1 /* $OpenBSD: if_zyd.c,v 1.73 2009/03/27 11:40:56 jsg Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 22 */ 23 24 #include "bpfilter.h" 25 26 #include <sys/param.h> 27 #include <sys/sockio.h> 28 #include <sys/proc.h> 29 #include <sys/mbuf.h> 30 #include <sys/kernel.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/timeout.h> 35 #include <sys/conf.h> 36 #include <sys/device.h> 37 38 #include <machine/bus.h> 39 #include <machine/endian.h> 40 41 #if NBPFILTER > 0 42 #include <net/bpf.h> 43 #endif 44 #include <net/if.h> 45 #include <net/if_arp.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 50 #ifdef INET 51 #include <netinet/in.h> 52 #include <netinet/in_systm.h> 53 #include <netinet/in_var.h> 54 #include <netinet/if_ether.h> 55 #include <netinet/ip.h> 56 #endif 57 58 #include <net80211/ieee80211_var.h> 59 #include <net80211/ieee80211_amrr.h> 60 #include <net80211/ieee80211_radiotap.h> 61 62 #include <dev/usb/usb.h> 63 #include <dev/usb/usbdi.h> 64 #include <dev/usb/usbdi_util.h> 65 #include <dev/usb/usbdevs.h> 66 67 #include <dev/usb/if_zydreg.h> 68 69 #ifdef USB_DEBUG 70 #define ZYD_DEBUG 71 #endif 72 73 #ifdef ZYD_DEBUG 74 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 75 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 76 int zyddebug = 0; 77 #else 78 #define DPRINTF(x) 79 #define DPRINTFN(n, x) 80 #endif 81 82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 84 85 /* various supported device vendors/products */ 86 #define ZYD_ZD1211_DEV(v, p) \ 87 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 88 #define ZYD_ZD1211B_DEV(v, p) \ 89 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 90 static const struct zyd_type { 91 struct usb_devno dev; 92 uint8_t rev; 93 #define ZYD_ZD1211 0 94 #define ZYD_ZD1211B 1 95 } zyd_devs[] = { 96 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 97 ZYD_ZD1211_DEV(ABOCOM, WL54), 98 ZYD_ZD1211_DEV(ASUS, WL159G), 99 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 100 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 101 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 102 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 103 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 104 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 105 ZYD_ZD1211_DEV(SAGEM, XG760A), 106 ZYD_ZD1211_DEV(SENAO, NUB8301), 107 ZYD_ZD1211_DEV(SITECOMEU, WL113), 108 ZYD_ZD1211_DEV(SWEEX, ZD1211), 109 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 110 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 111 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 112 ZYD_ZD1211_DEV(TWINMOS, G240), 113 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 114 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 115 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 116 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 117 ZYD_ZD1211_DEV(ZCOM, ZD1211), 118 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 119 ZYD_ZD1211_DEV(ZYXEL, AG225H), 120 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 121 ZYD_ZD1211_DEV(ZYXEL, G200V2), 122 ZYD_ZD1211_DEV(ZYXEL, G202), 123 124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 125 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 126 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 127 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 128 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 129 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 130 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 131 ZYD_ZD1211B_DEV(MELCO, KG54L), 132 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 133 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 134 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 135 ZYD_ZD1211B_DEV(SITECOMEU, WL603), 136 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 137 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 138 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), 139 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), 140 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 141 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 142 ZYD_ZD1211B_DEV(USR, USR5423), 143 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 144 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 145 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 146 ZYD_ZD1211B_DEV(ZYXEL, M202), 147 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 148 }; 149 #define zyd_lookup(v, p) \ 150 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 151 152 int zyd_match(struct device *, void *, void *); 153 void zyd_attach(struct device *, struct device *, void *); 154 int zyd_detach(struct device *, int); 155 int zyd_activate(struct device *, enum devact); 156 157 struct cfdriver zyd_cd = { 158 NULL, "zyd", DV_IFNET 159 }; 160 161 const struct cfattach zyd_ca = { 162 sizeof(struct zyd_softc), 163 zyd_match, 164 zyd_attach, 165 zyd_detach, 166 zyd_activate, 167 }; 168 169 void zyd_attachhook(void *); 170 int zyd_complete_attach(struct zyd_softc *); 171 int zyd_open_pipes(struct zyd_softc *); 172 void zyd_close_pipes(struct zyd_softc *); 173 int zyd_alloc_tx_list(struct zyd_softc *); 174 void zyd_free_tx_list(struct zyd_softc *); 175 int zyd_alloc_rx_list(struct zyd_softc *); 176 void zyd_free_rx_list(struct zyd_softc *); 177 struct ieee80211_node *zyd_node_alloc(struct ieee80211com *); 178 int zyd_media_change(struct ifnet *); 179 void zyd_next_scan(void *); 180 void zyd_task(void *); 181 int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 182 int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 183 void *, int, u_int); 184 int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 185 int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 186 int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 187 int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 188 int zyd_rfwrite(struct zyd_softc *, uint32_t); 189 void zyd_lock_phy(struct zyd_softc *); 190 void zyd_unlock_phy(struct zyd_softc *); 191 int zyd_rfmd_init(struct zyd_rf *); 192 int zyd_rfmd_switch_radio(struct zyd_rf *, int); 193 int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 194 int zyd_al2230_init(struct zyd_rf *); 195 int zyd_al2230_switch_radio(struct zyd_rf *, int); 196 int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 197 int zyd_al2230_init_b(struct zyd_rf *); 198 int zyd_al7230B_init(struct zyd_rf *); 199 int zyd_al7230B_switch_radio(struct zyd_rf *, int); 200 int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 201 int zyd_al2210_init(struct zyd_rf *); 202 int zyd_al2210_switch_radio(struct zyd_rf *, int); 203 int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 204 int zyd_gct_init(struct zyd_rf *); 205 int zyd_gct_switch_radio(struct zyd_rf *, int); 206 int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 207 int zyd_maxim_init(struct zyd_rf *); 208 int zyd_maxim_switch_radio(struct zyd_rf *, int); 209 int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 210 int zyd_maxim2_init(struct zyd_rf *); 211 int zyd_maxim2_switch_radio(struct zyd_rf *, int); 212 int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 213 int zyd_rf_attach(struct zyd_softc *, uint8_t); 214 const char *zyd_rf_name(uint8_t); 215 int zyd_hw_init(struct zyd_softc *); 216 int zyd_read_eeprom(struct zyd_softc *); 217 void zyd_set_multi(struct zyd_softc *); 218 void zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 219 void zyd_set_bssid(struct zyd_softc *, const uint8_t *); 220 int zyd_switch_radio(struct zyd_softc *, int); 221 void zyd_set_led(struct zyd_softc *, int, int); 222 int zyd_set_rxfilter(struct zyd_softc *); 223 void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 224 int zyd_set_beacon_interval(struct zyd_softc *, int); 225 uint8_t zyd_plcp_signal(int); 226 void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); 227 void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 228 void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 229 void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); 230 int zyd_tx_data(struct zyd_softc *, struct mbuf *, 231 struct ieee80211_node *); 232 void zyd_start(struct ifnet *); 233 void zyd_watchdog(struct ifnet *); 234 int zyd_ioctl(struct ifnet *, u_long, caddr_t); 235 int zyd_init(struct ifnet *); 236 void zyd_stop(struct ifnet *, int); 237 int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 238 void zyd_iter_func(void *, struct ieee80211_node *); 239 void zyd_amrr_timeout(void *); 240 void zyd_newassoc(struct ieee80211com *, struct ieee80211_node *, 241 int); 242 243 int 244 zyd_match(struct device *parent, void *match, void *aux) 245 { 246 struct usb_attach_arg *uaa = aux; 247 248 if (!uaa->iface) 249 return UMATCH_NONE; 250 251 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? 