1 /* $OpenBSD: if_upgt.c,v 1.90 2024/05/23 03:21:09 jsg Exp $ */ 2 3 /* 4 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include "bpfilter.h" 20 21 #include <sys/param.h> 22 #include <sys/sockio.h> 23 #include <sys/mbuf.h> 24 #include <sys/systm.h> 25 #include <sys/timeout.h> 26 #include <sys/device.h> 27 #include <sys/endian.h> 28 29 #include <machine/intr.h> 30 31 #if NBPFILTER > 0 32 #include <net/bpf.h> 33 #endif 34 #include <net/if.h> 35 #include <net/if_dl.h> 36 #include <net/if_media.h> 37 38 #include <netinet/in.h> 39 #include <netinet/if_ether.h> 40 41 #include <net80211/ieee80211_var.h> 42 #include <net80211/ieee80211_radiotap.h> 43 44 #include <dev/usb/usb.h> 45 #include <dev/usb/usbdi.h> 46 #include <dev/usb/usbdi_util.h> 47 #include <dev/usb/usbdevs.h> 48 49 #include <dev/usb/if_upgtvar.h> 50 51 /* 52 * Driver for the USB PrismGT devices. 53 * 54 * For now just USB 2.0 devices with the GW3887 chipset are supported. 55 * The driver has been written based on the firmware version 2.13.1.0_LM87. 56 * 57 * TODO's: 58 * - Fix MONITOR mode (MAC filter). 59 * - Add HOSTAP mode. 60 * - Add IBSS mode. 61 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 62 * 63 * Parts of this driver has been influenced by reading the p54u driver 64 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 65 * Sebastien Bourdeauducq <lekernel@prism54.org>. 66 */ 67 68 #ifdef UPGT_DEBUG 69 int upgt_debug = 2; 70 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0) 71 #else 72 #define DPRINTF(l, x...) 73 #endif 74 75 /* 76 * Prototypes. 77 */ 78 int upgt_match(struct device *, void *, void *); 79 void upgt_attach(struct device *, struct device *, void *); 80 void upgt_attach_hook(struct device *); 81 int upgt_detach(struct device *, int); 82 83 int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t); 84 int upgt_device_init(struct upgt_softc *); 85 int upgt_mem_init(struct upgt_softc *); 86 uint32_t upgt_mem_alloc(struct upgt_softc *); 87 void upgt_mem_free(struct upgt_softc *, uint32_t); 88 int upgt_fw_alloc(struct upgt_softc *); 89 void upgt_fw_free(struct upgt_softc *); 90 int upgt_fw_verify(struct upgt_softc *); 91 int upgt_fw_load(struct upgt_softc *); 92 int upgt_fw_copy(char *, char *, int); 93 int upgt_eeprom_read(struct upgt_softc *); 94 int upgt_eeprom_parse(struct upgt_softc *); 95 void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 96 void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 97 void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 98 void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 99 100 int upgt_ioctl(struct ifnet *, u_long, caddr_t); 101 int upgt_init(struct ifnet *); 102 void upgt_stop(struct upgt_softc *); 103 int upgt_media_change(struct ifnet *); 104 void upgt_newassoc(struct ieee80211com *, struct ieee80211_node *, 105 int); 106 int upgt_newstate(struct ieee80211com *, enum ieee80211_state, int); 107 void upgt_newstate_task(void *); 108 void upgt_next_scan(void *); 109 void upgt_start(struct ifnet *); 110 void upgt_watchdog(struct ifnet *); 111 void upgt_tx_task(void *); 112 void upgt_tx_done(struct upgt_softc *, uint8_t *); 113 void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status); 114 void upgt_rx(struct upgt_softc *, uint8_t *, int); 115 void upgt_setup_rates(struct upgt_softc *); 116 uint8_t upgt_rx_rate(struct upgt_softc *, const int); 117 int upgt_set_macfilter(struct upgt_softc *, uint8_t state); 118 int upgt_set_channel(struct upgt_softc *, unsigned); 119 void upgt_set_led(struct upgt_softc *, int); 120 void upgt_set_led_blink(void *); 121 int upgt_get_stats(struct upgt_softc *); 122 123 int upgt_alloc_tx(struct upgt_softc *); 124 int upgt_alloc_rx(struct upgt_softc *); 125 int upgt_alloc_cmd(struct upgt_softc *); 126 void upgt_free_tx(struct upgt_softc *); 127 void upgt_free_rx(struct upgt_softc *); 128 void upgt_free_cmd(struct upgt_softc *); 129 int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *, 130 struct usbd_pipe *, uint32_t *, int); 131 132 void upgt_hexdump(void *, int); 133 uint32_t upgt_crc32_le(const void *, size_t); 134 uint32_t upgt_chksum_le(const uint32_t *, size_t); 135 136 struct cfdriver upgt_cd = { 137 NULL, "upgt", DV_IFNET 138 }; 139 140 const struct cfattach upgt_ca = { 141 sizeof(struct upgt_softc), upgt_match, upgt_attach, upgt_detach 142 }; 143 144 static const struct usb_devno upgt_devs_1[] = { 145 /* version 1 devices */ 146 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G } 147 }; 148 149 static const struct usb_devno upgt_devs_2[] = { 150 /* version 2 devices */ 151 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT }, 152 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G }, 153 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 154 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG }, 155 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 }, 156 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_PRISM_GT }, 157 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 }, 158 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 }, 159 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 }, 160 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 }, 161 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 }, 162 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 }, 163 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT }, 164 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 }, 165 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 }, 166 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 167 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 }, 168 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G }, 169 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_1 }, 170 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_2 }, 171 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 }, 172 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A } 173 }; 174 175 int 176 upgt_match(struct device *parent, void *match, void *aux) 177 { 178 struct usb_attach_arg *uaa = aux; 179 180 if (uaa->iface == NULL || uaa->configno != UPGT_CONFIG_NO) 181 return (UMATCH_NONE); 182 183 if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL) 184 return (UMATCH_VENDOR_PRODUCT); 185 186 if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL) 187 return (UMATCH_VENDOR_PRODUCT); 188 189 return (UMATCH_NONE); 190 } 191 192 void 193 upgt_attach(struct device *parent, struct device *self, void *aux) 194 { 195 struct upgt_softc *sc = (struct upgt_softc *)self; 196 struct usb_attach_arg *uaa = aux; 197 usb_interface_descriptor_t *id; 198 usb_endpoint_descriptor_t *ed; 199 usbd_status error; 200 int i; 201 202 /* 203 * Attach USB device. 204 */ 205 sc->sc_udev = uaa->device; 206 207 /* check device type */ 208 if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0) 209 return; 210 211 /* get the first interface handle */ 212 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX, 213 &sc->sc_iface); 214 if (error != 0) { 215 printf("%s: could not get interface handle!\n", 216 sc->sc_dev.dv_xname); 217 return; 218 } 219 220 /* find endpoints */ 221 id = usbd_get_interface_descriptor(sc->sc_iface); 222 sc->sc_rx_no = sc->sc_tx_no = -1; 223 for (i = 0; i < id->bNumEndpoints; i++) { 224 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 225 if (ed == NULL) { 226 printf("%s: no endpoint descriptor for iface %d!\n", 227 sc->sc_dev.dv_xname, i); 228 return; 229 } 230 231 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 232 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 233 sc->sc_tx_no = ed->bEndpointAddress; 234 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 235 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 236 sc->sc_rx_no = ed->bEndpointAddress; 237 238 /* 239 * 0x01 TX pipe 240 * 0x81 RX pipe 241 * 242 * Deprecated scheme (not used with fw version >2.5.6.x): 243 * 0x02 TX MGMT pipe 244 * 0x82 TX MGMT pipe 245 */ 246 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1) 247 break; 248 } 249 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 250 printf("%s: missing endpoint!