xref: /openbsd-src/sys/dev/usb/if_urtwn.c (revision d1df930ffab53da22f3324c32bed7ac5709915e6)
1 /*	$OpenBSD: if_urtwn.c,v 1.79 2018/10/01 11:03:46 jmatthew Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2014 Kevin Lo <kevlo@FreeBSD.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188EU/RTL8188RU/RTL8192CU.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/kernel.h>
30 #include <sys/socket.h>
31 #include <sys/systm.h>
32 #include <sys/timeout.h>
33 #include <sys/conf.h>
34 #include <sys/device.h>
35 #include <sys/endian.h>
36 
37 #include <machine/intr.h>
38 
39 #if NBPFILTER > 0
40 #include <net/bpf.h>
41 #endif
42 #include <net/if.h>
43 #include <net/if_dl.h>
44 #include <net/if_media.h>
45 
46 #include <netinet/in.h>
47 #include <netinet/if_ether.h>
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_amrr.h>
51 #include <net80211/ieee80211_radiotap.h>
52 
53 #include <dev/usb/usb.h>
54 #include <dev/usb/usbdi.h>
55 #include <dev/usb/usbdi_util.h>
56 #include <dev/usb/usbdevs.h>
57 
58 #include <dev/ic/r92creg.h>
59 #include <dev/ic/rtwnvar.h>
60 
61 /* Maximum number of output pipes is 3. */
62 #define R92C_MAX_EPOUT	3
63 
64 #define R92C_HQ_NPAGES		12
65 #define R92C_LQ_NPAGES		2
66 #define R92C_NQ_NPAGES		2
67 #define R92C_TXPKTBUF_COUNT	256
68 #define R92C_TX_PAGE_COUNT	248
69 #define R92C_TX_PAGE_BOUNDARY	(R92C_TX_PAGE_COUNT + 1)
70 #define R92C_MAX_RX_DMA_SIZE	0x2800
71 #define R88E_HQ_NPAGES		0
72 #define R88E_LQ_NPAGES		9
73 #define R88E_NQ_NPAGES		0
74 #define R88E_TXPKTBUF_COUNT	177
75 #define R88E_TX_PAGE_COUNT	168
76 #define R88E_TX_PAGE_BOUNDARY	(R88E_TX_PAGE_COUNT + 1)
77 #define R88E_MAX_RX_DMA_SIZE	0x2400
78 
79 /* USB Requests. */
80 #define R92C_REQ_REGS	0x05
81 
82 /*
83  * Driver definitions.
84  */
85 #define URTWN_RX_LIST_COUNT		1
86 #define URTWN_TX_LIST_COUNT		8
87 #define URTWN_HOST_CMD_RING_COUNT	32
88 
89 #define URTWN_RXBUFSZ	(16 * 1024)
90 #define URTWN_TXBUFSZ	(sizeof(struct r92c_tx_desc_usb) + IEEE80211_MAX_LEN)
91 
92 #define URTWN_RIDX_COUNT	28
93 
94 #define URTWN_TX_TIMEOUT	5000	/* ms */
95 
96 #define URTWN_LED_LINK	0
97 #define URTWN_LED_DATA	1
98 
99 struct urtwn_rx_radiotap_header {
100 	struct ieee80211_radiotap_header wr_ihdr;
101 	uint8_t		wr_flags;
102 	uint8_t		wr_rate;
103 	uint16_t	wr_chan_freq;
104 	uint16_t	wr_chan_flags;
105 	uint8_t		wr_dbm_antsignal;
106 } __packed;
107 
108 #define URTWN_RX_RADIOTAP_PRESENT			\
109 	(1 << IEEE80211_RADIOTAP_FLAGS |		\
110 	 1 << IEEE80211_RADIOTAP_RATE |			\
111 	 1 << IEEE80211_RADIOTAP_CHANNEL |		\
112 	 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL)
113 
114 struct urtwn_tx_radiotap_header {
115 	struct ieee80211_radiotap_header wt_ihdr;
116 	uint8_t		wt_flags;
117 	uint16_t	wt_chan_freq;
118 	uint16_t	wt_chan_flags;
119 } __packed;
120 
121 #define URTWN_TX_RADIOTAP_PRESENT			\
122 	(1 << IEEE80211_RADIOTAP_FLAGS |		\
123 	 1 << IEEE80211_RADIOTAP_CHANNEL)
124 
125 struct urtwn_softc;
126 
127 struct urtwn_rx_data {
128 	struct urtwn_softc	*sc;
129 	struct usbd_xfer	*xfer;
130 	uint8_t			*buf;
131 };
132 
133 struct urtwn_tx_data {
134 	struct urtwn_softc		*sc;
135 	struct usbd_pipe		*pipe;
136 	struct usbd_xfer		*xfer;
137 	uint8_t				*buf;
138 	TAILQ_ENTRY(urtwn_tx_data)	next;
139 };
140 
141 struct urtwn_host_cmd {
142 	void	(*cb)(struct urtwn_softc *, void *);
143 	uint8_t	data[256];
144 };
145 
146 struct urtwn_cmd_newstate {
147 	enum ieee80211_state	state;
148 	int			arg;
149 };
150 
151 struct urtwn_cmd_key {
152 	struct ieee80211_key	key;
153 	struct ieee80211_node	*ni;
154 };
155 
156 struct urtwn_host_cmd_ring {
157 	struct urtwn_host_cmd	cmd[URTWN_HOST_CMD_RING_COUNT];
158 	int			cur;
159 	int			next;
160 	int			queued;
161 };
162 
163 struct urtwn_softc {
164 	struct device			sc_dev;
165 	struct rtwn_softc		sc_sc;
166 
167 	struct usbd_device		*sc_udev;
168 	struct usbd_interface		*sc_iface;
169 	struct usb_task			sc_task;
170 
171 	struct timeout			scan_to;
172 	struct timeout			calib_to;
173 
174 	int				ntx;
175 	struct usbd_pipe		*rx_pipe;
176 	struct usbd_pipe		*tx_pipe[R92C_MAX_EPOUT];
177 	int				ac2idx[EDCA_NUM_AC];
178 
179 	struct urtwn_host_cmd_ring	cmdq;
180 	struct urtwn_rx_data		rx_data[URTWN_RX_LIST_COUNT];
181 	struct urtwn_tx_data		tx_data[URTWN_TX_LIST_COUNT];
182 	TAILQ_HEAD(, urtwn_tx_data)	tx_free_list;
183 
184 	struct ieee80211_amrr		amrr;
185 	struct ieee80211_amrr_node	amn;
186 
187 #if NBPFILTER > 0
188 	caddr_t				sc_drvbpf;
189 
190 	union {
191 		struct urtwn_rx_radiotap_header th;
192 		uint8_t	pad[64];
193 	}				sc_rxtapu;
194 #define sc_rxtap	sc_rxtapu.th
195 	int				sc_rxtap_len;
196 
197 	union {
198 		struct urtwn_tx_radiotap_header th;
199 		uint8_t	pad[64];
200 	}				sc_txtapu;
201 #define sc_txtap	sc_txtapu.th
202 	int				sc_txtap_len;
203 #endif
204 };
205 
206 #ifdef URTWN_DEBUG
207 #define DPRINTF(x)	do { if (urtwn_debug) printf x; } while (0)
208 #define DPRINTFN(n, x)	do { if (urtwn_debug >= (n)) printf x; } while (0)
209 int urtwn_debug = 4;
210 #else
211 #define DPRINTF(x)
212 #define DPRINTFN(n, x)
213 #endif
214 
215 /*
216  * Various supported device vendors/products.
