1 /* $OpenBSD: if_upgt.c,v 1.56 2011/07/03 15:47:17 matthew Exp $ */ 2 3 /* 4 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include "bpfilter.h" 20 21 #include <sys/param.h> 22 #include <sys/sockio.h> 23 #include <sys/mbuf.h> 24 #include <sys/kernel.h> 25 #include <sys/socket.h> 26 #include <sys/systm.h> 27 #include <sys/timeout.h> 28 #include <sys/conf.h> 29 #include <sys/device.h> 30 31 #include <machine/bus.h> 32 #include <machine/endian.h> 33 #include <machine/intr.h> 34 35 #if NBPFILTER > 0 36 #include <net/bpf.h> 37 #endif 38 #include <net/if.h> 39 #include <net/if_arp.h> 40 #include <net/if_dl.h> 41 #include <net/if_media.h> 42 #include <net/if_types.h> 43 44 #include <netinet/in.h> 45 #include <netinet/in_systm.h> 46 #include <netinet/in_var.h> 47 #include <netinet/if_ether.h> 48 #include <netinet/ip.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_radiotap.h> 52 53 #include <dev/usb/usb.h> 54 #include <dev/usb/usbdi.h> 55 #include <dev/usb/usbdi_util.h> 56 #include <dev/usb/usbdevs.h> 57 58 #include <dev/usb/if_upgtvar.h> 59 60 /* 61 * Driver for the USB PrismGT devices. 62 * 63 * For now just USB 2.0 devices with the GW3887 chipset are supported. 64 * The driver has been written based on the firmware version 2.13.1.0_LM87. 65 * 66 * TODO's: 67 * - Fix MONITOR mode (MAC filter). 68 * - Add HOSTAP mode. 69 * - Add IBSS mode. 70 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 71 * 72 * Parts of this driver has been influenced by reading the p54u driver 73 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 74 * Sebastien Bourdeauducq <lekernel@prism54.org>. 75 */ 76 77 #ifdef UPGT_DEBUG 78 int upgt_debug = 2; 79 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0) 80 #else 81 #define DPRINTF(l, x...) 82 #endif 83 84 /* 85 * Prototypes. 86 */ 87 int upgt_match(struct device *, void *, void *); 88 void upgt_attach(struct device *, struct device *, void *); 89 void upgt_attach_hook(void *); 90 int upgt_detach(struct device *, int); 91 int upgt_activate(struct device *, int); 92 93 int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t); 94 int upgt_device_init(struct upgt_softc *); 95 int upgt_mem_init(struct upgt_softc *); 96 uint32_t upgt_mem_alloc(struct upgt_softc *); 97 void upgt_mem_free(struct upgt_softc *, uint32_t); 98 int upgt_fw_alloc(struct upgt_softc *); 99 void upgt_fw_free(struct upgt_softc *); 100 int upgt_fw_verify(struct upgt_softc *); 101 int upgt_fw_load(struct upgt_softc *); 102 int upgt_fw_copy(char *, char *, int); 103 int upgt_eeprom_read(struct upgt_softc *); 104 int upgt_eeprom_parse(struct upgt_softc *); 105 void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 106 void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 107 void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 108 void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 109 110 int upgt_ioctl(struct ifnet *, u_long, caddr_t); 111 int upgt_init(struct ifnet *); 112 void upgt_stop(struct upgt_softc *); 113 int upgt_media_change(struct ifnet *); 114 void upgt_newassoc(struct ieee80211com *, struct ieee80211_node *, 115 int); 116 int upgt_newstate(struct ieee80211com *, enum ieee80211_state, int); 117 void upgt_newstate_task(void *); 118 void upgt_next_scan(void *); 119 void upgt_start(struct ifnet *); 120 void upgt_watchdog(struct ifnet *); 121 void upgt_tx_task(void *); 122 void upgt_tx_done(struct upgt_softc *, uint8_t *); 123 void upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status); 124 void upgt_rx(struct upgt_softc *, uint8_t *, int); 125 void upgt_setup_rates(struct upgt_softc *); 126 uint8_t upgt_rx_rate(struct upgt_softc *, const int); 127 int upgt_set_macfilter(struct upgt_softc *, uint8_t state); 128 int upgt_set_channel(struct upgt_softc *, unsigned); 129 void upgt_set_led(struct upgt_softc *, int); 130 void upgt_set_led_blink(void *); 131 int upgt_get_stats(struct upgt_softc *); 132 133 int upgt_alloc_tx(struct upgt_softc *); 134 int upgt_alloc_rx(struct upgt_softc *); 135 int upgt_alloc_cmd(struct upgt_softc *); 136 void upgt_free_tx(struct upgt_softc *); 137 void upgt_free_rx(struct upgt_softc *); 138 void upgt_free_cmd(struct upgt_softc *); 139 int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *, 140 usbd_pipe_handle, uint32_t *, int); 141 142 void upgt_hexdump(void *, int); 143 uint32_t upgt_crc32_le(const void *, size_t); 144 uint32_t upgt_chksum_le(const uint32_t *, size_t); 145 146 struct cfdriver upgt_cd = { 147 NULL, "upgt", DV_IFNET 148 }; 149 150 const struct cfattach upgt_ca = { 151 sizeof(struct upgt_softc), 152 upgt_match, 153 upgt_attach, 154 upgt_detach, 155 upgt_activate, 156 }; 157 158 static const struct usb_devno upgt_devs_1[] = { 159 /* version 1 devices */ 160 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G } 161 }; 162 163 static const struct usb_devno upgt_devs_2[] = { 164 /* version 2 devices */ 165 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT }, 166 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G }, 167 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 168 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG }, 169 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 }, 170 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_PRISM_GT }, 171 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 }, 172 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 }, 173 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 }, 174 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 }, 175 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 }, 176 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 }, 177 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT }, 178 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 }, 179 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 }, 180 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 181 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 }, 182 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G }, 183 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_1 }, 184 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_2 }, 185 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 }, 186 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A } 187 }; 188 189 int 190 upgt_match(struct device *parent, void *match, void *aux) 191 { 192 struct usb_attach_arg *uaa = aux; 193 194 if (uaa->iface != NULL) 195 return (UMATCH_NONE); 196 197 if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL) 198 return (UMATCH_VENDOR_PRODUCT); 199 200 if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL) 201 return (UMATCH_VENDOR_PRODUCT); 202 203 return (UMATCH_NONE); 204 } 205 206 void 207 upgt_attach(struct device *parent, struct device *self, void *aux) 208 { 209 struct upgt_softc *sc = (struct upgt_softc *)self; 210 struct usb_attach_arg *uaa = aux; 211 usb_interface_descriptor_t *id; 212 usb_endpoint_descriptor_t *ed; 213 usbd_status error; 214 int i; 215 216 /* 217 * Attach USB device. 218 */ 219 sc->sc_udev = uaa->device; 220 221 /* check device type */ 222 if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0) 223 return; 224 225 /* set configuration number */ 226 if (usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0) != 0) { 227 printf("%s: could not set configuration no!\n", 228 sc->sc_dev.dv_xname); 229 return; 230 } 231 232 /* get the first interface handle */ 233 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX, 234 &sc->sc_iface); 235 if (error != 0) { 236 printf("%s: could not get interface handle!\n", 237 sc->sc_dev.dv_xname); 238 return; 239 } 240 241 /* find endpoints */ 242 id = usbd_get_interface_descriptor(sc->sc_iface); 243 sc->sc_rx_no = sc->sc_tx_no = -1; 244 for (i = 0; i < id->bNumEndpoints; i++) { 245 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 246 if (ed == NULL) { 247 printf("%s: no endpoint descriptor for iface %d!\n", 248 sc->sc_dev.dv_xname, i); 249 return; 250 } 251 252 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 253 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 254 sc->sc_tx_no = ed->bEndpointAddress; 255 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 256 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 257 sc->sc_rx_no = ed->bEndpointAddress; 258 259 /* 260 * 0x01 TX pipe 261 * 0x81 RX pipe 262 * 263 * Deprecated scheme (not used with fw version >2.5.6.x): 264 * 0x02 TX MGMT pipe 265 * 0x82 TX MGMT pipe 266 */ 267 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1) 268 break; 269 } 270 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 271 printf("%s: missing endpoint!