\n", sc->sc_dev.dv_xname); 251 return; 252 } 253 254 /* setup tasks and timeouts */ 255 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 256 USB_TASK_TYPE_GENERIC); 257 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, USB_TASK_TYPE_GENERIC); 258 timeout_set(&sc->scan_to, upgt_next_scan, sc); 259 timeout_set(&sc->led_to, upgt_set_led_blink, sc); 260 261 /* 262 * Open TX and RX USB bulk pipes. 263 */ 264 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 265 &sc->sc_tx_pipeh); 266 if (error != 0) { 267 printf("%s: could not open TX pipe: %s!\n", 268 sc->sc_dev.dv_xname, usbd_errstr(error)); 269 goto fail; 270 } 271 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 272 &sc->sc_rx_pipeh); 273 if (error != 0) { 274 printf("%s: could not open RX pipe: %s!\n", 275 sc->sc_dev.dv_xname, usbd_errstr(error)); 276 goto fail; 277 } 278 279 /* 280 * Allocate TX, RX, and CMD xfers. 281 */ 282 if (upgt_alloc_tx(sc) != 0) 283 goto fail; 284 if (upgt_alloc_rx(sc) != 0) 285 goto fail; 286 if (upgt_alloc_cmd(sc) != 0) 287 goto fail; 288 289 /* 290 * We need the firmware loaded to complete the attach. 291 */ 292 config_mountroot(self, upgt_attach_hook); 293 294 return; 295 fail: 296 printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__); 297 } 298 299 void 300 upgt_attach_hook(struct device *self) 301 { 302 struct upgt_softc *sc = (struct upgt_softc *)self; 303 struct ieee80211com *ic = &sc->sc_ic; 304 struct ifnet *ifp = &ic->ic_if; 305 usbd_status error; 306 int i; 307 308 /* 309 * Load firmware file into memory. 310 */ 311 if (upgt_fw_alloc(sc) != 0) 312 goto fail; 313 314 /* 315 * Initialize the device. 316 */ 317 if (upgt_device_init(sc) != 0) 318 goto fail; 319 320 /* 321 * Verify the firmware. 322 */ 323 if (upgt_fw_verify(sc) != 0) 324 goto fail; 325 326 /* 327 * Calculate device memory space. 328 */ 329 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 330 printf("%s: could not find memory space addresses on FW!\n", 331 sc->sc_dev.dv_xname); 332 goto fail; 333 } 334 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 335 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 336 337 DPRINTF(1, "%s: memory address frame start=0x%08x\n", 338 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start); 339 DPRINTF(1, "%s: memory address frame end=0x%08x\n", 340 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end); 341 DPRINTF(1, "%s: memory address rx start=0x%08x\n", 342 sc->sc_dev.dv_xname, sc->sc_memaddr_rx_start); 343 344 upgt_mem_init(sc); 345 346 /* 347 * Load the firmware. 348 */ 349 if (upgt_fw_load(sc) != 0) 350 goto fail; 351 352 /* 353 * Startup the RX pipe. 354 */ 355 struct upgt_data *data_rx = &sc->rx_data; 356 357 usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, 358 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 359 error = usbd_transfer(data_rx->xfer); 360 if (error != 0 && error != USBD_IN_PROGRESS) { 361 printf("%s: could not queue RX transfer!\n", 362 sc->sc_dev.dv_xname); 363 goto fail; 364 } 365 usbd_delay_ms(sc->sc_udev, 100); 366 367 /* 368 * Read the whole EEPROM content and parse it. 369 */ 370 if (upgt_eeprom_read(sc) != 0) 371 goto fail; 372 if (upgt_eeprom_parse(sc) != 0) 373 goto fail; 374 375 /* 376 * Setup the 802.11 device. 377 */ 378 ic->ic_phytype = IEEE80211_T_OFDM; 379 ic->ic_opmode = IEEE80211_M_STA; 380 ic->ic_state = IEEE80211_S_INIT; 381 ic->ic_caps = 382 IEEE80211_C_MONITOR | 383 IEEE80211_C_SHPREAMBLE | 384 IEEE80211_C_SHSLOT | 385 IEEE80211_C_WEP | 386 IEEE80211_C_RSN; 387 388 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 389 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 390 391 for (i = 1; i <= 14; i++) { 392 ic->ic_channels[i].ic_freq = 393 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 394 ic->ic_channels[i].ic_flags = 395 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 396 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 397 } 398 399 ifp->if_softc = sc; 400 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 401 ifp->if_ioctl = upgt_ioctl; 402 ifp->if_start = upgt_start; 403 ifp->if_watchdog = upgt_watchdog; 404 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 405 406 if_attach(ifp); 407 ieee80211_ifattach(ifp); 408 ic->ic_newassoc = upgt_newassoc; 409 410 sc->sc_newstate = ic->ic_newstate; 411 ic->ic_newstate = upgt_newstate; 412 ieee80211_media_init(ifp, upgt_media_change, ieee80211_media_status); 413 414 #if NBPFILTER > 0 415 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 416 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 417 418 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 419 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 420 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT); 421 422 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 423 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 424 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT); 425 #endif 426 427 printf("%s: address %s\n", 428 sc->sc_dev.dv_xname, ether_sprintf(ic->ic_myaddr)); 429 430 return; 431 fail: 432 printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__); 433 } 434 435 int 436 upgt_detach(struct device *self, int flags) 437 { 438 struct upgt_softc *sc = (struct upgt_softc *)self; 439 struct ifnet *ifp = &sc->sc_ic.ic_if; 440 int s; 441 442 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 443 444 s = splusb(); 445 446 /* abort and close TX / RX pipes */ 447 if (sc->sc_tx_pipeh != NULL) 448 usbd_close_pipe(sc->sc_tx_pipeh); 449 if (sc->sc_rx_pipeh != NULL) 450 usbd_close_pipe(sc->sc_rx_pipeh); 451 452 /* remove tasks and timeouts */ 453 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 454 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 455 if (timeout_initialized(&sc->scan_to)) 456 timeout_del(&sc->scan_to); 457 if (timeout_initialized(&sc->led_to)) 458 timeout_del(&sc->led_to); 459 460 /* free xfers */ 461 upgt_free_tx(sc); 462 upgt_free_rx(sc); 463 upgt_free_cmd(sc); 464 465 /* free firmware */ 466 upgt_fw_free(sc); 467 468 if (ifp->if_softc != NULL) { 469 /* detach interface */ 470 ieee80211_ifdetach(ifp); 471 if_detach(ifp); 472 } 473 474 splx(s); 475 476 return (0); 477 } 478 479 int 480 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product) 481 { 482 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) { 483 sc->sc_device_type = 1; 484 /* XXX */ 485 printf("%s: version 1 devices not supported yet!\n", 486 sc->sc_dev.dv_xname); 487 return (1); 488 } else { 489 sc->sc_device_type = 2; 490 } 491 492 return (0); 493 } 494 495 int 496 upgt_device_init(struct upgt_softc *sc) 497 { 498 struct upgt_data *data_cmd = &sc->cmd_data; 499 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 500 int len; 501 502 len = sizeof(init_cmd); 503 bcopy(init_cmd, data_cmd->buf, len); 504 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 505 printf("%s: could not send device init string!