 rf->switch_radio = zyd_maxim2_switch_radio; 1487 rf->set_channel = zyd_maxim2_set_channel; 1488 rf->width = 18; /* 18-bit RF values */ 1489 break; 1490 default: 1491 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1492 sc->sc_dev.dv_xname, zyd_rf_name(type)); 1493 return EINVAL; 1494 } 1495 return 0; 1496 } 1497 1498 const char * 1499 zyd_rf_name(uint8_t type) 1500 { 1501 static const char * const zyd_rfs[] = { 1502 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1503 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1504 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1505 "PHILIPS" 1506 }; 1507 return zyd_rfs[(type > 15) ? 0 : type]; 1508 } 1509 1510 int 1511 zyd_hw_init(struct zyd_softc *sc) 1512 { 1513 struct zyd_rf *rf = &sc->sc_rf; 1514 const struct zyd_phy_pair *phyp; 1515 uint32_t tmp; 1516 int error; 1517 1518 /* specify that the plug and play is finished */ 1519 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1520 1521 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1522 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1523 1524 /* retrieve firmware revision number */ 1525 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1526 1527 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1528 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1529 1530 /* disable interrupts */ 1531 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1532 1533 /* PHY init */ 1534 zyd_lock_phy(sc); 1535 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1536 for (; phyp->reg != 0; phyp++) { 1537 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1538 goto fail; 1539 } 1540 if (sc->fix_cr157) { 1541 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 1542 (void)zyd_write32(sc, ZYD_CR157, tmp >> 8); 1543 } 1544 zyd_unlock_phy(sc); 1545 1546 /* HMAC init */ 1547 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1548 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1549 1550 if (sc->mac_rev == ZYD_ZD1211) { 1551 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1552 } else { 1553 zyd_write32(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1554 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1555 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1556 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1557 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1558 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1559 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003c); 1560 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1561 } 1562 1563 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1564 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1565 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1566 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1567 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1568 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1569 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1570 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1571 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1572 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1573 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1574 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1575 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1576 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1577 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1578 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1579 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1580 1581 /* RF chip init */ 1582 zyd_lock_phy(sc); 1583 error = (*rf->init)(rf); 1584 zyd_unlock_phy(sc); 1585 if (error != 0) { 1586 printf("%s: radio initialization failed\n", 1587 sc->sc_dev.dv_xname); 1588 goto fail; 1589 } 1590 1591 /* init beacon interval to 100ms */ 1592 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1593 goto fail; 1594 1595 fail: return error; 1596 } 1597 1598 int 1599 zyd_read_eeprom(struct zyd_softc *sc) 1600 { 1601 struct ieee80211com *ic = &sc->sc_ic; 1602 uint32_t tmp; 1603 uint16_t val; 1604 int i; 1605 1606 /* read MAC address */ 1607 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1608 ic->ic_myaddr[0] = tmp & 0xff; 1609 ic->ic_myaddr[1] = tmp >> 8; 1610 ic->ic_myaddr[2] = tmp >> 16; 1611 ic->ic_myaddr[3] = tmp >> 24; 1612 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1613 ic->ic_myaddr[4] = tmp & 0xff; 1614 ic->ic_myaddr[5] = tmp >> 8; 1615 1616 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1617 sc->rf_rev = tmp & 0x0f; 1618 sc->fix_cr47 = (tmp >> 8 ) & 0x01; 1619 sc->fix_cr157 = (tmp >> 13) & 0x01; 1620 sc->pa_rev = (tmp >> 16) & 0x0f; 1621 1622 /* read regulatory domain (currently unused) */ 1623 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1624 sc->regdomain = tmp >> 16; 1625 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1626 1627 /* read Tx power calibration tables */ 1628 for (i = 0; i < 7; i++) { 1629 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1630 sc->pwr_cal[i * 2] = val >> 8; 1631 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1632 1633 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1634 sc->pwr_int[i * 2] = val >> 8; 1635 sc->pwr_int[i * 2 + 1] = val & 0xff; 1636 1637 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1638 sc->ofdm36_cal[i * 2] = val >> 8; 1639 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1640 1641 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1642 sc->ofdm48_cal[i * 2] = val >> 8; 1643 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1644 1645 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1646 sc->ofdm54_cal[i * 2] = val >> 8; 1647 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1648 } 1649 return 0; 1650 } 1651 1652 void 1653 zyd_set_multi(struct zyd_softc *sc) 1654 { 1655 struct arpcom *ac = &sc->sc_ic.ic_ac; 1656 struct ifnet *ifp = &ac->ac_if; 1657 struct ether_multi *enm; 1658 struct ether_multistep step; 1659 uint32_t lo, hi; 1660 uint8_t bit; 1661 1662 if (ac->ac_multirangecnt > 0) 1663 ifp->if_flags |= IFF_ALLMULTI; 1664 1665 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 1666 lo = hi = 0xffffffff; 1667 goto done; 1668 } 1669 lo = hi = 0; 1670 ETHER_FIRST_MULTI(step, ac, enm); 1671 while (enm != NULL) { 1672 bit = enm->enm_addrlo[5] >> 2; 1673 if (bit < 32) 1674 lo |= 1 << bit; 1675 else 1676 hi |= 1 << (bit - 32); 1677 ETHER_NEXT_MULTI(step, enm); 1678 } 1679 1680 done: 1681 hi |= 1U << 31; /* make sure the broadcast bit is set */ 1682 zyd_write32(sc, ZYD_MAC_GHTBL, lo); 1683 zyd_write32(sc, ZYD_MAC_GHTBH, hi); 1684 } 1685 1686 void 1687 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1688 { 1689 uint32_t tmp; 1690 1691 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1692 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1693 1694 tmp = addr[5] << 8 | addr[4]; 1695 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1696 } 1697 1698 void 1699 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1700 { 1701 uint32_t tmp; 1702 1703 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1704 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1705 1706 tmp = addr[5] << 8 | addr[4]; 1707 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1708 } 1709 1710 int 1711 zyd_switch_radio(struct zyd_softc *sc, int on) 1712 { 1713 struct zyd_rf *rf = &sc->sc_rf; 1714 int error; 1715 1716 zyd_lock_phy(sc); 1717 error = (*rf->switch_radio)(rf, on); 1718 zyd_unlock_phy(sc); 1719 1720 return error; 1721 } 1722 1723 void 1724 zyd_set_led(struct zyd_softc *sc, int which, int on) 1725 { 1726 uint32_t tmp; 1727 1728 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1729 tmp &= ~which; 1730 if (on) 1731 tmp |= which; 1732 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1733 } 1734 1735 int 1736 zyd_set_rxfilter(struct zyd_softc *sc) 1737 { 1738 uint32_t rxfilter; 1739 1740 switch (sc->sc_ic.ic_opmode) { 1741 case IEEE80211_M_STA: 1742 rxfilter = ZYD_FILTER_BSS; 1743 