\n", sc->sc_dev.dv_xname); 272 return; 273 } 274 275 /* setup tasks and timeouts */ 276 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 277 USB_TASK_TYPE_GENERIC); 278 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, USB_TASK_TYPE_GENERIC); 279 timeout_set(&sc->scan_to, upgt_next_scan, sc); 280 timeout_set(&sc->led_to, upgt_set_led_blink, sc); 281 282 /* 283 * Open TX and RX USB bulk pipes. 284 */ 285 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 286 &sc->sc_tx_pipeh); 287 if (error != 0) { 288 printf("%s: could not open TX pipe: %s!\n", 289 sc->sc_dev.dv_xname, usbd_errstr(error)); 290 goto fail; 291 } 292 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 293 &sc->sc_rx_pipeh); 294 if (error != 0) { 295 printf("%s: could not open RX pipe: %s!\n", 296 sc->sc_dev.dv_xname, usbd_errstr(error)); 297 goto fail; 298 } 299 300 /* 301 * Allocate TX, RX, and CMD xfers. 302 */ 303 if (upgt_alloc_tx(sc) != 0) 304 goto fail; 305 if (upgt_alloc_rx(sc) != 0) 306 goto fail; 307 if (upgt_alloc_cmd(sc) != 0) 308 goto fail; 309 310 /* 311 * We need the firmware loaded to complete the attach. 312 */ 313 if (rootvp == NULL) 314 mountroothook_establish(upgt_attach_hook, sc); 315 else 316 upgt_attach_hook(sc); 317 318 return; 319 fail: 320 printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__); 321 } 322 323 void 324 upgt_attach_hook(void *arg) 325 { 326 struct upgt_softc *sc = arg; 327 struct ieee80211com *ic = &sc->sc_ic; 328 struct ifnet *ifp = &ic->ic_if; 329 usbd_status error; 330 int i; 331 332 /* 333 * Load firmware file into memory. 334 */ 335 if (upgt_fw_alloc(sc) != 0) 336 goto fail; 337 338 /* 339 * Initialize the device. 340 */ 341 if (upgt_device_init(sc) != 0) 342 goto fail; 343 344 /* 345 * Verify the firmware. 346 */ 347 if (upgt_fw_verify(sc) != 0) 348 goto fail; 349 350 /* 351 * Calculate device memory space. 352 */ 353 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 354 printf("%s: could not find memory space addresses on FW!\n", 355 sc->sc_dev.dv_xname); 356 goto fail; 357 } 358 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 359 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 360 361 DPRINTF(1, "%s: memory address frame start=0x%08x\n", 362 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start); 363 DPRINTF(1, "%s: memory address frame end=0x%08x\n", 364 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end); 365 DPRINTF(1, "%s: memory address rx start=0x%08x\n", 366 sc->sc_dev.dv_xname, sc->sc_memaddr_rx_start); 367 368 upgt_mem_init(sc); 369 370 /* 371 * Load the firmware. 372 */ 373 if (upgt_fw_load(sc) != 0) 374 goto fail; 375 376 /* 377 * Startup the RX pipe. 378 */ 379 struct upgt_data *data_rx = &sc->rx_data; 380 381 usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, 382 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 383 error = usbd_transfer(data_rx->xfer); 384 if (error != 0 && error != USBD_IN_PROGRESS) { 385 printf("%s: could not queue RX transfer!\n", 386 sc->sc_dev.dv_xname); 387 goto fail; 388 } 389 usbd_delay_ms(sc->sc_udev, 100); 390 391 /* 392 * Read the whole EEPROM content and parse it. 393 */ 394 if (upgt_eeprom_read(sc) != 0) 395 goto fail; 396 if (upgt_eeprom_parse(sc) != 0) 397 goto fail; 398 399 /* 400 * Setup the 802.11 device. 401 */ 402 ic->ic_phytype = IEEE80211_T_OFDM; 403 ic->ic_opmode = IEEE80211_M_STA; 404 ic->ic_state = IEEE80211_S_INIT; 405 ic->ic_caps = 406 IEEE80211_C_MONITOR | 407 IEEE80211_C_SHPREAMBLE | 408 IEEE80211_C_SHSLOT | 409 IEEE80211_C_WEP | 410 IEEE80211_C_RSN; 411 412 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 413 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 414 415 for (i = 1; i <= 14; i++) { 416 ic->ic_channels[i].ic_freq = 417 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 418 ic->ic_channels[i].ic_flags = 419 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 420 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 421 } 422 423 ifp->if_softc = sc; 424 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 425 ifp->if_ioctl = upgt_ioctl; 426 ifp->if_start = upgt_start; 427 ifp->if_watchdog = upgt_watchdog; 428 IFQ_SET_READY(&ifp->if_snd); 429 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 430 431 if_attach(ifp); 432 ieee80211_ifattach(ifp); 433 ic->ic_newassoc = upgt_newassoc; 434 435 sc->sc_newstate = ic->ic_newstate; 436 ic->ic_newstate = upgt_newstate; 437 ieee80211_media_init(ifp, upgt_media_change, ieee80211_media_status); 438 439 #if NBPFILTER > 0 440 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 441 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 442 443 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 444 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 445 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT); 446 447 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 448 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 449 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT); 450 #endif 451 452 printf("%s: address %s\n", 453 sc->sc_dev.dv_xname, ether_sprintf(ic->ic_myaddr)); 454 455 return; 456 fail: 457 printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__); 458 } 459 460 int 461 upgt_detach(struct device *self, int flags) 462 { 463 struct upgt_softc *sc = (struct upgt_softc *)self; 464 struct ifnet *ifp = &sc->sc_ic.ic_if; 465 int s; 466 467 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 468 469 s = splusb(); 470 471 /* abort and close TX / RX pipes */ 472 if (sc->sc_tx_pipeh != NULL) { 473 usbd_abort_pipe(sc->sc_tx_pipeh); 474 usbd_close_pipe(sc->sc_tx_pipeh); 475 } 476 if (sc->sc_rx_pipeh != NULL) { 477 usbd_abort_pipe(sc->sc_rx_pipeh); 478 usbd_close_pipe(sc->sc_rx_pipeh); 479 } 480 481 /* remove tasks and timeouts */ 482 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 483 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 484 if (timeout_initialized(&sc->scan_to)) 485 timeout_del(&sc->scan_to); 486 if (timeout_initialized(&sc->led_to)) 487 timeout_del(&sc->led_to); 488 489 /* free xfers */ 490 upgt_free_tx(sc); 491 upgt_free_rx(sc); 492 upgt_free_cmd(sc); 493 494 /* free firmware */ 495 upgt_fw_free(sc); 496 497 if (ifp->if_softc != NULL) { 498 /* detach interface */ 499 ieee80211_ifdetach(ifp); 500 if_detach(ifp); 501 } 502 503 splx(s); 504 505 return (0); 506 } 507 508 int 509 upgt_activate(struct device *self, int act) 510 { 511 struct upgt_softc *sc = (struct upgt_softc *)self; 512 513 switch (act) { 514 case DVACT_DEACTIVATE: 515 usbd_deactivate(sc->sc_udev); 516 break; 517 } 518 519 return (0); 520 } 521 522 int 523 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product) 524 { 525 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) { 526 sc->sc_device_type = 1; 527 /* XXX */ 528 printf("%s: version 1 devices not supported yet!\n", 529 sc->sc_dev.dv_xname); 530 return (1); 531 } else { 532 sc->sc_device_type = 2; 533 } 534 535 return (0); 536 } 537 538 int 539 upgt_device_init(struct upgt_softc *sc) 540 { 541 struct upgt_data *data_cmd = &sc->cmd_data; 542 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 543 int len; 544 545 len = sizeof(init_cmd); 546 bcopy(init_cmd, data_cmd->buf, len); 547 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 548 printf("%s: could not send device init string!