\n", 506 sc->sc_dev.dv_xname); 507 return (EIO); 508 } 509 usbd_delay_ms(sc->sc_udev, 100); 510 511 DPRINTF(1, "%s: device initialized\n", sc->sc_dev.dv_xname); 512 513 return (0); 514 } 515 516 int 517 upgt_mem_init(struct upgt_softc *sc) 518 { 519 int i; 520 521 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 522 sc->sc_memory.page[i].used = 0; 523 524 if (i == 0) { 525 /* 526 * The first memory page is always reserved for 527 * command data. 528 */ 529 sc->sc_memory.page[i].addr = 530 sc->sc_memaddr_frame_start + MCLBYTES; 531 } else { 532 sc->sc_memory.page[i].addr = 533 sc->sc_memory.page[i - 1].addr + MCLBYTES; 534 } 535 536 if (sc->sc_memory.page[i].addr + MCLBYTES >= 537 sc->sc_memaddr_frame_end) 538 break; 539 540 DPRINTF(2, "%s: memory address page %d=0x%08x\n", 541 sc->sc_dev.dv_xname, i, sc->sc_memory.page[i].addr); 542 } 543 544 sc->sc_memory.pages = i; 545 546 DPRINTF(2, "%s: memory pages=%d\n", 547 sc->sc_dev.dv_xname, sc->sc_memory.pages); 548 549 return (0); 550 } 551 552 uint32_t 553 upgt_mem_alloc(struct upgt_softc *sc) 554 { 555 int i; 556 557 for (i = 0; i < sc->sc_memory.pages; i++) { 558 if (sc->sc_memory.page[i].used == 0) { 559 sc->sc_memory.page[i].used = 1; 560 return (sc->sc_memory.page[i].addr); 561 } 562 } 563 564 return (0); 565 } 566 567 void 568 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 569 { 570 int i; 571 572 for (i = 0; i < sc->sc_memory.pages; i++) { 573 if (sc->sc_memory.page[i].addr == addr) { 574 sc->sc_memory.page[i].used = 0; 575 return; 576 } 577 } 578 579 printf("%s: could not free memory address 0x%08x!\n", 580 sc->sc_dev.dv_xname, addr); 581 } 582 583 584 int 585 upgt_fw_alloc(struct upgt_softc *sc) 586 { 587 const char *name = "upgt-gw3887"; 588 int error; 589 590 if (sc->sc_fw == NULL) { 591 error = loadfirmware(name, &sc->sc_fw, &sc->sc_fw_size); 592 if (error != 0) { 593 printf("%s: error %d, could not read firmware %s!\n", 594 sc->sc_dev.dv_xname, error, name); 595 return (EIO); 596 } 597 } 598 599 DPRINTF(1, "%s: firmware %s allocated\n", sc->sc_dev.dv_xname, name); 600 601 return (0); 602 } 603 604 void 605 upgt_fw_free(struct upgt_softc *sc) 606 { 607 if (sc->sc_fw != NULL) { 608 free(sc->sc_fw, M_DEVBUF, sc->sc_fw_size); 609 sc->sc_fw = NULL; 610 DPRINTF(1, "%s: firmware freed\n", sc->sc_dev.dv_xname); 611 } 612 } 613 614 int 615 upgt_fw_verify(struct upgt_softc *sc) 616 { 617 struct upgt_fw_bra_option *bra_option; 618 uint32_t bra_option_type, bra_option_len; 619 uint32_t *uc; 620 int offset, bra_end = 0; 621 622 /* 623 * Seek to beginning of Boot Record Area (BRA). 624 */ 625 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 626 uc = (uint32_t *)(sc->sc_fw + offset); 627 if (*uc == 0) 628 break; 629 } 630 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 631 uc = (uint32_t *)(sc->sc_fw + offset); 632 if (*uc != 0) 633 break; 634 } 635 if (offset == sc->sc_fw_size) { 636 printf("%s: firmware Boot Record Area not found!\n", 637 sc->sc_dev.dv_xname); 638 return (EIO); 639 } 640 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n", 641 sc->sc_dev.dv_xname, offset); 642 643 /* 644 * Parse Boot Record Area (BRA) options. 645 */ 646 while (offset < sc->sc_fw_size && bra_end == 0) { 647 /* get current BRA option */ 648 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset); 649 bra_option_type = letoh32(bra_option->type); 650 bra_option_len = letoh32(bra_option->len) * sizeof(*uc); 651 652 switch (bra_option_type) { 653 case UPGT_BRA_TYPE_FW: 654 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n", 655 sc->sc_dev.dv_xname, bra_option_len); 656 657 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 658 printf("%s: wrong UPGT_BRA_TYPE_FW len!\n", 659 sc->sc_dev.dv_xname); 660 return (EIO); 661 } 662 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data, 663 bra_option_len) == 0) { 664 sc->sc_fw_type = UPGT_FWTYPE_LM86; 665 break; 666 } 667 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data, 668 bra_option_len) == 0) { 669 sc->sc_fw_type = UPGT_FWTYPE_LM87; 670 break; 671 } 672 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data, 673 bra_option_len) == 0) { 674 sc->sc_fw_type = UPGT_FWTYPE_FMAC; 675 break; 676 } 677 printf("%s: unsupported firmware type!\n", 678 sc->sc_dev.dv_xname); 679 return (EIO); 680 case UPGT_BRA_TYPE_VERSION: 681 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n", 682 sc->sc_dev.dv_xname, bra_option_len); 683 break; 684 case UPGT_BRA_TYPE_DEPIF: 685 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n", 686 sc->sc_dev.dv_xname, bra_option_len); 687 break; 688 case UPGT_BRA_TYPE_EXPIF: 689 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n", 690 sc->sc_dev.dv_xname, bra_option_len); 691 break; 692 case UPGT_BRA_TYPE_DESCR: 693 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n", 694 sc->sc_dev.dv_xname, bra_option_len); 695 696 struct upgt_fw_bra_descr *descr = 697 (struct upgt_fw_bra_descr *)bra_option->data; 698 699 sc->sc_memaddr_frame_start = 700 letoh32(descr->memaddr_space_start); 701 sc->sc_memaddr_frame_end = 702 letoh32(descr->memaddr_space_end); 703 704 DPRINTF(2, "%s: memory address space start=0x%08x\n", 705 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start); 706 DPRINTF(2, "%s: memory address space end=0x%08x\n", 707 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end); 708 break; 709 case UPGT_BRA_TYPE_END: 710 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n", 711 sc->sc_dev.dv_xname, bra_option_len); 712 bra_end = 1; 713 break; 714 default: 715 DPRINTF(1, "%s: unknown BRA option len=%d\n", 716 sc->sc_dev.dv_xname, bra_option_len); 717 return (EIO); 718 } 719 720 /* jump to next BRA option */ 721 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 722 } 723 724 DPRINTF(1, "%s: firmware verified\n", sc->sc_dev.dv_xname); 725 726 return (0); 727 } 728 729 int 730 upgt_fw_load(struct upgt_softc *sc) 731 { 732 struct upgt_data *data_cmd = &sc->cmd_data; 733 struct upgt_data *data_rx = &sc->rx_data; 734 char start_fwload_cmd[] = { 0x3c, 0x0d }; 735 int offset, bsize, n, i, len; 736 uint32_t crc32; 737 738 /* send firmware start load command */ 739 len = sizeof(start_fwload_cmd); 740 bcopy(start_fwload_cmd, data_cmd->buf, len); 741 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 742 printf("%s: could not send start_firmware_load command!\n", 743 sc->sc_dev.dv_xname); 744 return (EIO); 745 } 746 747 /* send X2 header */ 748 len = sizeof(struct upgt_fw_x2_header); 749 struct upgt_fw_x2_header *x2 = data_cmd->buf; 750 bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE); 751 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 752 x2->len = htole32(sc->sc_fw_size); 753 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE, 754 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 755 sizeof(uint32_t)); 756 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 757 printf("%s: could not send firmware X2 header!\n", 758 sc->sc_dev.dv_xname); 759 return (EIO); 760 } 761 762 /* download firmware */ 763 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) { 764 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE) 765 bsize = UPGT_FW_BLOCK_SIZE; 766 else 767 bsize = sc->sc_fw_size - offset; 768 769 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize); 770 771 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n", 772 sc->sc_dev.dv_xname, offset, n, bsize); 773 774 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0) 775 != 0) { 776 printf("%s: error while downloading firmware block!\n", 777 sc->sc_dev.dv_xname); 778 return (EIO); 779 } 780 781 bsize = n; 782 } 783 DPRINTF(1, "%s: firmware downloaded\n", sc->sc_dev.dv_xname); 784 785 /* load firmware */ 786 crc32 = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size); 787 *((uint32_t *)(data_cmd->buf) ) = crc32; 788 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 789 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 790 len = 6; 791 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 792 printf("%s: could not send load_firmware command!\n", 793 sc->sc_dev.dv_xname); 794 return (EIO); 795 } 796 797 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) { 798 len = UPGT_FW_BLOCK_SIZE; 799 bzero(data_rx->buf, MCLBYTES); 800 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len, 801 USBD_SHORT_XFER_OK) != 0) { 802 printf("%s: could not read firmware response!