252 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 253 } 254 255 void 256 zyd_attachhook(void *xsc) 257 { 258 struct zyd_softc *sc = xsc; 259 const char *fwname; 260 u_char *fw; 261 size_t size; 262 int error; 263 264 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zd1211" : "zd1211b"; 265 if ((error = loadfirmware(fwname, &fw, &size)) != 0) { 266 printf("%s: error %d, could not read firmware file %s\n", 267 sc->sc_dev.dv_xname, error, fwname); 268 return; 269 } 270 271 error = zyd_loadfirmware(sc, fw, size); 272 free(fw, M_DEVBUF); 273 if (error != 0) { 274 printf("%s: could not load firmware (error=%d)\n", 275 sc->sc_dev.dv_xname, error); 276 return; 277 } 278 279 /* complete the attach process */ 280 if (zyd_complete_attach(sc) == 0) 281 sc->attached = 1; 282 } 283 284 void 285 zyd_attach(struct device *parent, struct device *self, void *aux) 286 { 287 struct zyd_softc *sc = (struct zyd_softc *)self; 288 struct usb_attach_arg *uaa = aux; 289 usb_device_descriptor_t* ddesc; 290 291 sc->sc_udev = uaa->device; 292 293 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev; 294 295 ddesc = usbd_get_device_descriptor(sc->sc_udev); 296 if (UGETW(ddesc->bcdDevice) < 0x4330) { 297 printf("%s: device version mismatch: 0x%x " 298 "(only >= 43.30 supported)\n", sc->sc_dev.dv_xname, 299 UGETW(ddesc->bcdDevice)); 300 return; 301 } 302 303 if (rootvp == NULL) 304 mountroothook_establish(zyd_attachhook, sc); 305 else 306 zyd_attachhook(sc); 307 } 308 309 int 310 zyd_complete_attach(struct zyd_softc *sc) 311 { 312 struct ieee80211com *ic = &sc->sc_ic; 313 struct ifnet *ifp = &ic->ic_if; 314 usbd_status error; 315 int i; 316 317 usb_init_task(&sc->sc_task, zyd_task, sc); 318 timeout_set(&sc->scan_to, zyd_next_scan, sc); 319 320 sc->amrr.amrr_min_success_threshold = 1; 321 sc->amrr.amrr_max_success_threshold = 10; 322 timeout_set(&sc->amrr_to, zyd_amrr_timeout, sc); 323 324 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 325 if (error != 0) { 326 printf("%s: setting config no failed\n", 327 sc->sc_dev.dv_xname); 328 goto fail; 329 } 330 331 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 332 &sc->sc_iface); 333 if (error != 0) { 334 printf("%s: getting interface handle failed\n", 335 sc->sc_dev.dv_xname); 336 goto fail; 337 } 338 339 if ((error = zyd_open_pipes(sc)) != 0) { 340 printf("%s: could not open pipes\n", sc->sc_dev.dv_xname); 341 goto fail; 342 } 343 344 if ((error = zyd_read_eeprom(sc)) != 0) { 345 printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname); 346 goto fail; 347 } 348 349 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 350 printf("%s: could not attach RF\n", sc->sc_dev.dv_xname); 351 goto fail; 352 } 353 354 if ((error = zyd_hw_init(sc)) != 0) { 355 printf("%s: hardware initialization failed\n", 356 sc->sc_dev.dv_xname); 357 goto fail; 358 } 359 360 printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 361 sc->sc_dev.dv_xname, (sc->mac_rev == ZYD_ZD1211) ? "": "B", 362 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 363 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 364 365 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 366 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 367 ic->ic_state = IEEE80211_S_INIT; 368 369 /* set device capabilities */ 370 ic->ic_caps = 371 IEEE80211_C_MONITOR | /* monitor mode supported */ 372 IEEE80211_C_TXPMGT | /* tx power management */ 373 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 374 IEEE80211_C_WEP | /* s/w WEP */ 375 IEEE80211_C_RSN; /* WPA/RSN */ 376 377 /* set supported .11b and .11g rates */ 378 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 379 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 380 381 /* set supported .11b and .11g channels (1 through 14) */ 382 for (i = 1; i <= 14; i++) { 383 ic->ic_channels[i].ic_freq = 384 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 385 ic->ic_channels[i].ic_flags = 386 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 387 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 388 } 389 390 ifp->if_softc = sc; 391 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 392 ifp->if_init = zyd_init; 393 ifp->if_ioctl = zyd_ioctl; 394 ifp->if_start = zyd_start; 395 ifp->if_watchdog = zyd_watchdog; 396 IFQ_SET_READY(&ifp->if_snd); 397 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 398 399 if_attach(ifp); 400 ieee80211_ifattach(ifp); 401 ic->ic_node_alloc = zyd_node_alloc; 402 ic->ic_newassoc = zyd_newassoc; 403 404 /* override state transition machine */ 405 sc->sc_newstate = ic->ic_newstate; 406 ic->ic_newstate = zyd_newstate; 407 ieee80211_media_init(ifp, zyd_media_change, ieee80211_media_status); 408 409 #if NBPFILTER > 0 410 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 411 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 412 413 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 414 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 415 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 416 417 sc->sc_txtap_len = sizeof sc->sc_txtapu; 418 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 419 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 420 #endif 421 422 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 423 &sc->sc_dev); 424 425 fail: return error; 426 } 427 428 int 429 zyd_detach(struct device *self, int flags) 430 { 431 struct zyd_softc *sc = (struct zyd_softc *)self; 432 struct ifnet *ifp = &sc->sc_ic.ic_if; 433 int s; 434 435 s = splusb(); 436 437 usb_rem_task(sc->sc_udev, &sc->sc_task); 438 timeout_del(&sc->scan_to); 439 timeout_del(&sc->amrr_to); 440 441 zyd_close_pipes(sc); 442 443 if (!sc->attached) { 444 splx(s); 445 return 0; 446 } 447 448 ieee80211_ifdetach(ifp); 449 if_detach(ifp); 450 451 zyd_free_rx_list(sc); 452 zyd_free_tx_list(sc); 453 454 sc->attached = 0; 455 456 splx(s); 457 458 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 459 &sc->sc_dev); 460 461 return 0; 462 } 463 464 int 465 zyd_open_pipes(struct zyd_softc *sc) 466 { 467 usb_endpoint_descriptor_t *edesc; 468 int isize; 469 usbd_status error; 470 471 /* interrupt in */ 472 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 473 if (edesc == NULL) 474 return EINVAL; 475 476 isize = UGETW(edesc->wMaxPacketSize); 477 if (isize == 0) /* should not happen */ 478 return EINVAL; 479 480 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); 481 if (sc->ibuf == NULL) 482 return ENOMEM; 483 484 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 485 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr, 486 USBD_DEFAULT_INTERVAL); 487 if (error != 0) { 488 printf("%s: open rx intr pipe failed: %s\n", 489 sc->sc_dev.dv_xname, usbd_errstr(error)); 490 goto fail; 491 } 492 493 /* interrupt out (not necessarily an interrupt pipe) */ 494 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 495 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 496 if (error != 0) { 497 printf("%s: open tx intr pipe failed: %s\n", 498 sc->sc_dev.dv_xname, usbd_errstr(error)); 499 goto fail; 500 } 501 502 /* bulk in */ 503 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 504 &sc->zyd_ep[ZYD_ENDPT_BIN]); 505 if (error != 0) { 506 printf("%s: open rx pipe failed: %s\n", 507 sc->sc_dev.dv_xname, usbd_errstr(error)); 508 goto fail; 509 } 510 511 /* bulk out */ 512 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 513 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 514 if (error != 0) { 515 printf("%s: open tx pipe failed: %s\n", 516 sc->sc_dev.dv_xname, usbd_errstr(error)); 517 goto fail; 518 } 519 520 return 0; 521 522 fail: zyd_close_pipes(sc); 523 return error; 524 } 525 526 void 527 zyd_close_pipes(struct zyd_softc *sc) 528 { 529 int i; 530 531 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 532 if (sc->zyd_ep[i] != NULL) { 533 usbd_abort_pipe(sc->zyd_ep[i]); 534 usbd_close_pipe(sc->zyd_ep[i]); 535 sc->zyd_ep[i] = NULL; 536 } 537 } 538 if (sc->ibuf != NULL) { 539 free(sc->ibuf, M_USBDEV); 540 sc->ibuf = NULL; 541 } 542 } 543 544 int 545 zyd_alloc_tx_list(struct zyd_softc *sc) 546 { 547 int i, error; 548 549 sc->tx_queued = 0; 550 551 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 552 struct zyd_tx_data *data = &sc->tx_data[i]; 553 554 data->sc = sc; /* backpointer for callbacks */ 555 556 data->xfer = usbd_alloc_xfer(sc->sc_udev); 557 if (data->xfer == NULL) { 558 printf("%s: could not allocate tx xfer\n", 559 sc->sc_dev.dv_xname); 560 error = ENOMEM; 561 goto fail; 562 } 563 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); 564 if (data->buf == NULL) { 565 printf("%s: could not allocate tx buffer\n", 566 sc->sc_dev.dv_xname); 567 error = ENOMEM; 568 goto fail; 569 } 570 571 /* clear Tx descriptor */ 572 bzero(data->buf, sizeof (struct zyd_tx_desc)); 573 } 574 return 0; 575 576 fail: zyd_free_tx_list(sc); 577 return error; 578 } 579 580 void 581 zyd_free_tx_list(struct zyd_softc *sc) 582 { 583 struct ieee80211com *ic = &sc->sc_ic; 584 int i; 585 586 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 587 struct zyd_tx_data *data = &sc->tx_data[i]; 588 589 if (data->xfer != NULL) { 590 usbd_free_xfer(data->xfer); 591 data->xfer = NULL; 592 } 593 if (data->ni != NULL) { 594 ieee80211_release_node(ic, data->ni); 595 data->ni = NULL; 596 } 597 } 598 } 599 600 int 601 zyd_alloc_rx_list(struct zyd_softc *sc) 602 { 603 int i, error; 604 605 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 606 struct zyd_rx_data *data = &sc->rx_data[i]; 607 608 data->sc = sc; /* backpointer for callbacks */ 609 610 data->xfer = usbd_alloc_xfer(sc->sc_udev); 611 if (data->xfer == NULL) { 612 printf("%s: could not allocate rx xfer\n", 613 sc->sc_dev.dv_xname); 614 error = ENOMEM; 615 goto fail; 616 } 617 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); 618 if (data->buf == NULL) { 619 printf("%s: could not allocate rx buffer\n", 620 sc->sc_dev.dv_xname); 621 error = ENOMEM; 622 goto fail; 623 } 624 } 625 return 0; 626 627 fail: zyd_free_rx_list(sc); 628 return error; 629 } 630 631 void 632 zyd_free_rx_list(struct zyd_softc *sc) 633 { 634 int i; 635 636 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 637 struct zyd_rx_data *data = &sc->rx_data[i]; 638 639 if (data->xfer != NULL) { 640 usbd_free_xfer(data->xfer); 641 data->xfer = NULL; 642 } 643 } 644 } 645 646 struct ieee80211_node * 647 zyd_node_alloc(struct ieee80211com *ic) 648 { 649 return malloc(sizeof (struct zyd_node), M_DEVBUF, M_NOWAIT | M_ZERO); 650 } 651 652 int 653 zyd_media_change(struct ifnet *ifp) 654 { 655 int error; 656 657 error = ieee80211_media_change(ifp); 658 if (error != ENETRESET) 659 return error; 660 661 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 662 zyd_init(ifp); 663 664 return 0; 665 } 666 667 /* 668 * This function is called periodically (every 200ms) during scanning to 669 * switch from one channel to another. 