1 /* $OpenBSD: if_upgt.c,v 1.82 2018/08/25 17:07:20 mestre Exp $ */ 2 3 /* 4 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include "bpfilter.h" 20 21 #include <sys/param.h> 22 #include <sys/sockio.h> 23 #include <sys/mbuf.h> 24 #include <sys/kernel.h> 25 #include <sys/socket.h> 26 #include <sys/systm.h> 27 #include <sys/timeout.h> 28 #include <sys/conf.h> 29 #include <sys/device.h> 30 #include <sys/endian.h> 31 32 #include <machine/intr.h> 33 34 #if NBPFILTER > 0 35 #include <net/bpf.h> 36 #endif 37 #include <net/if.h> 38 #include <net/if_dl.h> 39 #include <net/if_media.h> 40 41 #include <netinet/in.h> 42 #include <netinet/if_ether.h> 43 44 #include <net80211/ieee80211_var.h> 45 #include <net80211/ieee80211_radiotap.h> 46 47 #include <dev/usb/usb.h> 48 #include <dev/usb/usbdi.h> 49 #include <dev/usb/usbdi_util.h> 50 #include <dev/usb/usbdevs.h> 51 52 #include <dev/usb/if_upgtvar.h> 53 54 /* 55 * Driver for the USB PrismGT devices. 56 * 57 * For now just USB 2.0 devices with the GW3887 chipset are supported. 58 * The driver has been written based on the firmware version 2.13.1.0_LM87. 59 * 60 * TODO's: 61 * - Fix MONITOR mode (MAC filter). 62 * - Add HOSTAP mode. 63 * - Add IBSS mode. 64 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 65 * 66 * Parts of this driver has been influenced by reading the p54u driver 67 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 68 * Sebastien Bourdeauducq <lekernel@prism54.org>. 69 */ 70 71 #ifdef UPGT_DEBUG 72 int upgt_debug = 2; 73 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0) 74 #else 75 #define DPRINTF(l, x...) 76 #endif 77 78 /* 79 * Prototypes. 80 */ 81 int upgt_match(struct device *, void *, void *); 82 void upgt_attach(struct device *, struct device *, void *); 83 void upgt_attach_hook(struct device *); 84 int upgt_detach(struct device *, int); 85 86 int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t); 87 int upgt_device_init(struct upgt_softc *); 88 int upgt_mem_init(struct upgt_softc *); 89 uint32_t upgt_mem_alloc(struct upgt_softc *); 90 void upgt_mem_free(struct upgt_softc *, uint32_t); 91 int upgt_fw_alloc(struct upgt_softc *); 92 void upgt_fw_free(struct upgt_softc *); 93 int upgt_fw_verify(struct upgt_softc *); 94 int upgt_fw_load(struct upgt_softc *); 95 int upgt_fw_copy(char *, char *, int); 96 int upgt_eeprom_read(struct upgt_softc *); 97 int upgt_eeprom_parse(struct upgt_softc *); 98 void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 99 void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 100 void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 101 void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 102 103 int upgt_ioctl(struct ifnet *, u_long, caddr_t); 104 int upgt_init(struct ifnet *); 105 void upgt_stop(struct upgt_softc *); 106 int upgt_media_change(struct ifnet *); 107 void upgt_newassoc(struct ieee80211com *, struct ieee80211_node *, 108 int); 109 int upgt_newstate(struct ieee80211com *, enum ieee80211_state, int); 110 void upgt_newstate_task(void *); 111 void upgt_next_scan(void *); 112 void upgt_start(struct ifnet *); 113 void upgt_watchdog(struct ifnet *); 114 void upgt_tx_task(void *); 115 void upgt_tx_done(struct upgt_softc *, uint8_t *); 116 void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status); 117 void upgt_rx(struct upgt_softc *, uint8_t *, int); 118 void upgt_setup_rates(struct upgt_softc *); 119 uint8_t upgt_rx_rate(struct upgt_softc *, const int); 120 int upgt_set_macfilter(struct upgt_softc *, uint8_t state); 121 int upgt_set_channel(struct upgt_softc *, unsigned); 122 void upgt_set_led(struct upgt_softc *, int); 123 void upgt_set_led_blink(void *); 124 int upgt_get_stats(struct upgt_softc *); 125 126 int upgt_alloc_tx(struct upgt_softc *); 127 int upgt_alloc_rx(struct upgt_softc *); 128 int upgt_alloc_cmd(struct upgt_softc *); 129 void upgt_free_tx(struct upgt_softc *); 130 void upgt_free_rx(struct upgt_softc *); 131 void upgt_free_cmd(struct upgt_softc *); 132 int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *, 133 struct usbd_pipe *, uint32_t *, int); 134 135 void upgt_hexdump(void *, int); 136 uint32_t upgt_crc32_le(const void *, size_t); 137 uint32_t upgt_chksum_le(const uint32_t *, size_t); 138 139 struct cfdriver upgt_cd = { 140 NULL, "upgt", DV_IFNET 141 }; 142 143 const struct cfattach upgt_ca = { 144 sizeof(struct upgt_softc), upgt_match, upgt_attach, upgt_detach 145 }; 146 147 static const struct usb_devno upgt_devs_1[] = { 148 /* version 1 devices */ 149 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G } 150 }; 151 152 static const struct usb_devno upgt_devs_2[] = { 153 /* version 2 devices */ 154 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT }, 155 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G }, 156 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 157 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG }, 158 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 }, 159 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_PRISM_GT }, 160 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 }, 161 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 }, 162 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 }, 163 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 }, 164 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 }, 165 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 }, 166 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT }, 167 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 }, 168 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 }, 169 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 170 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 }, 171 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G }, 172 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_1 }, 173 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_2 }, 174 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 }, 175 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A } 176 }; 177 178 int 179 upgt_match(struct device *parent, void *match, void *aux) 180 { 181 struct usb_attach_arg *uaa = aux; 182 183 if (uaa->iface == NULL || uaa->configno != UPGT_CONFIG_NO) 184 return (UMATCH_NONE); 185 186 if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL) 187 return (UMATCH_VENDOR_PRODUCT); 188 189 if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL) 190 return (UMATCH_VENDOR_PRODUCT); 191 192 return (UMATCH_NONE); 193 } 194 195 void 196 upgt_attach(struct device *parent, struct device *self, void *aux) 197 { 198 struct upgt_softc *sc = (struct upgt_softc *)self; 199 struct usb_attach_arg *uaa = aux; 200 usb_interface_descriptor_t *id; 201 usb_endpoint_descriptor_t *ed; 202 usbd_status error; 203 int i; 204 205 /* 206 * Attach USB device. 207 */ 208 sc->sc_udev = uaa->device; 209 210 /* check device type */ 211 if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0) 212 return; 213 214 /* get the first interface handle */ 215 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX, 216 &sc->sc_iface); 217 if (error != 0) { 218 printf("%s: could not get interface handle!\n", 219 sc->sc_dev.dv_xname); 220 return; 221 } 222 223 /* find endpoints */ 224 id = usbd_get_interface_descriptor(sc->sc_iface); 225 sc->sc_rx_no = sc->sc_tx_no = -1; 226 for (i = 0; i < id->bNumEndpoints; i++) { 227 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 228 if (ed == NULL) { 229 printf("%s: no endpoint descriptor for iface %d!\n", 230 sc->sc_dev.dv_xname, i); 231 return; 232 } 233 234 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 235 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 236 sc->sc_tx_no = ed->bEndpointAddress; 237 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 238 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 239 sc->sc_rx_no = ed->bEndpointAddress; 240 241 /* 242 * 0x01 TX pipe 243 * 0x81 RX pipe 244 * 245 * Deprecated scheme (not used with fw version >2.5.6.x): 246 * 0x02 TX MGMT pipe 247 * 0x82 TX MGMT pipe 248 */ 249 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1) 250 break; 251 } 252 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 253 printf("%s: missing endpoint!