\n", 803 sc->sc_dev.dv_xname); 804 return (EIO); 805 } 806 807 if (memcmp(data_rx->buf, "OK", 2) == 0) 808 break; /* firmware load was successful */ 809 } 810 if (i == UPGT_FIRMWARE_TIMEOUT) { 811 printf("%s: firmware load failed!\n", sc->sc_dev.dv_xname); 812 return (EIO); 813 } 814 DPRINTF(1, "%s: firmware loaded\n", sc->sc_dev.dv_xname); 815 816 return (0); 817 } 818 819 /* 820 * While copying the version 2 firmware, we need to replace two characters: 821 * 822 * 0x7e -> 0x7d 0x5e 823 * 0x7d -> 0x7d 0x5d 824 */ 825 int 826 upgt_fw_copy(char *src, char *dst, int size) 827 { 828 int i, j; 829 830 for (i = 0, j = 0; i < size && j < size; i++) { 831 switch (src[i]) { 832 case 0x7e: 833 dst[j] = 0x7d; 834 j++; 835 dst[j] = 0x5e; 836 j++; 837 break; 838 case 0x7d: 839 dst[j] = 0x7d; 840 j++; 841 dst[j] = 0x5d; 842 j++; 843 break; 844 default: 845 dst[j] = src[i]; 846 j++; 847 break; 848 } 849 } 850 851 return (i); 852 } 853 854 int 855 upgt_eeprom_read(struct upgt_softc *sc) 856 { 857 struct upgt_data *data_cmd = &sc->cmd_data; 858 struct upgt_lmac_mem *mem; 859 struct upgt_lmac_eeprom *eeprom; 860 int offset, block, len; 861 862 offset = 0; 863 block = UPGT_EEPROM_BLOCK_SIZE; 864 while (offset < UPGT_EEPROM_SIZE) { 865 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n", 866 sc->sc_dev.dv_xname, offset, block); 867 868 /* 869 * Transmit the URB containing the CMD data. 870 */ 871 bzero(data_cmd->buf, MCLBYTES); 872 873 mem = (struct upgt_lmac_mem *)data_cmd->buf; 874 mem->addr = htole32(sc->sc_memaddr_frame_start + 875 UPGT_MEMSIZE_FRAME_HEAD); 876 877 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 878 eeprom->header1.flags = 0; 879 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 880 eeprom->header1.len = htole16(( 881 sizeof(struct upgt_lmac_eeprom) - 882 sizeof(struct upgt_lmac_header)) + block); 883 884 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 885 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 886 eeprom->header2.flags = 0; 887 888 eeprom->offset = htole16(offset); 889 eeprom->len = htole16(block); 890 891 len = sizeof(*mem) + sizeof(*eeprom) + block; 892 893 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 894 len - sizeof(*mem)); 895 896 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 897 USBD_FORCE_SHORT_XFER) != 0) { 898 printf("%s: could not transmit EEPROM data URB!\n", 899 sc->sc_dev.dv_xname); 900 return (EIO); 901 } 902 if (tsleep_nsec(sc, 0, "eeprom_request", 903 MSEC_TO_NSEC(UPGT_USB_TIMEOUT))) { 904 printf("%s: timeout while waiting for EEPROM data!\n", 905 sc->sc_dev.dv_xname); 906 return (EIO); 907 } 908 909 offset += block; 910 if (UPGT_EEPROM_SIZE - offset < block) 911 block = UPGT_EEPROM_SIZE - offset; 912 } 913 914 return (0); 915 } 916 917 int 918 upgt_eeprom_parse(struct upgt_softc *sc) 919 { 920 struct ieee80211com *ic = &sc->sc_ic; 921 struct upgt_eeprom_header *eeprom_header; 922 struct upgt_eeprom_option *eeprom_option; 923 uint16_t option_len; 924 uint16_t option_type; 925 uint16_t preamble_len; 926 int option_end = 0; 927 928 /* calculate eeprom options start offset */ 929 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 930 preamble_len = letoh16(eeprom_header->preamble_len); 931 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 932 (sizeof(struct upgt_eeprom_header) + preamble_len)); 933 934 while (!option_end) { 935 /* the eeprom option length is stored in words */ 936 option_len = 937 (letoh16(eeprom_option->len) - 1) * sizeof(uint16_t); 938 option_type = 939 letoh16(eeprom_option->type); 940 941 switch (option_type) { 942 case UPGT_EEPROM_TYPE_NAME: 943 DPRINTF(1, "%s: EEPROM name len=%d\n", 944 sc->sc_dev.dv_xname, option_len); 945 break; 946 case UPGT_EEPROM_TYPE_SERIAL: 947 DPRINTF(1, "%s: EEPROM serial len=%d\n", 948 sc->sc_dev.dv_xname, option_len); 949 break; 950 case UPGT_EEPROM_TYPE_MAC: 951 DPRINTF(1, "%s: EEPROM mac len=%d\n", 952 sc->sc_dev.dv_xname, option_len); 953 954 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data); 955 break; 956 case UPGT_EEPROM_TYPE_HWRX: 957 DPRINTF(1, "%s: EEPROM hwrx len=%d\n", 958 sc->sc_dev.dv_xname, option_len); 959 960 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 961 break; 962 case UPGT_EEPROM_TYPE_CHIP: 963 DPRINTF(1, "%s: EEPROM chip len=%d\n", 964 sc->sc_dev.dv_xname, option_len); 965 break; 966 case UPGT_EEPROM_TYPE_FREQ3: 967 DPRINTF(1, "%s: EEPROM freq3 len=%d\n", 968 sc->sc_dev.dv_xname, option_len); 969 970 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 971 option_len); 972 break; 973 case UPGT_EEPROM_TYPE_FREQ4: 974 DPRINTF(1, "%s: EEPROM freq4 len=%d\n", 975 sc->sc_dev.dv_xname, option_len); 976 977 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 978 option_len); 979 break; 980 case UPGT_EEPROM_TYPE_FREQ5: 981 DPRINTF(1, "%s: EEPROM freq5 len=%d\n", 982 sc->sc_dev.dv_xname, option_len); 983 break; 984 case UPGT_EEPROM_TYPE_FREQ6: 985 DPRINTF(1, "%s: EEPROM freq6 len=%d\n", 986 sc->sc_dev.dv_xname, option_len); 987 988 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 989 option_len); 990 break; 991 case UPGT_EEPROM_TYPE_END: 992 DPRINTF(1, "%s: EEPROM end len=%d\n", 993 sc->sc_dev.dv_xname, option_len); 994 option_end = 1; 995 break; 996 case UPGT_EEPROM_TYPE_OFF: 997 DPRINTF(1, "%s: EEPROM off without end option!\n", 998 sc->sc_dev.dv_xname); 999 return (EIO); 1000 default: 1001 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n", 1002 sc->sc_dev.dv_xname, option_type, option_len); 1003 break; 1004 } 1005 1006 /* jump to next EEPROM option */ 1007 eeprom_option = (struct upgt_eeprom_option *) 1008 (eeprom_option->data + option_len); 1009 } 1010 1011 return (0); 1012 } 1013 1014 void 1015 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1016 { 1017 struct upgt_eeprom_option_hwrx *option_hwrx; 1018 1019 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1020 1021 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1022 1023 DPRINTF(2, "%s: hwrx option value=0x%04x\n", 1024 sc->sc_dev.dv_xname, sc->sc_eeprom_hwrx); 1025 } 1026 1027 void 1028 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1029 { 1030 struct upgt_eeprom_freq3_header *freq3_header; 1031 struct upgt_lmac_freq3 *freq3; 1032 int i, elements, flags; 1033 unsigned channel; 1034 1035 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1036 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1037 1038 flags = freq3_header->flags; 1039 elements = freq3_header->elements; 1040 1041 DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags); 1042 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1043 1044 for (i = 0; i < elements; i++) { 1045 channel = ieee80211_mhz2ieee(letoh16(freq3[i].freq), 0); 1046 1047 sc->sc_eeprom_freq3[channel] = freq3[i]; 1048 1049 DPRINTF(2, "%s: frequency=%d, channel=%d\n", 1050 sc->sc_dev.dv_xname, 1051 letoh16(sc->sc_eeprom_freq3[channel].freq), channel); 1052 } 1053 } 1054 1055 void 1056 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1057 { 1058 struct upgt_eeprom_freq4_header *freq4_header; 1059 struct upgt_eeprom_freq4_1 *freq4_1; 1060 struct upgt_eeprom_freq4_2 *freq4_2; 1061 int i, j, elements, settings, flags; 1062 unsigned channel; 1063 1064 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1065 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1066 1067 flags = freq4_header->flags; 1068 elements = freq4_header->elements; 1069 settings = freq4_header->settings; 1070 1071 /* we need this value later */ 1072 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1073 1074 DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags); 1075 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1076 DPRINTF(2, "%s: settings=%d\n", sc->sc_dev.dv_xname, settings); 1077 1078 for (i = 0; i < elements; i++) { 1079 channel = ieee80211_mhz2ieee(letoh16(freq4_1[i].freq), 0); 1080 1081 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1082 