670 */ 671 void 672 zyd_next_scan(void *arg) 673 { 674 struct zyd_softc *sc = arg; 675 struct ieee80211com *ic = &sc->sc_ic; 676 struct ifnet *ifp = &ic->ic_if; 677 678 if (ic->ic_state == IEEE80211_S_SCAN) 679 ieee80211_next_scan(ifp); 680 } 681 682 void 683 zyd_task(void *arg) 684 { 685 struct zyd_softc *sc = arg; 686 struct ieee80211com *ic = &sc->sc_ic; 687 enum ieee80211_state ostate; 688 689 ostate = ic->ic_state; 690 691 switch (sc->sc_state) { 692 case IEEE80211_S_INIT: 693 if (ostate == IEEE80211_S_RUN) { 694 /* turn link LED off */ 695 zyd_set_led(sc, ZYD_LED1, 0); 696 697 /* stop data LED from blinking */ 698 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 699 } 700 break; 701 702 case IEEE80211_S_SCAN: 703 zyd_set_chan(sc, ic->ic_bss->ni_chan); 704 timeout_add(&sc->scan_to, hz / 5); 705 break; 706 707 case IEEE80211_S_AUTH: 708 case IEEE80211_S_ASSOC: 709 zyd_set_chan(sc, ic->ic_bss->ni_chan); 710 break; 711 712 case IEEE80211_S_RUN: 713 { 714 struct ieee80211_node *ni = ic->ic_bss; 715 716 zyd_set_chan(sc, ni->ni_chan); 717 718 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 719 /* turn link LED on */ 720 zyd_set_led(sc, ZYD_LED1, 1); 721 722 /* make data LED blink upon Tx */ 723 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 724 725 zyd_set_bssid(sc, ni->ni_bssid); 726 } 727 728 if (ic->ic_opmode == IEEE80211_M_STA) { 729 /* fake a join to init the tx rate */ 730 zyd_newassoc(ic, ni, 1); 731 } 732 733 /* start automatic rate control timer */ 734 if (ic->ic_fixed_rate == -1) 735 timeout_add_sec(&sc->amrr_to, 1); 736 737 break; 738 } 739 } 740 741 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 742 } 743 744 int 745 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 746 { 747 struct zyd_softc *sc = ic->ic_softc; 748 749 usb_rem_task(sc->sc_udev, &sc->sc_task); 750 timeout_del(&sc->scan_to); 751 timeout_del(&sc->amrr_to); 752 753 /* do it in a process context */ 754 sc->sc_state = nstate; 755 sc->sc_arg = arg; 756 usb_add_task(sc->sc_udev, &sc->sc_task); 757 758 return 0; 759 } 760 761 int 762 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 763 void *odata, int olen, u_int flags) 764 { 765 usbd_xfer_handle xfer; 766 struct zyd_cmd cmd; 767 uint16_t xferflags; 768 usbd_status error; 769 int s; 770 771 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) 772 return ENOMEM; 773 774 cmd.code = htole16(code); 775 bcopy(idata, cmd.data, ilen); 776 777 xferflags = USBD_FORCE_SHORT_XFER; 778 if (!(flags & ZYD_CMD_FLAG_READ)) 779 xferflags |= USBD_SYNCHRONOUS; 780 else 781 s = splusb(); 782 783 sc->odata = odata; 784 sc->olen = olen; 785 786 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd, 787 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL); 788 error = usbd_transfer(xfer); 789 if (error != USBD_IN_PROGRESS && error != 0) { 790 if (flags & ZYD_CMD_FLAG_READ) 791 splx(s); 792 printf("%s: could not send command (error=%s)\n", 793 sc->sc_dev.dv_xname, usbd_errstr(error)); 794 (void)usbd_free_xfer(xfer); 795 return EIO; 796 } 797 if (!(flags & ZYD_CMD_FLAG_READ)) { 798 (void)usbd_free_xfer(xfer); 799 return 0; /* write: don't wait for reply */ 800 } 801 /* wait at most one second for command reply */ 802 error = tsleep(sc, PCATCH, "zydcmd", hz); 803 sc->odata = NULL; /* in case answer is received too late */ 804 splx(s); 805 806 (void)usbd_free_xfer(xfer); 807 return error; 808 } 809 810 int 811 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 812 { 813 struct zyd_pair tmp; 814 int error; 815 816 reg = htole16(reg); 817 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp, 818 ZYD_CMD_FLAG_READ); 819 if (error == 0) 820 *val = letoh16(tmp.val); 821 return error; 822 } 823 824 int 825 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 826 { 827 struct zyd_pair tmp[2]; 828 uint16_t regs[2]; 829 int error; 830 831 regs[0] = htole16(ZYD_REG32_HI(reg)); 832 regs[1] = htole16(ZYD_REG32_LO(reg)); 833 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp, 834 ZYD_CMD_FLAG_READ); 835 if (error == 0) 836 *val = letoh16(tmp[0].val) << 16 | letoh16(tmp[1].val); 837 return error; 838 } 839 840 int 841 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 842 { 843 struct zyd_pair pair; 844 845 pair.reg = htole16(reg); 846 pair.val = htole16(val); 847 848 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0); 849 } 850 851 int 852 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 853 { 854 struct zyd_pair pair[2]; 855 856 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 857 pair[0].val = htole16(val >> 16); 858 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 859 pair[1].val = htole16(val & 0xffff); 860 861 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0); 862 } 863 864 int 865 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 866 { 867 struct zyd_rf *rf = &sc->sc_rf; 868 struct zyd_rfwrite req; 869 uint16_t cr203; 870 int i; 871 872 (void)zyd_read16(sc, ZYD_CR203, &cr203); 873 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 874 875 req.code = htole16(2); 876 req.width = htole16(rf->width); 877 for (i = 0; i < rf->width; i++) { 878 req.bit[i] = htole16(cr203); 879 if (val & (1 << (rf->width - 1 - i))) 880 req.bit[i] |= htole16(ZYD_RF_DATA); 881 } 882 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 883 } 884 885 void 886 zyd_lock_phy(struct zyd_softc *sc) 887 { 888 uint32_t tmp; 889 890 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 891 tmp &= ~ZYD_UNLOCK_PHY_REGS; 892 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 893 } 894 895 void 896 zyd_unlock_phy(struct zyd_softc *sc) 897 { 898 uint32_t tmp; 899 900 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 901 tmp |= ZYD_UNLOCK_PHY_REGS; 902 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 903 } 904 905 /* 906 * RFMD RF methods. 907 */ 908 int 909 zyd_rfmd_init(struct zyd_rf *rf) 910 { 911 #define N(a) (sizeof (a) / sizeof ((a)[0])) 912 struct zyd_softc *sc = rf->rf_sc; 913 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 914 static const uint32_t rfini[] = ZYD_RFMD_RF; 915 int i, error; 916 917 /* init RF-dependent PHY registers */ 918 for (i = 0; i < N(phyini); i++) { 919 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 920 if (error != 0) 921 return error; 922 } 923 924 /* init RFMD radio */ 925 for (i = 0; i < N(rfini); i++) { 926 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 927 return error; 928 } 929 return 0; 930 #undef N 931 } 932 933 int 934 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 935 { 936 struct zyd_softc *sc = rf->rf_sc; 937 938 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 939 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 940 941 return 0; 942 } 943 944 int 945 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 946 { 947 struct zyd_softc *sc = rf->rf_sc; 948 static const struct { 949 uint32_t r1, r2; 950 } rfprog[] = ZYD_RFMD_CHANTABLE; 951 952 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 953 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 954 955 return 0; 956 } 957 958 /* 959 * AL2230 RF methods. 960 */ 961 int 962 zyd_al2230_init(struct zyd_rf *rf) 963 { 964 #define N(a) (sizeof (a) / sizeof ((a)[0])) 965 struct zyd_softc *sc = rf->rf_sc; 966 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 967 static const uint32_t rfini[] = ZYD_AL2230_RF; 968 int i, error; 969 970 /* init RF-dependent PHY registers */ 971 for (i = 0; i < N(phyini); i++) { 972 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 973 if (error != 0) 974 return error; 975 } 976 977 /* init AL2230 radio */ 978 for (i = 0; i < N(rfini); i++) { 979 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 980 return error; 981 } 982 return 0; 983 #undef N 984 } 985 986 int 987 zyd_al2230_init_b(struct zyd_rf *rf) 988 { 989 #define N(a) (sizeof (a) / sizeof ((a)[0])) 990 struct zyd_softc *sc = rf->rf_sc; 991 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 992 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 993 int i, error; 994 995 /* init RF-dependent PHY registers */ 996 for (i = 0; i < N(phyini); i++) { 997 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 998 if (error != 0) 999 return error; 1000 } 1001 1002 /* init AL2230 radio */ 1003 for (i = 0; i < N(rfini); i++) { 1004 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1005 return error; 1006 } 1007 return 0; 1008 #undef N 1009 } 1010 1011 int 1012 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1013 { 1014 struct zyd_softc *sc = rf->rf_sc; 1015 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1016 1017 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1018 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1019 1020 return 0; 1021 } 1022 1023 int 1024 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1025 { 1026 struct zyd_softc *sc = rf->rf_sc; 1027 static const struct { 1028 uint32_t r1, r2, r3; 1029 } rfprog[] = ZYD_AL2230_CHANTABLE; 1030 1031 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1032 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1033 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1034 1035 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1036 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1037 1038 return 0; 1039 } 1040 1041 /* 1042 * AL7230B RF methods. 