\n", sc->sc_dev.dv_xname); 254 return; 255 } 256 257 /* setup tasks and timeouts */ 258 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 259 USB_TASK_TYPE_GENERIC); 260 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, USB_TASK_TYPE_GENERIC); 261 timeout_set(&sc->scan_to, upgt_next_scan, sc); 262 timeout_set(&sc->led_to, upgt_set_led_blink, sc); 263 264 /* 265 * Open TX and RX USB bulk pipes. 266 */ 267 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 268 &sc->sc_tx_pipeh); 269 if (error != 0) { 270 printf("%s: could not open TX pipe: %s!\n", 271 sc->sc_dev.dv_xname, usbd_errstr(error)); 272 goto fail; 273 } 274 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 275 &sc->sc_rx_pipeh); 276 if (error != 0) { 277 printf("%s: could not open RX pipe: %s!\n", 278 sc->sc_dev.dv_xname, usbd_errstr(error)); 279 goto fail; 280 } 281 282 /* 283 * Allocate TX, RX, and CMD xfers. 284 */ 285 if (upgt_alloc_tx(sc) != 0) 286 goto fail; 287 if (upgt_alloc_rx(sc) != 0) 288 goto fail; 289 if (upgt_alloc_cmd(sc) != 0) 290 goto fail; 291 292 /* 293 * We need the firmware loaded to complete the attach. 294 */ 295 config_mountroot(self, upgt_attach_hook); 296 297 return; 298 fail: 299 printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__); 300 } 301 302 void 303 upgt_attach_hook(struct device *self) 304 { 305 struct upgt_softc *sc = (struct upgt_softc *)self; 306 struct ieee80211com *ic = &sc->sc_ic; 307 struct ifnet *ifp = &ic->ic_if; 308 usbd_status error; 309 int i; 310 311 /* 312 * Load firmware file into memory. 313 */ 314 if (upgt_fw_alloc(sc) != 0) 315 goto fail; 316 317 /* 318 * Initialize the device. 319 */ 320 if (upgt_device_init(sc) != 0) 321 goto fail; 322 323 /* 324 * Verify the firmware. 325 */ 326 if (upgt_fw_verify(sc) != 0) 327 goto fail; 328 329 /* 330 * Calculate device memory space. 331 */ 332 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 333 printf("%s: could not find memory space addresses on FW!\n", 334 sc->sc_dev.dv_xname); 335 goto fail; 336 } 337 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 338 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 339 340 DPRINTF(1, "%s: memory address frame start=0x%08x\n", 341 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start); 342 DPRINTF(1, "%s: memory address frame end=0x%08x\n", 343 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end); 344 DPRINTF(1, "%s: memory address rx start=0x%08x\n", 345 sc->sc_dev.dv_xname, sc->sc_memaddr_rx_start); 346 347 upgt_mem_init(sc); 348 349 /* 350 * Load the firmware. 351 */ 352 if (upgt_fw_load(sc) != 0) 353 goto fail; 354 355 /* 356 * Startup the RX pipe. 357 */ 358 struct upgt_data *data_rx = &sc->rx_data; 359 360 usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, 361 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 362 error = usbd_transfer(data_rx->xfer); 363 if (error != 0 && error != USBD_IN_PROGRESS) { 364 printf("%s: could not queue RX transfer!\n", 365 sc->sc_dev.dv_xname); 366 goto fail; 367 } 368 usbd_delay_ms(sc->sc_udev, 100); 369 370 /* 371 * Read the whole EEPROM content and parse it. 372 */ 373 if (upgt_eeprom_read(sc) != 0) 374 goto fail; 375 if (upgt_eeprom_parse(sc) != 0) 376 goto fail; 377 378 /* 379 * Setup the 802.11 device. 380 */ 381 ic->ic_phytype = IEEE80211_T_OFDM; 382 ic->ic_opmode = IEEE80211_M_STA; 383 ic->ic_state = IEEE80211_S_INIT; 384 ic->ic_caps = 385 IEEE80211_C_MONITOR | 386 IEEE80211_C_SHPREAMBLE | 387 IEEE80211_C_SHSLOT | 388 IEEE80211_C_WEP | 389 IEEE80211_C_RSN; 390 391 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 392 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 393 394 for (i = 1; i <= 14; i++) { 395 ic->ic_channels[i].ic_freq = 396 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 397 ic->ic_channels[i].ic_flags = 398 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 399 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 400 } 401 402 ifp->if_softc = sc; 403 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 404 ifp->if_ioctl = upgt_ioctl; 405 ifp->if_start = upgt_start; 406 ifp->if_watchdog = upgt_watchdog; 407 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 408 409 if_attach(ifp); 410 ieee80211_ifattach(ifp); 411 ic->ic_newassoc = upgt_newassoc; 412 413 sc->sc_newstate = ic->ic_newstate; 414 ic->ic_newstate = upgt_newstate; 415 ieee80211_media_init(ifp, upgt_media_change, ieee80211_media_status); 416 417 #if NBPFILTER > 0 418 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 419 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 420 421 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 422 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 423 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT); 424 425 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 426 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 427 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT); 428 #endif 429 430 printf("%s: address %s\n", 431 sc->sc_dev.dv_xname, ether_sprintf(ic->ic_myaddr)); 432 433 return; 434 fail: 435 printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__); 436 } 437 438 int 439 upgt_detach(struct device *self, int flags) 440 { 441 struct upgt_softc *sc = (struct upgt_softc *)self; 442 struct ifnet *ifp = &sc->sc_ic.ic_if; 443 int s; 444 445 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 446 447 s = splusb(); 448 449 /* abort and close TX / RX pipes */ 450 if (sc->sc_tx_pipeh != NULL) { 451 usbd_abort_pipe(sc->sc_tx_pipeh); 452 usbd_close_pipe(sc->sc_tx_pipeh); 453 } 454 if (sc->sc_rx_pipeh != NULL) { 455 usbd_abort_pipe(sc->sc_rx_pipeh); 456 usbd_close_pipe(sc->sc_rx_pipeh); 457 } 458 459 /* remove tasks and timeouts */ 460 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 461 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 462 if (timeout_initialized(&sc->scan_to)) 463 timeout_del(&sc->scan_to); 464 if (timeout_initialized(&sc->led_to)) 465 timeout_del(&sc->led_to); 466 467 /* free xfers */ 468 upgt_free_tx(sc); 469 upgt_free_rx(sc); 470 upgt_free_cmd(sc); 471 472 /* free firmware */ 473 upgt_fw_free(sc); 474 475 if (ifp->if_softc != NULL) { 476 /* detach interface */ 477 ieee80211_ifdetach(ifp); 478 if_detach(ifp); 479 } 480 481 splx(s); 482 483 return (0); 484 } 485 486 int 487 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product) 488 { 489 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) { 490 sc->sc_device_type = 1; 491 /* XXX */ 492 printf("%s: version 1 devices not supported yet!\n", 493 sc->sc_dev.dv_xname); 494 return (1); 495 } else { 496 sc->sc_device_type = 2; 497 } 498 499 return (0); 500 } 501 502 int 503 upgt_device_init(struct upgt_softc *sc) 504 { 505 struct upgt_data *data_cmd = &sc->cmd_data; 506 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 507 int len; 508 509 len = sizeof(init_cmd); 510 bcopy(init_cmd, data_cmd->buf, len); 511 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 512 printf("%s: could not send device init string!\n", 513 sc->sc_dev.dv_xname); 514 return (EIO); 515 } 516 usbd_delay_ms(sc->sc_udev, 100); 517 518 DPRINTF(1, "%s: device initialized\n", sc->sc_dev.dv_xname); 519 520 return (0); 521 } 522 523 int 524 upgt_mem_init(struct upgt_softc *sc) 525 { 526 int i; 527 528 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 529 sc->sc_memory.page[i].used = 0; 530 531 if (i == 0) { 532 /* 533 * The first memory page is always reserved for 534 * command data. 535 */ 536 sc->sc_memory.page[i].addr = 537 sc->sc_memaddr_frame_start + MCLBYTES; 538 } else { 539 sc->sc_memory.page[i].addr = 540 sc->sc_memory.page[i - 1].addr + MCLBYTES; 541 } 542 543 if (sc->sc_memory.page[i].addr + MCLBYTES >= 544 sc->sc_memaddr_frame_end) 545 break; 546 547 DPRINTF(2, "%s: memory address page %d=0x%08x\n", 548 sc->sc_dev.dv_xname, i, sc->sc_memory.page[i].addr); 549 } 550 551 sc->sc_memory.pages = i; 552 553 DPRINTF(2, "%s: memory pages=%d\n", 554 sc->sc_dev.dv_xname, sc->sc_memory.pages); 555 556 return (0); 557 } 558 559 uint32_t 560 upgt_mem_alloc(struct upgt_softc *sc) 561 { 562 int i; 563 564 for (i = 0; i < sc->sc_memory.pages; i++) { 565 if (sc->sc_memory.page[i].used == 0) { 566 sc->sc_memory.page[i].used = 1; 567 return (sc->sc_memory.page[i].addr); 568 } 569 } 570 571 return (0); 572 } 573 574 void 575 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 576 { 577 int i; 578 579 for (i = 0; i < sc->sc_memory.pages; i++) { 580 if (sc->sc_memory.page[i].addr == addr) { 581 sc->sc_memory.page[i].used = 0; 582 return; 583 } 584 } 585 586 printf("%s: could not free memory address 0x%08x!