1083 for (j = 0; j < settings; j++) { 1084 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1085 sc->sc_eeprom_freq4[channel][j].pad = 0; 1086 } 1087 1088 DPRINTF(2, "%s: frequency=%d, channel=%d\n", 1089 sc->sc_dev.dv_xname, 1090 letoh16(freq4_1[i].freq), channel); 1091 } 1092 } 1093 1094 void 1095 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1096 { 1097 struct upgt_lmac_freq6 *freq6; 1098 int i, elements; 1099 unsigned channel; 1100 1101 freq6 = (struct upgt_lmac_freq6 *)data; 1102 1103 elements = len / sizeof(struct upgt_lmac_freq6); 1104 1105 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1106 1107 for (i = 0; i < elements; i++) { 1108 channel = ieee80211_mhz2ieee(letoh16(freq6[i].freq), 0); 1109 1110 sc->sc_eeprom_freq6[channel] = freq6[i]; 1111 1112 DPRINTF(2, "%s: frequency=%d, channel=%d\n", 1113 sc->sc_dev.dv_xname, 1114 letoh16(sc->sc_eeprom_freq6[channel].freq), channel); 1115 } 1116 } 1117 1118 int 1119 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1120 { 1121 struct upgt_softc *sc = ifp->if_softc; 1122 struct ieee80211com *ic = &sc->sc_ic; 1123 int s, error = 0; 1124 uint8_t chan; 1125 1126 s = splnet(); 1127 1128 switch (cmd) { 1129 case SIOCSIFADDR: 1130 ifp->if_flags |= IFF_UP; 1131 /* FALLTHROUGH */ 1132 case SIOCSIFFLAGS: 1133 if (ifp->if_flags & IFF_UP) { 1134 if ((ifp->if_flags & IFF_RUNNING) == 0) 1135 upgt_init(ifp); 1136 } else { 1137 if (ifp->if_flags & IFF_RUNNING) 1138 upgt_stop(sc); 1139 } 1140 break; 1141 case SIOCS80211CHANNEL: 1142 /* allow fast channel switching in monitor mode */ 1143 error = ieee80211_ioctl(ifp, cmd, data); 1144 if (error == ENETRESET && 1145 ic->ic_opmode == IEEE80211_M_MONITOR) { 1146 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1147 (IFF_UP | IFF_RUNNING)) { 1148 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1149 chan = ieee80211_chan2ieee(ic, 1150 ic->ic_bss->ni_chan); 1151 upgt_set_channel(sc, chan); 1152 } 1153 error = 0; 1154 } 1155 break; 1156 default: 1157 error = ieee80211_ioctl(ifp, cmd, data); 1158 break; 1159 } 1160 1161 if (error == ENETRESET) { 1162 if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) 1163 upgt_init(ifp); 1164 error = 0; 1165 } 1166 1167 splx(s); 1168 1169 return (error); 1170 } 1171 1172 int 1173 upgt_init(struct ifnet *ifp) 1174 { 1175 struct upgt_softc *sc = ifp->if_softc; 1176 struct ieee80211com *ic = &sc->sc_ic; 1177 1178 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1179 1180 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 1181 1182 /* select default channel */ 1183 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1184 sc->sc_cur_chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1185 1186 /* setup device rates */ 1187 upgt_setup_rates(sc); 1188 1189 ifp->if_flags |= IFF_RUNNING; 1190 ifq_clr_oactive(&ifp->if_snd); 1191 1192 upgt_set_macfilter(sc, IEEE80211_S_SCAN); 1193 1194 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 1195 upgt_set_channel(sc, sc->sc_cur_chan); 1196 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1197 } else 1198 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1199 1200 return (0); 1201 } 1202 1203 void 1204 upgt_stop(struct upgt_softc *sc) 1205 { 1206 struct ieee80211com *ic = &sc->sc_ic; 1207 struct ifnet *ifp = &ic->ic_if; 1208 1209 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1210 1211 /* device down */ 1212 ifp->if_timer = 0; 1213 ifp->if_flags &= ~IFF_RUNNING; 1214 ifq_clr_oactive(&ifp->if_snd); 1215 1216 upgt_set_led(sc, UPGT_LED_OFF); 1217 1218 /* change device back to initial state */ 1219 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1220 } 1221 1222 int 1223 upgt_media_change(struct ifnet *ifp) 1224 { 1225 struct upgt_softc *sc = ifp->if_softc; 1226 int error; 1227 1228 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1229 1230 if ((error = ieee80211_media_change(ifp)) != ENETRESET) 1231 return (error); 1232 1233 if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1234 /* give pending USB transfers a chance to finish */ 1235 usbd_delay_ms(sc->sc_udev, 100); 1236 upgt_init(ifp); 1237 } 1238 1239 return (error); 1240 } 1241 1242 void 1243 upgt_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 1244 { 1245 ni->ni_txrate = 0; 1246 } 1247 1248 int 1249 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1250 { 1251 struct upgt_softc *sc = ic->ic_if.if_softc; 1252 1253 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 1254 timeout_del(&sc->scan_to); 1255 1256 /* do it in a process context */ 1257 sc->sc_state = nstate; 1258 sc->sc_arg = arg; 1259 usb_add_task(sc->sc_udev, &sc->sc_task_newstate); 1260 1261 return (0); 1262 } 1263 1264 void 1265 upgt_newstate_task(void *arg) 1266 { 1267 struct upgt_softc *sc = arg; 1268 struct ieee80211com *ic = &sc->sc_ic; 1269 struct ieee80211_node *ni; 1270 unsigned channel; 1271 1272 switch (sc->sc_state) { 1273 case IEEE80211_S_INIT: 1274 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n", 1275 sc->sc_dev.dv_xname); 1276 1277 /* do not accept any frames if the device is down */ 1278 upgt_set_macfilter(sc, IEEE80211_S_INIT); 1279 upgt_set_led(sc, UPGT_LED_OFF); 1280 break; 1281 case IEEE80211_S_SCAN: 1282 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n", 1283 sc->sc_dev.dv_xname); 1284 1285 channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1286 upgt_set_channel(sc, channel); 1287 timeout_add_msec(&sc->scan_to, 200); 1288 break; 1289 case IEEE80211_S_AUTH: 1290 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n", 1291 sc->sc_dev.dv_xname); 1292 1293 channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1294 upgt_set_channel(sc, channel); 1295 break; 1296 case IEEE80211_S_ASSOC: 1297 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n", 1298 sc->sc_dev.dv_xname); 1299 break; 1300 case IEEE80211_S_RUN: 1301 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n", 1302 sc->sc_dev.dv_xname); 1303 1304 ni = ic->ic_bss; 1305 1306 /* 1307 * TX rate control is done by the firmware. 1308 * Report the maximum rate which is available therefore. 1309 */ 1310 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 1311 1312 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1313 upgt_set_macfilter(sc, IEEE80211_S_RUN); 1314 upgt_set_led(sc, UPGT_LED_ON); 1315 break; 1316 } 1317 1318 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 1319 } 1320 1321 void 1322 upgt_next_scan(void *arg) 1323 { 1324 struct upgt_softc *sc = arg; 1325 struct ieee80211com *ic = &sc->sc_ic; 1326 struct ifnet *ifp = &ic->ic_if; 1327 1328 DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1329 1330 if (ic->ic_state == IEEE80211_S_SCAN) 1331 ieee80211_next_scan(ifp); 1332 } 1333 1334 void 1335 upgt_start(struct ifnet *ifp) 1336 { 1337 struct upgt_softc *sc = ifp->if_softc; 1338 struct ieee80211com *ic = &sc->sc_ic; 1339 struct ieee80211_node *ni; 1340 struct mbuf *m; 1341 int i; 1342 1343 /* don't transmit packets if interface is busy or down */ 1344 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 1345 return; 1346 1347 DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1348 1349 for (i = 0; i < UPGT_TX_COUNT; i++) { 1350 struct upgt_data *data_tx = &sc->tx_data[i]; 1351 1352 m = mq_dequeue(&ic->ic_mgtq); 1353 if (m != NULL) { 1354 /* management frame */ 1355 ni = m->m_pkthdr.ph_cookie; 1356 #if NBPFILTER > 0 1357 if (ic->ic_rawbpf != NULL) 1358 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 1359 #endif 1360 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1361 printf("%s: no free prism memory!