1043 */ 1044 int 1045 zyd_al7230B_init(struct zyd_rf *rf) 1046 { 1047 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1048 struct zyd_softc *sc = rf->rf_sc; 1049 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1050 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1051 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1052 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1053 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1054 int i, error; 1055 1056 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1057 1058 /* init RF-dependent PHY registers, part one */ 1059 for (i = 0; i < N(phyini_1); i++) { 1060 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1061 if (error != 0) 1062 return error; 1063 } 1064 /* init AL7230B radio, part one */ 1065 for (i = 0; i < N(rfini_1); i++) { 1066 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1067 return error; 1068 } 1069 /* init RF-dependent PHY registers, part two */ 1070 for (i = 0; i < N(phyini_2); i++) { 1071 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1072 if (error != 0) 1073 return error; 1074 } 1075 /* init AL7230B radio, part two */ 1076 for (i = 0; i < N(rfini_2); i++) { 1077 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1078 return error; 1079 } 1080 /* init RF-dependent PHY registers, part three */ 1081 for (i = 0; i < N(phyini_3); i++) { 1082 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1083 if (error != 0) 1084 return error; 1085 } 1086 1087 return 0; 1088 #undef N 1089 } 1090 1091 int 1092 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1093 { 1094 struct zyd_softc *sc = rf->rf_sc; 1095 1096 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1097 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1098 1099 return 0; 1100 } 1101 1102 int 1103 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1104 { 1105 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1106 struct zyd_softc *sc = rf->rf_sc; 1107 static const struct { 1108 uint32_t r1, r2; 1109 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1110 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1111 int i, error; 1112 1113 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1114 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1115 1116 for (i = 0; i < N(rfsc); i++) { 1117 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1118 return error; 1119 } 1120 1121 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1122 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1123 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1124 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1125 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1126 1127 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1128 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1129 (void)zyd_rfwrite(sc, 0x3c9000); 1130 1131 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1132 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1133 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1134 1135 return 0; 1136 #undef N 1137 } 1138 1139 /* 1140 * AL2210 RF methods. 1141 */ 1142 int 1143 zyd_al2210_init(struct zyd_rf *rf) 1144 { 1145 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1146 struct zyd_softc *sc = rf->rf_sc; 1147 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1148 static const uint32_t rfini[] = ZYD_AL2210_RF; 1149 uint32_t tmp; 1150 int i, error; 1151 1152 (void)zyd_write32(sc, ZYD_CR18, 2); 1153 1154 /* init RF-dependent PHY registers */ 1155 for (i = 0; i < N(phyini); i++) { 1156 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1157 if (error != 0) 1158 return error; 1159 } 1160 /* init AL2210 radio */ 1161 for (i = 0; i < N(rfini); i++) { 1162 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1163 return error; 1164 } 1165 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1166 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1167 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1168 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1169 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1170 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1171 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1172 (void)zyd_write32(sc, ZYD_CR18, 3); 1173 1174 return 0; 1175 #undef N 1176 } 1177 1178 int 1179 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1180 { 1181 /* vendor driver does nothing for this RF chip */ 1182 1183 return 0; 1184 } 1185 1186 int 1187 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1188 { 1189 struct zyd_softc *sc = rf->rf_sc; 1190 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1191 uint32_t tmp; 1192 1193 (void)zyd_write32(sc, ZYD_CR18, 2); 1194 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1195 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1196 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1197 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1198 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1199 1200 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1201 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1202 1203 /* actually set the channel */ 1204 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1205 1206 (void)zyd_write32(sc, ZYD_CR18, 3); 1207 1208 return 0; 1209 } 1210 1211 /* 1212 * GCT RF methods. 1213 */ 1214 int 1215 zyd_gct_init(struct zyd_rf *rf) 1216 { 1217 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1218 struct zyd_softc *sc = rf->rf_sc; 1219 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1220 static const uint32_t rfini[] = ZYD_GCT_RF; 1221 int i, error; 1222 1223 /* init RF-dependent PHY registers */ 1224 for (i = 0; i < N(phyini); i++) { 1225 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1226 if (error != 0) 1227 return error; 1228 } 1229 /* init cgt radio */ 1230 for (i = 0; i < N(rfini); i++) { 1231 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1232 return error; 1233 } 1234 return 0; 1235 #undef N 1236 } 1237 1238 int 1239 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1240 { 1241 /* vendor driver does nothing for this RF chip */ 1242 1243 return 0; 1244 } 1245 1246 int 1247 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1248 { 1249 struct zyd_softc *sc = rf->rf_sc; 1250 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1251 1252 (void)zyd_rfwrite(sc, 0x1c0000); 1253 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1254 (void)zyd_rfwrite(sc, 0x1c0008); 1255 1256 return 0; 1257 } 1258 1259 /* 1260 * Maxim RF methods. 1261 */ 1262 int 1263 zyd_maxim_init(struct zyd_rf *rf) 1264 { 1265 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1266 struct zyd_softc *sc = rf->rf_sc; 1267 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1268 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1269 uint16_t tmp; 1270 int i, error; 1271 1272 /* init RF-dependent PHY registers */ 1273 for (i = 0; i < N(phyini); i++) { 1274 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1275 if (error != 0) 1276 return error; 1277 } 1278 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1279 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1280 1281 /* init maxim radio */ 1282 for (i = 0; i < N(rfini); i++) { 1283 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1284 return error; 1285 } 1286 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1287 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1288 1289 return 0; 1290 #undef N 1291 } 1292 1293 int 1294 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1295 { 1296 /* vendor driver does nothing for this RF chip */ 1297 1298 return 0; 1299 } 1300 1301 int 1302 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1303 { 1304 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1305 struct zyd_softc *sc = rf->rf_sc; 1306 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1307 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1308 static const struct { 1309 uint32_t r1, r2; 1310 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1311 uint16_t tmp; 1312 int i, error; 1313 1314 /* 1315 * Do the same as we do when initializing it, except for the channel 1316 * values coming from the two channel tables. 