\n", 587 sc->sc_dev.dv_xname, addr); 588 } 589 590 591 int 592 upgt_fw_alloc(struct upgt_softc *sc) 593 { 594 const char *name = "upgt-gw3887"; 595 int error; 596 597 if (sc->sc_fw == NULL) { 598 error = loadfirmware(name, &sc->sc_fw, &sc->sc_fw_size); 599 if (error != 0) { 600 printf("%s: error %d, could not read firmware %s!\n", 601 sc->sc_dev.dv_xname, error, name); 602 return (EIO); 603 } 604 } 605 606 DPRINTF(1, "%s: firmware %s allocated\n", sc->sc_dev.dv_xname, name); 607 608 return (0); 609 } 610 611 void 612 upgt_fw_free(struct upgt_softc *sc) 613 { 614 if (sc->sc_fw != NULL) { 615 free(sc->sc_fw, M_DEVBUF, sc->sc_fw_size); 616 sc->sc_fw = NULL; 617 DPRINTF(1, "%s: firmware freed\n", sc->sc_dev.dv_xname); 618 } 619 } 620 621 int 622 upgt_fw_verify(struct upgt_softc *sc) 623 { 624 struct upgt_fw_bra_option *bra_option; 625 uint32_t bra_option_type, bra_option_len; 626 uint32_t *uc; 627 int offset, bra_end = 0; 628 629 /* 630 * Seek to beginning of Boot Record Area (BRA). 631 */ 632 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 633 uc = (uint32_t *)(sc->sc_fw + offset); 634 if (*uc == 0) 635 break; 636 } 637 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 638 uc = (uint32_t *)(sc->sc_fw + offset); 639 if (*uc != 0) 640 break; 641 } 642 if (offset == sc->sc_fw_size) { 643 printf("%s: firmware Boot Record Area not found!\n", 644 sc->sc_dev.dv_xname); 645 return (EIO); 646 } 647 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n", 648 sc->sc_dev.dv_xname, offset); 649 650 /* 651 * Parse Boot Record Area (BRA) options. 652 */ 653 while (offset < sc->sc_fw_size && bra_end == 0) { 654 /* get current BRA option */ 655 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset); 656 bra_option_type = letoh32(bra_option->type); 657 bra_option_len = letoh32(bra_option->len) * sizeof(*uc); 658 659 switch (bra_option_type) { 660 case UPGT_BRA_TYPE_FW: 661 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n", 662 sc->sc_dev.dv_xname, bra_option_len); 663 664 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 665 printf("%s: wrong UPGT_BRA_TYPE_FW len!\n", 666 sc->sc_dev.dv_xname); 667 return (EIO); 668 } 669 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data, 670 bra_option_len) == 0) { 671 sc->sc_fw_type = UPGT_FWTYPE_LM86; 672 break; 673 } 674 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data, 675 bra_option_len) == 0) { 676 sc->sc_fw_type = UPGT_FWTYPE_LM87; 677 break; 678 } 679 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data, 680 bra_option_len) == 0) { 681 sc->sc_fw_type = UPGT_FWTYPE_FMAC; 682 break; 683 } 684 printf("%s: unsupported firmware type!\n", 685 sc->sc_dev.dv_xname); 686 return (EIO); 687 case UPGT_BRA_TYPE_VERSION: 688 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n", 689 sc->sc_dev.dv_xname, bra_option_len); 690 break; 691 case UPGT_BRA_TYPE_DEPIF: 692 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n", 693 sc->sc_dev.dv_xname, bra_option_len); 694 break; 695 case UPGT_BRA_TYPE_EXPIF: 696 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n", 697 sc->sc_dev.dv_xname, bra_option_len); 698 break; 699 case UPGT_BRA_TYPE_DESCR: 700 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n", 701 sc->sc_dev.dv_xname, bra_option_len); 702 703 struct upgt_fw_bra_descr *descr = 704 (struct upgt_fw_bra_descr *)bra_option->data; 705 706 sc->sc_memaddr_frame_start = 707 letoh32(descr->memaddr_space_start); 708 sc->sc_memaddr_frame_end = 709 letoh32(descr->memaddr_space_end); 710 711 DPRINTF(2, "%s: memory address space start=0x%08x\n", 712 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start); 713 DPRINTF(2, "%s: memory address space end=0x%08x\n", 714 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end); 715 break; 716 case UPGT_BRA_TYPE_END: 717 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n", 718 sc->sc_dev.dv_xname, bra_option_len); 719 bra_end = 1; 720 break; 721 default: 722 DPRINTF(1, "%s: unknown BRA option len=%d\n", 723 sc->sc_dev.dv_xname, bra_option_len); 724 return (EIO); 725 } 726 727 /* jump to next BRA option */ 728 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 729 } 730 731 DPRINTF(1, "%s: firmware verified\n", sc->sc_dev.dv_xname); 732 733 return (0); 734 } 735 736 int 737 upgt_fw_load(struct upgt_softc *sc) 738 { 739 struct upgt_data *data_cmd = &sc->cmd_data; 740 struct upgt_data *data_rx = &sc->rx_data; 741 char start_fwload_cmd[] = { 0x3c, 0x0d }; 742 int offset, bsize, n, i, len; 743 uint32_t crc32; 744 745 /* send firmware start load command */ 746 len = sizeof(start_fwload_cmd); 747 bcopy(start_fwload_cmd, data_cmd->buf, len); 748 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 749 printf("%s: could not send start_firmware_load command!\n", 750 sc->sc_dev.dv_xname); 751 return (EIO); 752 } 753 754 /* send X2 header */ 755 len = sizeof(struct upgt_fw_x2_header); 756 struct upgt_fw_x2_header *x2 = data_cmd->buf; 757 bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE); 758 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 759 x2->len = htole32(sc->sc_fw_size); 760 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE, 761 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 762 sizeof(uint32_t)); 763 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 764 printf("%s: could not send firmware X2 header!\n", 765 sc->sc_dev.dv_xname); 766 return (EIO); 767 } 768 769 /* download firmware */ 770 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) { 771 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE) 772 bsize = UPGT_FW_BLOCK_SIZE; 773 else 774 bsize = sc->sc_fw_size - offset; 775 776 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize); 777 778 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n", 779 sc->sc_dev.dv_xname, offset, n, bsize); 780 781 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0) 782 != 0) { 783 printf("%s: error while downloading firmware block!\n", 784 sc->sc_dev.dv_xname); 785 return (EIO); 786 } 787 788 bsize = n; 789 } 790 DPRINTF(1, "%s: firmware downloaded\n", sc->sc_dev.dv_xname); 791 792 /* load firmware */ 793 crc32 = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size); 794 *((uint32_t *)(data_cmd->buf) ) = crc32; 795 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 796 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 797 len = 6; 798 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 799 printf("%s: could not send load_firmware command!\n", 800 sc->sc_dev.dv_xname); 801 return (EIO); 802 } 803 804 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) { 805 len = UPGT_FW_BLOCK_SIZE; 806 bzero(data_rx->buf, MCLBYTES); 807 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len, 808 USBD_SHORT_XFER_OK) != 0) { 809 printf("%s: could not read firmware response!\n", 810 sc->sc_dev.dv_xname); 811 return (EIO); 812 } 813 814 if (memcmp(data_rx->buf, "OK", 2) == 0) 815 break; /* firmware load was successful */ 816 } 817 if (i == UPGT_FIRMWARE_TIMEOUT) { 818 printf("%s: firmware load failed!