\n", 1362 sc->sc_dev.dv_xname); 1363 return; 1364 } 1365 data_tx->ni = ni; 1366 data_tx->m = m; 1367 sc->tx_queued++; 1368 } else { 1369 /* data frame */ 1370 if (ic->ic_state != IEEE80211_S_RUN) 1371 break; 1372 1373 m = ifq_dequeue(&ifp->if_snd); 1374 if (m == NULL) 1375 break; 1376 1377 #if NBPFILTER > 0 1378 if (ifp->if_bpf != NULL) 1379 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 1380 #endif 1381 m = ieee80211_encap(ifp, m, &ni); 1382 if (m == NULL) 1383 continue; 1384 #if NBPFILTER > 0 1385 if (ic->ic_rawbpf != NULL) 1386 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 1387 #endif 1388 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1389 printf("%s: no free prism memory!\n", 1390 sc->sc_dev.dv_xname); 1391 return; 1392 } 1393 data_tx->ni = ni; 1394 data_tx->m = m; 1395 sc->tx_queued++; 1396 } 1397 } 1398 1399 if (sc->tx_queued > 0) { 1400 DPRINTF(2, "%s: tx_queued=%d\n", 1401 sc->sc_dev.dv_xname, sc->tx_queued); 1402 /* process the TX queue in process context */ 1403 ifp->if_timer = 5; 1404 ifq_set_oactive(&ifp->if_snd); 1405 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 1406 usb_add_task(sc->sc_udev, &sc->sc_task_tx); 1407 } 1408 } 1409 1410 void 1411 upgt_watchdog(struct ifnet *ifp) 1412 { 1413 struct upgt_softc *sc = ifp->if_softc; 1414 struct ieee80211com *ic = &sc->sc_ic; 1415 1416 if (ic->ic_state == IEEE80211_S_INIT) 1417 return; 1418 1419 printf("%s: watchdog timeout!\n", sc->sc_dev.dv_xname); 1420 1421 /* TODO: what shall we do on TX timeout? */ 1422 1423 ieee80211_watchdog(ifp); 1424 } 1425 1426 void 1427 upgt_tx_task(void *arg) 1428 { 1429 struct upgt_softc *sc = arg; 1430 struct ieee80211com *ic = &sc->sc_ic; 1431 struct ieee80211_frame *wh; 1432 struct ieee80211_key *k; 1433 struct upgt_lmac_mem *mem; 1434 struct upgt_lmac_tx_desc *txdesc; 1435 struct mbuf *m; 1436 uint32_t addr; 1437 int len, i, s; 1438 usbd_status error; 1439 1440 s = splusb(); 1441 1442 upgt_set_led(sc, UPGT_LED_BLINK); 1443 1444 for (i = 0; i < UPGT_TX_COUNT; i++) { 1445 struct upgt_data *data_tx = &sc->tx_data[i]; 1446 1447 if (data_tx->m == NULL) { 1448 DPRINTF(2, "%s: %d: m is NULL\n", 1449 sc->sc_dev.dv_xname, i); 1450 continue; 1451 } 1452 1453 m = data_tx->m; 1454 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD; 1455 1456 /* 1457 * Software crypto. 1458 */ 1459 wh = mtod(m, struct ieee80211_frame *); 1460 1461 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1462 k = ieee80211_get_txkey(ic, wh, ic->ic_bss); 1463 1464 if ((m = ieee80211_encrypt(ic, m, k)) == NULL) { 1465 splx(s); 1466 return; 1467 } 1468 1469 /* in case packet header moved, reset pointer */ 1470 wh = mtod(m, struct ieee80211_frame *); 1471 } 1472 1473 /* 1474 * Transmit the URB containing the TX data. 1475 */ 1476 bzero(data_tx->buf, MCLBYTES); 1477 1478 mem = (struct upgt_lmac_mem *)data_tx->buf; 1479 mem->addr = htole32(addr); 1480 1481 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 1482 1483 /* XXX differ between data and mgmt frames? */ 1484 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 1485 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 1486 txdesc->header1.len = htole16(m->m_pkthdr.len); 1487 1488 txdesc->header2.reqid = htole32(data_tx->addr); 1489 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 1490 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 1491 1492 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1493 IEEE80211_FC0_TYPE_MGT) { 1494 /* always send mgmt frames at lowest rate (DS1) */ 1495 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 1496 } else { 1497 bcopy(sc->sc_cur_rateset, txdesc->rates, 1498 sizeof(txdesc->rates)); 1499 } 1500 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 1501 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 1502 1503 #if NBPFILTER > 0 1504 if (sc->sc_drvbpf != NULL) { 1505 struct mbuf mb; 1506 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 1507 1508 tap->wt_flags = 0; 1509 tap->wt_rate = 0; /* TODO: where to get from? */ 1510 tap->wt_chan_freq = 1511 htole16(ic->ic_bss->ni_chan->ic_freq); 1512 tap->wt_chan_flags = 1513 htole16(ic->ic_bss->ni_chan->ic_flags); 1514 1515 mb.m_data = (caddr_t)tap; 1516 mb.m_len = sc->sc_txtap_len; 1517 mb.m_next = m; 1518 mb.m_nextpkt = NULL; 1519 mb.m_type = 0; 1520 mb.m_flags = 0; 1521 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 1522 } 1523 #endif 1524 /* copy frame below our TX descriptor header */ 1525 m_copydata(m, 0, m->m_pkthdr.len, 1526 data_tx->buf + (sizeof(*mem) + sizeof(*txdesc))); 1527 1528 /* calculate frame size */ 1529 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 1530 1531 /* we need to align the frame to a 4 byte boundary */ 1532 len = (len + 3) & ~3; 1533 1534 /* calculate frame checksum */ 1535 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, 1536 len - sizeof(*mem)); 1537 1538 /* we do not need the mbuf anymore */ 1539 m_freem(m); 1540 data_tx->m = NULL; 1541 1542 DPRINTF(2, "%s: TX start data sending\n", sc->sc_dev.dv_xname); 1543 1544 usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx, 1545 data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1546 UPGT_USB_TIMEOUT, NULL); 1547 error = usbd_transfer(data_tx->xfer); 1548 if (error != 0 && error != USBD_IN_PROGRESS) { 1549 printf("%s: could not transmit TX data URB!\n", 1550 sc->sc_dev.dv_xname); 1551 splx(s); 1552 return; 1553 } 1554 1555 DPRINTF(2, "%s: TX sent (%d bytes)\n", 1556 sc->sc_dev.dv_xname, len); 1557 } 1558 1559 /* 1560 * If we don't regularly read the device statistics, the RX queue 1561 * will stall. It's strange, but it works, so we keep reading 1562 * the statistics here. *shrug* 1563 */ 1564 upgt_get_stats(sc); 1565 1566 splx(s); 1567 } 1568 1569 void 1570 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1571 { 1572 struct ieee80211com *ic = &sc->sc_ic; 1573 struct ifnet *ifp = &ic->ic_if; 1574 struct upgt_lmac_tx_done_desc *desc; 1575 int i, s; 1576 1577 s = splnet(); 1578 1579 desc = (struct upgt_lmac_tx_done_desc *)data; 1580 1581 for (i = 0; i < UPGT_TX_COUNT; i++) { 1582 struct upgt_data *data_tx = &sc->tx_data[i]; 1583 1584 if (data_tx->addr == letoh32(desc->header2.reqid)) { 1585 upgt_mem_free(sc, data_tx->addr); 1586 ieee80211_release_node(ic, data_tx->ni); 1587 data_tx->ni = NULL; 1588 data_tx->addr = 0; 1589 1590 sc->tx_queued--; 1591 1592 DPRINTF(2, "%s: TX done: ", sc->sc_dev.dv_xname); 1593 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1594 letoh32(desc->header2.reqid), 1595 letoh16(desc->status), 1596 letoh16(desc->rssi)); 1597 DPRINTF(2, "seq=%d\n", letoh16(desc->seq)); 1598 break; 1599 } 1600 } 1601 1602 if (sc->tx_queued == 0) { 1603 /* TX queued was processed, continue */ 1604 ifp->if_timer = 0; 1605 ifq_clr_oactive(&ifp->if_snd); 1606 upgt_start(ifp); 1607 } 1608 1609 splx(s); 1610 } 1611 1612 void 1613 upgt_rx_cb(struct usbd_xfer *xfer, void *priv, usbd_status status) 1614 { 1615 struct upgt_data *data_rx = priv; 1616 struct upgt_softc *sc = data_rx->sc; 1617 int len; 1618 struct upgt_lmac_header *header; 1619 struct upgt_lmac_eeprom *eeprom; 1620 uint8_t h1_type; 1621 uint16_t h2_type; 1622 1623 DPRINTF(3, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1624 1625 if (status != USBD_NORMAL_COMPLETION) { 1626 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1627 return; 1628 if (status == USBD_STALLED) 1629 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 1630 goto skip; 1631 } 1632 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 1633 1634 /* 1635 * Check what type of frame came in. 1636 */ 1637 header = (struct upgt_lmac_header *)(data_rx->buf + 4); 1638 1639 h1_type = header->header1.type; 1640 h2_type = letoh16(header->header2.type); 1641 1642 if (h1_type == UPGT_H1_TYPE_CTRL && 1643 h2_type == UPGT_H2_TYPE_EEPROM) { 1644 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4); 1645 uint16_t eeprom_offset = letoh16(eeprom->offset); 1646 uint16_t eeprom_len = letoh16(eeprom->len); 1647 1648 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n", 1649 sc->sc_dev.dv_xname, eeprom_offset, eeprom_len); 