\n", 549 sc->sc_dev.dv_xname); 550 return (EIO); 551 } 552 usbd_delay_ms(sc->sc_udev, 100); 553 554 DPRINTF(1, "%s: device initialized\n", sc->sc_dev.dv_xname); 555 556 return (0); 557 } 558 559 int 560 upgt_mem_init(struct upgt_softc *sc) 561 { 562 int i; 563 564 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 565 sc->sc_memory.page[i].used = 0; 566 567 if (i == 0) { 568 /* 569 * The first memory page is always reserved for 570 * command data. 571 */ 572 sc->sc_memory.page[i].addr = 573 sc->sc_memaddr_frame_start + MCLBYTES; 574 } else { 575 sc->sc_memory.page[i].addr = 576 sc->sc_memory.page[i - 1].addr + MCLBYTES; 577 } 578 579 if (sc->sc_memory.page[i].addr + MCLBYTES >= 580 sc->sc_memaddr_frame_end) 581 break; 582 583 DPRINTF(2, "%s: memory address page %d=0x%08x\n", 584 sc->sc_dev.dv_xname, i, sc->sc_memory.page[i].addr); 585 } 586 587 sc->sc_memory.pages = i; 588 589 DPRINTF(2, "%s: memory pages=%d\n", 590 sc->sc_dev.dv_xname, sc->sc_memory.pages); 591 592 return (0); 593 } 594 595 uint32_t 596 upgt_mem_alloc(struct upgt_softc *sc) 597 { 598 int i; 599 600 for (i = 0; i < sc->sc_memory.pages; i++) { 601 if (sc->sc_memory.page[i].used == 0) { 602 sc->sc_memory.page[i].used = 1; 603 return (sc->sc_memory.page[i].addr); 604 } 605 } 606 607 return (0); 608 } 609 610 void 611 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 612 { 613 int i; 614 615 for (i = 0; i < sc->sc_memory.pages; i++) { 616 if (sc->sc_memory.page[i].addr == addr) { 617 sc->sc_memory.page[i].used = 0; 618 return; 619 } 620 } 621 622 printf("%s: could not free memory address 0x%08x!\n", 623 sc->sc_dev.dv_xname, addr); 624 } 625 626 627 int 628 upgt_fw_alloc(struct upgt_softc *sc) 629 { 630 const char *name = "upgt-gw3887"; 631 int error; 632 633 if (sc->sc_fw == NULL) { 634 error = loadfirmware(name, &sc->sc_fw, &sc->sc_fw_size); 635 if (error != 0) { 636 printf("%s: error %d, could not read firmware %s!\n", 637 sc->sc_dev.dv_xname, error, name); 638 return (EIO); 639 } 640 } 641 642 DPRINTF(1, "%s: firmware %s allocated\n", sc->sc_dev.dv_xname, name); 643 644 return (0); 645 } 646 647 void 648 upgt_fw_free(struct upgt_softc *sc) 649 { 650 if (sc->sc_fw != NULL) { 651 free(sc->sc_fw, M_DEVBUF); 652 sc->sc_fw = NULL; 653 DPRINTF(1, "%s: firmware freed\n", sc->sc_dev.dv_xname); 654 } 655 } 656 657 int 658 upgt_fw_verify(struct upgt_softc *sc) 659 { 660 struct upgt_fw_bra_option *bra_option; 661 uint32_t bra_option_type, bra_option_len; 662 uint32_t *uc; 663 int offset, bra_end = 0; 664 665 /* 666 * Seek to beginning of Boot Record Area (BRA). 667 */ 668 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 669 uc = (uint32_t *)(sc->sc_fw + offset); 670 if (*uc == 0) 671 break; 672 } 673 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 674 uc = (uint32_t *)(sc->sc_fw + offset); 675 if (*uc != 0) 676 break; 677 } 678 if (offset == sc->sc_fw_size) { 679 printf("%s: firmware Boot Record Area not found!\n", 680 sc->sc_dev.dv_xname); 681 return (EIO); 682 } 683 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n", 684 sc->sc_dev.dv_xname, offset); 685 686 /* 687 * Parse Boot Record Area (BRA) options. 688 */ 689 while (offset < sc->sc_fw_size && bra_end == 0) { 690 /* get current BRA option */ 691 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset); 692 bra_option_type = letoh32(bra_option->type); 693 bra_option_len = letoh32(bra_option->len) * sizeof(*uc); 694 695 switch (bra_option_type) { 696 case UPGT_BRA_TYPE_FW: 697 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n", 698 sc->sc_dev.dv_xname, bra_option_len); 699 700 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 701 printf("%s: wrong UPGT_BRA_TYPE_FW len!\n", 702 sc->sc_dev.dv_xname); 703 return (EIO); 704 } 705 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data, 706 bra_option_len) == 0) { 707 sc->sc_fw_type = UPGT_FWTYPE_LM86; 708 break; 709 } 710 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data, 711 bra_option_len) == 0) { 712 sc->sc_fw_type = UPGT_FWTYPE_LM87; 713 break; 714 } 715 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data, 716 bra_option_len) == 0) { 717 sc->sc_fw_type = UPGT_FWTYPE_FMAC; 718 break; 719 } 720 printf("%s: unsupported firmware type!\n", 721 sc->sc_dev.dv_xname); 722 return (EIO); 723 case UPGT_BRA_TYPE_VERSION: 724 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n", 725 sc->sc_dev.dv_xname, bra_option_len); 726 break; 727 case UPGT_BRA_TYPE_DEPIF: 728 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n", 729 sc->sc_dev.dv_xname, bra_option_len); 730 break; 731 case UPGT_BRA_TYPE_EXPIF: 732 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n", 733 sc->sc_dev.dv_xname, bra_option_len); 734 break; 735 case UPGT_BRA_TYPE_DESCR: 736 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n", 737 sc->sc_dev.dv_xname, bra_option_len); 738 739 struct upgt_fw_bra_descr *descr = 740 (struct upgt_fw_bra_descr *)bra_option->data; 741 742 sc->sc_memaddr_frame_start = 743 letoh32(descr->memaddr_space_start); 744 sc->sc_memaddr_frame_end = 745 letoh32(descr->memaddr_space_end); 746 747 DPRINTF(2, "%s: memory address space start=0x%08x\n", 748 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start); 749 DPRINTF(2, "%s: memory address space end=0x%08x\n", 750 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end); 751 break; 752 case UPGT_BRA_TYPE_END: 753 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n", 754 sc->sc_dev.dv_xname, bra_option_len); 755 bra_end = 1; 756 break; 757 default: 758 DPRINTF(1, "%s: unknown BRA option len=%d\n", 759 sc->sc_dev.dv_xname, bra_option_len); 760 return (EIO); 761 } 762 763 /* jump to next BRA option */ 764 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 765 } 766 767 DPRINTF(1, "%s: firmware verified\n", sc->sc_dev.dv_xname); 768 769 return (0); 770 } 771 772 int 773 upgt_fw_load(struct upgt_softc *sc) 774 { 775 struct upgt_data *data_cmd = &sc->cmd_data; 776 struct upgt_data *data_rx = &sc->rx_data; 777 char start_fwload_cmd[] = { 0x3c, 0x0d }; 778 int offset, bsize, n, i, len; 779 uint32_t crc32; 780 781 /* send firmware start load command */ 782 len = sizeof(start_fwload_cmd); 783 bcopy(start_fwload_cmd, data_cmd->buf, len); 784 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 785 printf("%s: could not send start_firmware_load command!\n", 786 sc->sc_dev.dv_xname); 787 return (EIO); 788 } 789 790 /* send X2 header */ 791 len = sizeof(struct upgt_fw_x2_header); 792 struct upgt_fw_x2_header *x2 = data_cmd->buf; 793 bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE); 794 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 795 x2->len = htole32(sc->sc_fw_size); 796 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE, 797 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 798 sizeof(uint32_t)); 799 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 800 printf("%s: could not send firmware X2 header!\n", 801 sc->sc_dev.dv_xname); 802 return (EIO); 803 } 804 805 /* download firmware */ 806 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) { 807 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE) 808 bsize = UPGT_FW_BLOCK_SIZE; 809 else 810 bsize = sc->sc_fw_size - offset; 811 812 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize); 813 814 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n", 815 sc->sc_dev.dv_xname, offset, n, bsize); 816 817 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0) 818 != 0) { 819 printf("%s: error while downloading firmware block!\n", 820 sc->sc_dev.dv_xname); 821 return (EIO); 822 } 823 824 bsize = n; 825 } 826 DPRINTF(1, "%s: firmware downloaded\n", sc->sc_dev.dv_xname); 827 828 /* load firmware */ 829 crc32 = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size); 830 *((uint32_t *)(data_cmd->buf) ) = crc32; 831 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 832 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 833 len = 6; 834 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 835 printf("%s: could not send load_firmware command!\n", 836 sc->sc_dev.dv_xname); 837 return (EIO); 838 } 839 840 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) { 841 len = UPGT_FW_BLOCK_SIZE; 842 bzero(data_rx->buf, MCLBYTES); 843 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len, 844 USBD_SHORT_XFER_OK) != 0) { 845 printf("%s: could not read firmware response!\n", 846 sc->sc_dev.dv_xname); 847 return (EIO); 848 } 849 850 if (memcmp(data_rx->buf, "OK", 2) == 0) 851 break; /* firmware load was successful */ 852 } 853 if (i == UPGT_FIRMWARE_TIMEOUT) { 854 printf("%s: firmware load failed!