\n", sc->sc_dev.dv_xname); 819 return (EIO); 820 } 821 DPRINTF(1, "%s: firmware loaded\n", sc->sc_dev.dv_xname); 822 823 return (0); 824 } 825 826 /* 827 * While copying the version 2 firmware, we need to replace two characters: 828 * 829 * 0x7e -> 0x7d 0x5e 830 * 0x7d -> 0x7d 0x5d 831 */ 832 int 833 upgt_fw_copy(char *src, char *dst, int size) 834 { 835 int i, j; 836 837 for (i = 0, j = 0; i < size && j < size; i++) { 838 switch (src[i]) { 839 case 0x7e: 840 dst[j] = 0x7d; 841 j++; 842 dst[j] = 0x5e; 843 j++; 844 break; 845 case 0x7d: 846 dst[j] = 0x7d; 847 j++; 848 dst[j] = 0x5d; 849 j++; 850 break; 851 default: 852 dst[j] = src[i]; 853 j++; 854 break; 855 } 856 } 857 858 return (i); 859 } 860 861 int 862 upgt_eeprom_read(struct upgt_softc *sc) 863 { 864 struct upgt_data *data_cmd = &sc->cmd_data; 865 struct upgt_lmac_mem *mem; 866 struct upgt_lmac_eeprom *eeprom; 867 int offset, block, len; 868 869 offset = 0; 870 block = UPGT_EEPROM_BLOCK_SIZE; 871 while (offset < UPGT_EEPROM_SIZE) { 872 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n", 873 sc->sc_dev.dv_xname, offset, block); 874 875 /* 876 * Transmit the URB containing the CMD data. 877 */ 878 bzero(data_cmd->buf, MCLBYTES); 879 880 mem = (struct upgt_lmac_mem *)data_cmd->buf; 881 mem->addr = htole32(sc->sc_memaddr_frame_start + 882 UPGT_MEMSIZE_FRAME_HEAD); 883 884 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 885 eeprom->header1.flags = 0; 886 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 887 eeprom->header1.len = htole16(( 888 sizeof(struct upgt_lmac_eeprom) - 889 sizeof(struct upgt_lmac_header)) + block); 890 891 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 892 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 893 eeprom->header2.flags = 0; 894 895 eeprom->offset = htole16(offset); 896 eeprom->len = htole16(block); 897 898 len = sizeof(*mem) + sizeof(*eeprom) + block; 899 900 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 901 len - sizeof(*mem)); 902 903 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 904 USBD_FORCE_SHORT_XFER) != 0) { 905 printf("%s: could not transmit EEPROM data URB!\n", 906 sc->sc_dev.dv_xname); 907 return (EIO); 908 } 909 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) { 910 printf("%s: timeout while waiting for EEPROM data!\n", 911 sc->sc_dev.dv_xname); 912 return (EIO); 913 } 914 915 offset += block; 916 if (UPGT_EEPROM_SIZE - offset < block) 917 block = UPGT_EEPROM_SIZE - offset; 918 } 919 920 return (0); 921 } 922 923 int 924 upgt_eeprom_parse(struct upgt_softc *sc) 925 { 926 struct ieee80211com *ic = &sc->sc_ic; 927 struct upgt_eeprom_header *eeprom_header; 928 struct upgt_eeprom_option *eeprom_option; 929 uint16_t option_len; 930 uint16_t option_type; 931 uint16_t preamble_len; 932 int option_end = 0; 933 934 /* calculate eeprom options start offset */ 935 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 936 preamble_len = letoh16(eeprom_header->preamble_len); 937 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 938 (sizeof(struct upgt_eeprom_header) + preamble_len)); 939 940 while (!option_end) { 941 /* the eeprom option length is stored in words */ 942 option_len = 943 (letoh16(eeprom_option->len) - 1) * sizeof(uint16_t); 944 option_type = 945 letoh16(eeprom_option->type); 946 947 switch (option_type) { 948 case UPGT_EEPROM_TYPE_NAME: 949 DPRINTF(1, "%s: EEPROM name len=%d\n", 950 sc->sc_dev.dv_xname, option_len); 951 break; 952 case UPGT_EEPROM_TYPE_SERIAL: 953 DPRINTF(1, "%s: EEPROM serial len=%d\n", 954 sc->sc_dev.dv_xname, option_len); 955 break; 956 case UPGT_EEPROM_TYPE_MAC: 957 DPRINTF(1, "%s: EEPROM mac len=%d\n", 958 sc->sc_dev.dv_xname, option_len); 959 960 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data); 961 break; 962 case UPGT_EEPROM_TYPE_HWRX: 963 DPRINTF(1, "%s: EEPROM hwrx len=%d\n", 964 sc->sc_dev.dv_xname, option_len); 965 966 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 967 break; 968 case UPGT_EEPROM_TYPE_CHIP: 969 DPRINTF(1, "%s: EEPROM chip len=%d\n", 970 sc->sc_dev.dv_xname, option_len); 971 break; 972 case UPGT_EEPROM_TYPE_FREQ3: 973 DPRINTF(1, "%s: EEPROM freq3 len=%d\n", 974 sc->sc_dev.dv_xname, option_len); 975 976 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 977 option_len); 978 break; 979 case UPGT_EEPROM_TYPE_FREQ4: 980 DPRINTF(1, "%s: EEPROM freq4 len=%d\n", 981 sc->sc_dev.dv_xname, option_len); 982 983 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 984 option_len); 985 break; 986 case UPGT_EEPROM_TYPE_FREQ5: 987 DPRINTF(1, "%s: EEPROM freq5 len=%d\n", 988 sc->sc_dev.dv_xname, option_len); 989 break; 990 case UPGT_EEPROM_TYPE_FREQ6: 991 DPRINTF(1, "%s: EEPROM freq6 len=%d\n", 992 sc->sc_dev.dv_xname, option_len); 993 994 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 995 option_len); 996 break; 997 case UPGT_EEPROM_TYPE_END: 998 DPRINTF(1, "%s: EEPROM end len=%d\n", 999 sc->sc_dev.dv_xname, option_len); 1000 option_end = 1; 1001 break; 1002 case UPGT_EEPROM_TYPE_OFF: 1003 DPRINTF(1, "%s: EEPROM off without end option!\n", 1004 sc->sc_dev.dv_xname); 1005 return (EIO); 1006 default: 1007 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n", 1008 sc->sc_dev.dv_xname, option_type, option_len); 1009 break; 1010 } 1011 1012 /* jump to next EEPROM option */ 1013 eeprom_option = (struct upgt_eeprom_option *) 1014 (eeprom_option->data + option_len); 1015 } 1016 1017 return (0); 1018 } 1019 1020 void 1021 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1022 { 1023 struct upgt_eeprom_option_hwrx *option_hwrx; 1024 1025 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1026 1027 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1028 1029 DPRINTF(2, "%s: hwrx option value=0x%04x\n", 1030 sc->sc_dev.dv_xname, sc->sc_eeprom_hwrx); 1031 } 1032 1033 void 1034 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1035 { 1036 struct upgt_eeprom_freq3_header *freq3_header; 1037 struct upgt_lmac_freq3 *freq3; 1038 int i, elements, flags; 1039 unsigned channel; 1040 1041 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1042 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1043 1044 flags = freq3_header->flags; 1045 elements = freq3_header->elements; 1046 1047 DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags); 1048 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1049 1050 for (i = 0; i < elements; i++) { 1051 channel = ieee80211_mhz2ieee(letoh16(freq3[i].freq), 0); 1052 1053 sc->sc_eeprom_freq3[channel] = freq3[i]; 1054 1055 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1056 sc->sc_dev.dv_xname, 1057 letoh16(sc->sc_eeprom_freq3[channel].freq), channel); 1058 } 1059 } 1060 1061 void 1062 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1063 { 1064 struct upgt_eeprom_freq4_header *freq4_header; 1065 struct upgt_eeprom_freq4_1 *freq4_1; 1066 struct upgt_eeprom_freq4_2 *freq4_2; 1067 int i, j, elements, settings, flags; 1068 unsigned channel; 1069 1070 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1071 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1072 1073 flags = freq4_header->flags; 1074 elements = freq4_header->elements; 1075 settings = freq4_header->settings; 1076 1077 /* we need this value later */ 1078 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1079 1080 DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags); 1081 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1082 DPRINTF(2, "%s: settings=%d\n", sc->sc_dev.dv_xname, settings); 1083 1084 for (i = 0; i < elements; i++) { 1085 channel = ieee80211_mhz2ieee(letoh16(freq4_1[i].freq), 0); 1086 1087 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1088 1089 for (j = 0; j < settings; j++) { 1090 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1091 sc->sc_eeprom_freq4[channel][j].pad = 0; 1092 } 1093 1094 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1095 sc->sc_dev.dv_xname, 1096 letoh16(freq4_1[i].freq), channel); 1097 } 1098 } 1099 1100 void 1101 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1102 { 1103 struct upgt_lmac_freq6 *freq6; 1104 int i, elements; 1105 unsigned channel; 1106 1107 freq6 = (struct upgt_lmac_freq6 *)data; 1108 1109 elements = len / sizeof(struct upgt_lmac_freq6); 1110 1111 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1112 1113 for (i = 0; i < elements; i++) { 1114 channel = ieee80211_mhz2ieee(letoh16(freq6[i].freq), 0); 1115 1116 sc->sc_eeprom_freq6[channel] = freq6[i]; 1117 1118 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1119 sc->sc_dev.dv_xname, 1120 letoh16(sc->sc_eeprom_freq6[channel].freq), channel); 1121 } 1122 } 1123 1124 int 1125 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1126 { 1127 struct upgt_softc *sc = ifp->if_softc; 1128 struct ieee80211com *ic = &sc->sc_ic; 1129 int s, error = 0; 1130 uint8_t chan; 1131 1132 s = splnet(); 1133 1134 switch (cmd) { 1135 case SIOCSIFADDR: 1136 ifp->if_flags |= IFF_UP; 1137 /* FALLTHROUGH */ 1138 case SIOCSIFFLAGS: 