1650 1651 bcopy(data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1652 sc->sc_eeprom + eeprom_offset, eeprom_len); 1653 1654 /* EEPROM data has arrived in time, wakeup tsleep() */ 1655 wakeup(sc); 1656 } else 1657 if (h1_type == UPGT_H1_TYPE_CTRL && 1658 h2_type == UPGT_H2_TYPE_TX_DONE) { 1659 DPRINTF(2, "%s: received 802.11 TX done\n", 1660 sc->sc_dev.dv_xname); 1661 1662 upgt_tx_done(sc, data_rx->buf + 4); 1663 } else 1664 if (h1_type == UPGT_H1_TYPE_RX_DATA || 1665 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1666 DPRINTF(3, "%s: received 802.11 RX data\n", 1667 sc->sc_dev.dv_xname); 1668 1669 upgt_rx(sc, data_rx->buf + 4, letoh16(header->header1.len)); 1670 } else 1671 if (h1_type == UPGT_H1_TYPE_CTRL && 1672 h2_type == UPGT_H2_TYPE_STATS) { 1673 DPRINTF(2, "%s: received statistic data\n", 1674 sc->sc_dev.dv_xname); 1675 1676 /* TODO: what could we do with the statistic data? */ 1677 } else { 1678 /* ignore unknown frame types */ 1679 DPRINTF(1, "%s: received unknown frame type 0x%02x\n", 1680 sc->sc_dev.dv_xname, header->header1.type); 1681 } 1682 1683 skip: /* setup new transfer */ 1684 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES, 1685 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 1686 (void)usbd_transfer(xfer); 1687 } 1688 1689 void 1690 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen) 1691 { 1692 struct ieee80211com *ic = &sc->sc_ic; 1693 struct ifnet *ifp = &ic->ic_if; 1694 struct upgt_lmac_rx_desc *rxdesc; 1695 struct ieee80211_frame *wh; 1696 struct ieee80211_rxinfo rxi; 1697 struct ieee80211_node *ni; 1698 struct mbuf *m; 1699 int s; 1700 1701 /* access RX packet descriptor */ 1702 rxdesc = (struct upgt_lmac_rx_desc *)data; 1703 1704 /* create mbuf which is suitable for strict alignment archs */ 1705 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN); 1706 if (m == NULL) { 1707 DPRINTF(1, "%s: could not create RX mbuf!\n", sc->sc_dev.dv_xname); 1708 ifp->if_ierrors++; 1709 return; 1710 } 1711 1712 s = splnet(); 1713 1714 #if NBPFILTER > 0 1715 if (sc->sc_drvbpf != NULL) { 1716 struct mbuf mb; 1717 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1718 1719 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1720 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1721 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1722 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1723 tap->wr_antsignal = rxdesc->rssi; 1724 1725 mb.m_data = (caddr_t)tap; 1726 mb.m_len = sc->sc_rxtap_len; 1727 mb.m_next = m; 1728 mb.m_nextpkt = NULL; 1729 mb.m_type = 0; 1730 mb.m_flags = 0; 1731 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 1732 } 1733 #endif 1734 /* trim FCS */ 1735 m_adj(m, -IEEE80211_CRC_LEN); 1736 1737 wh = mtod(m, struct ieee80211_frame *); 1738 ni = ieee80211_find_rxnode(ic, wh); 1739 1740 /* push the frame up to the 802.11 stack */ 1741 memset(&rxi, 0, sizeof(rxi)); 1742 rxi.rxi_flags = 0; 1743 rxi.rxi_rssi = rxdesc->rssi; 1744 ieee80211_input(ifp, m, ni, &rxi); 1745 1746 /* node is no longer needed */ 1747 ieee80211_release_node(ic, ni); 1748 1749 splx(s); 1750 1751 DPRINTF(3, "%s: RX done\n", sc->sc_dev.dv_xname); 1752 } 1753 1754 void 1755 upgt_setup_rates(struct upgt_softc *sc) 1756 { 1757 struct ieee80211com *ic = &sc->sc_ic; 1758 1759 /* 1760 * 0x01 = OFMD6 0x10 = DS1 1761 * 0x04 = OFDM9 0x11 = DS2 1762 * 0x06 = OFDM12 0x12 = DS5 1763 * 0x07 = OFDM18 0x13 = DS11 1764 * 0x08 = OFDM24 1765 * 0x09 = OFDM36 1766 * 0x0a = OFDM48 1767 * 0x0b = OFDM54 1768 */ 1769 const uint8_t rateset_auto_11b[] = 1770 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 1771 const uint8_t rateset_auto_11g[] = 1772 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 1773 const uint8_t rateset_fix_11bg[] = 1774 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 1775 0x08, 0x09, 0x0a, 0x0b }; 1776 1777 if (ic->ic_fixed_rate == -1) { 1778 /* 1779 * Automatic rate control is done by the device. 1780 * We just pass the rateset from which the device 1781 * will pickup a rate. 1782 */ 1783 if (ic->ic_curmode == IEEE80211_MODE_11B) 1784 bcopy(rateset_auto_11b, sc->sc_cur_rateset, 1785 sizeof(sc->sc_cur_rateset)); 1786 if (ic->ic_curmode == IEEE80211_MODE_11G || 1787 ic->ic_curmode == IEEE80211_MODE_AUTO) 1788 bcopy(rateset_auto_11g, sc->sc_cur_rateset, 1789 sizeof(sc->sc_cur_rateset)); 1790 } else { 1791 /* set a fixed rate */ 1792 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate], 1793 sizeof(sc->sc_cur_rateset)); 1794 } 1795 } 1796 1797 uint8_t 1798 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1799 { 1800 struct ieee80211com *ic = &sc->sc_ic; 1801 1802 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1803 if (rate < 0 || rate > 3) 1804 /* invalid rate */ 1805 return (0); 1806 1807 switch (rate) { 1808 case 0: 1809 return (2); 1810 case 1: 1811 return (4); 1812 case 2: 1813 return (11); 1814 case 3: 1815 return (22); 1816 default: 1817 return (0); 1818 } 1819 } 1820 1821 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1822 if (rate < 0 || rate > 11) 1823 /* invalid rate */ 1824 return (0); 1825 1826 switch (rate) { 1827 case 0: 1828 return (2); 1829 case 1: 1830 return (4); 1831 case 2: 1832 return (11); 1833 case 3: 1834 return (22); 1835 case 4: 1836 return (12); 1837 case 5: 1838 return (18); 1839 case 6: 1840 return (24); 1841 case 7: 1842 return (36); 1843 case 8: 1844 return (48); 1845 case 9: 1846 return (72); 1847 case 10: 1848 return (96); 1849 case 11: 1850 return (108); 1851 default: 1852 return (0); 1853 } 1854 } 1855 1856 return (0); 1857 } 1858 1859 int 1860 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 1861 { 1862 struct ieee80211com *ic = &sc->sc_ic; 1863 struct ieee80211_node *ni = ic->ic_bss; 1864 struct upgt_data *data_cmd = &sc->cmd_data; 1865 struct upgt_lmac_mem *mem; 1866 struct upgt_lmac_filter *filter; 1867 int len; 1868 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1869 1870 /* 1871 * Transmit the URB containing the CMD data. 1872 */ 1873 bzero(data_cmd->buf, MCLBYTES); 1874 1875 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1876 mem->addr = htole32(sc->sc_memaddr_frame_start + 1877 UPGT_MEMSIZE_FRAME_HEAD); 1878 1879 filter = (struct upgt_lmac_filter *)(mem + 1); 1880 1881 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 1882 filter->header1.type = UPGT_H1_TYPE_CTRL; 1883 filter->header1.len = htole16( 1884 sizeof(struct upgt_lmac_filter) - 1885 sizeof(struct upgt_lmac_header)); 1886 1887 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1888 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 1889 filter->header2.flags = 0; 1890 1891 switch (state) { 1892 case IEEE80211_S_INIT: 1893 DPRINTF(1, "%s: set MAC filter to INIT\n", 1894 sc->sc_dev.dv_xname); 1895 1896 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 1897 break; 1898 case IEEE80211_S_SCAN: 1899 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n", 1900 sc->sc_dev.dv_xname, ether_sprintf(broadcast)); 1901 1902 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 1903 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 1904 IEEE80211_ADDR_COPY(filter->src, broadcast); 1905 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 1906 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 1907 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 1908 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 1909 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 1910 break; 1911 case IEEE80211_S_RUN: 1912 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n", 1913 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid)); 1914 1915 filter->type = htole16(UPGT_FILTER_TYPE_STA); 1916 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 1917 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 1918 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 1919 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 1920 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 1921 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 1922 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 1923 break; 1924 default: 1925 printf("%s: MAC filter does not know that state!