217  */
218 #define URTWN_DEV(v, p, f)					\
219         { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, (f) | RTWN_CHIP_USB }
220 #define URTWN_DEV_8192CU(v, p)	URTWN_DEV(v, p, RTWN_CHIP_92C | RTWN_CHIP_88C)
221 #define URTWN_DEV_8188EU(v, p)	URTWN_DEV(v, p, RTWN_CHIP_88E)
222 static const struct urtwn_type {
223 	struct usb_devno        dev;
224 	uint32_t		chip;
225 } urtwn_devs[] = {
226 	URTWN_DEV_8192CU(ABOCOM,	RTL8188CU_1),
227 	URTWN_DEV_8192CU(ABOCOM,	RTL8188CU_1),
228 	URTWN_DEV_8192CU(ABOCOM,	RTL8188CU_2),
229 	URTWN_DEV_8192CU(ABOCOM,	RTL8192CU),
230 	URTWN_DEV_8192CU(ASUS,		RTL8192CU),
231 	URTWN_DEV_8192CU(ASUS,		RTL8192CU_2),
232 	URTWN_DEV_8192CU(ASUS,		RTL8192CU_3),
233 	URTWN_DEV_8192CU(AZUREWAVE,	RTL8188CE_1),
234 	URTWN_DEV_8192CU(AZUREWAVE,	RTL8188CE_2),
235 	URTWN_DEV_8192CU(AZUREWAVE,	RTL8188CU),
236 	URTWN_DEV_8192CU(BELKIN,	F7D2102),
237 	URTWN_DEV_8192CU(BELKIN,	F9L1004V1),
238 	URTWN_DEV_8192CU(BELKIN,	RTL8188CU),
239 	URTWN_DEV_8192CU(BELKIN,	RTL8188CUS),
240 	URTWN_DEV_8192CU(BELKIN,	RTL8192CU),
241 	URTWN_DEV_8192CU(BELKIN,	RTL8192CU_1),
242 	URTWN_DEV_8192CU(BELKIN,	RTL8192CU_2),
243 	URTWN_DEV_8192CU(CHICONY,	RTL8188CUS_1),
244 	URTWN_DEV_8192CU(CHICONY,	RTL8188CUS_2),
245 	URTWN_DEV_8192CU(CHICONY,	RTL8188CUS_3),
246 	URTWN_DEV_8192CU(CHICONY,	RTL8188CUS_4),
247 	URTWN_DEV_8192CU(CHICONY,	RTL8188CUS_5),
248 	URTWN_DEV_8192CU(CHICONY,	RTL8188CUS_6),
249 	URTWN_DEV_8192CU(COMPARE,	RTL8192CU),
250 	URTWN_DEV_8192CU(COREGA,	RTL8192CU),
251 	URTWN_DEV_8192CU(DLINK,		DWA131B),
252 	URTWN_DEV_8192CU(DLINK,		RTL8188CU),
253 	URTWN_DEV_8192CU(DLINK,		RTL8192CU_1),
254 	URTWN_DEV_8192CU(DLINK,		RTL8192CU_2),
255 	URTWN_DEV_8192CU(DLINK,		RTL8192CU_3),
256 	URTWN_DEV_8192CU(DLINK,		RTL8192CU_4),
257 	URTWN_DEV_8192CU(EDIMAX,	EW7811UN),
258 	URTWN_DEV_8192CU(EDIMAX,	RTL8192CU),
259 	URTWN_DEV_8192CU(FEIXUN,	RTL8188CU),
260 	URTWN_DEV_8192CU(FEIXUN,	RTL8192CU),
261 	URTWN_DEV_8192CU(GUILLEMOT,	HWNUP150),
262 	URTWN_DEV_8192CU(GUILLEMOT,	RTL8192CU),
263 	URTWN_DEV_8192CU(HAWKING,	RTL8192CU),
264 	URTWN_DEV_8192CU(HAWKING,	RTL8192CU_2),
265 	URTWN_DEV_8192CU(HP3,		RTL8188CU),
266 	URTWN_DEV_8192CU(IODATA,	WNG150UM),
267 	URTWN_DEV_8192CU(IODATA,	RTL8192CU),
268 	URTWN_DEV_8192CU(NETGEAR,	N300MA),
269 	URTWN_DEV_8192CU(NETGEAR,	WNA1000M),
270 	URTWN_DEV_8192CU(NETGEAR,	WNA1000Mv2),
271 	URTWN_DEV_8192CU(NETGEAR,	RTL8192CU),
272 	URTWN_DEV_8192CU(NETGEAR4,	RTL8188CU),
273 	URTWN_DEV_8192CU(NETWEEN,	RTL8192CU),
274 	URTWN_DEV_8192CU(NOVATECH,	RTL8188CU),
275 	URTWN_DEV_8192CU(PLANEX2,	RTL8188CU_1),
276 	URTWN_DEV_8192CU(PLANEX2,	RTL8188CU_2),
277 	URTWN_DEV_8192CU(PLANEX2,	RTL8188CU_3),
278 	URTWN_DEV_8192CU(PLANEX2,	RTL8188CU_4),
279 	URTWN_DEV_8192CU(PLANEX2,	RTL8188CUS),
280 	URTWN_DEV_8192CU(PLANEX2,	RTL8192CU),
281 	URTWN_DEV_8192CU(REALTEK,	RTL8188CE_0),
282 	URTWN_DEV_8192CU(REALTEK,	RTL8188CE_1),
283 	URTWN_DEV_8192CU(REALTEK,	RTL8188CTV),
284 	URTWN_DEV_8192CU(REALTEK,	RTL8188CU_0),
285 	URTWN_DEV_8192CU(REALTEK,	RTL8188CU_1),
286 	URTWN_DEV_8192CU(REALTEK,	RTL8188CU_2),
287 	URTWN_DEV_8192CU(REALTEK,	RTL8188CU_3),
288 	URTWN_DEV_8192CU(REALTEK,	RTL8188CU_4),
289 	URTWN_DEV_8192CU(REALTEK,	RTL8188CU_5),
290 	URTWN_DEV_8192CU(REALTEK,	RTL8188CU_COMBO),
291 	URTWN_DEV_8192CU(REALTEK,	RTL8188CUS),
292 	URTWN_DEV_8192CU(REALTEK,	RTL8188RU),
293 	URTWN_DEV_8192CU(REALTEK,	RTL8188RU_2),
294 	URTWN_DEV_8192CU(REALTEK,	RTL8188RU_3),
295 	URTWN_DEV_8192CU(REALTEK,	RTL8191CU),
296 	URTWN_DEV_8192CU(REALTEK,	RTL8192CE),
297 	URTWN_DEV_8192CU(REALTEK,	RTL8192CE_VAU),
298 	URTWN_DEV_8192CU(REALTEK,	RTL8192CU),
299 	URTWN_DEV_8192CU(SITECOMEU,	RTL8188CU),
300 	URTWN_DEV_8192CU(SITECOMEU,	RTL8188CU_2),
301 	URTWN_DEV_8192CU(SITECOMEU,	RTL8192CU),
302 	URTWN_DEV_8192CU(SITECOMEU,	RTL8192CU_2),
303 	URTWN_DEV_8192CU(SITECOMEU,	WLA2100V2),
304 	URTWN_DEV_8192CU(TPLINK,	RTL8192CU),
305 	URTWN_DEV_8192CU(TRENDNET,	RTL8188CU),
306 	URTWN_DEV_8192CU(TRENDNET,	RTL8192CU),
307 	URTWN_DEV_8192CU(ZYXEL,		RTL8192CU),
308 	/* URTWN_RTL8188E */
309 	URTWN_DEV_8188EU(ABOCOM,	RTL8188EU),
310 	URTWN_DEV_8188EU(DLINK,		DWA123D1),
311 	URTWN_DEV_8188EU(DLINK,		DWA125D1),
312 	URTWN_DEV_8188EU(ELECOM,	WDC150SU2M),
313 	URTWN_DEV_8188EU(REALTEK,	RTL8188ETV),
314 	URTWN_DEV_8188EU(REALTEK,	RTL8188EU),
315 	URTWN_DEV_8188EU(TPLINK,	RTL8188EUS)
316 };
317 
318 #define urtwn_lookup(v, p)	\
319 	((const struct urtwn_type *)usb_lookup(urtwn_devs, v, p))
320 
321 int		urtwn_match(struct device *, void *, void *);
322 void		urtwn_attach(struct device *, struct device *, void *);
323 int		urtwn_detach(struct device *, int);
324 int		urtwn_open_pipes(struct urtwn_softc *);
325 void		urtwn_close_pipes(struct urtwn_softc *);
326 int		urtwn_alloc_rx_list(struct urtwn_softc *);
327 void		urtwn_free_rx_list(struct urtwn_softc *);
328 int		urtwn_alloc_tx_list(struct urtwn_softc *);
329 void		urtwn_free_tx_list(struct urtwn_softc *);
330 void		urtwn_task(void *);
331 void		urtwn_do_async(struct urtwn_softc *,
332 		    void (*)(struct urtwn_softc *, void *), void *, int);
333 void		urtwn_wait_async(void *);
334 int		urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
335 		    int);
336 void		urtwn_write_1(void *, uint16_t, uint8_t);
337 void		urtwn_write_2(void *, uint16_t, uint16_t);
338 void		urtwn_write_4(void *, uint16_t, uint32_t);
339 int		urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
340 		    int);
341 uint8_t		urtwn_read_1(void *, uint16_t);
342 uint16_t	urtwn_read_2(void *, uint16_t);
343 uint32_t	urtwn_read_4(void *, uint16_t);
344 int		urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t);
345 void		urtwn_calib_to(void *);
346 void		urtwn_calib_cb(struct urtwn_softc *, void *);
347 void		urtwn_scan_to(void *);
348 void		urtwn_next_scan(void *);
349 void		urtwn_cancel_scan(void *);
350 int		urtwn_newstate(struct ieee80211com *, enum ieee80211_state,
351 		    int);
352 void		urtwn_newstate_cb(struct urtwn_softc *, void *);
353 void		urtwn_updateslot(struct ieee80211com *);
354 void		urtwn_updateslot_cb(struct urtwn_softc *, void *);
355 void		urtwn_updateedca(struct ieee80211com *);
356 void		urtwn_updateedca_cb(struct urtwn_softc *, void *);
357 int		urtwn_set_key(struct ieee80211com *, struct ieee80211_node *,
358 		    struct ieee80211_key *);
359 void		urtwn_set_key_cb(struct urtwn_softc *, void *);
360 void		urtwn_delete_key(struct ieee80211com *,
361 		    struct ieee80211_node *, struct ieee80211_key *);
362 void		urtwn_delete_key_cb(struct urtwn_softc *, void *);
363 void		urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int);
364 void		urtwn_rxeof(struct usbd_xfer *, void *,
365 		    usbd_status);
366 void		urtwn_txeof(struct usbd_xfer *, void *,
367 		    usbd_status);
368 int		urtwn_tx(void *, struct mbuf *, struct ieee80211_node *);
369 int		urtwn_ioctl(struct ifnet *, u_long, caddr_t);
370 int		urtwn_power_on(void *);
371 int		urtwn_alloc_buffers(void *);
372 int		urtwn_r92c_power_on(struct urtwn_softc *);
373 int		urtwn_r88e_power_on(struct urtwn_softc *);
374 int		urtwn_llt_init(struct urtwn_softc *, int);
375 int		urtwn_fw_loadpage(void *, int, uint8_t *, int);
376 int		urtwn_load_firmware(void *, u_char **, size_t *);
377 int		urtwn_dma_init(void *);
378 void		urtwn_mac_init(void *);
379 void		urtwn_bb_init(void *);
380 int		urtwn_init(void *);
381 void		urtwn_stop(void *);
382 int		urtwn_is_oactive(void *);
383 void		urtwn_next_calib(void *);
384 void		urtwn_cancel_calib(void *);
385 
386 /* Aliases. */
387 #define	urtwn_bb_write	urtwn_write_4
388 #define urtwn_bb_read	urtwn_read_4
389 
390 struct cfdriver urtwn_cd = {
391 	NULL, "urtwn", DV_IFNET
392 };
393 
394 const struct cfattach urtwn_ca = {
395 	sizeof(struct urtwn_softc), urtwn_match, urtwn_attach, urtwn_detach
396 };
397 
398 int
399 urtwn_match(struct device *parent, void *match, void *aux)
400 {
401 	struct usb_attach_arg *uaa = aux;
402 
403 	if (uaa->iface == NULL || uaa->configno != 1)
404 		return (UMATCH_NONE);
405 
406 	return ((urtwn_lookup(uaa->vendor, uaa->product) != NULL) ?