\n", sc->sc_dev.dv_xname); 855 return (EIO); 856 } 857 DPRINTF(1, "%s: firmware loaded\n", sc->sc_dev.dv_xname); 858 859 return (0); 860 } 861 862 /* 863 * While copying the version 2 firmware, we need to replace two characters: 864 * 865 * 0x7e -> 0x7d 0x5e 866 * 0x7d -> 0x7d 0x5d 867 */ 868 int 869 upgt_fw_copy(char *src, char *dst, int size) 870 { 871 int i, j; 872 873 for (i = 0, j = 0; i < size && j < size; i++) { 874 switch (src[i]) { 875 case 0x7e: 876 dst[j] = 0x7d; 877 j++; 878 dst[j] = 0x5e; 879 j++; 880 break; 881 case 0x7d: 882 dst[j] = 0x7d; 883 j++; 884 dst[j] = 0x5d; 885 j++; 886 break; 887 default: 888 dst[j] = src[i]; 889 j++; 890 break; 891 } 892 } 893 894 return (i); 895 } 896 897 int 898 upgt_eeprom_read(struct upgt_softc *sc) 899 { 900 struct upgt_data *data_cmd = &sc->cmd_data; 901 struct upgt_lmac_mem *mem; 902 struct upgt_lmac_eeprom *eeprom; 903 int offset, block, len; 904 905 offset = 0; 906 block = UPGT_EEPROM_BLOCK_SIZE; 907 while (offset < UPGT_EEPROM_SIZE) { 908 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n", 909 sc->sc_dev.dv_xname, offset, block); 910 911 /* 912 * Transmit the URB containing the CMD data. 913 */ 914 bzero(data_cmd->buf, MCLBYTES); 915 916 mem = (struct upgt_lmac_mem *)data_cmd->buf; 917 mem->addr = htole32(sc->sc_memaddr_frame_start + 918 UPGT_MEMSIZE_FRAME_HEAD); 919 920 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 921 eeprom->header1.flags = 0; 922 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 923 eeprom->header1.len = htole16(( 924 sizeof(struct upgt_lmac_eeprom) - 925 sizeof(struct upgt_lmac_header)) + block); 926 927 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 928 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 929 eeprom->header2.flags = 0; 930 931 eeprom->offset = htole16(offset); 932 eeprom->len = htole16(block); 933 934 len = sizeof(*mem) + sizeof(*eeprom) + block; 935 936 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 937 len - sizeof(*mem)); 938 939 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 940 USBD_FORCE_SHORT_XFER) != 0) { 941 printf("%s: could not transmit EEPROM data URB!\n", 942 sc->sc_dev.dv_xname); 943 return (EIO); 944 } 945 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) { 946 printf("%s: timeout while waiting for EEPROM data!\n", 947 sc->sc_dev.dv_xname); 948 return (EIO); 949 } 950 951 offset += block; 952 if (UPGT_EEPROM_SIZE - offset < block) 953 block = UPGT_EEPROM_SIZE - offset; 954 } 955 956 return (0); 957 } 958 959 int 960 upgt_eeprom_parse(struct upgt_softc *sc) 961 { 962 struct ieee80211com *ic = &sc->sc_ic; 963 struct upgt_eeprom_header *eeprom_header; 964 struct upgt_eeprom_option *eeprom_option; 965 uint16_t option_len; 966 uint16_t option_type; 967 uint16_t preamble_len; 968 int option_end = 0; 969 970 /* calculate eeprom options start offset */ 971 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 972 preamble_len = letoh16(eeprom_header->preamble_len); 973 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 974 (sizeof(struct upgt_eeprom_header) + preamble_len)); 975 976 while (!option_end) { 977 /* the eeprom option length is stored in words */ 978 option_len = 979 (letoh16(eeprom_option->len) - 1) * sizeof(uint16_t); 980 option_type = 981 letoh16(eeprom_option->type); 982 983 switch (option_type) { 984 case UPGT_EEPROM_TYPE_NAME: 985 DPRINTF(1, "%s: EEPROM name len=%d\n", 986 sc->sc_dev.dv_xname, option_len); 987 break; 988 case UPGT_EEPROM_TYPE_SERIAL: 989 DPRINTF(1, "%s: EEPROM serial len=%d\n", 990 sc->sc_dev.dv_xname, option_len); 991 break; 992 case UPGT_EEPROM_TYPE_MAC: 993 DPRINTF(1, "%s: EEPROM mac len=%d\n", 994 sc->sc_dev.dv_xname, option_len); 995 996 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data); 997 break; 998 case UPGT_EEPROM_TYPE_HWRX: 999 DPRINTF(1, "%s: EEPROM hwrx len=%d\n", 1000 sc->sc_dev.dv_xname, option_len); 1001 1002 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 1003 break; 1004 case UPGT_EEPROM_TYPE_CHIP: 1005 DPRINTF(1, "%s: EEPROM chip len=%d\n", 1006 sc->sc_dev.dv_xname, option_len); 1007 break; 1008 case UPGT_EEPROM_TYPE_FREQ3: 1009 DPRINTF(1, "%s: EEPROM freq3 len=%d\n", 1010 sc->sc_dev.dv_xname, option_len); 1011 1012 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 1013 option_len); 1014 break; 1015 case UPGT_EEPROM_TYPE_FREQ4: 1016 DPRINTF(1, "%s: EEPROM freq4 len=%d\n", 1017 sc->sc_dev.dv_xname, option_len); 1018 1019 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 1020 option_len); 1021 break; 1022 case UPGT_EEPROM_TYPE_FREQ5: 1023 DPRINTF(1, "%s: EEPROM freq5 len=%d\n", 1024 sc->sc_dev.dv_xname, option_len); 1025 break; 1026 case UPGT_EEPROM_TYPE_FREQ6: 1027 DPRINTF(1, "%s: EEPROM freq6 len=%d\n", 1028 sc->sc_dev.dv_xname, option_len); 1029 1030 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 1031 option_len); 1032 break; 1033 case UPGT_EEPROM_TYPE_END: 1034 DPRINTF(1, "%s: EEPROM end len=%d\n", 1035 sc->sc_dev.dv_xname, option_len); 1036 option_end = 1; 1037 break; 1038 case UPGT_EEPROM_TYPE_OFF: 1039 DPRINTF(1, "%s: EEPROM off without end option!\n", 1040 sc->sc_dev.dv_xname); 1041 return (EIO); 1042 default: 1043 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n", 1044 sc->sc_dev.dv_xname, option_type, option_len); 1045 break; 1046 } 1047 1048 /* jump to next EEPROM option */ 1049 eeprom_option = (struct upgt_eeprom_option *) 1050 (eeprom_option->data + option_len); 1051 } 1052 1053 return (0); 1054 } 1055 1056 void 1057 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1058 { 1059 struct upgt_eeprom_option_hwrx *option_hwrx; 1060 1061 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1062 1063 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1064 1065 DPRINTF(2, "%s: hwrx option value=0x%04x\n", 1066 sc->sc_dev.dv_xname, sc->sc_eeprom_hwrx); 1067 } 1068 1069 void 1070 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1071 { 1072 struct upgt_eeprom_freq3_header *freq3_header; 1073 struct upgt_lmac_freq3 *freq3; 1074 int i, elements, flags; 1075 unsigned channel; 1076 1077 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1078 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1079 1080 flags = freq3_header->flags; 1081 elements = freq3_header->elements; 1082 1083 DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags); 1084 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1085 1086 for (i = 0; i < elements; i++) { 1087 channel = ieee80211_mhz2ieee(letoh16(freq3[i].freq), 0); 1088 1089 sc->sc_eeprom_freq3[channel] = freq3[i]; 1090 1091 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1092 sc->sc_dev.dv_xname, 1093 letoh16(sc->sc_eeprom_freq3[channel].freq), channel); 1094 } 1095 } 1096 1097 void 1098 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1099 { 1100 struct upgt_eeprom_freq4_header *freq4_header; 1101 struct upgt_eeprom_freq4_1 *freq4_1; 1102 struct upgt_eeprom_freq4_2 *freq4_2; 1103 int i, j, elements, settings, flags; 1104 unsigned channel; 1105 1106 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1107 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1108 1109 flags = freq4_header->flags; 1110 elements = freq4_header->elements; 1111 settings = freq4_header->settings; 1112 1113 /* we need this value later */ 1114 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1115 1116 DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags); 1117 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1118 DPRINTF(2, "%s: settings=%d\n", sc->sc_dev.dv_xname, settings); 1119 1120 for (i = 0; i < elements; i++) { 1121 channel = ieee80211_mhz2ieee(letoh16(freq4_1[i].freq), 0); 1122 1123 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1124 1125 for (j = 0; j < settings; j++) { 1126 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1127 sc->sc_eeprom_freq4[channel][j].pad = 0; 1128 } 1129 1130 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1131 sc->sc_dev.dv_xname, 1132 letoh16(freq4_1[i].freq), channel); 1133 } 1134 } 1135 1136 void 1137 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1138 { 1139 struct upgt_lmac_freq6 *freq6; 1140 int i, elements; 1141 unsigned channel; 1142 1143 freq6 = (struct upgt_lmac_freq6 *)data; 1144 1145 elements = len / sizeof(struct upgt_lmac_freq6); 1146 1147 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1148 1149 for (i = 0; i < elements; i++) { 1150 channel = ieee80211_mhz2ieee(letoh16(freq6[i].freq), 0); 1151 1152 sc->sc_eeprom_freq6[channel] = freq6[i]; 1153 1154 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1155 sc->sc_dev.dv_xname, 1156 letoh16(sc->sc_eeprom_freq6[channel].freq), channel); 1157 } 1158 } 1159 1160 int 1161 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1162 { 1163 struct upgt_softc *sc = ifp->if_softc; 1164 struct ieee80211com *ic = &sc->sc_ic; 1165 struct ifaddr *ifa; 1166 struct ifreq *ifr; 1167 int s, error = 0; 1168 uint8_t chan; 1169 1170 s = splnet(); 1171 1172 switch (cmd) { 1173 case SIOCSIFADDR: 1174 ifa = (struct ifaddr *)data; 1175 ifp->if_flags |= IFF_UP; 1176 #ifdef INET 1177 if (ifa->ifa_addr->sa_family == AF_INET) 1178 arp_ifinit(&ic->ic_ac, ifa); 1179 #endif 1180 /* FALLTHROUGH */ 1181 case SIOCSIFFLAGS: 1182 if (ifp->if_flags & IFF_UP) { 1183 if ((ifp->if_flags & IFF_RUNNING) == 0) 1184 upgt_init(ifp); 1185 } else { 1186 if (ifp->if_flags & IFF_RUNNING) 1187 upgt_stop(sc); 1188 } 1189 break; 1190 case SIOCADDMULTI: 1191 case SIOCDELMULTI: 1192 ifr = (struct ifreq *)data; 1193 error = (cmd == SIOCADDMULTI) ? 