1139 if (ifp->if_flags & IFF_UP) { 1140 if ((ifp->if_flags & IFF_RUNNING) == 0) 1141 upgt_init(ifp); 1142 } else { 1143 if (ifp->if_flags & IFF_RUNNING) 1144 upgt_stop(sc); 1145 } 1146 break; 1147 case SIOCS80211CHANNEL: 1148 /* allow fast channel switching in monitor mode */ 1149 error = ieee80211_ioctl(ifp, cmd, data); 1150 if (error == ENETRESET && 1151 ic->ic_opmode == IEEE80211_M_MONITOR) { 1152 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1153 (IFF_UP | IFF_RUNNING)) { 1154 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1155 chan = ieee80211_chan2ieee(ic, 1156 ic->ic_bss->ni_chan); 1157 upgt_set_channel(sc, chan); 1158 } 1159 error = 0; 1160 } 1161 break; 1162 default: 1163 error = ieee80211_ioctl(ifp, cmd, data); 1164 break; 1165 } 1166 1167 if (error == ENETRESET) { 1168 if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) 1169 upgt_init(ifp); 1170 error = 0; 1171 } 1172 1173 splx(s); 1174 1175 return (error); 1176 } 1177 1178 int 1179 upgt_init(struct ifnet *ifp) 1180 { 1181 struct upgt_softc *sc = ifp->if_softc; 1182 struct ieee80211com *ic = &sc->sc_ic; 1183 1184 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1185 1186 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 1187 1188 /* select default channel */ 1189 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1190 sc->sc_cur_chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1191 1192 /* setup device rates */ 1193 upgt_setup_rates(sc); 1194 1195 ifp->if_flags |= IFF_RUNNING; 1196 ifq_clr_oactive(&ifp->if_snd); 1197 1198 upgt_set_macfilter(sc, IEEE80211_S_SCAN); 1199 1200 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 1201 upgt_set_channel(sc, sc->sc_cur_chan); 1202 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1203 } else 1204 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1205 1206 return (0); 1207 } 1208 1209 void 1210 upgt_stop(struct upgt_softc *sc) 1211 { 1212 struct ieee80211com *ic = &sc->sc_ic; 1213 struct ifnet *ifp = &ic->ic_if; 1214 1215 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1216 1217 /* device down */ 1218 ifp->if_timer = 0; 1219 ifp->if_flags &= ~IFF_RUNNING; 1220 ifq_clr_oactive(&ifp->if_snd); 1221 1222 upgt_set_led(sc, UPGT_LED_OFF); 1223 1224 /* change device back to initial state */ 1225 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1226 } 1227 1228 int 1229 upgt_media_change(struct ifnet *ifp) 1230 { 1231 struct upgt_softc *sc = ifp->if_softc; 1232 int error; 1233 1234 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1235 1236 if ((error = ieee80211_media_change(ifp)) != ENETRESET) 1237 return (error); 1238 1239 if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1240 /* give pending USB transfers a chance to finish */ 1241 usbd_delay_ms(sc->sc_udev, 100); 1242 upgt_init(ifp); 1243 } 1244 1245 return (0); 1246 } 1247 1248 void 1249 upgt_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 1250 { 1251 ni->ni_txrate = 0; 1252 } 1253 1254 int 1255 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1256 { 1257 struct upgt_softc *sc = ic->ic_if.if_softc; 1258 1259 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 1260 timeout_del(&sc->scan_to); 1261 1262 /* do it in a process context */ 1263 sc->sc_state = nstate; 1264 sc->sc_arg = arg; 1265 usb_add_task(sc->sc_udev, &sc->sc_task_newstate); 1266 1267 return (0); 1268 } 1269 1270 void 1271 upgt_newstate_task(void *arg) 1272 { 1273 struct upgt_softc *sc = arg; 1274 struct ieee80211com *ic = &sc->sc_ic; 1275 struct ieee80211_node *ni; 1276 unsigned channel; 1277 1278 switch (sc->sc_state) { 1279 case IEEE80211_S_INIT: 1280 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n", 1281 sc->sc_dev.dv_xname); 1282 1283 /* do not accept any frames if the device is down */ 1284 upgt_set_macfilter(sc, IEEE80211_S_INIT); 1285 upgt_set_led(sc, UPGT_LED_OFF); 1286 break; 1287 case IEEE80211_S_SCAN: 1288 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n", 1289 sc->sc_dev.dv_xname); 1290 1291 channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1292 upgt_set_channel(sc, channel); 1293 timeout_add_msec(&sc->scan_to, 200); 1294 break; 1295 case IEEE80211_S_AUTH: 1296 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n", 1297 sc->sc_dev.dv_xname); 1298 1299 channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1300 upgt_set_channel(sc, channel); 1301 break; 1302 case IEEE80211_S_ASSOC: 1303 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n", 1304 sc->sc_dev.dv_xname); 1305 break; 1306 case IEEE80211_S_RUN: 1307 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n", 1308 sc->sc_dev.dv_xname); 1309 1310 ni = ic->ic_bss; 1311 1312 /* 1313 * TX rate control is done by the firmware. 1314 * Report the maximum rate which is available therefore. 1315 */ 1316 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 1317 1318 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1319 upgt_set_macfilter(sc, IEEE80211_S_RUN); 1320 upgt_set_led(sc, UPGT_LED_ON); 1321 break; 1322 } 1323 1324 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 1325 } 1326 1327 void 1328 upgt_next_scan(void *arg) 1329 { 1330 struct upgt_softc *sc = arg; 1331 struct ieee80211com *ic = &sc->sc_ic; 1332 struct ifnet *ifp = &ic->ic_if; 1333 1334 DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1335 1336 if (ic->ic_state == IEEE80211_S_SCAN) 1337 ieee80211_next_scan(ifp); 1338 } 1339 1340 void 1341 upgt_start(struct ifnet *ifp) 1342 { 1343 struct upgt_softc *sc = ifp->if_softc; 1344 struct ieee80211com *ic = &sc->sc_ic; 1345 struct ieee80211_node *ni; 1346 struct mbuf *m; 1347 int i; 1348 1349 /* don't transmit packets if interface is busy or down */ 1350 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 1351 return; 1352 1353 DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1354 1355 for (i = 0; i < UPGT_TX_COUNT; i++) { 1356 struct upgt_data *data_tx = &sc->tx_data[i]; 1357 1358 m = mq_dequeue(&ic->ic_mgtq); 1359 if (m != NULL) { 1360 /* management frame */ 1361 ni = m->m_pkthdr.ph_cookie; 1362 #if NBPFILTER > 0 1363 if (ic->ic_rawbpf != NULL) 1364 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 1365 #endif 1366 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1367 printf("%s: no free prism memory!\n", 1368 sc->sc_dev.dv_xname); 1369 return; 1370 } 1371 data_tx->ni = ni; 1372 data_tx->m = m; 1373 sc->tx_queued++; 1374 } else { 1375 /* data frame */ 1376 if (ic->ic_state != IEEE80211_S_RUN) 1377 break; 1378 1379 IFQ_DEQUEUE(&ifp->if_snd, m); 1380 if (m == NULL) 1381 break; 1382 1383 #if NBPFILTER > 0 1384 if (ifp->if_bpf != NULL) 1385 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 1386 #endif 1387 m = ieee80211_encap(ifp, m, &ni); 1388 if (m == NULL) 1389 continue; 1390 #if NBPFILTER > 0 1391 if (ic->ic_rawbpf != NULL) 1392 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 1393 #endif 1394 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1395 printf("%s: no free prism memory!\n", 1396 sc->sc_dev.dv_xname); 1397 return; 1398 } 1399 data_tx->ni = ni; 1400 data_tx->m = m; 1401 sc->tx_queued++; 1402 } 1403 } 1404 1405 if (sc->tx_queued > 0) { 1406 DPRINTF(2, "%s: tx_queued=%d\n", 1407 sc->sc_dev.dv_xname, sc->tx_queued); 1408 /* process the TX queue in process context */ 1409 ifp->if_timer = 5; 1410 ifq_set_oactive(&ifp->if_snd); 1411 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 1412 usb_add_task(sc->sc_udev, &sc->sc_task_tx); 1413 } 1414 } 1415 1416 void 1417 upgt_watchdog(struct ifnet *ifp) 1418 { 1419 struct upgt_softc *sc = ifp->if_softc; 1420 struct ieee80211com *ic = &sc->sc_ic; 1421 1422 if (ic->ic_state == IEEE80211_S_INIT) 1423 return; 1424 1425 printf("%s: watchdog timeout!\n", sc->sc_dev.dv_xname); 1426 1427 /* TODO: what shall we do on TX timeout? */ 1428 1429 ieee80211_watchdog(ifp); 1430 } 1431 1432 void 1433 upgt_tx_task(void *arg) 1434 { 1435 struct upgt_softc *sc = arg; 1436 struct ieee80211com *ic = &sc->sc_ic; 1437 struct ieee80211_frame *wh; 1438 struct ieee80211_key *k; 1439 struct upgt_lmac_mem *mem; 1440 struct upgt_lmac_tx_desc *txdesc; 1441 struct mbuf *m; 1442 uint32_t addr; 1443 int len, i, s; 1444 usbd_status error; 1445 1446 s = splusb(); 1447 1448 upgt_set_led(sc, UPGT_LED_BLINK); 1449 1450 for (i = 0; i < UPGT_TX_COUNT; i++) { 1451 struct upgt_data *data_tx = &sc->tx_data[i]; 1452 1453 if (data_tx->m == NULL) { 1454 DPRINTF(2, "%s: %d: m is NULL\n", 1455 sc->sc_dev.dv_xname, i); 1456 continue; 1457 } 1458 1459 m = data_tx->m; 1460 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD; 1461 1462 /* 1463 * Software crypto. 