407 	    UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE);
408 }
409 
410 void
411 urtwn_attach(struct device *parent, struct device *self, void *aux)
412 {
413 	struct urtwn_softc *sc = (struct urtwn_softc *)self;
414 	struct usb_attach_arg *uaa = aux;
415 	struct ifnet *ifp;
416 	struct ieee80211com *ic = &sc->sc_sc.sc_ic;
417 
418 	sc->sc_udev = uaa->device;
419 	sc->sc_iface = uaa->iface;
420 
421 	sc->sc_sc.chip = urtwn_lookup(uaa->vendor, uaa->product)->chip;
422 
423 	usb_init_task(&sc->sc_task, urtwn_task, sc, USB_TASK_TYPE_GENERIC);
424 	timeout_set(&sc->scan_to, urtwn_scan_to, sc);
425 	timeout_set(&sc->calib_to, urtwn_calib_to, sc);
426 	if (urtwn_open_pipes(sc) != 0)
427 		return;
428 
429 	sc->amrr.amrr_min_success_threshold =  1;
430 	sc->amrr.amrr_max_success_threshold = 10;
431 
432 	/* Attach the bus-agnostic driver. */
433 	sc->sc_sc.sc_ops.cookie = sc;
434 	sc->sc_sc.sc_ops.write_1 = urtwn_write_1;
435 	sc->sc_sc.sc_ops.write_2 = urtwn_write_2;
436 	sc->sc_sc.sc_ops.write_4 = urtwn_write_4;
437 	sc->sc_sc.sc_ops.read_1 = urtwn_read_1;
438 	sc->sc_sc.sc_ops.read_2 = urtwn_read_2;
439 	sc->sc_sc.sc_ops.read_4 = urtwn_read_4;
440 	sc->sc_sc.sc_ops.tx = urtwn_tx;
441 	sc->sc_sc.sc_ops.power_on = urtwn_power_on;
442 	sc->sc_sc.sc_ops.dma_init = urtwn_dma_init;
443 	sc->sc_sc.sc_ops.fw_loadpage = urtwn_fw_loadpage;
444 	sc->sc_sc.sc_ops.load_firmware = urtwn_load_firmware;
445 	sc->sc_sc.sc_ops.mac_init = urtwn_mac_init;
446 	sc->sc_sc.sc_ops.bb_init = urtwn_bb_init;
447 	sc->sc_sc.sc_ops.alloc_buffers = urtwn_alloc_buffers;
448 	sc->sc_sc.sc_ops.init = urtwn_init;
449 	sc->sc_sc.sc_ops.stop = urtwn_stop;
450 	sc->sc_sc.sc_ops.is_oactive = urtwn_is_oactive;
451 	sc->sc_sc.sc_ops.next_calib = urtwn_next_calib;
452 	sc->sc_sc.sc_ops.cancel_calib = urtwn_cancel_calib;
453 	sc->sc_sc.sc_ops.next_scan = urtwn_next_scan;
454 	sc->sc_sc.sc_ops.cancel_scan = urtwn_cancel_scan;
455 	sc->sc_sc.sc_ops.wait_async = urtwn_wait_async;
456 	if (rtwn_attach(&sc->sc_dev, &sc->sc_sc) != 0) {
457 		urtwn_close_pipes(sc);
458 		return;
459 	}
460 
461 	/* ifp is now valid */
462 	ifp = &sc->sc_sc.sc_ic.ic_if;
463 	ifp->if_ioctl = urtwn_ioctl;
464 
465 	ic->ic_updateslot = urtwn_updateslot;
466 	ic->ic_updateedca = urtwn_updateedca;
467 #ifdef notyet
468 	ic->ic_set_key = urtwn_set_key;
469 	ic->ic_delete_key = urtwn_delete_key;
470 #endif
471 	/* Override state transition machine. */
472 	ic->ic_newstate = urtwn_newstate;
473 
474 #if NBPFILTER > 0
475 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
476 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
477 
478 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
479 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
480 	sc->sc_rxtap.wr_ihdr.it_present = htole32(URTWN_RX_RADIOTAP_PRESENT);
481 
482 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
483 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
484 	sc->sc_txtap.wt_ihdr.it_present = htole32(URTWN_TX_RADIOTAP_PRESENT);
485 #endif
486 }
487 
488 int
489 urtwn_detach(struct device *self, int flags)
490 {
491 	struct urtwn_softc *sc = (struct urtwn_softc *)self;
492 	int s;
493 
494 	s = splusb();
495 
496 	if (timeout_initialized(&sc->scan_to))
497 		timeout_del(&sc->scan_to);
498 	if (timeout_initialized(&sc->calib_to))
499 		timeout_del(&sc->calib_to);
500 
501 	/* Wait for all async commands to complete. */
502 	usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
503 
504 	usbd_ref_wait(sc->sc_udev);
505 
506 	rtwn_detach(&sc->sc_sc, flags);
507 
508 	/* Abort and close Tx/Rx pipes. */
509 	urtwn_close_pipes(sc);
510 
511 	/* Free Tx/Rx buffers. */
512 	urtwn_free_tx_list(sc);
513 	urtwn_free_rx_list(sc);
514 	splx(s);
515 
516 	return (0);
517 }
518 
519 int
520 urtwn_open_pipes(struct urtwn_softc *sc)
521 {
522 	/* Bulk-out endpoints addresses (from highest to lowest prio). */
523 	uint8_t epaddr[R92C_MAX_EPOUT] = { 0, 0, 0 };
524 	uint8_t rx_no;
525 	usb_interface_descriptor_t *id;
526 	usb_endpoint_descriptor_t *ed;
527 	int i, error, nrx = 0;
528 
529 	/* Find all bulk endpoints. */
530 	id = usbd_get_interface_descriptor(sc->sc_iface);
531 	for (i = 0; i < id->bNumEndpoints; i++) {
532 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
533 		if (ed == NULL || UE_GET_XFERTYPE(ed->bmAttributes) != UE_BULK)
534 			continue;
535 
536 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) {
537 			rx_no = ed->bEndpointAddress;
538 			nrx++;
539 		} else {
540 			if (sc->ntx < R92C_MAX_EPOUT)
541 				epaddr[sc->ntx] = ed->bEndpointAddress;
542 			sc->ntx++;
543 		}
544 	}
545 	if (nrx == 0) {
546 		printf("%s: %d: invalid number of Rx bulk pipes\n",
547 		    sc->sc_dev.dv_xname, nrx);
548 		return (EIO);
549 	}
550 	DPRINTF(("found %d bulk-out pipes\n", sc->ntx));
551 	if (sc->ntx == 0 || sc->ntx > R92C_MAX_EPOUT) {
552 		printf("%s: %d: invalid number of Tx bulk pipes\n",
553 		    sc->sc_dev.dv_xname, sc->ntx);
554 		return (EIO);
555 	}
556 
557 	/* Open bulk-in pipe. */
558 	error = usbd_open_pipe(sc->sc_iface, rx_no, 0, &sc->rx_pipe);
559 	if (error != 0) {
560 		printf("%s: could not open Rx bulk pipe\n",
561 		    sc->sc_dev.dv_xname);
562 		goto fail;
563 	}
564 
565 	/* Open bulk-out pipes (up to 3). */
566 	for (i = 0; i < sc->ntx; i++) {
567 		error = usbd_open_pipe(sc->sc_iface, epaddr[i], 0,
568 		    &sc->tx_pipe[i]);
569 		if (error != 0) {
570 			printf("%s: could not open Tx bulk pipe 0x%02x\n",
571 			    sc->sc_dev.dv_xname, epaddr[i]);
572 			goto fail;
573 		}
574 	}
575 
576 	/* Map 802.11 access categories to USB pipes. */
577 	sc->ac2idx[EDCA_AC_BK] =
578 	sc->ac2idx[EDCA_AC_BE] = (sc->ntx == 3) ? 2 : ((sc->ntx == 2) ? 1 : 0);
579 	sc->ac2idx[EDCA_AC_VI] = (sc->ntx == 3) ? 1 : 0;
580 	sc->ac2idx[EDCA_AC_VO] = 0;	/* Always use highest prio. */
581 
582 	if (error != 0)
583  fail:		urtwn_close_pipes(sc);
584 	return (error);
585 }
586 
587 void
588 urtwn_close_pipes(struct urtwn_softc *sc)
589 {
590 	int i;
591 
592 	/* Close Rx pipe. */
593 	if (sc->rx_pipe != NULL) {
594 		usbd_abort_pipe(sc->rx_pipe);
595 		usbd_close_pipe(sc->rx_pipe);
596 	}
597 	/* Close Tx pipes. */
598 	for (i = 0; i < R92C_MAX_EPOUT; i++) {
599 		if (sc->tx_pipe[i] == NULL)
600 			continue;
601 		usbd_abort_pipe(sc->tx_pipe[i]);
602 		usbd_close_pipe(sc->tx_pipe[i]);
603 	}
604 }
605 
606 int
607 urtwn_alloc_rx_list(struct urtwn_softc *sc)
608 {
609 	struct urtwn_rx_data *data;
610 	int i, error = 0;
611 
612 	for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
613 		data = &sc->rx_data[i];
614 
615 		data->sc = sc;	/* Backpointer for callbacks. */
616 
617 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
618 		if (data->xfer == NULL) {
619 			printf("%s: could not allocate xfer\n",
620 			    sc->sc_dev.dv_xname);
621 			error = ENOMEM;
622 			break;
623 		}
624 		data->buf = usbd_alloc_buffer(data->xfer, URTWN_RXBUFSZ);
625 		if (data->buf == NULL) {
626 			printf("%s: could not allocate xfer buffer\n",
627 			    sc->sc_dev.dv_xname);
628 			error = ENOMEM;
629 			break;
630 		}
631 	}
632 	if (error != 0)
633 		urtwn_free_rx_list(sc);
634 	return (error);
635 }
636 
637 void
638 urtwn_free_rx_list(struct urtwn_softc *sc)
639 {
640 	int i;
641 
642 	/* NB: Caller must abort pipe first. */
643 	for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
644 		if (sc->rx_data[i].xfer != NULL)
645 			usbd_free_xfer(sc->rx_data[i].xfer);
646 		sc->rx_data[i].xfer = NULL;
647 	}
648 }
649 
650 int
651 urtwn_alloc_tx_list(struct urtwn_softc *sc)
652 {
653 	struct urtwn_tx_data *data;
654 	int i, error = 0;
655 
656 	TAILQ_INIT(&sc->tx_free_list);
657 	for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
658 		data = &sc->tx_data[i];
659 
660 		data->sc = sc;	/* Backpointer for callbacks. */
661 
662 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
663 		if (data->xfer == NULL) {
664 			printf("%s: could not allocate xfer\n",
665 			    sc->sc_dev.dv_xname);
666 			error = ENOMEM;
667 			break;
668 		}
669 		data->buf = usbd_alloc_buffer(data->xfer, URTWN_TXBUFSZ);
670 		if (data->buf == NULL) {
671 			printf("%s: could not allocate xfer buffer\n",
672 			    sc->sc_dev.dv_xname);
673 			error = ENOMEM;
674 			break;
675 		}
676 		/* Append this Tx buffer to our free list. */
677 		TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
678 	}
679 	if (error != 0)
680 		urtwn_free_tx_list(sc);
681 	return (error);
682 }
683 
684 void
685 urtwn_free_tx_list(struct urtwn_softc *sc)
686 {
687 	int i;
688 
689 	/* NB: Caller must abort pipe first. */
690 	for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
691 		if (sc->tx_data[i].xfer != NULL)
692 			usbd_free_xfer(sc->tx_data[i].xfer);
693 		sc->tx_data[i].xfer = NULL;
694 	}
695 }
696 
697 void
698 urtwn_task(void *arg)
699 {
700 	struct urtwn_softc *sc = arg;
701 	struct urtwn_host_cmd_ring *ring = &sc->cmdq;
702 	struct urtwn_host_cmd *cmd;
703 	int s;
704 
705 	/* Process host commands. */
706 	s = splusb();
707 	while (ring->next != ring->cur) {
708 		cmd = &ring->cmd[ring->next];
709 		splx(s);
710 		/* Invoke callback. */
711 		cmd->cb(sc, cmd->data);
712 		s = splusb();
713 		ring->queued--;
714 		ring->next = (ring->next + 1) % URTWN_HOST_CMD_RING_COUNT;
715 	}
716 	splx(s);
717 }
718 