1194 ether_addmulti(ifr, &ic->ic_ac) : 1195 ether_delmulti(ifr, &ic->ic_ac); 1196 if (error == ENETRESET) 1197 error = 0; 1198 break; 1199 case SIOCS80211CHANNEL: 1200 /* allow fast channel switching in monitor mode */ 1201 error = ieee80211_ioctl(ifp, cmd, data); 1202 if (error == ENETRESET && 1203 ic->ic_opmode == IEEE80211_M_MONITOR) { 1204 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1205 (IFF_UP | IFF_RUNNING)) { 1206 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1207 chan = ieee80211_chan2ieee(ic, 1208 ic->ic_bss->ni_chan); 1209 upgt_set_channel(sc, chan); 1210 } 1211 error = 0; 1212 } 1213 break; 1214 default: 1215 error = ieee80211_ioctl(ifp, cmd, data); 1216 break; 1217 } 1218 1219 if (error == ENETRESET) { 1220 if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) 1221 upgt_init(ifp); 1222 error = 0; 1223 } 1224 1225 splx(s); 1226 1227 return (error); 1228 } 1229 1230 int 1231 upgt_init(struct ifnet *ifp) 1232 { 1233 struct upgt_softc *sc = ifp->if_softc; 1234 struct ieee80211com *ic = &sc->sc_ic; 1235 1236 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1237 1238 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 1239 1240 /* select default channel */ 1241 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1242 sc->sc_cur_chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1243 1244 /* setup device rates */ 1245 upgt_setup_rates(sc); 1246 1247 ifp->if_flags |= IFF_RUNNING; 1248 ifp->if_flags &= ~IFF_OACTIVE; 1249 1250 upgt_set_macfilter(sc, IEEE80211_S_SCAN); 1251 1252 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 1253 upgt_set_channel(sc, sc->sc_cur_chan); 1254 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1255 } else 1256 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1257 1258 return (0); 1259 } 1260 1261 void 1262 upgt_stop(struct upgt_softc *sc) 1263 { 1264 struct ieee80211com *ic = &sc->sc_ic; 1265 struct ifnet *ifp = &ic->ic_if; 1266 1267 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1268 1269 /* device down */ 1270 ifp->if_timer = 0; 1271 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1272 1273 upgt_set_led(sc, UPGT_LED_OFF); 1274 1275 /* change device back to initial state */ 1276 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1277 } 1278 1279 int 1280 upgt_media_change(struct ifnet *ifp) 1281 { 1282 struct upgt_softc *sc = ifp->if_softc; 1283 int error; 1284 1285 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1286 1287 if ((error = ieee80211_media_change(ifp) != ENETRESET)) 1288 return (error); 1289 1290 if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1291 /* give pending USB transfers a chance to finish */ 1292 usbd_delay_ms(sc->sc_udev, 100); 1293 upgt_init(ifp); 1294 } 1295 1296 return (0); 1297 } 1298 1299 void 1300 upgt_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 1301 { 1302 ni->ni_txrate = 0; 1303 } 1304 1305 int 1306 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1307 { 1308 struct upgt_softc *sc = ic->ic_if.if_softc; 1309 1310 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 1311 timeout_del(&sc->scan_to); 1312 1313 /* do it in a process context */ 1314 sc->sc_state = nstate; 1315 sc->sc_arg = arg; 1316 usb_add_task(sc->sc_udev, &sc->sc_task_newstate); 1317 1318 return (0); 1319 } 1320 1321 void 1322 upgt_newstate_task(void *arg) 1323 { 1324 struct upgt_softc *sc = arg; 1325 struct ieee80211com *ic = &sc->sc_ic; 1326 struct ieee80211_node *ni; 1327 unsigned channel; 1328 1329 switch (sc->sc_state) { 1330 case IEEE80211_S_INIT: 1331 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n", 1332 sc->sc_dev.dv_xname); 1333 1334 /* do not accept any frames if the device is down */ 1335 upgt_set_macfilter(sc, IEEE80211_S_INIT); 1336 upgt_set_led(sc, UPGT_LED_OFF); 1337 break; 1338 case IEEE80211_S_SCAN: 1339 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n", 1340 sc->sc_dev.dv_xname); 1341 1342 channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1343 upgt_set_channel(sc, channel); 1344 timeout_add_msec(&sc->scan_to, 200); 1345 break; 1346 case IEEE80211_S_AUTH: 1347 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n", 1348 sc->sc_dev.dv_xname); 1349 1350 channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1351 upgt_set_channel(sc, channel); 1352 break; 1353 case IEEE80211_S_ASSOC: 1354 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n", 1355 sc->sc_dev.dv_xname); 1356 break; 1357 case IEEE80211_S_RUN: 1358 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n", 1359 sc->sc_dev.dv_xname); 1360 1361 ni = ic->ic_bss; 1362 1363 /* 1364 * TX rate control is done by the firmware. 1365 * Report the maximum rate which is available therefore. 1366 */ 1367 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 1368 1369 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1370 upgt_set_macfilter(sc, IEEE80211_S_RUN); 1371 upgt_set_led(sc, UPGT_LED_ON); 1372 break; 1373 } 1374 1375 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 1376 } 1377 1378 void 1379 upgt_next_scan(void *arg) 1380 { 1381 struct upgt_softc *sc = arg; 1382 struct ieee80211com *ic = &sc->sc_ic; 1383 struct ifnet *ifp = &ic->ic_if; 1384 1385 DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1386 1387 if (ic->ic_state == IEEE80211_S_SCAN) 1388 ieee80211_next_scan(ifp); 1389 } 1390 1391 void 1392 upgt_start(struct ifnet *ifp) 1393 { 1394 struct upgt_softc *sc = ifp->if_softc; 1395 struct ieee80211com *ic = &sc->sc_ic; 1396 struct ieee80211_node *ni; 1397 struct mbuf *m; 1398 int i; 1399 1400 /* don't transmit packets if interface is busy or down */ 1401 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1402 return; 1403 1404 DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1405 1406 for (i = 0; i < UPGT_TX_COUNT; i++) { 1407 struct upgt_data *data_tx = &sc->tx_data[i]; 1408 1409 IF_POLL(&ic->ic_mgtq, m); 1410 if (m != NULL) { 1411 /* management frame */ 1412 IF_DEQUEUE(&ic->ic_mgtq, m); 1413 1414 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1415 m->m_pkthdr.rcvif = NULL; 1416 #if NBPFILTER > 0 1417 if (ic->ic_rawbpf != NULL) 1418 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 1419 #endif 1420 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1421 printf("%s: no free prism memory!\n", 1422 sc->sc_dev.dv_xname); 1423 return; 1424 } 1425 data_tx->ni = ni; 1426 data_tx->m = m; 1427 sc->tx_queued++; 1428 } else { 1429 /* data frame */ 1430 if (ic->ic_state != IEEE80211_S_RUN) 1431 break; 1432 1433 IFQ_POLL(&ifp->if_snd, m); 1434 if (m == NULL) 1435 break; 1436 1437 IFQ_DEQUEUE(&ifp->if_snd, m); 1438 #if NBPFILTER > 0 1439 if (ifp->if_bpf != NULL) 1440 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 1441 #endif 1442 m = ieee80211_encap(ifp, m, &ni); 1443 if (m == NULL) 1444 continue; 1445 #if NBPFILTER > 0 1446 if (ic->ic_rawbpf != NULL) 1447 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 1448 #endif 1449 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1450 printf("%s: no free prism memory!\n", 1451 sc->sc_dev.dv_xname); 1452 return; 1453 } 1454 data_tx->ni = ni; 1455 data_tx->m = m; 1456 sc->tx_queued++; 1457 } 1458 } 1459 1460 if (sc->tx_queued > 0) { 1461 DPRINTF(2, "%s: tx_queued=%d\n", 1462 sc->sc_dev.dv_xname, sc->tx_queued); 1463 /* process the TX queue in process context */ 1464 ifp->if_timer = 5; 1465 ifp->if_flags |= IFF_OACTIVE; 1466 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 1467 usb_add_task(sc->sc_udev, &sc->sc_task_tx); 1468 } 1469 } 1470 1471 void 1472 upgt_watchdog(struct ifnet *ifp) 1473 { 1474 struct upgt_softc *sc = ifp->if_softc; 1475 struct ieee80211com *ic = &sc->sc_ic; 1476 1477 if (ic->ic_state == IEEE80211_S_INIT) 1478 return; 1479 1480 printf("%s: watchdog timeout!