1317 */ 1318 1319 /* init RF-dependent PHY registers */ 1320 for (i = 0; i < N(phyini); i++) { 1321 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1322 if (error != 0) 1323 return error; 1324 } 1325 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1326 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1327 1328 /* first two values taken from the chantables */ 1329 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1330 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1331 1332 /* init maxim radio - skipping the two first values */ 1333 for (i = 2; i < N(rfini); i++) { 1334 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1335 return error; 1336 } 1337 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1338 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1339 1340 return 0; 1341 #undef N 1342 } 1343 1344 /* 1345 * Maxim2 RF methods. 1346 */ 1347 int 1348 zyd_maxim2_init(struct zyd_rf *rf) 1349 { 1350 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1351 struct zyd_softc *sc = rf->rf_sc; 1352 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1353 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1354 uint16_t tmp; 1355 int i, error; 1356 1357 /* init RF-dependent PHY registers */ 1358 for (i = 0; i < N(phyini); i++) { 1359 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1360 if (error != 0) 1361 return error; 1362 } 1363 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1364 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1365 1366 /* init maxim2 radio */ 1367 for (i = 0; i < N(rfini); i++) { 1368 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1369 return error; 1370 } 1371 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1372 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1373 1374 return 0; 1375 #undef N 1376 } 1377 1378 int 1379 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1380 { 1381 /* vendor driver does nothing for this RF chip */ 1382 1383 return 0; 1384 } 1385 1386 int 1387 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1388 { 1389 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1390 struct zyd_softc *sc = rf->rf_sc; 1391 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1392 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1393 static const struct { 1394 uint32_t r1, r2; 1395 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1396 uint16_t tmp; 1397 int i, error; 1398 1399 /* 1400 * Do the same as we do when initializing it, except for the channel 1401 * values coming from the two channel tables. 1402 */ 1403 1404 /* init RF-dependent PHY registers */ 1405 for (i = 0; i < N(phyini); i++) { 1406 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1407 if (error != 0) 1408 return error; 1409 } 1410 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1411 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1412 1413 /* first two values taken from the chantables */ 1414 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1415 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1416 1417 /* init maxim2 radio - skipping the two first values */ 1418 for (i = 2; i < N(rfini); i++) { 1419 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1420 return error; 1421 } 1422 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1423 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1424 1425 return 0; 1426 #undef N 1427 } 1428 1429 int 1430 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1431 { 1432 struct zyd_rf *rf = &sc->sc_rf; 1433 1434 rf->rf_sc = sc; 1435 1436 switch (type) { 1437 case ZYD_RF_RFMD: 1438 rf->init = zyd_rfmd_init; 1439 rf->switch_radio = zyd_rfmd_switch_radio; 1440 rf->set_channel = zyd_rfmd_set_channel; 1441 rf->width = 24; /* 24-bit RF values */ 1442 break; 1443 case ZYD_RF_AL2230: 1444 if (sc->mac_rev == ZYD_ZD1211B) 1445 rf->init = zyd_al2230_init_b; 1446 else 1447 rf->init = zyd_al2230_init; 1448 rf->switch_radio = zyd_al2230_switch_radio; 1449 rf->set_channel = zyd_al2230_set_channel; 1450 rf->width = 24; /* 24-bit RF values */ 1451 break; 1452 case ZYD_RF_AL7230B: 1453 rf->init = zyd_al7230B_init; 1454 rf->switch_radio = zyd_al7230B_switch_radio; 1455 rf->set_channel = zyd_al7230B_set_channel; 1456 rf->width = 24; /* 24-bit RF values */ 1457 break; 1458 case ZYD_RF_AL2210: 1459 rf->init = zyd_al2210_init; 1460 rf->switch_radio = zyd_al2210_switch_radio; 1461 rf->set_channel = zyd_al2210_set_channel; 1462 rf->width = 24; /* 24-bit RF values */ 1463 break; 1464 case ZYD_RF_GCT: 1465 rf->init = zyd_gct_init; 1466 rf->switch_radio = zyd_gct_switch_radio; 1467 rf->set_channel = zyd_gct_set_channel; 1468 rf->width = 21; /* 21-bit RF values */ 1469 break; 1470 case ZYD_RF_MAXIM_NEW: 1471 rf->init = zyd_maxim_init; 1472 rf->switch_radio = zyd_maxim_switch_radio; 1473 rf->set_channel = zyd_maxim_set_channel; 1474 rf->width = 18; /* 18-bit RF values */ 1475 break; 1476 case ZYD_RF_MAXIM_NEW2: 1477 rf->init = zyd_maxim2_init; 1478 rf->switch_radio = zyd_maxim2_switch_radio; 1479 rf->set_channel = zyd_maxim2_set_channel; 1480 rf->width = 18; /* 18-bit RF values */ 1481 break; 1482 default: 1483 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1484 sc->sc_dev.dv_xname, zyd_rf_name(type)); 1485 return EINVAL; 1486 } 1487 return 0; 1488 } 1489 1490 const char * 1491 zyd_rf_name(uint8_t type) 1492 { 1493 static const char * const zyd_rfs[] = { 1494 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1495 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1496 "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1497 "PHILIPS" 1498 }; 1499 return zyd_rfs[(type > 15) ? 0 : type]; 1500 } 1501 1502 int 1503 zyd_hw_init(struct zyd_softc *sc) 1504 { 1505 struct zyd_rf *rf = &sc->sc_rf; 1506 const struct zyd_phy_pair *phyp; 1507 uint32_t tmp; 1508 int error; 1509 1510 /* specify that the plug and play is finished */ 1511 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1512 1513 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1514 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1515 1516 /* retrieve firmware revision number */ 1517 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1518 1519 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1520 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1521 1522 /* disable interrupts */ 1523 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1524 1525 /* PHY init */ 1526 zyd_lock_phy(sc); 1527 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1528 for (; phyp->reg != 0; phyp++) { 1529 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1530 goto fail; 1531 } 1532 if (sc->fix_cr157) { 1533 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 1534 (void)zyd_write32(sc, ZYD_CR157, tmp >> 8); 1535 } 1536 zyd_unlock_phy(sc); 1537 1538 /* HMAC init */ 1539 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1540 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1541 1542 if (sc->mac_rev == ZYD_ZD1211) { 1543 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1544 } else { 1545 zyd_write32(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1546 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1547 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1548 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1549 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1550 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1551 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003c); 1552 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1553 } 1554 1555 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1556 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1557 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1558 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1559 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1560 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1561 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1562 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1563 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1564 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1565 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1566 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1567 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1568 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1569 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1570 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1571 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1572 1573 /* RF chip init */ 1574 zyd_lock_phy(sc); 1575 error = (*rf->init)(rf); 1576 zyd_unlock_phy(sc); 1577 if (error != 0) { 1578 printf("%s: radio initialization failed\n", 1579 sc->sc_dev.dv_xname); 1580 goto fail; 1581 } 1582 1583 /* init beacon interval to 100ms */ 1584 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1585 goto fail; 1586 1587 fail: return error; 1588 } 1589 1590 int 1591 zyd_read_eeprom(struct zyd_softc *sc) 1592 { 1593 struct ieee80211com *ic = &sc->sc_ic; 1594 uint32_t tmp; 1595 uint16_t val; 1596 int i; 1597 1598 /* read MAC address */ 1599 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1600 ic->ic_myaddr[0] = tmp & 0xff; 1601 ic->ic_myaddr[1] = tmp >> 8; 1602 ic->ic_myaddr[2] = tmp >> 16; 1603 ic->ic_myaddr[3] = tmp >> 24; 1604 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1605 ic->ic_myaddr[4] = tmp & 0xff; 1606 ic->ic_myaddr[5] = tmp >> 8; 1607 1608 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1609 sc->rf_rev = tmp & 0x0f; 1610 sc->fix_cr47 = (tmp >> 8 ) & 0x01; 1611 sc->fix_cr157 = (tmp >> 13) & 0x01; 1612 sc->pa_rev = (tmp >> 16) & 0x0f; 1613 1614 /* read regulatory domain (currently unused) */ 1615 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1616 sc->regdomain = tmp >> 16; 1617 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1618 1619 /* read Tx power calibration tables */ 1620 for (i = 0; i < 7; i++) { 1621 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1622 sc->pwr_cal[i * 2] = val >> 8; 1623 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1624 1625 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1626 sc->pwr_int[i * 2] = val >> 8; 1627 sc->pwr_int[i * 2 + 1] = val & 0xff; 1628 1629 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1630 sc->ofdm36_cal[i * 2] = val >> 8; 1631 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1632 1633 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1634 sc->ofdm48_cal[i * 2] = val >> 8; 1635 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1636 1637 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1638 sc->ofdm54_cal[i * 2] = val >> 8; 1639 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1640 } 1641 return 0; 1642 } 1643 1644 void 1645 zyd_set_multi(struct zyd_softc *sc) 1646 { 1647 struct arpcom *ac = &sc->sc_ic.ic_ac; 1648 struct ifnet *ifp = &ac->ac_if; 1649 struct ether_multi *enm; 1650 struct ether_multistep step; 1651 uint32_t lo, hi; 1652 uint8_t bit; 1653 1654 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 1655 lo = hi = 0xffffffff; 1656 goto done; 1657 } 1658 lo = hi = 0; 1659 ETHER_FIRST_MULTI(step, ac, enm); 1660 while (enm != NULL) { 1661 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1662 ifp->if_flags |= IFF_ALLMULTI; 1663 lo = hi = 0xffffffff; 1664 goto done; 1665 } 1666 bit = enm->enm_addrlo[5] >> 2; 1667 if (bit < 32) 1668 lo |= 1 << bit; 1669 else 1670 hi |= 1 << (bit - 32); 1671 ETHER_NEXT_MULTI(step, enm); 1672 } 1673 1674 done: 1675 hi |= 1 << 31; /* make sure the broadcast bit is set */ 1676 zyd_write32(sc, ZYD_MAC_GHTBL, lo); 1677 zyd_write32(sc, ZYD_MAC_GHTBH, hi); 1678 } 1679 1680 void 1681 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1682 { 1683 uint32_t tmp; 1684 1685 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1686 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1687 1688 tmp = addr[5] << 8 | addr[4]; 1689 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1690 } 1691 1692 void 1693 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1694 { 1695 uint32_t tmp; 1696 1697 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1698 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1699 1700 tmp = addr[5] << 8 | addr[4]; 1701 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1702 } 1703 1704 int 1705 zyd_switch_radio(struct zyd_softc *sc, int on) 1706 { 1707 struct zyd_rf *rf = &sc->sc_rf; 1708 int error; 1709 1710 zyd_lock_phy(sc); 1711 error = (*rf->switch_radio)(rf, on); 1712 zyd_unlock_phy(sc); 1713 1714 return error; 1715 } 1716 1717 void 1718 zyd_set_led(struct zyd_softc *sc, int which, int on) 1719 { 1720 uint32_t tmp; 1721 1722 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1723 tmp &= ~which; 1724 if (on) 1725 tmp |= which; 1726 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1727 } 1728 1729 int 1730 zyd_set_rxfilter(struct zyd_softc *sc) 1731 { 1732 uint32_t rxfilter; 1733 1734 switch (sc->sc_ic.ic_opmode) { 1735 case IEEE80211_M_STA: 1736 rxfilter = ZYD_FILTER_BSS; 1737 break; 1738 #ifndef IEEE80211_STA_ONLY 1739 case IEEE80211_M_IBSS: 1740 case IEEE80211_M_HOSTAP: 1741 rxfilter = ZYD_FILTER_HOSTAP; 1742 break; 1743 #endif 1744 case IEEE80211_M_MONITOR: 1745 rxfilter = ZYD_FILTER_MONITOR; 1746 break; 1747 default: 1748 /* should not get there */ 1749 return EINVAL; 1750 } 1751 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1752 } 1753 1754 void 1755 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1756 { 1757 struct ieee80211com *ic = &sc->sc_ic; 1758 struct zyd_rf *rf = &sc->sc_rf; 1759 uint32_t tmp; 1760 u_int chan; 1761 1762 chan = ieee80211_chan2ieee(ic, c); 1763 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1764 return; 1765 1766 zyd_lock_phy(sc); 1767 1768 (*rf->set_channel)(rf, chan); 1769 1770 /* update Tx power */ 1771 (void)zyd_write16(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1772 1773 if (sc->mac_rev == ZYD_ZD1211B) { 1774 (void)zyd_write16(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1775 (void)zyd_write16(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1776 (void)zyd_write16(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1777 1778 (void)zyd_write16(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1779 1780 (void)zyd_write16(sc, ZYD_CR69, 0x28); 1781 (void)zyd_write16(sc, ZYD_CR69, 0x2a); 1782 } 1783 1784 if (sc->fix_cr47) { 1785 /* set CCK baseband gain from EEPROM */ 1786 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 1787 (void)zyd_write16(sc, ZYD_CR47, tmp & 0xff); 1788 } 1789 1790 (void)zyd_write32(sc, ZYD_CR_CONFIG_PHILIPS, 0); 1791 1792 zyd_unlock_phy(sc); 1793 } 1794 1795 int 1796 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1797 { 1798 /* XXX this is probably broken.. */ 1799 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1800 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1801 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1802 1803 return 0; 1804 } 1805 1806 uint8_t 1807 zyd_plcp_signal(int rate) 1808 { 1809 switch (rate) { 1810 /* CCK rates (returned values are device-dependent) */ 1811 case 2: return 0x0; 1812 case 4: return 0x1; 1813 case 11: return 0x2; 1814 case 22: return 0x3; 1815 1816 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1817 case 12: return 0xb; 1818 case 18: return 0xf; 1819 case 24: return 0xa; 1820 case 36: return 0xe; 1821 case 48: return 0x9; 1822 case 72: return 0xd; 1823 case 96: return 0x8; 1824 case 108: return 0xc; 1825 1826 /* unsupported rates (should not get there) */ 1827 default: return 0xff; 1828 } 1829 } 1830 1831 void 1832 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1833 { 1834 struct zyd_softc *sc = (struct zyd_softc *)priv; 1835 const struct zyd_cmd *cmd; 1836 uint32_t len; 1837 1838 if (status != USBD_NORMAL_COMPLETION) { 1839 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1840 return; 1841 1842 if (status == USBD_STALLED) { 1843 usbd_clear_endpoint_stall_async( 1844 sc->zyd_ep[ZYD_ENDPT_IIN]); 1845 } 1846 return; 1847 } 1848 1849 cmd = (const struct zyd_cmd *)sc->ibuf; 1850 1851 if (letoh16(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1852 struct zyd_notif_retry *retry = 1853 (struct zyd_notif_retry *)cmd->data; 1854 struct ieee80211com *ic = &sc->sc_ic; 1855 struct ifnet *ifp = &ic->ic_if; 1856 struct ieee80211_node *ni; 1857 1858 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 1859 letoh16(retry->rate), ether_sprintf(retry->macaddr), 1860 letoh16(retry->count) & 0xff, letoh16(retry->count))); 1861 1862 /* 1863 * Find the node to which the packet was sent and update its 1864 * retry statistics. In BSS mode, this node is the AP we're 1865 * associated to so no lookup is actually needed. 1866 */ 1867 if (ic->ic_opmode != IEEE80211_M_STA) { 1868 ni = ieee80211_find_node(ic, retry->macaddr); 1869 if (ni == NULL) 1870 return; /* just ignore */ 1871 } else 1872 ni = ic->ic_bss; 1873 1874 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1875 1876 if (letoh16(retry->count) & 0x100) 1877 ifp->if_oerrors++; /* too many retries */ 1878 1879 } else if (letoh16(cmd->code) == ZYD_NOTIF_IORD) { 1880 if (letoh16(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1881 return; /* HMAC interrupt */ 1882 1883 if (sc->odata == NULL) 1884 return; /* unexpected IORD notification */ 1885 1886 /* copy answer into caller-supplied buffer */ 1887 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 1888 bcopy(cmd->data, sc->odata, sc->olen); 1889 1890 wakeup(sc); /* wakeup caller */ 1891 1892 } else { 1893 printf("%s: unknown notification %x\n", sc->sc_dev.dv_xname, 1894 letoh16(cmd->code)); 1895 } 1896 } 1897 1898 void 1899 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1900 { 1901 struct ieee80211com *ic = &sc->sc_ic; 1902 struct ifnet *ifp = &ic->ic_if; 1903 struct ieee80211_node *ni; 1904 struct ieee80211_frame *wh; 1905 struct ieee80211_rxinfo rxi; 1906 const struct zyd_plcphdr *plcp; 1907 const struct zyd_rx_stat *stat; 1908 struct mbuf *m; 1909 int s; 1910 1911 if (len < ZYD_MIN_FRAGSZ) { 1912 DPRINTFN(2, ("frame too short (length=%d)\n", len)); 1913 ifp->if_ierrors++; 1914 return; 1915 } 1916 1917 plcp = (const struct zyd_plcphdr *)buf; 1918 stat = (const struct zyd_rx_stat *)(buf + len - sizeof (*stat)); 1919 1920 if (stat->flags & ZYD_RX_ERROR) { 1921 DPRINTF(("%s: RX status indicated error (%x)\n", 1922 sc->sc_dev.dv_xname, stat->flags)); 1923 ifp->if_ierrors++; 1924 return; 1925 } 1926 1927 /* compute actual frame length */ 1928 len -= sizeof (*plcp) - sizeof (*stat) - IEEE80211_CRC_LEN; 1929 1930 if (len > MCLBYTES) { 1931 DPRINTFN(2, ("frame too large (length=%d)\n", len)); 1932 ifp->if_ierrors++; 1933 return; 1934 } 1935 1936 /* allocate a mbuf to store the frame */ 1937 MGETHDR(m, M_DONTWAIT, MT_DATA); 1938 if (m == NULL) { 1939 ifp->if_ierrors++; 1940 return; 1941 } 1942 if (len > MHLEN) { 1943 MCLGET(m, M_DONTWAIT); 1944 if (!