break; 1744 #ifndef IEEE80211_STA_ONLY 1745 case IEEE80211_M_IBSS: 1746 case IEEE80211_M_HOSTAP: 1747 rxfilter = ZYD_FILTER_HOSTAP; 1748 break; 1749 #endif 1750 case IEEE80211_M_MONITOR: 1751 rxfilter = ZYD_FILTER_MONITOR; 1752 break; 1753 default: 1754 /* should not get there */ 1755 return EINVAL; 1756 } 1757 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1758 } 1759 1760 void 1761 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1762 { 1763 struct ieee80211com *ic = &sc->sc_ic; 1764 struct zyd_rf *rf = &sc->sc_rf; 1765 uint32_t tmp; 1766 u_int chan; 1767 1768 chan = ieee80211_chan2ieee(ic, c); 1769 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1770 return; 1771 1772 zyd_lock_phy(sc); 1773 1774 (*rf->set_channel)(rf, chan); 1775 1776 /* update Tx power */ 1777 (void)zyd_write16(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1778 1779 if (sc->mac_rev == ZYD_ZD1211B) { 1780 (void)zyd_write16(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1781 (void)zyd_write16(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1782 (void)zyd_write16(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1783 1784 (void)zyd_write16(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1785 1786 (void)zyd_write16(sc, ZYD_CR69, 0x28); 1787 (void)zyd_write16(sc, ZYD_CR69, 0x2a); 1788 } 1789 1790 if (sc->fix_cr47) { 1791 /* set CCK baseband gain from EEPROM */ 1792 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 1793 (void)zyd_write16(sc, ZYD_CR47, tmp & 0xff); 1794 } 1795 1796 (void)zyd_write32(sc, ZYD_CR_CONFIG_PHILIPS, 0); 1797 1798 zyd_unlock_phy(sc); 1799 } 1800 1801 int 1802 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1803 { 1804 /* XXX this is probably broken.. */ 1805 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1806 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1807 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1808 1809 return 0; 1810 } 1811 1812 uint8_t 1813 zyd_plcp_signal(int rate) 1814 { 1815 switch (rate) { 1816 /* CCK rates (returned values are device-dependent) */ 1817 case 2: return 0x0; 1818 case 4: return 0x1; 1819 case 11: return 0x2; 1820 case 22: return 0x3; 1821 1822 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1823 case 12: return 0xb; 1824 case 18: return 0xf; 1825 case 24: return 0xa; 1826 case 36: return 0xe; 1827 case 48: return 0x9; 1828 case 72: return 0xd; 1829 case 96: return 0x8; 1830 case 108: return 0xc; 1831 1832 /* unsupported rates (should not get there) */ 1833 default: return 0xff; 1834 } 1835 } 1836 1837 void 1838 zyd_intr(struct usbd_xfer *xfer, void *priv, usbd_status status) 1839 { 1840 struct zyd_softc *sc = (struct zyd_softc *)priv; 1841 const struct zyd_cmd *cmd; 1842 uint32_t len; 1843 1844 if (status != USBD_NORMAL_COMPLETION) { 1845 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1846 return; 1847 1848 if (status == USBD_STALLED) { 1849 usbd_clear_endpoint_stall_async( 1850 sc->zyd_ep[ZYD_ENDPT_IIN]); 1851 } 1852 return; 1853 } 1854 1855 cmd = (const struct zyd_cmd *)sc->ibuf; 1856 1857 if (letoh16(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1858 struct zyd_notif_retry *retry = 1859 (struct zyd_notif_retry *)cmd->data; 1860 struct ieee80211com *ic = &sc->sc_ic; 1861 struct ifnet *ifp = &ic->ic_if; 1862 struct ieee80211_node *ni; 1863 1864 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 1865 letoh16(retry->rate), ether_sprintf(retry->macaddr), 1866 letoh16(retry->count) & 0xff, letoh16(retry->count))); 1867 1868 /* 1869 * Find the node to which the packet was sent and update its 1870 * retry statistics. In BSS mode, this node is the AP we're 1871 * associated to so no lookup is actually needed. 