\n", sc->sc_dev.dv_xname); 1481 1482 /* TODO: what shall we do on TX timeout? */ 1483 1484 ieee80211_watchdog(ifp); 1485 } 1486 1487 void 1488 upgt_tx_task(void *arg) 1489 { 1490 struct upgt_softc *sc = arg; 1491 struct ieee80211com *ic = &sc->sc_ic; 1492 struct ieee80211_frame *wh; 1493 struct ieee80211_key *k; 1494 struct upgt_lmac_mem *mem; 1495 struct upgt_lmac_tx_desc *txdesc; 1496 struct mbuf *m; 1497 uint32_t addr; 1498 int len, i, s; 1499 usbd_status error; 1500 1501 s = splusb(); 1502 1503 upgt_set_led(sc, UPGT_LED_BLINK); 1504 1505 for (i = 0; i < UPGT_TX_COUNT; i++) { 1506 struct upgt_data *data_tx = &sc->tx_data[i]; 1507 1508 if (data_tx->m == NULL) { 1509 DPRINTF(2, "%s: %d: m is NULL\n", 1510 sc->sc_dev.dv_xname, i); 1511 continue; 1512 } 1513 1514 m = data_tx->m; 1515 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD; 1516 1517 /* 1518 * Software crypto. 1519 */ 1520 wh = mtod(m, struct ieee80211_frame *); 1521 1522 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1523 k = ieee80211_get_txkey(ic, wh, ic->ic_bss); 1524 1525 if ((m = ieee80211_encrypt(ic, m, k)) == NULL) 1526 return; 1527 1528 /* in case packet header moved, reset pointer */ 1529 wh = mtod(m, struct ieee80211_frame *); 1530 } 1531 1532 /* 1533 * Transmit the URB containing the TX data. 1534 */ 1535 bzero(data_tx->buf, MCLBYTES); 1536 1537 mem = (struct upgt_lmac_mem *)data_tx->buf; 1538 mem->addr = htole32(addr); 1539 1540 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 1541 1542 /* XXX differ between data and mgmt frames? */ 1543 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 1544 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 1545 txdesc->header1.len = htole16(m->m_pkthdr.len); 1546 1547 txdesc->header2.reqid = htole32(data_tx->addr); 1548 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 1549 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 1550 1551 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1552 IEEE80211_FC0_TYPE_MGT) { 1553 /* always send mgmt frames at lowest rate (DS1) */ 1554 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 1555 } else { 1556 bcopy(sc->sc_cur_rateset, txdesc->rates, 1557 sizeof(txdesc->rates)); 1558 } 1559 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 1560 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 1561 1562 #if NBPFILTER > 0 1563 if (sc->sc_drvbpf != NULL) { 1564 struct mbuf mb; 1565 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 1566 1567 tap->wt_flags = 0; 1568 tap->wt_rate = 0; /* TODO: where to get from? */ 1569 tap->wt_chan_freq = 1570 htole16(ic->ic_bss->ni_chan->ic_freq); 1571 tap->wt_chan_flags = 1572 htole16(ic->ic_bss->ni_chan->ic_flags); 1573 1574 mb.m_data = (caddr_t)tap; 1575 mb.m_len = sc->sc_txtap_len; 1576 mb.m_next = m; 1577 mb.m_nextpkt = NULL; 1578 mb.m_type = 0; 1579 mb.m_flags = 0; 1580 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 1581 } 1582 #endif 1583 /* copy frame below our TX descriptor header */ 1584 m_copydata(m, 0, m->m_pkthdr.len, 1585 data_tx->buf + (sizeof(*mem) + sizeof(*txdesc))); 1586 1587 /* calculate frame size */ 1588 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 1589 1590 /* we need to align the frame to a 4 byte boundary */ 1591 len = (len + 3) & ~3; 1592 1593 /* calculate frame checksum */ 1594 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, 1595 len - sizeof(*mem)); 1596 1597 /* we do not need the mbuf anymore */ 1598 m_freem(m); 1599 data_tx->m = NULL; 1600 1601 DPRINTF(2, "%s: TX start data sending\n", sc->sc_dev.dv_xname); 1602 1603 usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx, 1604 data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1605 UPGT_USB_TIMEOUT, NULL); 1606 error = usbd_transfer(data_tx->xfer); 1607 if (error != 0 && error != USBD_IN_PROGRESS) { 1608 printf("%s: could not transmit TX data URB!\n", 1609 sc->sc_dev.dv_xname); 1610 return; 1611 } 1612 1613 DPRINTF(2, "%s: TX sent (%d bytes)\n", 1614 sc->sc_dev.dv_xname, len); 1615 } 1616 1617 /* 1618 * If we don't regulary read the device statistics, the RX queue 1619 * will stall. It's strange, but it works, so we keep reading 1620 * the statistics here. *shrug* 1621 */ 1622 upgt_get_stats(sc); 1623 1624 splx(s); 1625 } 1626 1627 void 1628 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1629 { 1630 struct ieee80211com *ic = &sc->sc_ic; 1631 struct ifnet *ifp = &ic->ic_if; 1632 struct upgt_lmac_tx_done_desc *desc; 1633 int i, s; 1634 1635 s = splnet(); 1636 1637 desc = (struct upgt_lmac_tx_done_desc *)data; 1638 1639 for (i = 0; i < UPGT_TX_COUNT; i++) { 1640 struct upgt_data *data_tx = &sc->tx_data[i]; 1641 1642 if (data_tx->addr == letoh32(desc->header2.reqid)) { 1643 upgt_mem_free(sc, data_tx->addr); 1644 ieee80211_release_node(ic, data_tx->ni); 1645 data_tx->ni = NULL; 1646 data_tx->addr = 0; 1647 1648 sc->tx_queued--; 1649 ifp->if_opackets++; 1650 1651 DPRINTF(2, "%s: TX done: ", sc->sc_dev.dv_xname); 1652 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1653 letoh32(desc->header2.reqid), 1654 letoh16(desc->status), 1655 letoh16(desc->rssi)); 1656 DPRINTF(2, "seq=%d\n", letoh16(desc->seq)); 1657 break; 1658 } 1659 } 1660 1661 if (sc->tx_queued == 0) { 1662 /* TX queued was processed, continue */ 1663 ifp->if_timer = 0; 1664 ifp->if_flags &= ~IFF_OACTIVE; 1665 upgt_start(ifp); 1666 } 1667 1668 splx(s); 1669 } 1670 1671 void 1672 upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) 1673 { 1674 struct upgt_data *data_rx = priv; 1675 struct upgt_softc *sc = data_rx->sc; 1676 int len; 1677 struct upgt_lmac_header *header; 1678 struct upgt_lmac_eeprom *eeprom; 1679 uint8_t h1_type; 1680 uint16_t h2_type; 1681 1682 DPRINTF(3, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1683 1684 if (status != USBD_NORMAL_COMPLETION) { 1685 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1686 return; 1687 if (status == USBD_STALLED) 1688 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 1689 goto skip; 1690 } 1691 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 1692 1693 /* 1694 * Check what type of frame came in. 1695 */ 1696 header = (struct upgt_lmac_header *)(data_rx->buf + 4); 1697 1698 h1_type = header->header1.type; 1699 h2_type = letoh16(header->header2.type); 1700 1701 if (h1_type == UPGT_H1_TYPE_CTRL && 1702 h2_type == UPGT_H2_TYPE_EEPROM) { 1703 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4); 1704 uint16_t eeprom_offset = letoh16(eeprom->offset); 1705 uint16_t eeprom_len = letoh16(eeprom->len); 1706 1707 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n", 1708 sc->sc_dev.dv_xname, eeprom_offset, eeprom_len); 1709 1710 bcopy(data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1711 sc->sc_eeprom + eeprom_offset, eeprom_len); 1712 1713 /* EEPROM data has arrived in time, wakeup tsleep() */ 1714 wakeup(sc); 1715 } else 1716 if (h1_type == UPGT_H1_TYPE_CTRL && 1717 h2_type == UPGT_H2_TYPE_TX_DONE) { 1718 DPRINTF(2, "%s: received 802.11 TX done\n", 1719 sc->sc_dev.dv_xname); 1720 1721 upgt_tx_done(sc, data_rx->buf + 4); 1722 } else 1723 if (h1_type == UPGT_H1_TYPE_RX_DATA || 1724 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1725 DPRINTF(3, "%s: received 802.11 RX data\n", 1726 sc->sc_dev.dv_xname); 1727 1728 upgt_rx(sc, data_rx->buf + 4, letoh16(header->header1.len)); 1729 } else 1730 if (h1_type == UPGT_H1_TYPE_CTRL && 1731 h2_type == UPGT_H2_TYPE_STATS) { 1732 DPRINTF(2, "%s: received statistic data\n", 1733 sc->sc_dev.dv_xname); 1734 1735 /* TODO: what could we do with the statistic data? */ 1736 } else { 1737 /* ignore unknown frame types */ 1738 DPRINTF(1, "%s: received unknown frame type 0x%02x\n", 1739 sc->sc_dev.dv_xname, header->header1.type); 1740 } 1741 1742 skip: /* setup new transfer */ 1743 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES, 1744 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 1745 (void)usbd_transfer(xfer); 1746 } 1747 1748 void 1749 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen) 1750 { 1751 struct ieee80211com *ic = &sc->sc_ic; 1752 struct ifnet *ifp = &ic->ic_if; 1753 struct upgt_lmac_rx_desc *rxdesc; 1754 struct ieee80211_frame *wh; 1755 struct ieee80211_rxinfo rxi; 1756 struct ieee80211_node *ni; 1757 struct mbuf *m; 1758 int s; 1759 1760 /* access RX packet descriptor */ 1761 rxdesc = (struct upgt_lmac_rx_desc *)data; 1762 1763 /* create mbuf which is suitable for strict alignment archs */ 1764 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL); 1765 if (m == NULL) { 1766 DPRINTF(1, "%s: could not create RX mbuf!