719 void
720 urtwn_do_async(struct urtwn_softc *sc,
721     void (*cb)(struct urtwn_softc *, void *), void *arg, int len)
722 {
723 	struct urtwn_host_cmd_ring *ring = &sc->cmdq;
724 	struct urtwn_host_cmd *cmd;
725 	int s;
726 
727 	s = splusb();
728 	cmd = &ring->cmd[ring->cur];
729 	cmd->cb = cb;
730 	KASSERT(len <= sizeof(cmd->data));
731 	memcpy(cmd->data, arg, len);
732 	ring->cur = (ring->cur + 1) % URTWN_HOST_CMD_RING_COUNT;
733 
734 	/* If there is no pending command already, schedule a task. */
735 	if (++ring->queued == 1)
736 		usb_add_task(sc->sc_udev, &sc->sc_task);
737 	splx(s);
738 }
739 
740 void
741 urtwn_wait_async(void *cookie)
742 {
743 	struct urtwn_softc *sc = cookie;
744 	int s;
745 
746 	s = splusb();
747 	/* Wait for all queued asynchronous commands to complete. */
748 	usb_wait_task(sc->sc_udev, &sc->sc_task);
749 	splx(s);
750 }
751 
752 int
753 urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
754     int len)
755 {
756 	usb_device_request_t req;
757 
758 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
759 	req.bRequest = R92C_REQ_REGS;
760 	USETW(req.wValue, addr);
761 	USETW(req.wIndex, 0);
762 	USETW(req.wLength, len);
763 	return (usbd_do_request(sc->sc_udev, &req, buf));
764 }
765 
766 void
767 urtwn_write_1(void *cookie, uint16_t addr, uint8_t val)
768 {
769 	struct urtwn_softc *sc = cookie;
770 
771 	urtwn_write_region_1(sc, addr, &val, 1);
772 }
773 
774 void
775 urtwn_write_2(void *cookie, uint16_t addr, uint16_t val)
776 {
777 	struct urtwn_softc *sc = cookie;
778 
779 	val = htole16(val);
780 	urtwn_write_region_1(sc, addr, (uint8_t *)&val, 2);
781 }
782 
783 void
784 urtwn_write_4(void *cookie, uint16_t addr, uint32_t val)
785 {
786 	struct urtwn_softc *sc = cookie;
787 
788 	val = htole32(val);
789 	urtwn_write_region_1(sc, addr, (uint8_t *)&val, 4);
790 }
791 
792 int
793 urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
794     int len)
795 {
796 	usb_device_request_t req;
797 
798 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
799 	req.bRequest = R92C_REQ_REGS;
800 	USETW(req.wValue, addr);
801 	USETW(req.wIndex, 0);
802 	USETW(req.wLength, len);
803 	return (usbd_do_request(sc->sc_udev, &req, buf));
804 }
805 
806 uint8_t
807 urtwn_read_1(void *cookie, uint16_t addr)
808 {
809 	struct urtwn_softc *sc = cookie;
810 	uint8_t val;
811 
812 	if (urtwn_read_region_1(sc, addr, &val, 1) != 0)
813 		return (0xff);
814 	return (val);
815 }
816 
817 uint16_t
818 urtwn_read_2(void *cookie, uint16_t addr)
819 {
820 	struct urtwn_softc *sc = cookie;
821 	uint16_t val;
822 
823 	if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0)
824 		return (0xffff);
825 	return (letoh16(val));
826 }
827 
828 uint32_t
829 urtwn_read_4(void *cookie, uint16_t addr)
830 {
831 	struct urtwn_softc *sc = cookie;
832 	uint32_t val;
833 
834 	if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0)
835 		return (0xffffffff);
836 	return (letoh32(val));
837 }
838 
839 int
840 urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
841 {
842 	int ntries;
843 
844 	urtwn_write_4(sc, R92C_LLT_INIT,
845 	    SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
846 	    SM(R92C_LLT_INIT_ADDR, addr) |
847 	    SM(R92C_LLT_INIT_DATA, data));
848 	/* Wait for write operation to complete. */
849 	for (ntries = 0; ntries < 20; ntries++) {
850 		if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
851 		    R92C_LLT_INIT_OP_NO_ACTIVE)
852 			return (0);
853 		DELAY(5);
854 	}
855 	return (ETIMEDOUT);
856 }
857 
858 void
859 urtwn_calib_to(void *arg)
860 {
861 	struct urtwn_softc *sc = arg;
862 
863 	if (usbd_is_dying(sc->sc_udev))
864 		return;
865 
866 	usbd_ref_incr(sc->sc_udev);
867 
868 	/* Do it in a process context. */
869 	urtwn_do_async(sc, urtwn_calib_cb, NULL, 0);
870 
871 	usbd_ref_decr(sc->sc_udev);
872 }
873 
874 /* ARGSUSED */
875 void
876 urtwn_calib_cb(struct urtwn_softc *sc, void *arg)
877 {
878 	struct ieee80211com *ic = &sc->sc_sc.sc_ic;
879 	int s;
880 
881 	s = splnet();
882 	if (ic->ic_opmode == IEEE80211_M_STA) {
883 		ieee80211_amrr_choose(&sc->amrr, ic->ic_bss, &sc->amn);
884 	}
885 	splx(s);
886 
887 	rtwn_calib(&sc->sc_sc);
888 }
889 
890 void
891 urtwn_next_calib(void *cookie)
892 {
893 	struct urtwn_softc *sc = cookie;
894 
895 	if (!usbd_is_dying(sc->sc_udev))
896 		timeout_add_sec(&sc->calib_to, 2);
897 }
898 
899 void
900 urtwn_cancel_calib(void *cookie)
901 {
902 	struct urtwn_softc *sc = cookie;
903 
904 	if (timeout_initialized(&sc->calib_to))
905 		timeout_del(&sc->calib_to);
906 }
907 
908 void
909 urtwn_scan_to(void *arg)
910 {
911 	struct urtwn_softc *sc = arg;
912 
913 	if (usbd_is_dying(sc->sc_udev))
914 		return;
915 
916 	usbd_ref_incr(sc->sc_udev);
917 	rtwn_next_scan(&sc->sc_sc);
918 	usbd_ref_decr(sc->sc_udev);
919 }
920 
921 void
922 urtwn_next_scan(void *arg)
923 {
924 	struct urtwn_softc *sc = arg;
925 
926 	if (!usbd_is_dying(sc->sc_udev))
927 		timeout_add_msec(&sc->scan_to, 200);
928 }
929 
930 void
931 urtwn_cancel_scan(void *cookie)
932 {
933 	struct urtwn_softc *sc = cookie;
934 
935 	if (timeout_initialized(&sc->scan_to))
936 		timeout_del(&sc->scan_to);
937 }
938 
939 int
940 urtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
941 {
942 	struct rtwn_softc *sc_sc = ic->ic_softc;
943 	struct device *self = sc_sc->sc_pdev;
944 	struct urtwn_softc *sc = (struct urtwn_softc *)self;
945 	struct urtwn_cmd_newstate cmd;
946 
947 	/* Do it in a process context. */
948 	cmd.state = nstate;
949 	cmd.arg = arg;
950 	urtwn_do_async(sc, urtwn_newstate_cb, &cmd, sizeof(cmd));
951 	return (0);
952 }
953 
954 void
955 urtwn_newstate_cb(struct urtwn_softc *sc, void *arg)
956 {
957 	struct urtwn_cmd_newstate *cmd = arg;
958 	struct ieee80211com *ic = &sc->sc_sc.sc_ic;
959 
960 	rtwn_newstate(ic, cmd->state, cmd->arg);
961 }
962 
963 void
964 urtwn_updateslot(struct ieee80211com *ic)
965 {
966 	struct rtwn_softc *sc_sc = ic->ic_softc;
967 	struct device *self = sc_sc->sc_pdev;
968 	struct urtwn_softc *sc = (struct urtwn_softc *)self;
969 
970 	/* Do it in a process context. */
971 	urtwn_do_async(sc, urtwn_updateslot_cb, NULL, 0);
972 }
973 
974 /* ARGSUSED */
975 void
976 urtwn_updateslot_cb(struct urtwn_softc *sc, void *arg)
977 {
978 	struct ieee80211com *ic = &sc->sc_sc.sc_ic;
979 
980 	rtwn_updateslot(ic);
981 }
982 
983 void
984 urtwn_updateedca(struct ieee80211com *ic)
985 {
986 	struct rtwn_softc *sc_sc = ic->ic_softc;
987 	struct device *self = sc_sc->sc_pdev;
988 	struct urtwn_softc *sc = (struct urtwn_softc *)self;
989 
990 	/* Do it in a process context. */
991 	urtwn_do_async(sc, urtwn_updateedca_cb, NULL, 0);
992 }
993 
994 /* ARGSUSED */
995 void
996 urtwn_updateedca_cb(struct urtwn_softc *sc, void *arg)
997 {
998 	struct ieee80211com *ic = &sc->sc_sc.sc_ic;
999 
1000 	rtwn_updateedca(ic);
1001 }
1002 
1003 int
1004 urtwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1005     struct ieee80211_key *k)
1006 {
1007 	struct rtwn_softc *sc_sc = ic->ic_softc;
1008 	struct device *self = sc_sc->sc_pdev;
1009 	struct urtwn_softc *sc = (struct urtwn_softc *)self;
1010 	struct urtwn_cmd_key cmd;
1011 
1012 	/* Defer setting of WEP keys until interface is brought up. */
1013 	if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
1014 	    (IFF_UP | IFF_RUNNING))
1015 		return (0);
1016 
1017 	/* Do it in a process context. */
1018 	cmd.key = *k;
1019 	cmd.ni = ni;
1020 	urtwn_do_async(sc, urtwn_set_key_cb, &cmd, sizeof(cmd));
1021 	return (0);
1022 }
1023 
1024 void
1025 urtwn_set_key_cb(struct urtwn_softc *sc, void *arg)
1026 {
1027 	struct ieee80211com *ic = &sc->sc_sc.sc_ic;
1028 	struct urtwn_cmd_key *cmd = arg;
1029 
1030 	rtwn_set_key(ic, cmd->ni, &cmd->key);
1031 }
1032 
1033 void
1034 urtwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1035     struct ieee80211_key *k)
1036 {
1037 	struct rtwn_softc *sc_sc = ic->ic_softc;
1038 	struct device *self = sc_sc->sc_pdev;
1039 	struct urtwn_softc *sc = (struct urtwn_softc *)self;
1040 	struct urtwn_cmd_key cmd;
1041 
1042 	if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
1043 	    ic->ic_state != IEEE80211_S_RUN)
1044 		return;	/* Nothing to do. */
1045 
1046 	/* Do it in a process context. */
1047 	cmd.key = *k;
1048 	cmd.ni = ni;
1049 	urtwn_do_async(sc, urtwn_delete_key_cb, &cmd, sizeof(cmd));
1050 }
1051 
1052 void
1053 urtwn_delete_key_cb(struct urtwn_softc *sc, void *arg)
1054 {
1055 	struct ieee80211com *ic = &sc->sc_sc.sc_ic;
1056 	struct urtwn_cmd_key *cmd = arg;
1057 
1058 	rtwn_delete_key(ic, cmd->ni, &cmd->key);
1059 }
1060 
1061 void
1062 urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen)
1063 {
1064 	struct ieee80211com *ic = &sc->sc_sc.sc_ic;
1065 	struct ifnet *ifp = &ic->ic_if;
1066 	struct ieee80211_rxinfo rxi;
1067 	struct ieee80211_frame *wh;
1068 	struct ieee80211_node *ni;
1069 	struct r92c_rx_desc_usb *rxd;
1070 	uint32_t rxdw0, rxdw3;
1071 	struct mbuf *m;
1072 	uint8_t rate;
1073 	int8_t rssi = 0;
1074 	int s, infosz;
1075 
1076 	rxd = (struct r92c_rx_desc_usb *)buf;
1077 	rxdw0 = letoh32(rxd->rxdw0);
1078 	rxdw3 = letoh32(rxd->rxdw3);
1079 
1080 	if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) {
1081 		/*
1082 		 * This should not happen since we setup our Rx filter
1083 		 * to not receive these frames.