1464 */ 1465 wh = mtod(m, struct ieee80211_frame *); 1466 1467 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1468 k = ieee80211_get_txkey(ic, wh, ic->ic_bss); 1469 1470 if ((m = ieee80211_encrypt(ic, m, k)) == NULL) { 1471 splx(s); 1472 return; 1473 } 1474 1475 /* in case packet header moved, reset pointer */ 1476 wh = mtod(m, struct ieee80211_frame *); 1477 } 1478 1479 /* 1480 * Transmit the URB containing the TX data. 1481 */ 1482 bzero(data_tx->buf, MCLBYTES); 1483 1484 mem = (struct upgt_lmac_mem *)data_tx->buf; 1485 mem->addr = htole32(addr); 1486 1487 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 1488 1489 /* XXX differ between data and mgmt frames? */ 1490 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 1491 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 1492 txdesc->header1.len = htole16(m->m_pkthdr.len); 1493 1494 txdesc->header2.reqid = htole32(data_tx->addr); 1495 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 1496 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 1497 1498 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1499 IEEE80211_FC0_TYPE_MGT) { 1500 /* always send mgmt frames at lowest rate (DS1) */ 1501 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 1502 } else { 1503 bcopy(sc->sc_cur_rateset, txdesc->rates, 1504 sizeof(txdesc->rates)); 1505 } 1506 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 1507 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 1508 1509 #if NBPFILTER > 0 1510 if (sc->sc_drvbpf != NULL) { 1511 struct mbuf mb; 1512 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 1513 1514 tap->wt_flags = 0; 1515 tap->wt_rate = 0; /* TODO: where to get from? */ 1516 tap->wt_chan_freq = 1517 htole16(ic->ic_bss->ni_chan->ic_freq); 1518 tap->wt_chan_flags = 1519 htole16(ic->ic_bss->ni_chan->ic_flags); 1520 1521 mb.m_data = (caddr_t)tap; 1522 mb.m_len = sc->sc_txtap_len; 1523 mb.m_next = m; 1524 mb.m_nextpkt = NULL; 1525 mb.m_type = 0; 1526 mb.m_flags = 0; 1527 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 1528 } 1529 #endif 1530 /* copy frame below our TX descriptor header */ 1531 m_copydata(m, 0, m->m_pkthdr.len, 1532 data_tx->buf + (sizeof(*mem) + sizeof(*txdesc))); 1533 1534 /* calculate frame size */ 1535 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 1536 1537 /* we need to align the frame to a 4 byte boundary */ 1538 len = (len + 3) & ~3; 1539 1540 /* calculate frame checksum */ 1541 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, 1542 len - sizeof(*mem)); 1543 1544 /* we do not need the mbuf anymore */ 1545 m_freem(m); 1546 data_tx->m = NULL; 1547 1548 DPRINTF(2, "%s: TX start data sending\n", sc->sc_dev.dv_xname); 1549 1550 usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx, 1551 data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1552 UPGT_USB_TIMEOUT, NULL); 1553 error = usbd_transfer(data_tx->xfer); 1554 if (error != 0 && error != USBD_IN_PROGRESS) { 1555 printf("%s: could not transmit TX data URB!\n", 1556 sc->sc_dev.dv_xname); 1557 splx(s); 1558 return; 1559 } 1560 1561 DPRINTF(2, "%s: TX sent (%d bytes)\n", 1562 sc->sc_dev.dv_xname, len); 1563 } 1564 1565 /* 1566 * If we don't regulary read the device statistics, the RX queue 1567 * will stall. It's strange, but it works, so we keep reading 1568 * the statistics here. *shrug* 1569 */ 1570 upgt_get_stats(sc); 1571 1572 splx(s); 1573 } 1574 1575 void 1576 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1577 { 1578 struct ieee80211com *ic = &sc->sc_ic; 1579 struct ifnet *ifp = &ic->ic_if; 1580 struct upgt_lmac_tx_done_desc *desc; 1581 int i, s; 1582 1583 s = splnet(); 1584 1585 desc = (struct upgt_lmac_tx_done_desc *)data; 1586 1587 for (i = 0; i < UPGT_TX_COUNT; i++) { 1588 struct upgt_data *data_tx = &sc->tx_data[i]; 1589 1590 if (data_tx->addr == letoh32(desc->header2.reqid)) { 1591 upgt_mem_free(sc, data_tx->addr); 1592 ieee80211_release_node(ic, data_tx->ni); 1593 data_tx->ni = NULL; 1594 data_tx->addr = 0; 1595 1596 sc->tx_queued--; 1597 1598 DPRINTF(2, "%s: TX done: ", sc->sc_dev.dv_xname); 1599 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1600 letoh32(desc->header2.reqid), 1601 letoh16(desc->status), 1602 letoh16(desc->rssi)); 1603 DPRINTF(2, "seq=%d\n", letoh16(desc->seq)); 1604 break; 1605 } 1606 } 1607 1608 if (sc->tx_queued == 0) { 1609 /* TX queued was processed, continue */ 1610 ifp->if_timer = 0; 1611 ifq_clr_oactive(&ifp->if_snd); 1612 upgt_start(ifp); 1613 } 1614 1615 splx(s); 1616 } 1617 1618 void 1619 upgt_rx_cb(struct usbd_xfer *xfer, void *priv, usbd_status status) 1620 { 1621 struct upgt_data *data_rx = priv; 1622 struct upgt_softc *sc = data_rx->sc; 1623 int len; 1624 struct upgt_lmac_header *header; 1625 struct upgt_lmac_eeprom *eeprom; 1626 uint8_t h1_type; 1627 uint16_t h2_type; 1628 1629 DPRINTF(3, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1630 1631 if (status != USBD_NORMAL_COMPLETION) { 1632 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1633 return; 1634 if (status == USBD_STALLED) 1635 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 1636 goto skip; 1637 } 1638 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 1639 1640 /* 1641 * Check what type of frame came in. 1642 */ 1643 header = (struct upgt_lmac_header *)(data_rx->buf + 4); 1644 1645 h1_type = header->header1.type; 1646 h2_type = letoh16(header->header2.type); 1647 1648 if (h1_type == UPGT_H1_TYPE_CTRL && 1649 h2_type == UPGT_H2_TYPE_EEPROM) { 1650 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4); 1651 uint16_t eeprom_offset = letoh16(eeprom->offset); 1652 uint16_t eeprom_len = letoh16(eeprom->len); 1653 1654 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n", 1655 sc->sc_dev.dv_xname, eeprom_offset, eeprom_len); 1656 1657 bcopy(data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1658 sc->sc_eeprom + eeprom_offset, eeprom_len); 1659 1660 /* EEPROM data has arrived in time, wakeup tsleep() */ 1661 wakeup(sc); 1662 } else 1663 if (h1_type == UPGT_H1_TYPE_CTRL && 1664 h2_type == UPGT_H2_TYPE_TX_DONE) { 1665 DPRINTF(2, "%s: received 802.11 TX done\n", 1666 sc->sc_dev.dv_xname); 1667 1668 upgt_tx_done(sc, data_rx->buf + 4); 1669 } else 1670 if (h1_type == UPGT_H1_TYPE_RX_DATA || 1671 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1672 DPRINTF(3, "%s: received 802.11 RX data\n", 1673 sc->sc_dev.dv_xname); 1674 1675 upgt_rx(sc, data_rx->buf + 4, letoh16(header->header1.len)); 1676 } else 1677 if (h1_type == UPGT_H1_TYPE_CTRL && 1678 h2_type == UPGT_H2_TYPE_STATS) { 1679 DPRINTF(2, "%s: received statistic data\n", 1680 sc->sc_dev.dv_xname); 1681 1682 /* TODO: what could we do with the statistic data? */ 1683 } else { 1684 /* ignore unknown frame types */ 1685 DPRINTF(1, "%s: received unknown frame type 0x%02x\n", 1686 sc->sc_dev.dv_xname, header->header1.type); 1687 } 1688 1689 skip: /* setup new transfer */ 1690 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES, 1691 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 1692 (void)usbd_transfer(xfer); 1693 } 1694 1695 void 1696 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen) 1697 { 1698 struct ieee80211com *ic = &sc->sc_ic; 1699 struct ifnet *ifp = &ic->ic_if; 1700 struct upgt_lmac_rx_desc *rxdesc; 1701 struct ieee80211_frame *wh; 1702 struct ieee80211_rxinfo rxi; 1703 struct ieee80211_node *ni; 1704 struct mbuf *m; 1705 int s; 1706 1707 /* access RX packet descriptor */ 1708 rxdesc = (struct upgt_lmac_rx_desc *)data; 1709 1710 /* create mbuf which is suitable for strict alignment archs */ 1711 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN); 1712 if (m == NULL) { 1713 DPRINTF(1, "%s: could not create RX mbuf!