\n", sc->sc_dev.dv_xname); 1767 ifp->if_ierrors++; 1768 return; 1769 } 1770 1771 s = splnet(); 1772 1773 #if NBPFILTER > 0 1774 if (sc->sc_drvbpf != NULL) { 1775 struct mbuf mb; 1776 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1777 1778 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1779 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1780 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1781 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1782 tap->wr_antsignal = rxdesc->rssi; 1783 1784 mb.m_data = (caddr_t)tap; 1785 mb.m_len = sc->sc_rxtap_len; 1786 mb.m_next = m; 1787 mb.m_nextpkt = NULL; 1788 mb.m_type = 0; 1789 mb.m_flags = 0; 1790 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 1791 } 1792 #endif 1793 /* trim FCS */ 1794 m_adj(m, -IEEE80211_CRC_LEN); 1795 1796 wh = mtod(m, struct ieee80211_frame *); 1797 ni = ieee80211_find_rxnode(ic, wh); 1798 1799 /* push the frame up to the 802.11 stack */ 1800 rxi.rxi_flags = 0; 1801 rxi.rxi_rssi = rxdesc->rssi; 1802 rxi.rxi_tstamp = 0; /* unused */ 1803 ieee80211_input(ifp, m, ni, &rxi); 1804 1805 /* node is no longer needed */ 1806 ieee80211_release_node(ic, ni); 1807 1808 splx(s); 1809 1810 DPRINTF(3, "%s: RX done\n", sc->sc_dev.dv_xname); 1811 } 1812 1813 void 1814 upgt_setup_rates(struct upgt_softc *sc) 1815 { 1816 struct ieee80211com *ic = &sc->sc_ic; 1817 1818 /* 1819 * 0x01 = OFMD6 0x10 = DS1 1820 * 0x04 = OFDM9 0x11 = DS2 1821 * 0x06 = OFDM12 0x12 = DS5 1822 * 0x07 = OFDM18 0x13 = DS11 1823 * 0x08 = OFDM24 1824 * 0x09 = OFDM36 1825 * 0x0a = OFDM48 1826 * 0x0b = OFDM54 1827 */ 1828 const uint8_t rateset_auto_11b[] = 1829 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 1830 const uint8_t rateset_auto_11g[] = 1831 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 1832 const uint8_t rateset_fix_11bg[] = 1833 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 1834 0x08, 0x09, 0x0a, 0x0b }; 1835 1836 if (ic->ic_fixed_rate == -1) { 1837 /* 1838 * Automatic rate control is done by the device. 1839 * We just pass the rateset from which the device 1840 * will pickup a rate. 1841 */ 1842 if (ic->ic_curmode == IEEE80211_MODE_11B) 1843 bcopy(rateset_auto_11b, sc->sc_cur_rateset, 1844 sizeof(sc->sc_cur_rateset)); 1845 if (ic->ic_curmode == IEEE80211_MODE_11G || 1846 ic->ic_curmode == IEEE80211_MODE_AUTO) 1847 bcopy(rateset_auto_11g, sc->sc_cur_rateset, 1848 sizeof(sc->sc_cur_rateset)); 1849 } else { 1850 /* set a fixed rate */ 1851 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate], 1852 sizeof(sc->sc_cur_rateset)); 1853 } 1854 } 1855 1856 uint8_t 1857 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1858 { 1859 struct ieee80211com *ic = &sc->sc_ic; 1860 1861 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1862 if (rate < 0 || rate > 3) 1863 /* invalid rate */ 1864 return (0); 1865 1866 switch (rate) { 1867 case 0: 1868 return (2); 1869 case 1: 1870 return (4); 1871 case 2: 1872 return (11); 1873 case 3: 1874 return (22); 1875 default: 1876 return (0); 1877 } 1878 } 1879 1880 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1881 if (rate < 0 || rate > 11) 1882 /* invalid rate */ 1883 return (0); 1884 1885 switch (rate) { 1886 case 0: 1887 return (2); 1888 case 1: 1889 return (4); 1890 case 2: 1891 return (11); 1892 case 3: 1893 return (22); 1894 case 4: 1895 return (12); 1896 case 5: 1897 return (18); 1898 case 6: 1899 return (24); 1900 case 7: 1901 return (36); 1902 case 8: 1903 return (48); 1904 case 9: 1905 return (72); 1906 case 10: 1907 return (96); 1908 case 11: 1909 return (108); 1910 default: 1911 return (0); 1912 } 1913 } 1914 1915 return (0); 1916 } 1917 1918 int 1919 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 1920 { 1921 struct ieee80211com *ic = &sc->sc_ic; 1922 struct ieee80211_node *ni = ic->ic_bss; 1923 struct upgt_data *data_cmd = &sc->cmd_data; 1924 struct upgt_lmac_mem *mem; 1925 struct upgt_lmac_filter *filter; 1926 int len; 1927 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1928 1929 /* 1930 * Transmit the URB containing the CMD data. 1931 */ 1932 bzero(data_cmd->buf, MCLBYTES); 1933 1934 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1935 mem->addr = htole32(sc->sc_memaddr_frame_start + 1936 UPGT_MEMSIZE_FRAME_HEAD); 1937 1938 filter = (struct upgt_lmac_filter *)(mem + 1); 1939 1940 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 1941 filter->header1.type = UPGT_H1_TYPE_CTRL; 1942 filter->header1.len = htole16( 1943 sizeof(struct upgt_lmac_filter) - 1944 sizeof(struct upgt_lmac_header)); 1945 1946 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1947 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 1948 filter->header2.flags = 0; 1949 1950 switch (state) { 1951 case IEEE80211_S_INIT: 1952 DPRINTF(1, "%s: set MAC filter to INIT\n", 1953 sc->sc_dev.dv_xname); 1954 1955 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 1956 break; 1957 case IEEE80211_S_SCAN: 1958 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n", 1959 sc->sc_dev.dv_xname, ether_sprintf(broadcast)); 1960 1961 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 1962 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 1963 IEEE80211_ADDR_COPY(filter->src, broadcast); 1964 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 1965 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 1966 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 1967 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 1968 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 1969 break; 1970 case IEEE80211_S_RUN: 1971 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n", 1972 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid)); 1973 1974 filter->type = htole16(UPGT_FILTER_TYPE_STA); 1975 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 1976 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 1977 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 1978 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 1979 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 1980 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 1981 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 1982 break; 1983 default: 1984 printf("%s: MAC filter does not know that state!\n", 1985 sc->sc_dev.dv_xname); 1986 break; 1987 } 1988 1989 len = sizeof(*mem) + sizeof(*filter); 1990 1991 mem->chksum = upgt_chksum_le((uint32_t *)filter, 1992 len - sizeof(*mem)); 1993 1994 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 1995 printf("%s: could not transmit macfilter CMD data URB!\n", 1996 sc->sc_dev.dv_xname); 1997 return (EIO); 1998 } 1999 2000 return (0); 2001 } 2002 2003 int 2004 upgt_set_channel(struct upgt_softc *sc, unsigned channel) 2005 { 2006 struct upgt_data *data_cmd = &sc->cmd_data; 2007 struct upgt_lmac_mem *mem; 2008 struct upgt_lmac_channel *chan; 2009 int len; 2010 2011 DPRINTF(1, "%s: %s: %d\n", sc->sc_dev.dv_xname, __func__, channel); 2012 2013 /* 2014 * Transmit the URB containing the CMD data. 2015 */ 2016 bzero(data_cmd->buf, MCLBYTES); 2017 2018 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2019 mem->addr = htole32(sc->sc_memaddr_frame_start + 2020 UPGT_MEMSIZE_FRAME_HEAD); 2021 2022 chan = (struct upgt_lmac_channel *)(mem + 1); 2023 2024 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2025 chan->header1.type = UPGT_H1_TYPE_CTRL; 2026 chan->header1.len = htole16( 2027 sizeof(struct upgt_lmac_channel) - 2028 sizeof(struct upgt_lmac_header)); 2029 2030 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2031 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 2032 chan->header2.flags = 0; 2033 2034 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 2035 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 2036 chan->freq6 = sc->sc_eeprom_freq6[channel]; 2037 chan->settings = sc->sc_eeprom_freq6_settings; 2038 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 2039 2040 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1, 2041 sizeof(chan->freq3_1)); 2042 2043 bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4, 2044 sizeof(sc->sc_eeprom_freq4[channel])); 2045 2046 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2, 2047 sizeof(chan->freq3_2)); 2048 2049 len = sizeof(*mem) + sizeof(*chan); 2050 2051 mem->chksum = upgt_chksum_le((uint32_t *)chan, 2052 len - sizeof(*mem)); 2053 2054 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2055 printf("%s: could not transmit channel CMD data URB!