1084 		 */
1085 		ifp->if_ierrors++;
1086 		return;
1087 	}
1088 	if (__predict_false(pktlen < sizeof(*wh) || pktlen > MCLBYTES)) {
1089 		ifp->if_ierrors++;
1090 		return;
1091 	}
1092 
1093 	rate = MS(rxdw3, R92C_RXDW3_RATE);
1094 	infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
1095 
1096 	/* Get RSSI from PHY status descriptor if present. */
1097 	if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
1098 		rssi = rtwn_get_rssi(&sc->sc_sc, rate, &rxd[1]);
1099 		/* Update our average RSSI. */
1100 		rtwn_update_avgrssi(&sc->sc_sc, rate, rssi);
1101 	}
1102 
1103 	DPRINTFN(5, ("Rx frame len=%d rate=%d infosz=%d rssi=%d\n",
1104 	    pktlen, rate, infosz, rssi));
1105 
1106 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1107 	if (__predict_false(m == NULL)) {
1108 		ifp->if_ierrors++;
1109 		return;
1110 	}
1111 	if (pktlen > MHLEN) {
1112 		MCLGET(m, M_DONTWAIT);
1113 		if (__predict_false(!(m->m_flags & M_EXT))) {
1114 			ifp->if_ierrors++;
1115 			m_freem(m);
1116 			return;
1117 		}
1118 	}
1119 	/* Finalize mbuf. */
1120 	wh = (struct ieee80211_frame *)((uint8_t *)&rxd[1] + infosz);
1121 	memcpy(mtod(m, uint8_t *), wh, pktlen);
1122 	m->m_pkthdr.len = m->m_len = pktlen;
1123 
1124 	s = splnet();
1125 #if NBPFILTER > 0
1126 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1127 		struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1128 		struct mbuf mb;
1129 
1130 		tap->wr_flags = 0;
1131 		/* Map HW rate index to 802.11 rate. */
1132 		if (!(rxdw3 & R92C_RXDW3_HT)) {
1133 			switch (rate) {
1134 			/* CCK. */
1135 			case  0: tap->wr_rate =   2; break;
1136 			case  1: tap->wr_rate =   4; break;
1137 			case  2: tap->wr_rate =  11; break;
1138 			case  3: tap->wr_rate =  22; break;
1139 			/* OFDM. */
1140 			case  4: tap->wr_rate =  12; break;
1141 			case  5: tap->wr_rate =  18; break;
1142 			case  6: tap->wr_rate =  24; break;
1143 			case  7: tap->wr_rate =  36; break;
1144 			case  8: tap->wr_rate =  48; break;
1145 			case  9: tap->wr_rate =  72; break;
1146 			case 10: tap->wr_rate =  96; break;
1147 			case 11: tap->wr_rate = 108; break;
1148 			}
1149 			if (rate <= 3)
1150 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1151 		} else if (rate >= 12) {	/* MCS0~15. */
1152 			/* Bit 7 set means HT MCS instead of rate. */
1153 			tap->wr_rate = 0x80 | (rate - 12);
1154 		}
1155 		tap->wr_dbm_antsignal = rssi;
1156 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1157 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1158 
1159 		mb.m_data = (caddr_t)tap;
1160 		mb.m_len = sc->sc_rxtap_len;
1161 		mb.m_next = m;
1162 		mb.m_nextpkt = NULL;
1163 		mb.m_type = 0;
1164 		mb.m_flags = 0;
1165 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1166 	}
1167 #endif
1168 
1169 	ni = ieee80211_find_rxnode(ic, wh);
1170 	rxi.rxi_flags = 0;
1171 	rxi.rxi_rssi = rssi;
1172 	rxi.rxi_tstamp = 0;	/* Unused. */
1173 	ieee80211_input(ifp, m, ni, &rxi);
1174 	/* Node is no longer needed. */
1175 	ieee80211_release_node(ic, ni);
1176 	splx(s);
1177 }
1178 
1179 void
1180 urtwn_rxeof(struct usbd_xfer *xfer, void *priv,
1181     usbd_status status)
1182 {
1183 	struct urtwn_rx_data *data = priv;
1184 	struct urtwn_softc *sc = data->sc;
1185 	struct r92c_rx_desc_usb *rxd;
1186 	uint32_t rxdw0;
1187 	uint8_t *buf;
1188 	int len, totlen, pktlen, infosz, npkts, error;
1189 
1190 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1191 		DPRINTF(("RX status=%d\n", status));
1192 		if (status == USBD_STALLED)
1193 			usbd_clear_endpoint_stall_async(sc->rx_pipe);
1194 		if (status != USBD_CANCELLED)
1195 			goto resubmit;
1196 		return;
1197 	}
1198 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1199 
1200 	if (__predict_false(len < sizeof(*rxd))) {
1201 		DPRINTF(("xfer too short %d\n", len));
1202 		goto resubmit;
1203 	}
1204 	buf = data->buf;
1205 
1206 	/* Get the number of encapsulated frames. */
1207 	rxd = (struct r92c_rx_desc_usb *)buf;
1208 	npkts = MS(letoh32(rxd->rxdw2), R92C_RXDW2_PKTCNT);
1209 	DPRINTFN(4, ("Rx %d frames in one chunk\n", npkts));
1210 
1211 	if (sc->sc_sc.chip & RTWN_CHIP_88E) {
1212 		int ntries, type;
1213 		struct r88e_tx_rpt_ccx *rxstat;
1214 
1215 		type = MS(letoh32(rxd->rxdw3), R88E_RXDW3_RPT);
1216 
1217 		if (type == R88E_RXDW3_RPT_TX1) {
1218 			buf += sizeof(struct r92c_rx_desc_usb);
1219 			rxstat = (struct r88e_tx_rpt_ccx *)buf;
1220 			ntries = MS(letoh32(rxstat->rptb2),
1221 			    R88E_RPTB2_RETRY_CNT);
1222 
1223 			if (rxstat->rptb1 & R88E_RPTB1_PKT_OK)
1224 				sc->amn.amn_txcnt++;
1225 			if (ntries > 0)
1226 				sc->amn.amn_retrycnt++;
1227 
1228 			goto resubmit;
1229 		}
1230 	}
1231 
1232 	/* Process all of them. */
1233 	while (npkts-- > 0) {
1234 		if (__predict_false(len < sizeof(*rxd)))
1235 			break;
1236 		rxd = (struct r92c_rx_desc_usb *)buf;
1237 		rxdw0 = letoh32(rxd->rxdw0);
1238 
1239 		pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
1240 		if (__predict_false(pktlen == 0))
1241 			break;
1242 
1243 		infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
1244 
1245 		/* Make sure everything fits in xfer. */
1246 		totlen = sizeof(*rxd) + infosz + pktlen;
1247 		if (__predict_false(totlen > len))
1248 			break;
1249 
1250 		/* Process 802.11 frame. */
1251 		urtwn_rx_frame(sc, buf, pktlen);
1252 
1253 		/* Next chunk is 128-byte aligned. */
1254 		totlen = (totlen + 127) & ~127;
1255 		buf += totlen;
1256 		len -= totlen;
1257 	}
1258 
1259  resubmit:
1260 	/* Setup a new transfer. */
1261 	usbd_setup_xfer(xfer, sc->rx_pipe, data, data->buf, URTWN_RXBUFSZ,
1262 	    USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, urtwn_rxeof);
1263 	error = usbd_transfer(data->xfer);
1264 	if (error != 0 && error != USBD_IN_PROGRESS)
1265 		DPRINTF(("could not set up new transfer: %d\n", error));
1266 }
1267 
1268 void
1269 urtwn_txeof(struct usbd_xfer *xfer, void *priv,
1270     usbd_status status)
1271 {
1272 	struct urtwn_tx_data *data = priv;
1273 	struct urtwn_softc *sc = data->sc;
1274 	struct ifnet *ifp = &sc->sc_sc.sc_ic.ic_if;
1275 	int s;
1276 
1277 	s = splnet();
1278 	/* Put this Tx buffer back to our free list. */
1279 	TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
1280 
1281 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1282 		DPRINTF(("TX status=%d\n", status));
1283 		if (status == USBD_STALLED)
1284 			usbd_clear_endpoint_stall_async(data->pipe);
1285 		ifp->if_oerrors++;
1286 		splx(s);
1287 		return;
1288 	}
1289 	sc->sc_sc.sc_tx_timer = 0;
1290 
1291 	/* We just released a Tx buffer, notify Tx. */
1292 	if (ifq_is_oactive(&ifp->if_snd)) {
1293 		ifq_clr_oactive(&ifp->if_snd);
1294 		rtwn_start(ifp);
1295 	}
1296 	splx(s);
1297 }
1298 
1299 int
1300 urtwn_tx(void *cookie, struct mbuf *m, struct ieee80211_node *ni)
1301 {
1302 	struct urtwn_softc *sc = cookie;
1303 	struct ieee80211com *ic = &sc->sc_sc.sc_ic;
1304 	struct ieee80211_frame *wh;
1305 	struct ieee80211_key *k = NULL;
1306 	struct urtwn_tx_data *data;
1307 	struct r92c_tx_desc_usb *txd;
1308 	struct usbd_pipe *pipe;
1309 	uint16_t qos, sum;
1310 	uint8_t raid, type, tid, qid;
1311 	int i, hasqos, xferlen, error;
1312 
1313 	wh = mtod(m, struct ieee80211_frame *);
1314 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1315 
1316 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1317 		k = ieee80211_get_txkey(ic, wh, ni);
1318 		if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1319 			return (ENOBUFS);
1320 		wh = mtod(m, struct ieee80211_frame *);
1321 	}
1322 
1323 	if ((hasqos = ieee80211_has_qos(wh))) {
1324 		qos = ieee80211_get_qos(wh);
1325 		tid = qos & IEEE80211_QOS_TID;
1326 		qid = ieee80211_up_to_ac(ic, tid);
1327 	} else if (type != IEEE80211_FC0_TYPE_DATA) {
1328 		/* Use AC VO for management frames. */
1329 		qid = EDCA_AC_VO;
1330 	} else