(m->m_flags & M_EXT)) { 1945 ifp->if_ierrors++; 1946 m_freem(m); 1947 return; 1948 } 1949 } 1950 bcopy(plcp + 1, mtod(m, caddr_t), len); 1951 m->m_pkthdr.rcvif = ifp; 1952 m->m_pkthdr.len = m->m_len = len; 1953 1954 #if NBPFILTER > 0 1955 if (sc->sc_drvbpf != NULL) { 1956 struct mbuf mb; 1957 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1958 static const uint8_t rates[] = { 1959 /* reverse function of zyd_plcp_signal() */ 1960 2, 4, 11, 22, 0, 0, 0, 0, 1961 96, 48, 24, 12, 108, 72, 36, 18 1962 }; 1963 1964 tap->wr_flags = 0; 1965 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1966 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1967 tap->wr_rssi = stat->rssi; 1968 tap->wr_rate = rates[plcp->signal & 0xf]; 1969 1970 mb.m_data = (caddr_t)tap; 1971 mb.m_len = sc->sc_rxtap_len; 1972 mb.m_next = m; 1973 mb.m_nextpkt = NULL; 1974 mb.m_type = 0; 1975 mb.m_flags = 0; 1976 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 1977 } 1978 #endif 1979 1980 s = splnet(); 1981 wh = mtod(m, struct ieee80211_frame *); 1982 ni = ieee80211_find_rxnode(ic, wh); 1983 rxi.rxi_flags = 0; 1984 rxi.rxi_rssi = stat->rssi; 1985 rxi.rxi_tstamp = 0; /* unused */ 1986 ieee80211_input(ifp, m, ni, &rxi); 1987 1988 /* node is no longer needed */ 1989 ieee80211_release_node(ic, ni); 1990 1991 splx(s); 1992 } 1993 1994 void 1995 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1996 { 1997 struct zyd_rx_data *data = priv; 1998 struct zyd_softc *sc = data->sc; 1999 struct ieee80211com *ic = &sc->sc_ic; 2000 struct ifnet *ifp = &ic->ic_if; 2001 const struct zyd_rx_desc *desc; 2002 int len; 2003 2004 if (status != USBD_NORMAL_COMPLETION) { 2005 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2006 return; 2007 2008 if (status == USBD_STALLED) 2009 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 2010 2011 goto skip; 2012 } 2013 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2014 2015 if (len < ZYD_MIN_RXBUFSZ) { 2016 DPRINTFN(2, ("xfer too short (length=%d)\n", len)); 2017 ifp->if_ierrors++; 2018 goto skip; 2019 } 2020 2021 desc = (const struct zyd_rx_desc *) 2022 (data->buf + len - sizeof (struct zyd_rx_desc)); 2023 2024 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2025 const uint8_t *p = data->buf, *end = p + len; 2026 int i; 2027 2028 DPRINTFN(3, ("received multi-frame transfer\n")); 2029 2030 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2031 const uint16_t len = UGETW(desc->len[i]); 2032 2033 if (len == 0 || p + len > end) 2034 break; 2035 2036 zyd_rx_data(sc, p, len); 2037 /* next frame is aligned on a 32-bit boundary */ 2038 p += (len + 3) & ~3; 2039 } 2040 } else { 2041 DPRINTFN(3, ("received single-frame transfer\n")); 2042 2043 zyd_rx_data(sc, data->buf, len); 2044 } 2045 2046 skip: /* setup a new transfer */ 2047 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, 2048 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2049 USBD_NO_TIMEOUT, zyd_rxeof); 2050 (void)usbd_transfer(xfer); 2051 } 2052 2053 void 2054 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 2055 { 2056 struct zyd_tx_data *data = priv; 2057 struct zyd_softc *sc = data->sc; 2058 struct ieee80211com *ic = &sc->sc_ic; 2059 struct ifnet *ifp = &ic->ic_if; 2060 int s; 2061 2062 if (status != USBD_NORMAL_COMPLETION) { 2063 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2064 return; 2065 2066 printf("%s: could not transmit buffer: %s\n", 2067 sc->sc_dev.dv_xname, usbd_errstr(status)); 2068 2069 if (status == USBD_STALLED) { 2070 usbd_clear_endpoint_stall_async( 2071 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2072 } 2073 ifp->if_oerrors++; 2074 return; 2075 } 2076 2077 s = splnet(); 2078 2079 /* update rate control statistics */ 2080 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2081 2082 ieee80211_release_node(ic, data->ni); 2083 data->ni = NULL; 2084 2085 sc->tx_queued--; 2086 ifp->if_opackets++; 2087 2088 sc->tx_timer = 0; 2089 ifp->if_flags &= ~IFF_OACTIVE; 2090 zyd_start(ifp); 2091 2092 splx(s); 2093 } 2094 2095 int 2096 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2097 { 2098 struct ieee80211com *ic = &sc->sc_ic; 2099 struct ifnet *ifp = &ic->ic_if; 2100 struct zyd_tx_desc *desc; 2101 struct zyd_tx_data *data; 2102 struct ieee80211_frame *wh; 2103 struct ieee80211_key *k; 2104 int xferlen, totlen, rate; 2105 uint16_t pktlen; 2106 usbd_status error; 2107 2108 wh = mtod(m0, struct ieee80211_frame *); 2109 2110 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2111 k = ieee80211_get_txkey(ic, wh, ni); 2112 2113 if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) 2114 return ENOBUFS; 2115 2116 /* packet header may have moved, reset our local pointer */ 2117 wh = mtod(m0, struct ieee80211_frame *); 2118 } 2119 2120 /* pickup a rate */ 2121 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2122 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2123 IEEE80211_FC0_TYPE_MGT)) { 2124 /* mgmt/multicast frames are sent at the lowest avail. rate */ 2125 rate = ni->ni_rates.rs_rates[0]; 2126 } else if (ic->ic_fixed_rate != -1) { 2127 rate = ic->ic_sup_rates[ic->ic_curmode]. 2128 rs_rates[ic->ic_fixed_rate]; 2129 } else 2130 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2131 rate &= IEEE80211_RATE_VAL; 2132 if (rate == 0) /* XXX should not happen */ 2133 rate = 2; 2134 2135 data = &sc->tx_data[0]; 2136 desc = (struct zyd_tx_desc *)data->buf; 2137 2138 data->ni = ni; 2139 2140 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; 2141 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2142 2143 /* fill Tx descriptor */ 2144 desc->len = htole16(totlen); 2145 2146 desc->flags = ZYD_TX_FLAG_BACKOFF; 2147 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2148 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2149 if (totlen > ic->ic_rtsthreshold) { 2150 desc->flags |= ZYD_TX_FLAG_RTS; 2151 } else if (ZYD_RATE_IS_OFDM(rate) && 2152 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2153 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2154 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2155 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2156 desc->flags |= ZYD_TX_FLAG_RTS; 2157 } 2158 } else 2159 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2160 2161 if ((wh->i_fc[0] & 2162 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2163 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2164 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2165 2166 desc->phy = zyd_plcp_signal(rate); 2167 if (ZYD_RATE_IS_OFDM(rate)) { 2168 desc->phy |= ZYD_TX_PHY_OFDM; 2169 if (ic->ic_curmode == IEEE80211_MODE_11A) 2170 desc->phy |= ZYD_TX_PHY_5GHZ; 2171 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2172 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2173 2174 /* actual transmit length (XXX why +10?) */ 2175 pktlen = sizeof (struct zyd_tx_desc) + 10; 2176 if (sc->mac_rev == ZYD_ZD1211) 2177 pktlen += totlen; 2178 desc->pktlen = htole16(pktlen); 2179 2180 desc->plcp_length = (16 * totlen + rate - 1) / rate; 2181 desc->plcp_service = 0; 2182 if (rate == 22) { 2183 const int remainder = (16 * totlen) % 22; 2184 if (remainder != 0 && remainder < 7) 2185 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2186 } 2187 2188 #if NBPFILTER > 0 2189 if (sc->sc_drvbpf != NULL) { 2190 struct mbuf mb; 2191 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2192 2193 tap->wt_flags = 0; 2194 tap->wt_rate = rate; 2195 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 2196 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 2197 2198 mb.m_data = (caddr_t)tap; 2199 mb.m_len = sc->sc_txtap_len; 2200 mb.m_next = m0; 2201 mb.m_nextpkt = NULL; 2202 mb.m_type = 0; 2203 mb.m_flags = 0; 2204 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 2205 } 2206 #endif 2207 2208 m_copydata(m0, 0, m0->m_pkthdr.len, 2209 data->buf + sizeof (struct zyd_tx_desc)); 2210 2211 DPRINTFN(10, ("%s: sending data frame len=%u rate=%u xferlen=%u\n", 2212 sc->sc_dev.dv_xname, m0->m_pkthdr.len, rate, xferlen)); 2213 2214 m_freem(m0); /* mbuf no longer needed */ 2215 2216 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2217 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2218 ZYD_TX_TIMEOUT, zyd_txeof); 2219 error = usbd_transfer(data->xfer); 2220 if (error != USBD_IN_PROGRESS && error != 0) { 2221 ifp->if_oerrors++; 2222 return EIO; 2223 } 2224 sc->tx_queued++; 2225 2226 return 0; 2227 } 2228 2229 void 2230 zyd_start(struct ifnet *ifp) 2231 { 2232 struct zyd_softc *sc = ifp->if_softc; 2233 struct ieee80211com *ic = &sc->sc_ic; 2234 struct ieee80211_node *ni; 2235 struct mbuf *m0; 2236 2237 /* 2238 * net80211 may still try to send management frames even if the 2239 * IFF_RUNNING flag is not set... 2240 */ 2241 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 2242 return; 2243 2244 for (;;) { 2245 IF_POLL(&ic->ic_mgtq, m0); 2246 if (m0 != NULL) { 2247 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2248 ifp->if_flags |= IFF_OACTIVE; 2249 break; 2250 } 2251 IF_DEQUEUE(&ic->ic_mgtq, m0); 2252 2253 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2254 m0->m_pkthdr.rcvif = NULL; 2255 #if NBPFILTER > 0 2256 if (ic->ic_rawbpf != NULL) 2257 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 2258 #endif 2259 if (zyd_tx_data(sc, m0, ni) != 0) 2260 break; 2261 } else { 2262 if (ic->ic_state != IEEE80211_S_RUN) 2263 break; 2264 IFQ_POLL(&ifp->if_snd, m0); 2265 if (m0 == NULL) 2266 break; 2267 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2268 