\n", 2056 sc->sc_dev.dv_xname); 2057 return (EIO); 2058 } 2059 2060 return (0); 2061 } 2062 2063 void 2064 upgt_set_led(struct upgt_softc *sc, int action) 2065 { 2066 struct ieee80211com *ic = &sc->sc_ic; 2067 struct upgt_data *data_cmd = &sc->cmd_data; 2068 struct upgt_lmac_mem *mem; 2069 struct upgt_lmac_led *led; 2070 struct timeval t; 2071 int len; 2072 2073 /* 2074 * Transmit the URB containing the CMD data. 2075 */ 2076 bzero(data_cmd->buf, MCLBYTES); 2077 2078 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2079 mem->addr = htole32(sc->sc_memaddr_frame_start + 2080 UPGT_MEMSIZE_FRAME_HEAD); 2081 2082 led = (struct upgt_lmac_led *)(mem + 1); 2083 2084 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2085 led->header1.type = UPGT_H1_TYPE_CTRL; 2086 led->header1.len = htole16( 2087 sizeof(struct upgt_lmac_led) - 2088 sizeof(struct upgt_lmac_header)); 2089 2090 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2091 led->header2.type = htole16(UPGT_H2_TYPE_LED); 2092 led->header2.flags = 0; 2093 2094 switch (action) { 2095 case UPGT_LED_OFF: 2096 led->mode = htole16(UPGT_LED_MODE_SET); 2097 led->action_fix = 0; 2098 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 2099 led->action_tmp_dur = 0; 2100 break; 2101 case UPGT_LED_ON: 2102 led->mode = htole16(UPGT_LED_MODE_SET); 2103 led->action_fix = 0; 2104 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2105 led->action_tmp_dur = 0; 2106 break; 2107 case UPGT_LED_BLINK: 2108 if (ic->ic_state != IEEE80211_S_RUN) 2109 return; 2110 if (sc->sc_led_blink) 2111 /* previous blink was not finished */ 2112 return; 2113 led->mode = htole16(UPGT_LED_MODE_SET); 2114 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 2115 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2116 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 2117 /* lock blink */ 2118 sc->sc_led_blink = 1; 2119 t.tv_sec = 0; 2120 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L; 2121 timeout_add(&sc->led_to, tvtohz(&t)); 2122 break; 2123 default: 2124 return; 2125 } 2126 2127 len = sizeof(*mem) + sizeof(*led); 2128 2129 mem->chksum = upgt_chksum_le((uint32_t *)led, 2130 len - sizeof(*mem)); 2131 2132 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2133 printf("%s: could not transmit led CMD URB!\n", 2134 sc->sc_dev.dv_xname); 2135 } 2136 } 2137 2138 void 2139 upgt_set_led_blink(void *arg) 2140 { 2141 struct upgt_softc *sc = arg; 2142 2143 /* blink finished, we are ready for a next one */ 2144 sc->sc_led_blink = 0; 2145 timeout_del(&sc->led_to); 2146 } 2147 2148 int 2149 upgt_get_stats(struct upgt_softc *sc) 2150 { 2151 struct upgt_data *data_cmd = &sc->cmd_data; 2152 struct upgt_lmac_mem *mem; 2153 struct upgt_lmac_stats *stats; 2154 int len; 2155 2156 /* 2157 * Transmit the URB containing the CMD data. 2158 */ 2159 bzero(data_cmd->buf, MCLBYTES); 2160 2161 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2162 mem->addr = htole32(sc->sc_memaddr_frame_start + 2163 UPGT_MEMSIZE_FRAME_HEAD); 2164 2165 stats = (struct upgt_lmac_stats *)(mem + 1); 2166 2167 stats->header1.flags = 0; 2168 stats->header1.type = UPGT_H1_TYPE_CTRL; 2169 stats->header1.len = htole16( 2170 sizeof(struct upgt_lmac_stats) - 2171 sizeof(struct upgt_lmac_header)); 2172 2173 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2174 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 2175 stats->header2.flags = 0; 2176 2177 len = sizeof(*mem) + sizeof(*stats); 2178 2179 mem->chksum = upgt_chksum_le((uint32_t *)stats, 2180 len - sizeof(*mem)); 2181 2182 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2183 printf("%s: could not transmit statistics CMD data URB!\n", 2184 sc->sc_dev.dv_xname); 2185 return (EIO); 2186 } 2187 2188 return (0); 2189 2190 } 2191 2192 int 2193 upgt_alloc_tx(struct upgt_softc *sc) 2194 { 2195 int i; 2196 2197 sc->tx_queued = 0; 2198 2199 for (i = 0; i < UPGT_TX_COUNT; i++) { 2200 struct upgt_data *data_tx = &sc->tx_data[i]; 2201 2202 data_tx->sc = sc; 2203 2204 data_tx->xfer = usbd_alloc_xfer(sc->sc_udev); 2205 if (data_tx->xfer == NULL) { 2206 printf("%s: could not allocate TX xfer!\n", 2207 sc->sc_dev.dv_xname); 2208 return (ENOMEM); 2209 } 2210 2211 data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES); 2212 if (data_tx->buf == NULL) { 2213 printf("%s: could not allocate TX buffer!\n", 2214 sc->sc_dev.dv_xname); 2215 return (ENOMEM); 2216 } 2217 2218 bzero(data_tx->buf, MCLBYTES); 2219 } 2220 2221 return (0); 2222 } 2223 2224 int 2225 upgt_alloc_rx(struct upgt_softc *sc) 2226 { 2227 struct upgt_data *data_rx = &sc->rx_data; 2228 2229 data_rx->sc = sc; 2230 2231 data_rx->xfer = usbd_alloc_xfer(sc->sc_udev); 2232 if (data_rx->xfer == NULL) { 2233 printf("%s: could not allocate RX xfer!\n", 2234 sc->sc_dev.dv_xname); 2235 return (ENOMEM); 2236 } 2237 2238 data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES); 2239 if (data_rx->buf == NULL) { 2240 printf("%s: could not allocate RX buffer!\n", 2241 sc->sc_dev.dv_xname); 2242 return (ENOMEM); 2243 } 2244 2245 bzero(data_rx->buf, MCLBYTES); 2246 2247 return (0); 2248 } 2249 2250 int 2251 upgt_alloc_cmd(struct upgt_softc *sc) 2252 { 2253 struct upgt_data *data_cmd = &sc->cmd_data; 2254 2255 data_cmd->sc = sc; 2256 2257 data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev); 2258 if (data_cmd->xfer == NULL) { 2259 printf("%s: could not allocate RX xfer!\n", 2260 sc->sc_dev.dv_xname); 2261 return (ENOMEM); 2262 } 2263 2264 data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES); 2265 if (data_cmd->buf == NULL) { 2266 printf("%s: could not allocate RX buffer!\n", 2267 sc->sc_dev.dv_xname); 2268 return (ENOMEM); 2269 } 2270 2271 bzero(data_cmd->buf, MCLBYTES); 2272 2273 return (0); 2274 } 2275 2276 void 2277 upgt_free_tx(struct upgt_softc *sc) 2278 { 2279 int i; 2280 2281 for (i = 0; i < UPGT_TX_COUNT; i++) { 2282 struct upgt_data *data_tx = &sc->tx_data[i]; 2283 2284 if (data_tx->xfer != NULL) { 2285 usbd_free_xfer(data_tx->xfer); 2286 data_tx->xfer = NULL; 2287 } 2288 2289 data_tx->ni = NULL; 2290 } 2291 } 2292 2293 void 2294 upgt_free_rx(struct upgt_softc *sc) 2295 { 2296 struct upgt_data *data_rx = &sc->rx_data; 2297 2298 if (data_rx->xfer != NULL) { 2299 usbd_free_xfer(data_rx->xfer); 2300 data_rx->xfer = NULL; 2301 } 2302 2303 data_rx->ni = NULL; 2304 } 2305 2306 void 2307 upgt_free_cmd(struct upgt_softc *sc) 2308 { 2309 struct upgt_data *data_cmd = &sc->cmd_data; 2310 2311 if (data_cmd->xfer != NULL) { 2312 usbd_free_xfer(data_cmd->xfer); 2313 data_cmd->xfer = NULL; 2314 } 2315 } 2316 2317 int 2318 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data, 2319 usbd_pipe_handle pipeh, uint32_t *size, int flags) 2320 { 2321 usbd_status status; 2322 2323 status = usbd_bulk_transfer(data->xfer, pipeh, 2324 USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size, 2325 "upgt_bulk_xmit"); 2326 if (status != USBD_NORMAL_COMPLETION) { 2327 printf("%s: %s: error %s!\n", 2328 sc->sc_dev.dv_xname, __func__, usbd_errstr(status)); 2329 return (EIO); 2330 } 2331 2332 return (0); 2333 } 2334 2335 void 2336 upgt_hexdump(void *buf, int len) 2337 { 2338 int i; 2339 2340 for (i = 0; i < len; i++) { 2341 if (i % 16 == 0) 2342 printf("%s%5i:", i ? "\n" : "", i); 2343 if (i % 4 == 0) 2344 printf(" "); 2345 printf("%02x", (int)*((u_char *)buf + i)); 2346 } 2347 printf("\n"); 2348 } 2349 2350 uint32_t 2351 upgt_crc32_le(const void *buf, size_t size) 2352 { 2353 uint32_t crc; 2354 2355 crc = ether_crc32_le(buf, size); 2356 2357 /* apply final XOR value as common for CRC-32 */ 2358 crc = htole32(crc ^ 0xffffffffU); 2359 2360 return (crc); 2361 } 2362 2363 /* 2364 * The firmware awaits a checksum for each frame we send to it. 2365 * The algorithm used therefor is uncommon but somehow similar to CRC32. 2366 */ 2367 uint32_t 2368 upgt_chksum_le(const uint32_t *buf, size_t size) 2369 { 2370 int i; 2371 uint32_t crc = 0; 2372 2373 for (i = 0; i < size; i += sizeof(uint32_t)) { 2374 crc = htole32(crc ^ *buf++); 2375 crc = htole32((crc >> 5) ^ (crc << 3)); 2376 } 2377 2378 return (crc); 2379 } 2380