1331 		qid = EDCA_AC_BE;
1332 
1333 	/* Get the USB pipe to use for this AC. */
1334 	pipe = sc->tx_pipe[sc->ac2idx[qid]];
1335 
1336 	/* Grab a Tx buffer from our free list. */
1337 	data = TAILQ_FIRST(&sc->tx_free_list);
1338 	TAILQ_REMOVE(&sc->tx_free_list, data, next);
1339 
1340 	/* Fill Tx descriptor. */
1341 	txd = (struct r92c_tx_desc_usb *)data->buf;
1342 	memset(txd, 0, sizeof(*txd));
1343 
1344 	txd->txdw0 |= htole32(
1345 	    SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) |
1346 	    SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
1347 	    R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
1348 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1349 		txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
1350 
1351 #ifdef notyet
1352 	if (k != NULL) {
1353 		switch (k->k_cipher) {
1354 		case IEEE80211_CIPHER_WEP40:
1355 		case IEEE80211_CIPHER_WEP104:
1356 		case IEEE80211_CIPHER_TKIP:
1357 			cipher = R92C_TXDW1_CIPHER_RC4;
1358 			break;
1359 		case IEEE80211_CIPHER_CCMP:
1360 			cipher = R92C_TXDW1_CIPHER_AES;
1361 			break;
1362 		default:
1363 			cipher = R92C_TXDW1_CIPHER_NONE;
1364 		}
1365 		txd->txdw1 |= htole32(SM(R92C_TXDW1_CIPHER, cipher));
1366 	}
1367 #endif
1368 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1369 	    type == IEEE80211_FC0_TYPE_DATA) {
1370 		if (ic->ic_curmode == IEEE80211_MODE_11B ||
1371 		    (sc->sc_sc.sc_flags & RTWN_FLAG_FORCE_RAID_11B))
1372 			raid = R92C_RAID_11B;
1373 		else
1374 			raid = R92C_RAID_11BG;
1375 		if (sc->sc_sc.chip & RTWN_CHIP_88E) {
1376 			txd->txdw1 |= htole32(
1377 			    SM(R88E_TXDW1_MACID, R92C_MACID_BSS) |
1378 			    SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_BE) |
1379 			    SM(R92C_TXDW1_RAID, raid));
1380 			txd->txdw2 |= htole32(R88E_TXDW2_AGGBK);
1381 			/* Request TX status report for AMRR */
1382 			txd->txdw2 |= htole32(R92C_TXDW2_CCX_RPT);
1383 		} else {
1384 			txd->txdw1 |= htole32(
1385 			    SM(R92C_TXDW1_MACID, R92C_MACID_BSS) |
1386 			    SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_BE) |
1387 			    SM(R92C_TXDW1_RAID, raid) | R92C_TXDW1_AGGBK);
1388 		}
1389 
1390 		if (m->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
1391 			txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
1392 			    R92C_TXDW4_HWRTSEN);
1393 		} else if (ic->ic_flags & IEEE80211_F_USEPROT) {
1394 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
1395 				txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF |
1396 				    R92C_TXDW4_HWRTSEN);
1397 			} else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
1398 				txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
1399 				    R92C_TXDW4_HWRTSEN);
1400 			}
1401 		}
1402 		txd->txdw5 |= htole32(0x0001ff00);
1403 
1404 		if (sc->sc_sc.chip & RTWN_CHIP_88E) {
1405 			/* Use AMRR */
1406 			txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
1407 			txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE,
1408 			    ni->ni_txrate));
1409 			txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE,
1410 			    ni->ni_txrate));
1411 		} else {
1412 			/* Send RTS at OFDM24 and data at OFDM54. */
1413 			txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8));
1414 			txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11));
1415 		}
1416 	} else {
1417 		txd->txdw1 |= htole32(
1418 		    SM(R92C_TXDW1_MACID, 0) |
1419 		    SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) |
1420 		    SM(R92C_TXDW1_RAID, R92C_RAID_11B));
1421 
1422 		/* Force CCK1. */
1423 		txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
1424 		txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
1425 	}
1426 	/* Set sequence number (already little endian). */
1427 	txd->txdseq |= (*(uint16_t *)wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1428 
1429 	if (!hasqos) {
1430 		/* Use HW sequence numbering for non-QoS frames. */
1431 		txd->txdw4  |= htole32(R92C_TXDW4_HWSEQ);
1432 		txd->txdseq |= htole16(R92C_TXDW3_HWSEQEN);
1433 	} else
1434 		txd->txdw4 |= htole32(R92C_TXDW4_QOS);
1435 
1436 	/* Compute Tx descriptor checksum. */
1437 	sum = 0;
1438 	for (i = 0; i < sizeof(*txd) / 2; i++)
1439 		sum ^= ((uint16_t *)txd)[i];
1440 	txd->txdsum = sum;	/* NB: already little endian. */
1441 
1442 #if NBPFILTER > 0
1443 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1444 		struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
1445 		struct mbuf mb;
1446 
1447 		tap->wt_flags = 0;
1448 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1449 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1450 
1451 		mb.m_data = (caddr_t)tap;
1452 		mb.m_len = sc->sc_txtap_len;
1453 		mb.m_next = m;
1454 		mb.m_nextpkt = NULL;
1455 		mb.m_type = 0;
1456 		mb.m_flags = 0;
1457 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1458 	}
1459 #endif
1460 
1461 	xferlen = sizeof(*txd) + m->m_pkthdr.len;
1462 	m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&txd[1]);
1463 	m_freem(m);
1464 
1465 	data->pipe = pipe;
1466 	usbd_setup_xfer(data->xfer, pipe, data, data->buf, xferlen,
1467 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, URTWN_TX_TIMEOUT,
1468 	    urtwn_txeof);
1469 	error = usbd_transfer(data->xfer);
1470 	if (__predict_false(error != USBD_IN_PROGRESS && error != 0)) {
1471 		/* Put this Tx buffer back to our free list. */
1472 		TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
1473 		return (error);
1474 	}
1475 	ieee80211_release_node(ic, ni);
1476 	return (0);
1477 }
1478 
1479 int
1480 urtwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1481 {
1482 	struct rtwn_softc *sc_sc = ifp->if_softc;
1483 	struct device *self = sc_sc->sc_pdev;
1484 	struct urtwn_softc *sc = (struct urtwn_softc *)self;
1485 	int error;
1486 
1487 	if (usbd_is_dying(sc->sc_udev))
1488 		return ENXIO;
1489 
1490 	usbd_ref_incr(sc->sc_udev);
1491 	error = rtwn_ioctl(ifp, cmd, data);
1492 	usbd_ref_decr(sc->sc_udev);
1493 
1494 	return (error);
1495 }
1496 
1497 int
1498 urtwn_r92c_power_on(struct urtwn_softc *sc)
1499 {
1500 	uint32_t reg;
1501 	int ntries;
1502 
1503 	/* Wait for autoload done bit. */
1504 	for (ntries = 0; ntries < 1000; ntries++) {
1505 		if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
1506 			break;
1507 		DELAY(5);
1508 	}
1509 	if (ntries == 1000) {
1510 		printf("%s: timeout waiting for chip autoload\n",
1511 		    sc->sc_dev.dv_xname);
1512 		return (ETIMEDOUT);
1513 	}
1514 
1515 	/* Unlock ISO/CLK/Power control register. */
1516 	urtwn_write_1(sc, R92C_RSV_CTRL, 0);
1517 	/* Move SPS into PWM mode. */
1518 	urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
1519 	DELAY(100);
1520 
1521 	reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL);
1522 	if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) {
1523 		urtwn_write_1(sc, R92C_LDOV12D_CTRL,
1524 		    reg | R92C_LDOV12D_CTRL_LDV12_EN);
1525 		DELAY(100);
1526 		urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
1527 		    urtwn_read_1(sc, R92C_SYS_ISO_CTRL) &
1528 		    ~R92C_SYS_ISO_CTRL_MD2PP);
1529 	}
1530 
1531 	/* Auto enable WLAN. */
1532 	urtwn_write_2(sc, R92C_APS_FSMCO,
1533 	    urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
1534 	for (ntries = 0; ntries < 1000; ntries++) {
1535 		if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
1536 		    R92C_APS_FSMCO_APFM_ONMAC))
1537 			break;
1538 		DELAY(5);
1539 	}
1540 	if (ntries == 1000) {
1541 		printf("%s: timeout waiting for MAC auto ON\n",
1542 		    sc->sc_dev.dv_xname);
1543 		return (ETIMEDOUT);
1544 	}
1545 
1546 	/* Enable radio, GPIO and LED functions. */
1547 	urtwn_write_2(sc, R92C_APS_FSMCO,
1548 	    R92C_APS_FSMCO_AFSM_HSUS |
1549 	    R92C_APS_FSMCO_PDN_EN |
1550 	    R92C_APS_FSMCO_PFM_ALDN);
1551 	/* Release RF digital isolation. */
1552 	urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