ifp->if_flags |= IFF_OACTIVE; 2269 break; 2270 } 2271 IFQ_DEQUEUE(&ifp->if_snd, m0); 2272 #if NBPFILTER > 0 2273 if (ifp->if_bpf != NULL) 2274 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); 2275 #endif 2276 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) { 2277 ifp->if_oerrors++; 2278 continue; 2279 } 2280 #if NBPFILTER > 0 2281 if (ic->ic_rawbpf != NULL) 2282 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 2283 #endif 2284 if (zyd_tx_data(sc, m0, ni) != 0) { 2285 if (ni != NULL) 2286 ieee80211_release_node(ic, ni); 2287 ifp->if_oerrors++; 2288 break; 2289 } 2290 } 2291 2292 sc->tx_timer = 5; 2293 ifp->if_timer = 1; 2294 } 2295 } 2296 2297 void 2298 zyd_watchdog(struct ifnet *ifp) 2299 { 2300 struct zyd_softc *sc = ifp->if_softc; 2301 2302 ifp->if_timer = 0; 2303 2304 if (sc->tx_timer > 0) { 2305 if (--sc->tx_timer == 0) { 2306 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 2307 /* zyd_init(ifp); XXX needs a process context ? */ 2308 ifp->if_oerrors++; 2309 return; 2310 } 2311 ifp->if_timer = 1; 2312 } 2313 2314 ieee80211_watchdog(ifp); 2315 } 2316 2317 int 2318 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2319 { 2320 struct zyd_softc *sc = ifp->if_softc; 2321 struct ieee80211com *ic = &sc->sc_ic; 2322 struct ifaddr *ifa; 2323 struct ifreq *ifr; 2324 int s, error = 0; 2325 2326 s = splnet(); 2327 2328 switch (cmd) { 2329 case SIOCSIFADDR: 2330 ifa = (struct ifaddr *)data; 2331 ifp->if_flags |= IFF_UP; 2332 #ifdef INET 2333 if (ifa->ifa_addr->sa_family == AF_INET) 2334 arp_ifinit(&ic->ic_ac, ifa); 2335 #endif 2336 /* FALLTHROUGH */ 2337 case SIOCSIFFLAGS: 2338 if (ifp->if_flags & IFF_UP) { 2339 /* 2340 * If only the PROMISC or ALLMULTI flag changes, then 2341 * don't do a full re-init of the chip, just update 2342 * the Rx filter. 2343 */ 2344 if ((ifp->if_flags & IFF_RUNNING) && 2345 ((ifp->if_flags ^ sc->sc_if_flags) & 2346 (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 2347 zyd_set_multi(sc); 2348 } else { 2349 if (!(ifp->if_flags & IFF_RUNNING)) 2350 zyd_init(ifp); 2351 } 2352 } else { 2353 if (ifp->if_flags & IFF_RUNNING) 2354 zyd_stop(ifp, 1); 2355 } 2356 sc->sc_if_flags = ifp->if_flags; 2357 break; 2358 2359 case SIOCADDMULTI: 2360 case SIOCDELMULTI: 2361 ifr = (struct ifreq *)data; 2362 error = (cmd == SIOCADDMULTI) ? 2363 ether_addmulti(ifr, &ic->ic_ac) : 2364 ether_delmulti(ifr, &ic->ic_ac); 2365 if (error == ENETRESET) { 2366 if (ifp->if_flags & IFF_RUNNING) 2367 zyd_set_multi(sc); 2368 error = 0; 2369 } 2370 break; 2371 2372 case SIOCS80211CHANNEL: 2373 /* 2374 * This allows for fast channel switching in monitor mode 2375 * (used by kismet). In IBSS mode, we must explicitly reset 2376 * the interface to generate a new beacon frame. 2377 */ 2378 error = ieee80211_ioctl(ifp, cmd, data); 2379 if (error == ENETRESET && 2380 ic->ic_opmode == IEEE80211_M_MONITOR) { 2381 zyd_set_chan(sc, ic->ic_ibss_chan); 2382 error = 0; 2383 } 2384 break; 2385 2386 default: 2387 error = ieee80211_ioctl(ifp, cmd, data); 2388 } 2389 2390 if (error == ENETRESET) { 2391 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2392 (IFF_RUNNING | IFF_UP)) 2393 zyd_init(ifp); 2394 error = 0; 2395 } 2396 2397 splx(s); 2398 2399 return error; 2400 } 2401 2402 int 2403 zyd_init(struct ifnet *ifp) 2404 { 2405 struct zyd_softc *sc = ifp->if_softc; 2406 struct ieee80211com *ic = &sc->sc_ic; 2407 int i, error; 2408 2409 zyd_stop(ifp, 0); 2410 2411 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 2412 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2413 zyd_set_macaddr(sc, ic->ic_myaddr); 2414 2415 /* we'll do software WEP decryption for now */ 2416 DPRINTF(("setting encryption type\n")); 2417 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2418 if (error != 0) 2419 return error; 2420 2421 /* promiscuous mode */ 2422 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2423 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2424 2425 (void)zyd_set_rxfilter(sc); 2426 2427 /* switch radio transmitter ON */ 2428 (void)zyd_switch_radio(sc, 1); 2429 2430 /* set basic rates */ 2431 if (ic->ic_curmode == IEEE80211_MODE_11B) 2432 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2433 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2434 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2435 else /* assumes 802.11b/g */ 2436 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2437 2438 /* set mandatory rates */ 2439 if (ic->ic_curmode == IEEE80211_MODE_11B) 2440 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2441 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2442 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2443 else /* assumes 802.11b/g */ 2444 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2445 2446 /* set default BSS channel */ 2447 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2448 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2449 2450 /* enable interrupts */ 2451 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2452 2453 /* 2454 * Allocate Tx and Rx xfer queues. 2455 */ 2456 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2457 printf("%s: could not allocate Tx list\n", 2458 sc->sc_dev.dv_xname); 2459 goto fail; 2460 } 2461 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2462 printf("%s: could not allocate Rx list\n", 2463 sc->sc_dev.dv_xname); 2464 goto fail; 2465 } 2466 2467 /* 2468 * Start up the receive pipe. 2469 */ 2470 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2471 struct zyd_rx_data *data = &sc->rx_data[i]; 2472 2473 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, 2474 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2475 USBD_NO_TIMEOUT, zyd_rxeof); 2476 error = usbd_transfer(data->xfer); 2477 if (error != USBD_IN_PROGRESS && error != 0) { 2478 printf("%s: could not queue Rx transfer\n", 2479 sc->sc_dev.dv_xname); 2480 goto fail; 2481 } 2482 } 2483 2484 ifp->if_flags &= ~IFF_OACTIVE; 2485 ifp->if_flags |= IFF_RUNNING; 2486 2487 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2488 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2489 else 2490 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2491 2492 return 0; 2493 2494 fail: zyd_stop(ifp, 1); 2495 return error; 2496 } 2497 2498 void 2499 zyd_stop(struct ifnet *ifp, int disable) 2500 { 2501 struct zyd_softc *sc = ifp->if_softc; 2502 struct ieee80211com *ic = &sc->sc_ic; 2503 2504 sc->tx_timer = 0; 2505 ifp->if_timer = 0; 2506 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2507 2508 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2509 2510 /* switch radio transmitter OFF */ 2511 (void)zyd_switch_radio(sc, 0); 2512 2513 /* disable Rx */ 2514 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2515 2516 /* disable interrupts */ 2517 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2518 2519 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2520 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2521 2522 zyd_free_rx_list(sc); 2523 zyd_free_tx_list(sc); 2524 } 2525 2526 int 2527 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2528 { 2529 usb_device_request_t req; 2530 uint16_t addr; 2531 uint8_t stat; 2532 2533 DPRINTF(("firmware size=%d\n", size)); 2534 2535 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2536 req.bRequest = ZYD_DOWNLOADREQ; 2537 USETW(req.wIndex, 0); 2538 2539 addr = ZYD_FIRMWARE_START_ADDR; 2540 while (size > 0) { 2541 const int mlen = min(size, 4096); 2542 2543 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, 2544 addr)); 2545 2546 USETW(req.wValue, addr); 2547 USETW(req.wLength, mlen); 2548 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2549 return EIO; 2550 2551 addr += mlen / 2; 2552 fw += mlen; 2553 size -= mlen; 2554 } 2555 2556 /* check whether the upload succeeded */ 2557 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2558 req.bRequest = ZYD_DOWNLOADSTS; 2559 USETW(req.wValue, 0); 2560 USETW(req.wIndex, 0); 2561 USETW(req.wLength, sizeof stat); 2562 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2563 return EIO; 2564 2565 return (stat & 0x80) ? EIO : 0; 2566 } 2567 2568 void 2569 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2570 { 2571 struct zyd_softc *sc = arg; 2572 struct zyd_node *zn = (struct zyd_node *)ni; 2573 2574 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2575 } 2576 2577 void 2578 zyd_amrr_timeout(void *arg) 2579 { 2580 struct zyd_softc *sc = arg; 2581 struct ieee80211com *ic = &sc->sc_ic; 2582 int s; 2583 2584 s = splnet(); 2585 if (ic->ic_opmode == IEEE80211_M_STA) 2586 zyd_iter_func(sc, ic->ic_bss); 2587 else 2588 ieee80211_iterate_nodes(ic, zyd_iter_func, sc); 2589 splx(s); 2590 2591 timeout_add_sec(&sc->amrr_to, 1); 2592 } 2593 2594 void 2595 zyd_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 2596 { 2597 struct zyd_softc *sc = ic->ic_softc; 2598 int i; 2599 2600 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2601 2602 /* set rate to some reasonable initial value */ 2603 for (i = ni->ni_rates.rs_nrates - 1; 2604 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2605 i--); 2606 ni->ni_txrate = i; 2607 } 2608 2609 int 2610 zyd_activate(struct device *self, enum devact act) 2611 { 2612 switch (act) { 2613 case DVACT_ACTIVATE: 2614 break; 2615 2616 case DVACT_DEACTIVATE: 2617 break; 2618 } 2619 return 0; 2620 } 2621