1872 */ 1873 if (ic->ic_opmode != IEEE80211_M_STA) { 1874 ni = ieee80211_find_node(ic, retry->macaddr); 1875 if (ni == NULL) 1876 return; /* just ignore */ 1877 } else 1878 ni = ic->ic_bss; 1879 1880 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1881 1882 if (letoh16(retry->count) & 0x100) 1883 ifp->if_oerrors++; /* too many retries */ 1884 1885 } else if (letoh16(cmd->code) == ZYD_NOTIF_IORD) { 1886 if (letoh16(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1887 return; /* HMAC interrupt */ 1888 1889 if (!sc->odone) { 1890 /* copy answer into sc->odata buffer */ 1891 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 1892 bcopy(cmd->data, sc->odata, sc->olen); 1893 sc->odone = 1; 1894 wakeup(sc); /* wakeup zyd_cmd_read() */ 1895 } 1896 1897 } else { 1898 printf("%s: unknown notification %x\n", sc->sc_dev.dv_xname, 1899 letoh16(cmd->code)); 1900 } 1901 } 1902 1903 void 1904 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1905 { 1906 struct ieee80211com *ic = &sc->sc_ic; 1907 struct ifnet *ifp = &ic->ic_if; 1908 struct ieee80211_node *ni; 1909 struct ieee80211_frame *wh; 1910 struct ieee80211_rxinfo rxi; 1911 const struct zyd_plcphdr *plcp; 1912 const struct zyd_rx_stat *stat; 1913 struct mbuf *m; 1914 int s; 1915 1916 if (len < ZYD_MIN_FRAGSZ) { 1917 DPRINTFN(2, ("frame too short (length=%d)\n", len)); 1918 ifp->if_ierrors++; 1919 return; 1920 } 1921 1922 plcp = (const struct zyd_plcphdr *)buf; 1923 stat = (const struct zyd_rx_stat *)(buf + len - sizeof (*stat)); 1924 1925 if (stat->flags & ZYD_RX_ERROR) { 1926 DPRINTF(("%s: RX status indicated error (%x)\n", 1927 sc->sc_dev.dv_xname, stat->flags)); 1928 ifp->if_ierrors++; 1929 return; 1930 } 1931 1932 /* compute actual frame length */ 1933 len -= (sizeof (*plcp) + sizeof (*stat) + IEEE80211_CRC_LEN); 1934 1935 if (len > MCLBYTES) { 1936 DPRINTFN(2, ("frame too large (length=%d)\n", len)); 1937 ifp->if_ierrors++; 1938 return; 1939 } 1940 1941 /* allocate a mbuf to store the frame */ 1942 MGETHDR(m, M_DONTWAIT, MT_DATA); 1943 if (m == NULL) { 1944 ifp->if_ierrors++; 1945 return; 1946 } 1947 if (len > MHLEN) { 1948 MCLGET(m, M_DONTWAIT); 1949 if (!(m->m_flags & M_EXT)) { 1950 ifp->if_ierrors++; 1951 m_freem(m); 1952 return; 1953 } 1954 } 1955 bcopy(plcp + 1, mtod(m, caddr_t), len); 1956 m->m_pkthdr.rcvif = ifp; 1957 m->m_pkthdr.len = m->m_len = len; 1958 1959 #if NBPFILTER > 0 1960 if (sc->sc_drvbpf != NULL) { 1961 struct mbuf mb; 1962 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1963 static const uint8_t rates[] = { 1964 /* reverse function of zyd_plcp_signal() */ 1965 2, 4, 11, 22, 0, 0, 0, 0, 1966 96, 48, 24, 12, 108, 72, 36, 18 1967 }; 1968 1969 tap->wr_flags = 0; 1970 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1971 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1972 tap->wr_rssi = stat->rssi; 1973 tap->wr_rate = rates[plcp->signal & 0xf]; 1974 1975 mb.m_data = (caddr_t)tap; 1976 mb.m_len = sc->sc_rxtap_len; 1977 mb.m_next = m; 1978 mb.m_nextpkt = NULL; 1979 mb.m_type = 0; 1980 mb.m_flags = 0; 1981 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 1982 } 1983 #endif 1984 1985 s = splnet(); 1986 wh = mtod(m, struct ieee80211_frame *); 1987 ni = ieee80211_find_rxnode(ic, wh); 1988 rxi.rxi_flags = 0; 1989 rxi.rxi_rssi = stat->rssi; 1990 rxi.rxi_tstamp = 0; /* unused */ 1991 ieee80211_input(ifp, m, ni, &rxi); 1992 1993 /* node is no longer needed */ 1994 ieee80211_release_node(ic, ni); 1995 1996 splx(s); 1997 } 1998 1999 void 2000 zyd_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 2001 { 2002 struct zyd_rx_data *data = priv; 2003 struct zyd_softc *sc = data->sc; 2004 struct ieee80211com *ic = &sc->sc_ic; 2005 struct ifnet *ifp = &ic->ic_if; 2006 const struct zyd_rx_desc *desc; 2007 int len; 2008 2009 if (status != USBD_NORMAL_COMPLETION) { 2010 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2011 return; 2012 2013 if (status == USBD_STALLED) 2014 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 2015 2016 goto skip; 2017 } 2018 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2019 2020 if (len < ZYD_MIN_RXBUFSZ) { 2021 DPRINTFN(2, ("xfer too short (length=%d)\n", len)); 2022 ifp->if_ierrors++; 2023 goto skip; 2024 } 2025 2026 desc = (const struct zyd_rx_desc *) 2027 (data->buf + len - sizeof (struct zyd_rx_desc)); 2028 2029 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2030 const uint8_t *p = data->buf, *end = p + len; 2031 int i; 2032 2033 DPRINTFN(3, ("received multi-frame transfer\n")); 2034 2035 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2036 const uint16_t len = UGETW(desc->len[i]); 2037 2038 if (len == 0 || p + len >= end) 2039 break; 2040 2041 zyd_rx_data(sc, p, len); 2042 /* next frame is aligned on a 32-bit boundary */ 2043 p += (len + 3) & ~3; 2044 } 2045 } else { 2046 DPRINTFN(3, ("received single-frame transfer\n")); 2047 2048 zyd_rx_data(sc, data->buf, len); 2049 } 2050 2051 skip: /* setup a new transfer */ 2052 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, 2053 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2054 USBD_NO_TIMEOUT, zyd_rxeof); 2055 (void)usbd_transfer(xfer); 2056 } 2057 2058 void 2059 zyd_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 2060 { 2061 struct zyd_tx_data *data = priv; 2062 struct zyd_softc *sc = data->sc; 2063 struct ieee80211com *ic = &sc->sc_ic; 2064 struct ifnet *ifp = &ic->ic_if; 2065 int s; 2066 2067 if (status != USBD_NORMAL_COMPLETION) { 2068 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2069 return; 2070 2071 printf("%s: could not transmit buffer: %s\n", 2072 sc->sc_dev.dv_xname, usbd_errstr(status)); 2073 2074 if (status == USBD_STALLED) { 2075 usbd_clear_endpoint_stall_async( 2076 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2077 } 2078 ifp->if_oerrors++; 2079 return; 2080 } 2081 2082 s = splnet(); 2083 2084 /* update rate control statistics */ 2085 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2086 2087 ieee80211_release_node(ic, data->ni); 2088 data->ni = NULL; 2089 2090 sc->tx_queued--; 2091 ifp->if_opackets++; 2092 2093 sc->tx_timer = 0; 2094 ifp->if_flags &= ~IFF_OACTIVE; 2095 zyd_start(ifp); 2096 2097 splx(s); 2098 } 2099 2100 int 2101 zyd_tx(struct zyd_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 2102 { 2103 struct ieee80211com *ic = &sc->sc_ic; 2104 struct ifnet *ifp = &ic->ic_if; 2105 struct zyd_tx_desc *desc; 2106 struct zyd_tx_data *data; 2107 struct ieee80211_frame *wh; 2108 struct ieee80211_key *k; 2109 int xferlen, totlen, rate; 2110 uint16_t pktlen; 2111 usbd_status error; 2112 2113 wh = mtod(m, struct ieee80211_frame *); 2114 2115 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2116 k = ieee80211_get_txkey(ic, wh, ni); 2117 if ((m = ieee80211_encrypt(ic, m, k)) == NULL) 2118 return ENOBUFS; 2119 wh = mtod(m, struct ieee80211_frame *); 2120 } 2121 2122 /* pickup a rate */ 2123 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2124 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2125 IEEE80211_FC0_TYPE_MGT)) { 2126 /* mgmt/multicast frames are sent at the lowest avail. rate */ 2127 rate = ni->ni_rates.rs_rates[0]; 2128 } else if (ic->ic_fixed_rate != -1) { 2129 rate = ic->ic_sup_rates[ic->ic_curmode]. 2130 rs_rates[ic->ic_fixed_rate]; 2131 } else 2132 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2133 rate &= IEEE80211_RATE_VAL; 2134 if (rate == 0) /* XXX should not happen */ 2135 rate = 2; 2136 2137 data = &sc->tx_data[0]; 2138 desc = (struct zyd_tx_desc *)data->buf; 2139 2140 data->ni = ni; 2141 2142 xferlen = sizeof (struct zyd_tx_desc) + m->m_pkthdr.len; 2143 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 2144 2145 /* fill Tx descriptor */ 2146 desc->len = htole16(totlen); 2147 2148 desc->flags = ZYD_TX_FLAG_BACKOFF; 2149 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2150 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2151 if (totlen > ic->ic_rtsthreshold) { 2152 desc->flags |= ZYD_TX_FLAG_RTS; 2153 } else if (ZYD_RATE_IS_OFDM(rate) && 2154 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2155 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2156 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2157 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2158 desc->flags |= ZYD_TX_FLAG_RTS; 2159 } 2160 } else 2161 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2162 2163 if ((wh->i_fc[0] & 2164 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2165 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2166 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2167 2168 desc->phy = zyd_plcp_signal(rate); 2169 if (ZYD_RATE_IS_OFDM(rate)) { 2170 desc->phy |= ZYD_TX_PHY_OFDM; 2171 if (ic->ic_curmode == IEEE80211_MODE_11A) 2172 desc->phy |= ZYD_TX_PHY_5GHZ; 2173 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2174 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2175 2176 /* actual transmit length (XXX why +10?) */ 2177 pktlen = sizeof (struct zyd_tx_desc) + 10; 2178 if (sc->mac_rev == ZYD_ZD1211) 2179 pktlen += totlen; 2180 desc->pktlen = htole16(pktlen); 2181 2182 desc->plcp_length = htole16((16 * totlen + rate - 1) / rate); 2183 desc->plcp_service = 0; 2184 if (rate == 22) { 2185 const int remainder = (16 * totlen) % 22; 2186 if (remainder != 0 && remainder < 7) 2187 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2188 } 2189 2190 #if NBPFILTER > 0 2191 if (sc->sc_drvbpf != NULL) { 2192 struct mbuf mb; 2193 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2194 2195 tap->wt_flags = 0; 2196 tap->wt_rate = rate; 2197 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 2198 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 2199 2200 mb.m_data = (caddr_t)tap; 2201 mb.m_len = sc->sc_txtap_len; 2202 mb.m_next = m; 2203 mb.m_nextpkt = NULL; 2204 mb.m_type = 0; 2205 mb.m_flags = 0; 2206 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 2207 } 2208 #endif 2209 2210 m_copydata(m, 0, m->m_pkthdr.len, 2211 data->buf + sizeof (struct zyd_tx_desc)); 2212 2213 DPRINTFN(10, ("%s: sending data frame len=%u rate=%u xferlen=%u\n", 2214 sc->sc_dev.dv_xname, m->m_pkthdr.len, rate, xferlen)); 2215 2216 m_freem(m); /* mbuf no longer needed */ 2217 2218 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2219 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2220 ZYD_TX_TIMEOUT, zyd_txeof); 2221 error = usbd_transfer(data->xfer); 2222 if (error != USBD_IN_PROGRESS && error != 0) { 2223 ifp->if_oerrors++; 2224 return EIO; 2225 } 2226 sc->tx_queued++; 2227 2228 return 0; 2229 } 2230 2231 void 2232 zyd_start(struct ifnet *ifp) 2233 { 2234 struct zyd_softc *sc = ifp->if_softc; 2235 struct ieee80211com *ic = &sc->sc_ic; 2236 struct ieee80211_node *ni; 2237 struct mbuf *m; 2238 2239 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 2240 return; 2241 2242 for (;;) { 2243 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2244 ifp->if_flags |= IFF_OACTIVE; 2245 break; 2246 } 2247 /* send pending management frames first */ 2248 IF_DEQUEUE(&ic->ic_mgtq, m); 2249 if (m != NULL) { 2250 ni = m->m_pkthdr.ph_cookie; 2251 goto sendit; 2252 } 2253 if (ic->ic_state != IEEE80211_S_RUN) 2254 break; 2255 2256 /* encapsulate and send data frames */ 2257 IFQ_DEQUEUE(&ifp->if_snd, m); 2258 if (m == NULL) 2259 break; 2260 #if NBPFILTER > 0 2261 if (ifp->if_bpf != NULL) 2262 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 2263 #endif 2264 if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) 2265 continue; 2266 sendit: 2267 #if NBPFILTER > 0 2268 if (ic->ic_rawbpf != NULL) 2269 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 2270 #endif 2271 if (zyd_tx(sc, m, ni) != 0) { 2272 ieee80211_release_node(ic, ni); 2273 ifp->if_oerrors++; 2274 continue; 2275 } 2276 2277 sc->tx_timer = 5; 2278 ifp->if_timer = 1; 2279 } 2280 } 2281 2282 void 2283 zyd_watchdog(struct ifnet *ifp) 2284 { 2285 struct zyd_softc *sc = ifp->if_softc; 2286 2287 ifp->if_timer = 0; 2288 2289 if (sc->tx_timer > 0) { 2290 if (--sc->tx_timer == 0) { 2291 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 2292 /* zyd_init(ifp); XXX needs a process context ? */ 2293 ifp->if_oerrors++; 2294 return; 2295 } 2296 ifp->if_timer = 1; 2297 } 2298 2299 ieee80211_watchdog(ifp); 2300 } 2301 2302 int 2303 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2304 { 2305 struct zyd_softc *sc = ifp->if_softc; 2306 struct ieee80211com *ic = &sc->sc_ic; 2307 struct ifaddr *ifa; 2308 struct ifreq *ifr; 2309 int s, error = 0; 2310 2311 s = splnet(); 2312 2313 switch (cmd) { 2314 case SIOCSIFADDR: 2315 ifa = (struct ifaddr *)data; 2316 ifp->if_flags |= IFF_UP; 2317 #ifdef INET 2318 if (ifa->ifa_addr->sa_family == AF_INET) 2319 arp_ifinit(&ic->ic_ac, ifa); 2320 #endif 2321 /* FALLTHROUGH */ 2322 case SIOCSIFFLAGS: 2323 if (ifp->if_flags & IFF_UP) { 2324 /* 2325 * If only the PROMISC or ALLMULTI flag changes, then 2326 * don't do a full re-init of the chip, just update 2327 * the Rx filter. 2328 */ 2329 if ((ifp->if_flags & IFF_RUNNING) && 2330 ((ifp->if_flags ^ sc->sc_if_flags) & 2331 (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 2332 zyd_set_multi(sc); 2333 } else { 2334 if (!(ifp->if_flags & IFF_RUNNING)) 2335 zyd_init(ifp); 2336 } 2337 } else { 2338 if (ifp->if_flags & IFF_RUNNING) 2339 zyd_stop(ifp, 1); 2340 } 2341 sc->sc_if_flags = ifp->if_flags; 2342 break; 2343 2344 case SIOCADDMULTI: 2345 case SIOCDELMULTI: 2346 ifr = (struct ifreq *)data; 2347 error = (cmd == SIOCADDMULTI) ? 2348 ether_addmulti(ifr, &ic->ic_ac) : 2349 ether_delmulti(ifr, &ic->ic_ac); 2350 if (error == ENETRESET) { 2351 if (ifp->if_flags & IFF_RUNNING) 2352 zyd_set_multi(sc); 2353 error = 0; 2354 } 2355 break; 2356 2357 case SIOCS80211CHANNEL: 2358 /* 2359 * This allows for fast channel switching in monitor mode 2360 * (used by kismet). In IBSS mode, we must explicitly reset 2361 * the interface to generate a new beacon frame. 2362 */ 2363 error = ieee80211_ioctl(ifp, cmd, data); 2364 if (error == ENETRESET && 2365 ic->ic_opmode == IEEE80211_M_MONITOR) { 2366 zyd_set_chan(sc, ic->ic_ibss_chan); 2367 error = 0; 2368 } 2369 break; 2370 2371 default: 2372 error = ieee80211_ioctl(ifp, cmd, data); 2373 } 2374 2375 if (error == ENETRESET) { 2376 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2377 (IFF_RUNNING | IFF_UP)) 2378 zyd_init(ifp); 2379 error = 0; 2380 } 2381 2382 splx(s); 2383 2384 return error; 2385 } 2386 2387 int 2388 zyd_init(struct ifnet *ifp) 2389 { 2390 struct zyd_softc *sc = ifp->if_softc; 2391 struct ieee80211com *ic = &sc->sc_ic; 2392 int i, error; 2393 2394 zyd_stop(ifp, 0); 2395 2396 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 2397 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2398 zyd_set_macaddr(sc, ic->ic_myaddr); 2399 2400 /* we'll do software WEP decryption for now */ 2401 DPRINTF(("setting encryption type\n")); 2402 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2403 if (error != 0) 2404 return error; 2405 2406 /* promiscuous mode */ 2407 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2408 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2409 2410 (void)zyd_set_rxfilter(sc); 2411 2412 /* switch radio transmitter ON */ 2413 (void)zyd_switch_radio(sc, 1); 2414 2415 /* set basic rates */ 2416 if (ic->ic_curmode == IEEE80211_MODE_11B) 2417 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2418 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2419 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2420 else /* assumes 802.11b/g */ 2421 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2422 2423 /* set mandatory rates */ 2424 if (ic->ic_curmode == IEEE80211_MODE_11B) 2425 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2426 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2427 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2428 else /* assumes 802.11b/g */ 2429 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2430 2431 /* set default BSS channel */ 2432 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2433 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2434 2435 /* enable interrupts */ 2436 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2437 2438 /* 2439 * Allocate Tx and Rx xfer queues. 