\n", sc->sc_dev.dv_xname); 1714 ifp->if_ierrors++; 1715 return; 1716 } 1717 1718 s = splnet(); 1719 1720 #if NBPFILTER > 0 1721 if (sc->sc_drvbpf != NULL) { 1722 struct mbuf mb; 1723 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1724 1725 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1726 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1727 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1728 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1729 tap->wr_antsignal = rxdesc->rssi; 1730 1731 mb.m_data = (caddr_t)tap; 1732 mb.m_len = sc->sc_rxtap_len; 1733 mb.m_next = m; 1734 mb.m_nextpkt = NULL; 1735 mb.m_type = 0; 1736 mb.m_flags = 0; 1737 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 1738 } 1739 #endif 1740 /* trim FCS */ 1741 m_adj(m, -IEEE80211_CRC_LEN); 1742 1743 wh = mtod(m, struct ieee80211_frame *); 1744 ni = ieee80211_find_rxnode(ic, wh); 1745 1746 /* push the frame up to the 802.11 stack */ 1747 rxi.rxi_flags = 0; 1748 rxi.rxi_rssi = rxdesc->rssi; 1749 rxi.rxi_tstamp = 0; /* unused */ 1750 ieee80211_input(ifp, m, ni, &rxi); 1751 1752 /* node is no longer needed */ 1753 ieee80211_release_node(ic, ni); 1754 1755 splx(s); 1756 1757 DPRINTF(3, "%s: RX done\n", sc->sc_dev.dv_xname); 1758 } 1759 1760 void 1761 upgt_setup_rates(struct upgt_softc *sc) 1762 { 1763 struct ieee80211com *ic = &sc->sc_ic; 1764 1765 /* 1766 * 0x01 = OFMD6 0x10 = DS1 1767 * 0x04 = OFDM9 0x11 = DS2 1768 * 0x06 = OFDM12 0x12 = DS5 1769 * 0x07 = OFDM18 0x13 = DS11 1770 * 0x08 = OFDM24 1771 * 0x09 = OFDM36 1772 * 0x0a = OFDM48 1773 * 0x0b = OFDM54 1774 */ 1775 const uint8_t rateset_auto_11b[] = 1776 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 1777 const uint8_t rateset_auto_11g[] = 1778 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 1779 const uint8_t rateset_fix_11bg[] = 1780 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 1781 0x08, 0x09, 0x0a, 0x0b }; 1782 1783 if (ic->ic_fixed_rate == -1) { 1784 /* 1785 * Automatic rate control is done by the device. 1786 * We just pass the rateset from which the device 1787 * will pickup a rate. 1788 */ 1789 if (ic->ic_curmode == IEEE80211_MODE_11B) 1790 bcopy(rateset_auto_11b, sc->sc_cur_rateset, 1791 sizeof(sc->sc_cur_rateset)); 1792 if (ic->ic_curmode == IEEE80211_MODE_11G || 1793 ic->ic_curmode == IEEE80211_MODE_AUTO) 1794 bcopy(rateset_auto_11g, sc->sc_cur_rateset, 1795 sizeof(sc->sc_cur_rateset)); 1796 } else { 1797 /* set a fixed rate */ 1798 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate], 1799 sizeof(sc->sc_cur_rateset)); 1800 } 1801 } 1802 1803 uint8_t 1804 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1805 { 1806 struct ieee80211com *ic = &sc->sc_ic; 1807 1808 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1809 if (rate < 0 || rate > 3) 1810 /* invalid rate */ 1811 return (0); 1812 1813 switch (rate) { 1814 case 0: 1815 return (2); 1816 case 1: 1817 return (4); 1818 case 2: 1819 return (11); 1820 case 3: 1821 return (22); 1822 default: 1823 return (0); 1824 } 1825 } 1826 1827 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1828 if (rate < 0 || rate > 11) 1829 /* invalid rate */ 1830 return (0); 1831 1832 switch (rate) { 1833 case 0: 1834 return (2); 1835 case 1: 1836 return (4); 1837 case 2: 1838 return (11); 1839 case 3: 1840 return (22); 1841 case 4: 1842 return (12); 1843 case 5: 1844 return (18); 1845 case 6: 1846 return (24); 1847 case 7: 1848 return (36); 1849 case 8: 1850 return (48); 1851 case 9: 1852 return (72); 1853 case 10: 1854 return (96); 1855 case 11: 1856 return (108); 1857 default: 1858 return (0); 1859 } 1860 } 1861 1862 return (0); 1863 } 1864 1865 int 1866 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 1867 { 1868 struct ieee80211com *ic = &sc->sc_ic; 1869 struct ieee80211_node *ni = ic->ic_bss; 1870 struct upgt_data *data_cmd = &sc->cmd_data; 1871 struct upgt_lmac_mem *mem; 1872 struct upgt_lmac_filter *filter; 1873 int len; 1874 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1875 1876 /* 1877 * Transmit the URB containing the CMD data. 1878 */ 1879 bzero(data_cmd->buf, MCLBYTES); 1880 1881 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1882 mem->addr = htole32(sc->sc_memaddr_frame_start + 1883 UPGT_MEMSIZE_FRAME_HEAD); 1884 1885 filter = (struct upgt_lmac_filter *)(mem + 1); 1886 1887 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 1888 filter->header1.type = UPGT_H1_TYPE_CTRL; 1889 filter->header1.len = htole16( 1890 sizeof(struct upgt_lmac_filter) - 1891 sizeof(struct upgt_lmac_header)); 1892 1893 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1894 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 1895 filter->header2.flags = 0; 1896 1897 switch (state) { 1898 case IEEE80211_S_INIT: 1899 DPRINTF(1, "%s: set MAC filter to INIT\n", 1900 sc->sc_dev.dv_xname); 1901 1902 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 1903 break; 1904 case IEEE80211_S_SCAN: 1905 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n", 1906 sc->sc_dev.dv_xname, ether_sprintf(broadcast)); 1907 1908 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 1909 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 1910 IEEE80211_ADDR_COPY(filter->src, broadcast); 1911 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 1912 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 1913 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 1914 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 1915 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 1916 break; 1917 case IEEE80211_S_RUN: 1918 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n", 1919 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid)); 1920 1921 filter->type = htole16(UPGT_FILTER_TYPE_STA); 1922 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 1923 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 1924 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 1925 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 1926 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 1927 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 1928 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 1929 break; 1930 default: 1931 printf("%s: MAC filter does not know that state!\n", 1932 sc->sc_dev.dv_xname); 1933 break; 1934 } 1935 1936 len = sizeof(*mem) + sizeof(*filter); 1937 1938 mem->chksum = upgt_chksum_le((uint32_t *)filter, 1939 len - sizeof(*mem)); 1940 1941 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 1942 printf("%s: could not transmit macfilter CMD data URB!\n", 1943 sc->sc_dev.dv_xname); 1944 return (EIO); 1945 } 1946 1947 return (0); 1948 } 1949 1950 int 1951 upgt_set_channel(struct upgt_softc *sc, unsigned channel) 1952 { 1953 struct upgt_data *data_cmd = &sc->cmd_data; 1954 struct upgt_lmac_mem *mem; 1955 struct upgt_lmac_channel *chan; 1956 int len; 1957 1958 DPRINTF(1, "%s: %s: %d\n", sc->sc_dev.dv_xname, __func__, channel); 1959 1960 /* 1961 * Transmit the URB containing the CMD data. 1962 */ 1963 bzero(data_cmd->buf, MCLBYTES); 1964 1965 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1966 mem->addr = htole32(sc->sc_memaddr_frame_start + 1967 UPGT_MEMSIZE_FRAME_HEAD); 1968 1969 chan = (struct upgt_lmac_channel *)(mem + 1); 1970 1971 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 1972 chan->header1.type = UPGT_H1_TYPE_CTRL; 1973 chan->header1.len = htole16( 1974 sizeof(struct upgt_lmac_channel) - 1975 sizeof(struct upgt_lmac_header)); 1976 1977 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1978 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 1979 chan->header2.flags = 0; 1980 1981 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 1982 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 1983 chan->freq6 = sc->sc_eeprom_freq6[channel]; 1984 chan->settings = sc->sc_eeprom_freq6_settings; 1985 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 1986 1987 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1, 1988 sizeof(chan->freq3_1)); 1989 1990 bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4, 1991 sizeof(sc->sc_eeprom_freq4[channel])); 1992 1993 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2, 1994 sizeof(chan->freq3_2)); 1995 1996 len = sizeof(*mem) + sizeof(*chan); 1997 1998 mem->chksum = upgt_chksum_le((uint32_t *)chan, 1999 len - sizeof(*mem)); 2000 2001 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2002 printf("%s: could not transmit channel CMD data URB!