1553 	    urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
1554 
1555 	/* Initialize MAC. */
1556 	urtwn_write_1(sc, R92C_APSD_CTRL,
1557 	    urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
1558 	for (ntries = 0; ntries < 200; ntries++) {
1559 		if (!(urtwn_read_1(sc, R92C_APSD_CTRL) &
1560 		    R92C_APSD_CTRL_OFF_STATUS))
1561 			break;
1562 		DELAY(5);
1563 	}
1564 	if (ntries == 200) {
1565 		printf("%s: timeout waiting for MAC initialization\n",
1566 		    sc->sc_dev.dv_xname);
1567 		return (ETIMEDOUT);
1568 	}
1569 
1570 	/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
1571 	reg = urtwn_read_2(sc, R92C_CR);
1572 	reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
1573 	    R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
1574 	    R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
1575 	    R92C_CR_ENSEC;
1576 	urtwn_write_2(sc, R92C_CR, reg);
1577 
1578 	urtwn_write_1(sc, 0xfe10, 0x19);
1579 	return (0);
1580 }
1581 
1582 int
1583 urtwn_r88e_power_on(struct urtwn_softc *sc)
1584 {
1585 	uint32_t reg;
1586 	int ntries;
1587 
1588 	/* Wait for power ready bit. */
1589 	for (ntries = 0; ntries < 5000; ntries++) {
1590 		if (urtwn_read_4(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_SUS_HOST)
1591 			break;
1592 		DELAY(10);
1593 	}
1594 	if (ntries == 5000) {
1595 		printf("%s: timeout waiting for chip power up\n",
1596 		    sc->sc_dev.dv_xname);
1597 		return (ETIMEDOUT);
1598 	}
1599 
1600 	/* Reset BB. */
1601 	urtwn_write_1(sc, R92C_SYS_FUNC_EN,
1602 	    urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~(R92C_SYS_FUNC_EN_BBRSTB |
1603 	    R92C_SYS_FUNC_EN_BB_GLB_RST));
1604 
1605 	urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 2,
1606 	    urtwn_read_1(sc, R92C_AFE_XTAL_CTRL + 2) | 0x80);
1607 
1608 	/* Disable HWPDN. */
1609 	urtwn_write_2(sc, R92C_APS_FSMCO,
1610 	    urtwn_read_2(sc, R92C_APS_FSMCO) & ~R92C_APS_FSMCO_APDM_HPDN);
1611 	/* Disable WL suspend. */
1612 	urtwn_write_2(sc, R92C_APS_FSMCO,
1613 	    urtwn_read_2(sc, R92C_APS_FSMCO) &
1614 	    ~(R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_AFSM_PCIE));
1615 
1616 	/* Auto enable WLAN. */
1617 	urtwn_write_2(sc, R92C_APS_FSMCO,
1618 	    urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
1619 	for (ntries = 0; ntries < 5000; ntries++) {
1620 		if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
1621 		    R92C_APS_FSMCO_APFM_ONMAC))
1622 			break;
1623 		DELAY(10);
1624 	}
1625 	if (ntries == 5000) {
1626 		printf("%s: timeout waiting for MAC auto ON\n",
1627 		    sc->sc_dev.dv_xname);
1628 		return (ETIMEDOUT);
1629 	}
1630 
1631 	/* Enable LDO normal mode. */
1632 	urtwn_write_1(sc, R92C_LPLDO_CTRL,
1633 	    urtwn_read_1(sc, R92C_LPLDO_CTRL) & ~0x10);
1634 
1635 	/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
1636 	urtwn_write_2(sc, R92C_CR, 0);
1637 	reg = urtwn_read_2(sc, R92C_CR);
1638 	reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
1639 	    R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
1640 	    R92C_CR_SCHEDULE_EN | R92C_CR_ENSEC | R92C_CR_CALTMR_EN;
1641 	urtwn_write_2(sc, R92C_CR, reg);
1642 	return (0);
1643 }
1644 
1645 int
1646 urtwn_llt_init(struct urtwn_softc *sc, int page_count)
1647 {
1648 	int i, error, pktbuf_count;
1649 
1650 	pktbuf_count = (sc->sc_sc.chip & RTWN_CHIP_88E) ?
1651 	    R88E_TXPKTBUF_COUNT : R92C_TXPKTBUF_COUNT;
1652 
1653 	/* Reserve pages [0; page_count]. */
1654 	for (i = 0; i < page_count; i++) {
1655 		if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
1656 			return (error);
1657 	}
1658 	/* NB: 0xff indicates end-of-list. */
1659 	if ((error = urtwn_llt_write(sc, i, 0xff)) != 0)
1660 		return (error);
1661 	/*
1662 	 * Use pages [page_count + 1; pktbuf_count - 1]
1663 	 * as ring buffer.
1664 	 */
1665 	for (++i; i < pktbuf_count - 1; i++) {
1666 		if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
1667 			return (error);
1668 	}
1669 	/* Make the last page point to the beginning of the ring buffer. */
1670 	error = urtwn_llt_write(sc, i, page_count + 1);
1671 	return (error);
1672 }
1673 
1674 int
1675 urtwn_fw_loadpage(void *cookie, int page, uint8_t *buf, int len)
1676 {
1677 	struct urtwn_softc *sc = cookie;
1678 	uint32_t reg;
1679 	int off, mlen, error = 0;
1680 
1681 	reg = urtwn_read_4(sc, R92C_MCUFWDL);
1682 	reg = RW(reg, R92C_MCUFWDL_PAGE, page);
1683 	urtwn_write_4(sc, R92C_MCUFWDL, reg);
1684 
1685 	off = R92C_FW_START_ADDR;
1686 	while (len > 0) {
1687 		if (len > 196)
1688 			mlen = 196;
1689 		else if (len > 4)
1690 			mlen = 4;
1691 		else
1692 			mlen = 1;
1693 		error = urtwn_write_region_1(sc, off, buf, mlen);
1694 		if (error != 0)
1695 			break;
1696 		off += mlen;
1697 		buf += mlen;
1698 		len -= mlen;
1699 	}
1700 	return (error);
1701 }
1702 
1703 int
1704 urtwn_load_firmware(void *cookie, u_char **fw, size_t *len)
1705 {
1706 	struct urtwn_softc *sc = cookie;
1707 	const char *name;
1708 	int error;
1709 
1710 	if (sc->sc_sc.chip & RTWN_CHIP_88E)
1711 		name = "urtwn-rtl8188eufw";
1712 	else if ((sc->sc_sc.chip & (RTWN_CHIP_UMC_A_CUT | RTWN_CHIP_92C)) ==
1713 		    RTWN_CHIP_UMC_A_CUT)
1714 		name = "urtwn-rtl8192cfwU";
1715 	else
1716 		name = "urtwn-rtl8192cfwT";
1717 
1718 	error = loadfirmware(name, fw, len);
1719 	if (error)
1720 		printf("%s: could not read firmware %s (error %d)\n",
1721 		    sc->sc_dev.dv_xname, name, error);
1722 	return (error);
1723 }
1724 
1725 int
1726 urtwn_dma_init(void *cookie)
1727 {
1728 	struct urtwn_softc *sc = cookie;
1729 	uint32_t reg;
1730 	uint16_t dmasize;
1731 	int hqpages, lqpages, nqpages, pagecnt, boundary;
1732 	int error, hashq, haslq, hasnq;
1733 
1734 	/* Default initialization of chipset values. */
1735 	if (sc->sc_sc.chip & RTWN_CHIP_88E) {
1736 		hqpages = R88E_HQ_NPAGES;
1737 		lqpages = R88E_LQ_NPAGES;
1738 		nqpages = R88E_NQ_NPAGES;
1739 		pagecnt = R88E_TX_PAGE_COUNT;
1740 		boundary = R88E_TX_PAGE_BOUNDARY;
1741 		dmasize = R88E_MAX_RX_DMA_SIZE;
1742 	} else {
1743 		hqpages = R92C_HQ_NPAGES;
1744 		lqpages = R92C_LQ_NPAGES;
1745 		nqpages = R92C_NQ_NPAGES;
1746 		pagecnt = R92C_TX_PAGE_COUNT;
1747 		boundary = R92C_TX_PAGE_BOUNDARY;
1748 		dmasize = R92C_MAX_RX_DMA_SIZE;
1749 	}
1750 
1751 	/* Initialize LLT table. */
1752 	error = urtwn_llt_init(sc, pagecnt);
1753 	if (error != 0)
1754 		return (error);
1755 
1756 	/* Get Tx queues to USB endpoints mapping. */
1757 	hashq = hasnq = haslq = 0;
1758 	switch (sc->ntx) {
1759 	case 3:
1760 		haslq = 1;
1761 		pagecnt -= lqpages;
1762 		/* FALLTHROUGH */
1763 	case 2:
1764 		hasnq = 1;
1765 		pagecnt -= nqpages;
1766 		/* FALLTHROUGH */
1767 	case 1:
1768 		hashq = 1;
1769 		pagecnt -= hqpages;
1770 		break;
1771 	}
1772 
1773 	/* Set number of pages for normal priority queue. */
1774 	urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0);
1775 	urtwn_write_4(sc, R92C_RQPN,
1776 	    /* Set number of pages for public queue. */
1777 	    SM(R92C_RQPN_PUBQ, pagecnt) |
1778 	    /* Set number of pages for high priority queue. */
1779 	    SM(R92C_RQPN_HPQ, hashq ? hqpages : 0) |
1780 	    /* Set number of pages for low priority queue. */
1781 	    SM(R92C_RQPN_LPQ, haslq ? lqpages : 0) |
1782 	    /* Load values. */
1783 	    R92C_RQPN_LD);
1784 
1785 	urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, boundary);
1786 	urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, boundary);
1787 	urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, boundary);
1788 	urtwn_write_1(sc, R92C_TRXFF_BNDY, boundary);
1789 	urtwn_write_1(sc, R92C_TDECTRL + 1, boundary);
1790 
1791 	/* Set queue to USB pipe mapping. */
1792 	reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
1793 	reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
1794 	if (haslq)
1795 		reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