2440 */ 2441 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2442 printf("%s: could not allocate Tx list\n", 2443 sc->sc_dev.dv_xname); 2444 goto fail; 2445 } 2446 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2447 printf("%s: could not allocate Rx list\n", 2448 sc->sc_dev.dv_xname); 2449 goto fail; 2450 } 2451 2452 /* 2453 * Start up the receive pipe. 2454 */ 2455 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2456 struct zyd_rx_data *data = &sc->rx_data[i]; 2457 2458 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, 2459 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2460 USBD_NO_TIMEOUT, zyd_rxeof); 2461 error = usbd_transfer(data->xfer); 2462 if (error != USBD_IN_PROGRESS && error != 0) { 2463 printf("%s: could not queue Rx transfer\n", 2464 sc->sc_dev.dv_xname); 2465 goto fail; 2466 } 2467 } 2468 2469 ifp->if_flags &= ~IFF_OACTIVE; 2470 ifp->if_flags |= IFF_RUNNING; 2471 2472 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2473 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2474 else 2475 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2476 2477 return 0; 2478 2479 fail: zyd_stop(ifp, 1); 2480 return error; 2481 } 2482 2483 void 2484 zyd_stop(struct ifnet *ifp, int disable) 2485 { 2486 struct zyd_softc *sc = ifp->if_softc; 2487 struct ieee80211com *ic = &sc->sc_ic; 2488 2489 sc->tx_timer = 0; 2490 ifp->if_timer = 0; 2491 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2492 2493 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2494 2495 /* switch radio transmitter OFF */ 2496 (void)zyd_switch_radio(sc, 0); 2497 2498 /* disable Rx */ 2499 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2500 2501 /* disable interrupts */ 2502 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2503 2504 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2505 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2506 2507 zyd_free_rx_list(sc); 2508 zyd_free_tx_list(sc); 2509 } 2510 2511 int 2512 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2513 { 2514 usb_device_request_t req; 2515 uint16_t addr; 2516 uint8_t stat; 2517 2518 DPRINTF(("firmware size=%zd\n", size)); 2519 2520 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2521 req.bRequest = ZYD_DOWNLOADREQ; 2522 USETW(req.wIndex, 0); 2523 2524 addr = ZYD_FIRMWARE_START_ADDR; 2525 while (size > 0) { 2526 const int mlen = min(size, 4096); 2527 2528 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, 2529 addr)); 2530 2531 USETW(req.wValue, addr); 2532 USETW(req.wLength, mlen); 2533 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2534 return EIO; 2535 2536 addr += mlen / 2; 2537 fw += mlen; 2538 size -= mlen; 2539 } 2540 2541 /* check whether the upload succeeded */ 2542 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2543 req.bRequest = ZYD_DOWNLOADSTS; 2544 USETW(req.wValue, 0); 2545 USETW(req.wIndex, 0); 2546 USETW(req.wLength, sizeof stat); 2547 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2548 return EIO; 2549 2550 return (stat & 0x80) ? EIO : 0; 2551 } 2552 2553 void 2554 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2555 { 2556 struct zyd_softc *sc = arg; 2557 struct zyd_node *zn = (struct zyd_node *)ni; 2558 2559 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2560 } 2561 2562 void 2563 zyd_amrr_timeout(void *arg) 2564 { 2565 struct zyd_softc *sc = arg; 2566 struct ieee80211com *ic = &sc->sc_ic; 2567 int s; 2568 2569 s = splnet(); 2570 if (ic->ic_opmode == IEEE80211_M_STA) 2571 zyd_iter_func(sc, ic->ic_bss); 2572 else 2573 ieee80211_iterate_nodes(ic, zyd_iter_func, sc); 2574 splx(s); 2575 2576 timeout_add_sec(&sc->amrr_to, 1); 2577 } 2578 2579 void 2580 zyd_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 2581 { 2582 struct zyd_softc *sc = ic->ic_softc; 2583 int i; 2584 2585 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2586 2587 /* set rate to some reasonable initial value */ 2588 for (i = ni->ni_rates.rs_nrates - 1; 2589 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2590 i--); 2591 ni->ni_txrate = i; 2592 } 2593