\n", 2003 sc->sc_dev.dv_xname); 2004 return (EIO); 2005 } 2006 2007 return (0); 2008 } 2009 2010 void 2011 upgt_set_led(struct upgt_softc *sc, int action) 2012 { 2013 struct ieee80211com *ic = &sc->sc_ic; 2014 struct upgt_data *data_cmd = &sc->cmd_data; 2015 struct upgt_lmac_mem *mem; 2016 struct upgt_lmac_led *led; 2017 struct timeval t; 2018 int len; 2019 2020 /* 2021 * Transmit the URB containing the CMD data. 2022 */ 2023 bzero(data_cmd->buf, MCLBYTES); 2024 2025 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2026 mem->addr = htole32(sc->sc_memaddr_frame_start + 2027 UPGT_MEMSIZE_FRAME_HEAD); 2028 2029 led = (struct upgt_lmac_led *)(mem + 1); 2030 2031 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2032 led->header1.type = UPGT_H1_TYPE_CTRL; 2033 led->header1.len = htole16( 2034 sizeof(struct upgt_lmac_led) - 2035 sizeof(struct upgt_lmac_header)); 2036 2037 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2038 led->header2.type = htole16(UPGT_H2_TYPE_LED); 2039 led->header2.flags = 0; 2040 2041 switch (action) { 2042 case UPGT_LED_OFF: 2043 led->mode = htole16(UPGT_LED_MODE_SET); 2044 led->action_fix = 0; 2045 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 2046 led->action_tmp_dur = 0; 2047 break; 2048 case UPGT_LED_ON: 2049 led->mode = htole16(UPGT_LED_MODE_SET); 2050 led->action_fix = 0; 2051 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2052 led->action_tmp_dur = 0; 2053 break; 2054 case UPGT_LED_BLINK: 2055 if (ic->ic_state != IEEE80211_S_RUN) 2056 return; 2057 if (sc->sc_led_blink) 2058 /* previous blink was not finished */ 2059 return; 2060 led->mode = htole16(UPGT_LED_MODE_SET); 2061 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 2062 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2063 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 2064 /* lock blink */ 2065 sc->sc_led_blink = 1; 2066 t.tv_sec = 0; 2067 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L; 2068 timeout_add(&sc->led_to, tvtohz(&t)); 2069 break; 2070 default: 2071 return; 2072 } 2073 2074 len = sizeof(*mem) + sizeof(*led); 2075 2076 mem->chksum = upgt_chksum_le((uint32_t *)led, 2077 len - sizeof(*mem)); 2078 2079 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2080 printf("%s: could not transmit led CMD URB!\n", 2081 sc->sc_dev.dv_xname); 2082 } 2083 } 2084 2085 void 2086 upgt_set_led_blink(void *arg) 2087 { 2088 struct upgt_softc *sc = arg; 2089 2090 /* blink finished, we are ready for a next one */ 2091 sc->sc_led_blink = 0; 2092 timeout_del(&sc->led_to); 2093 } 2094 2095 int 2096 upgt_get_stats(struct upgt_softc *sc) 2097 { 2098 struct upgt_data *data_cmd = &sc->cmd_data; 2099 struct upgt_lmac_mem *mem; 2100 struct upgt_lmac_stats *stats; 2101 int len; 2102 2103 /* 2104 * Transmit the URB containing the CMD data. 2105 */ 2106 bzero(data_cmd->buf, MCLBYTES); 2107 2108 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2109 mem->addr = htole32(sc->sc_memaddr_frame_start + 2110 UPGT_MEMSIZE_FRAME_HEAD); 2111 2112 stats = (struct upgt_lmac_stats *)(mem + 1); 2113 2114 stats->header1.flags = 0; 2115 stats->header1.type = UPGT_H1_TYPE_CTRL; 2116 stats->header1.len = htole16( 2117 sizeof(struct upgt_lmac_stats) - 2118 sizeof(struct upgt_lmac_header)); 2119 2120 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2121 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 2122 stats->header2.flags = 0; 2123 2124 len = sizeof(*mem) + sizeof(*stats); 2125 2126 mem->chksum = upgt_chksum_le((uint32_t *)stats, 2127 len - sizeof(*mem)); 2128 2129 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2130 printf("%s: could not transmit statistics CMD data URB!\n", 2131 sc->sc_dev.dv_xname); 2132 return (EIO); 2133 } 2134 2135 return (0); 2136 2137 } 2138 2139 int 2140 upgt_alloc_tx(struct upgt_softc *sc) 2141 { 2142 int i; 2143 2144 sc->tx_queued = 0; 2145 2146 for (i = 0; i < UPGT_TX_COUNT; i++) { 2147 struct upgt_data *data_tx = &sc->tx_data[i]; 2148 2149 data_tx->sc = sc; 2150 2151 data_tx->xfer = usbd_alloc_xfer(sc->sc_udev); 2152 if (data_tx->xfer == NULL) { 2153 printf("%s: could not allocate TX xfer!\n", 2154 sc->sc_dev.dv_xname); 2155 return (ENOMEM); 2156 } 2157 2158 data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES); 2159 if (data_tx->buf == NULL) { 2160 printf("%s: could not allocate TX buffer!\n", 2161 sc->sc_dev.dv_xname); 2162 return (ENOMEM); 2163 } 2164 2165 bzero(data_tx->buf, MCLBYTES); 2166 } 2167 2168 return (0); 2169 } 2170 2171 int 2172 upgt_alloc_rx(struct upgt_softc *sc) 2173 { 2174 struct upgt_data *data_rx = &sc->rx_data; 2175 2176 data_rx->sc = sc; 2177 2178 data_rx->xfer = usbd_alloc_xfer(sc->sc_udev); 2179 if (data_rx->xfer == NULL) { 2180 printf("%s: could not allocate RX xfer!\n", 2181 sc->sc_dev.dv_xname); 2182 return (ENOMEM); 2183 } 2184 2185 data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES); 2186 if (data_rx->buf == NULL) { 2187 printf("%s: could not allocate RX buffer!\n", 2188 sc->sc_dev.dv_xname); 2189 return (ENOMEM); 2190 } 2191 2192 bzero(data_rx->buf, MCLBYTES); 2193 2194 return (0); 2195 } 2196 2197 int 2198 upgt_alloc_cmd(struct upgt_softc *sc) 2199 { 2200 struct upgt_data *data_cmd = &sc->cmd_data; 2201 2202 data_cmd->sc = sc; 2203 2204 data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev); 2205 if (data_cmd->xfer == NULL) { 2206 printf("%s: could not allocate RX xfer!\n", 2207 sc->sc_dev.dv_xname); 2208 return (ENOMEM); 2209 } 2210 2211 data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES); 2212 if (data_cmd->buf == NULL) { 2213 printf("%s: could not allocate RX buffer!\n", 2214 sc->sc_dev.dv_xname); 2215 return (ENOMEM); 2216 } 2217 2218 bzero(data_cmd->buf, MCLBYTES); 2219 2220 return (0); 2221 } 2222 2223 void 2224 upgt_free_tx(struct upgt_softc *sc) 2225 { 2226 int i; 2227 2228 for (i = 0; i < UPGT_TX_COUNT; i++) { 2229 struct upgt_data *data_tx = &sc->tx_data[i]; 2230 2231 if (data_tx->xfer != NULL) { 2232 usbd_free_xfer(data_tx->xfer); 2233 data_tx->xfer = NULL; 2234 } 2235 2236 data_tx->ni = NULL; 2237 } 2238 } 2239 2240 void 2241 upgt_free_rx(struct upgt_softc *sc) 2242 { 2243 struct upgt_data *data_rx = &sc->rx_data; 2244 2245 if (data_rx->xfer != NULL) { 2246 usbd_free_xfer(data_rx->xfer); 2247 data_rx->xfer = NULL; 2248 } 2249 2250 data_rx->ni = NULL; 2251 } 2252 2253 void 2254 upgt_free_cmd(struct upgt_softc *sc) 2255 { 2256 struct upgt_data *data_cmd = &sc->cmd_data; 2257 2258 if (data_cmd->xfer != NULL) { 2259 usbd_free_xfer(data_cmd->xfer); 2260 data_cmd->xfer = NULL; 2261 } 2262 } 2263 2264 int 2265 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data, 2266 struct usbd_pipe *pipeh, uint32_t *size, int flags) 2267 { 2268 usbd_status status; 2269 2270 usbd_setup_xfer(data->xfer, pipeh, 0, data->buf, *size, 2271 USBD_NO_COPY | USBD_SYNCHRONOUS | flags, UPGT_USB_TIMEOUT, NULL); 2272 status = usbd_transfer(data->xfer); 2273 if (status != USBD_NORMAL_COMPLETION) { 2274 printf("%s: %s: error %s!\n", 2275 sc->sc_dev.dv_xname, __func__, usbd_errstr(status)); 2276 return (EIO); 2277 } 2278 2279 return (0); 2280 } 2281 2282 void 2283 upgt_hexdump(void *buf, int len) 2284 { 2285 int i; 2286 2287 for (i = 0; i < len; i++) { 2288 if (i % 16 == 0) 2289 printf("%s%5i:", i ? "\n" : "", i); 2290 if (i % 4 == 0) 2291 printf(" "); 2292 printf("%02x", (int)*((u_char *)buf + i)); 2293 } 2294 printf("\n"); 2295 } 2296 2297 uint32_t 2298 upgt_crc32_le(const void *buf, size_t size) 2299 { 2300 uint32_t crc; 2301 2302 crc = ether_crc32_le(buf, size); 2303 2304 /* apply final XOR value as common for CRC-32 */ 2305 crc = htole32(crc ^ 0xffffffffU); 2306 2307 return (crc); 2308 } 2309 2310 /* 2311 * The firmware awaits a checksum for each frame we send to it. 2312 * The algorithm used therefor is uncommon but somehow similar to CRC32. 2313 */ 2314 uint32_t 2315 upgt_chksum_le(const uint32_t *buf, size_t size) 2316 { 2317 int i; 2318 uint32_t crc = 0; 2319 2320 for (i = 0; i < size; i += sizeof(uint32_t)) { 2321 crc = htole32(crc ^ *buf++); 2322 crc = htole32((crc >> 5) ^ (crc << 3)); 2323 } 2324 2325 return (crc); 2326 } 2327