1796 	else if (hashq) {
1797 		if (!hasnq)
1798 			reg |= R92C_TRXDMA_CTRL_QMAP_HQ;
1799 		else
1800 			reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
1801 	}
1802 	urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
1803 
1804 	/* Set Tx/Rx transfer page boundary. */
1805 	urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, dmasize - 1);
1806 
1807 	/* Set Tx/Rx transfer page size. */
1808 	urtwn_write_1(sc, R92C_PBP,
1809 	    SM(R92C_PBP_PSRX, R92C_PBP_128) |
1810 	    SM(R92C_PBP_PSTX, R92C_PBP_128));
1811 	return (error);
1812 }
1813 
1814 void
1815 urtwn_mac_init(void *cookie)
1816 {
1817 	struct urtwn_softc *sc = cookie;
1818 	int i;
1819 
1820 	/* Write MAC initialization values. */
1821 	if (sc->sc_sc.chip & RTWN_CHIP_88E) {
1822 		for (i = 0; i < nitems(rtl8188eu_mac); i++) {
1823 			urtwn_write_1(sc, rtl8188eu_mac[i].reg,
1824 			    rtl8188eu_mac[i].val);
1825 		}
1826 		urtwn_write_1(sc, R92C_MAX_AGGR_NUM, 0x07);
1827 	} else {
1828 		for (i = 0; i < nitems(rtl8192cu_mac); i++)
1829 			urtwn_write_1(sc, rtl8192cu_mac[i].reg,
1830 			    rtl8192cu_mac[i].val);
1831 	}
1832 }
1833 
1834 void
1835 urtwn_bb_init(void *cookie)
1836 {
1837 	struct urtwn_softc *sc = cookie;
1838 	const struct r92c_bb_prog *prog;
1839 	uint32_t reg;
1840 	uint8_t xtal;
1841 	int i;
1842 
1843 	/* Enable BB and RF. */
1844 	urtwn_write_2(sc, R92C_SYS_FUNC_EN,
1845 	    urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
1846 	    R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
1847 	    R92C_SYS_FUNC_EN_DIO_RF);
1848 
1849 	if (!(sc->sc_sc.chip & RTWN_CHIP_88E))
1850 		urtwn_write_2(sc, R92C_AFE_PLL_CTRL, 0xdb83);
1851 
1852 	urtwn_write_1(sc, R92C_RF_CTRL,
1853 	    R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
1854 	urtwn_write_1(sc, R92C_SYS_FUNC_EN,
1855 	    R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD |
1856 	    R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB);
1857 
1858 	if (!(sc->sc_sc.chip & RTWN_CHIP_88E)) {
1859 		urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f);
1860 		urtwn_write_1(sc, 0x15, 0xe9);
1861 		urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
1862 	}
1863 
1864 	/* Select BB programming based on board type. */
1865 	if (sc->sc_sc.chip & RTWN_CHIP_88E)
1866 		prog = &rtl8188eu_bb_prog;
1867 	else if (!(sc->sc_sc.chip & RTWN_CHIP_92C)) {
1868 		if (sc->sc_sc.board_type == R92C_BOARD_TYPE_MINICARD)
1869 			prog = &rtl8188ce_bb_prog;
1870 		else if (sc->sc_sc.board_type == R92C_BOARD_TYPE_HIGHPA)
1871 			prog = &rtl8188ru_bb_prog;
1872 		else
1873 			prog = &rtl8188cu_bb_prog;
1874 	} else {
1875 		if (sc->sc_sc.board_type == R92C_BOARD_TYPE_MINICARD)
1876 			prog = &rtl8192ce_bb_prog;
1877 		else
1878 			prog = &rtl8192cu_bb_prog;
1879 	}
1880 	/* Write BB initialization values. */
1881 	for (i = 0; i < prog->count; i++) {
1882 		urtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
1883 		DELAY(1);
1884 	}
1885 
1886 	if (sc->sc_sc.chip & RTWN_CHIP_92C_1T2R) {
1887 		/* 8192C 1T only configuration. */
1888 		reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO);
1889 		reg = (reg & ~0x00000003) | 0x2;
1890 		urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
1891 
1892 		reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO);
1893 		reg = (reg & ~0x00300033) | 0x00200022;
1894 		urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
1895 
1896 		reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING);
1897 		reg = (reg & ~0xff000000) | 0x45 << 24;
1898 		urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
1899 
1900 		reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
1901 		reg = (reg & ~0x000000ff) | 0x23;
1902 		urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
1903 
1904 		reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
1905 		reg = (reg & ~0x00000030) | 1 << 4;
1906 		urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
1907 
1908 		reg = urtwn_bb_read(sc, 0xe74);
1909 		reg = (reg & ~0x0c000000) | 2 << 26;
1910 		urtwn_bb_write(sc, 0xe74, reg);
1911 		reg = urtwn_bb_read(sc, 0xe78);
1912 		reg = (reg & ~0x0c000000) | 2 << 26;
1913 		urtwn_bb_write(sc, 0xe78, reg);
1914 		reg = urtwn_bb_read(sc, 0xe7c);
1915 		reg = (reg & ~0x0c000000) | 2 << 26;
1916 		urtwn_bb_write(sc, 0xe7c, reg);
1917 		reg = urtwn_bb_read(sc, 0xe80);
1918 		reg = (reg & ~0x0c000000) | 2 << 26;
1919 		urtwn_bb_write(sc, 0xe80, reg);
1920 		reg = urtwn_bb_read(sc, 0xe88);
1921 		reg = (reg & ~0x0c000000) | 2 << 26;
1922 		urtwn_bb_write(sc, 0xe88, reg);
1923 	}
1924 
1925 	/* Write AGC values. */
1926 	for (i = 0; i < prog->agccount; i++) {
1927 		urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE,
1928 		    prog->agcvals[i]);
1929 		DELAY(1);
1930 	}
1931 
1932 	if (sc->sc_sc.chip & RTWN_CHIP_88E) {
1933 		urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553422);
1934 		DELAY(1);
1935 		urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553420);
1936 		DELAY(1);
1937 
1938 		xtal = sc->sc_sc.crystal_cap & 0x3f;
1939 		reg = urtwn_bb_read(sc, R92C_AFE_XTAL_CTRL);
1940 		urtwn_bb_write(sc, R92C_AFE_XTAL_CTRL,
1941 		    RW(reg, R92C_AFE_XTAL_CTRL_ADDR, xtal | xtal << 6));
1942 	}
1943 
1944 	if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) & R92C_HSSI_PARAM2_CCK_HIPWR)
1945 		sc->sc_sc.sc_flags |= RTWN_FLAG_CCK_HIPWR;
1946 }
1947 
1948 int
1949 urtwn_power_on(void *cookie)
1950 {
1951 	struct urtwn_softc *sc = cookie;
1952 
1953 	if (sc->sc_sc.chip & RTWN_CHIP_88E)
1954 		return (urtwn_r88e_power_on(sc));
1955 
1956 	return (urtwn_r92c_power_on(sc));
1957 }
1958 
1959 int
1960 urtwn_alloc_buffers(void *cookie)
1961 {
1962 	struct urtwn_softc *sc = cookie;
1963 	int error;
1964 
1965 	/* Init host async commands ring. */
1966 	sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
1967 
1968 	/* Allocate Tx/Rx buffers. */
1969 	error = urtwn_alloc_rx_list(sc);
1970 	if (error != 0) {
1971 		printf("%s: could not allocate Rx buffers\n",
1972 		    sc->sc_dev.dv_xname);
1973 		return (error);
1974 	}
1975 	error = urtwn_alloc_tx_list(sc);
1976 	if (error != 0) {
1977 		printf("%s: could not allocate Tx buffers\n",
1978 		    sc->sc_dev.dv_xname);
1979 		return (error);
1980 	}
1981 
1982 	return (0);
1983 }
1984 
1985 int
1986 urtwn_init(void *cookie)
1987 {
1988 	struct urtwn_softc *sc = cookie;
1989 	int i, error;
1990 
1991 	/* Queue Rx xfers. */
1992 	for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
1993 		struct urtwn_rx_data *data = &sc->rx_data[i];
1994 
1995 		usbd_setup_xfer(data->xfer, sc->rx_pipe, data, data->buf,
1996 		    URTWN_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
1997 		    USBD_NO_TIMEOUT, urtwn_rxeof);
1998 		error = usbd_transfer(data->xfer);
1999 		if (error != 0 && error != USBD_IN_PROGRESS)
2000 			return (error);
2001 	}
2002 
2003 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2004 
2005 	/*
2006 	 * Enable TX reports for AMRR.
2007 	 * In order to get reports we need to explicitly reset the register.
2008 	 */
2009 	if (sc->sc_sc.chip & RTWN_CHIP_88E)
2010 		urtwn_write_1(sc, R88E_TX_RPT_CTRL, (urtwn_read_1(sc,
2011 		    R88E_TX_RPT_CTRL) & ~0) | R88E_TX_RPT_CTRL_EN);
2012 
2013 	return (0);
2014 }
2015 
2016 void
2017 urtwn_stop(void *cookie)
2018 {
2019 	struct urtwn_softc *sc = cookie;
2020 	int i;
2021 
2022 	/* Abort Tx. */
2023 	for (i = 0; i < R92C_MAX_EPOUT; i++) {
2024 		if (sc->tx_pipe[i] != NULL)
2025 			usbd_abort_pipe(sc->tx_pipe[i]);
2026 	}
2027 	/* Stop Rx pipe. */
2028 	usbd_abort_pipe(sc->rx_pipe);
2029 	/* Free Tx/Rx buffers. */
2030 	urtwn_free_tx_list(sc);
2031 	urtwn_free_rx_list(sc);
2032 }
2033 
2034 int
2035 urtwn_is_oactive(void *cookie)
2036 {
2037 	struct urtwn_softc *sc = cookie;
2038 
2039 	return (TAILQ_EMPTY(&sc->tx_free_list));
2040 }
2041