\n", 1926 sc->sc_dev.dv_xname); 1927 break; 1928 } 1929 1930 len = sizeof(*mem) + sizeof(*filter); 1931 1932 mem->chksum = upgt_chksum_le((uint32_t *)filter, 1933 len - sizeof(*mem)); 1934 1935 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 1936 printf("%s: could not transmit macfilter CMD data URB!\n", 1937 sc->sc_dev.dv_xname); 1938 return (EIO); 1939 } 1940 1941 return (0); 1942 } 1943 1944 int 1945 upgt_set_channel(struct upgt_softc *sc, unsigned channel) 1946 { 1947 struct upgt_data *data_cmd = &sc->cmd_data; 1948 struct upgt_lmac_mem *mem; 1949 struct upgt_lmac_channel *chan; 1950 int len; 1951 1952 DPRINTF(1, "%s: %s: %d\n", sc->sc_dev.dv_xname, __func__, channel); 1953 1954 /* 1955 * Transmit the URB containing the CMD data. 1956 */ 1957 bzero(data_cmd->buf, MCLBYTES); 1958 1959 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1960 mem->addr = htole32(sc->sc_memaddr_frame_start + 1961 UPGT_MEMSIZE_FRAME_HEAD); 1962 1963 chan = (struct upgt_lmac_channel *)(mem + 1); 1964 1965 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 1966 chan->header1.type = UPGT_H1_TYPE_CTRL; 1967 chan->header1.len = htole16( 1968 sizeof(struct upgt_lmac_channel) - 1969 sizeof(struct upgt_lmac_header)); 1970 1971 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1972 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 1973 chan->header2.flags = 0; 1974 1975 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 1976 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 1977 chan->freq6 = sc->sc_eeprom_freq6[channel]; 1978 chan->settings = sc->sc_eeprom_freq6_settings; 1979 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 1980 1981 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1, 1982 sizeof(chan->freq3_1)); 1983 1984 bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4, 1985 sizeof(sc->sc_eeprom_freq4[channel])); 1986 1987 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2, 1988 sizeof(chan->freq3_2)); 1989 1990 len = sizeof(*mem) + sizeof(*chan); 1991 1992 mem->chksum = upgt_chksum_le((uint32_t *)chan, 1993 len - sizeof(*mem)); 1994 1995 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 1996 printf("%s: could not transmit channel CMD data URB!\n", 1997 sc->sc_dev.dv_xname); 1998 return (EIO); 1999 } 2000 2001 return (0); 2002 } 2003 2004 void 2005 upgt_set_led(struct upgt_softc *sc, int action) 2006 { 2007 struct ieee80211com *ic = &sc->sc_ic; 2008 struct upgt_data *data_cmd = &sc->cmd_data; 2009 struct upgt_lmac_mem *mem; 2010 struct upgt_lmac_led *led; 2011 int len; 2012 2013 /* 2014 * Transmit the URB containing the CMD data. 2015 */ 2016 bzero(data_cmd->buf, MCLBYTES); 2017 2018 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2019 mem->addr = htole32(sc->sc_memaddr_frame_start + 2020 UPGT_MEMSIZE_FRAME_HEAD); 2021 2022 led = (struct upgt_lmac_led *)(mem + 1); 2023 2024 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2025 led->header1.type = UPGT_H1_TYPE_CTRL; 2026 led->header1.len = htole16( 2027 sizeof(struct upgt_lmac_led) - 2028 sizeof(struct upgt_lmac_header)); 2029 2030 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2031 led->header2.type = htole16(UPGT_H2_TYPE_LED); 2032 led->header2.flags = 0; 2033 2034 switch (action) { 2035 case UPGT_LED_OFF: 2036 led->mode = htole16(UPGT_LED_MODE_SET); 2037 led->action_fix = 0; 2038 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 2039 led->action_tmp_dur = 0; 2040 break; 2041 case UPGT_LED_ON: 2042 led->mode = htole16(UPGT_LED_MODE_SET); 2043 led->action_fix = 0; 2044 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2045 led->action_tmp_dur = 0; 2046 break; 2047 case UPGT_LED_BLINK: 2048 if (ic->ic_state != IEEE80211_S_RUN) 2049 return; 2050 if (sc->sc_led_blink) 2051 /* previous blink was not finished */ 2052 return; 2053 led->mode = htole16(UPGT_LED_MODE_SET); 2054 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 2055 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2056 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 2057 /* lock blink */ 2058 sc->sc_led_blink = 1; 2059 timeout_add_msec(&sc->led_to, UPGT_LED_ACTION_TMP_DUR); 2060 break; 2061 default: 2062 return; 2063 } 2064 2065 len = sizeof(*mem) + sizeof(*led); 2066 2067 mem->chksum = upgt_chksum_le((uint32_t *)led, 2068 len - sizeof(*mem)); 2069 2070 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2071 printf("%s: could not transmit led CMD URB!\n", 2072 sc->sc_dev.dv_xname); 2073 } 2074 } 2075 2076 void 2077 upgt_set_led_blink(void *arg) 2078 { 2079 struct upgt_softc *sc = arg; 2080 2081 /* blink finished, we are ready for a next one */ 2082 sc->sc_led_blink = 0; 2083 timeout_del(&sc->led_to); 2084 } 2085 2086 int 2087 upgt_get_stats(struct upgt_softc *sc) 2088 { 2089 struct upgt_data *data_cmd = &sc->cmd_data; 2090 struct upgt_lmac_mem *mem; 2091 struct upgt_lmac_stats *stats; 2092 int len; 2093 2094 /* 2095 * Transmit the URB containing the CMD data. 2096 */ 2097 bzero(data_cmd->buf, MCLBYTES); 2098 2099 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2100 mem->addr = htole32(sc->sc_memaddr_frame_start + 2101 UPGT_MEMSIZE_FRAME_HEAD); 2102 2103 stats = (struct upgt_lmac_stats *)(mem + 1); 2104 2105 stats->header1.flags = 0; 2106 stats->header1.type = UPGT_H1_TYPE_CTRL; 2107 stats->header1.len = htole16( 2108 sizeof(struct upgt_lmac_stats) - 2109 sizeof(struct upgt_lmac_header)); 2110 2111 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2112 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 2113 stats->header2.flags = 0; 2114 2115 len = sizeof(*mem) + sizeof(*stats); 2116 2117 mem->chksum = upgt_chksum_le((uint32_t *)stats, 2118 len - sizeof(*mem)); 2119 2120 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2121 printf("%s: could not transmit statistics CMD data URB!\n", 2122 sc->sc_dev.dv_xname); 2123 return (EIO); 2124 } 2125 2126 return (0); 2127 2128 } 2129 2130 int 2131 upgt_alloc_tx(struct upgt_softc *sc) 2132 { 2133 int i; 2134 2135 sc->tx_queued = 0; 2136 2137 for (i = 0; i < UPGT_TX_COUNT; i++) { 2138 struct upgt_data *data_tx = &sc->tx_data[i]; 2139 2140 data_tx->sc = sc; 2141 2142 data_tx->xfer = usbd_alloc_xfer(sc->sc_udev); 2143 if (data_tx->xfer == NULL) { 2144 printf("%s: could not allocate TX xfer!\n", 2145 sc->sc_dev.dv_xname); 2146 return (ENOMEM); 2147 } 2148 2149 data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES); 2150 if (data_tx->buf == NULL) { 2151 printf("%s: could not allocate TX buffer!\n", 2152 sc->sc_dev.dv_xname); 2153 return (ENOMEM); 2154 } 2155 2156 bzero(data_tx->buf, MCLBYTES); 2157 } 2158 2159 return (0); 2160 } 2161 2162 int 2163 upgt_alloc_rx(struct upgt_softc *sc) 2164 { 2165 struct upgt_data *data_rx = &sc->rx_data; 2166 2167 data_rx->sc = sc; 2168 2169 data_rx->xfer = usbd_alloc_xfer(sc->sc_udev); 2170 if (data_rx->xfer == NULL) { 2171 printf("%s: could not allocate RX xfer!\n", 2172 sc->sc_dev.dv_xname); 2173 return (ENOMEM); 2174 } 2175 2176 data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES); 2177 if (data_rx->buf == NULL) { 2178 printf("%s: could not allocate RX buffer!\n", 2179 sc->sc_dev.dv_xname); 2180 return (ENOMEM); 2181 } 2182 2183 bzero(data_rx->buf, MCLBYTES); 2184 2185 return (0); 2186 } 2187 2188 int 2189 upgt_alloc_cmd(struct upgt_softc *sc) 2190 { 2191 struct upgt_data *data_cmd = &sc->cmd_data; 2192 2193 data_cmd->sc = sc; 2194 2195 data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev); 2196 if (data_cmd->xfer == NULL) { 2197 printf("%s: could not allocate RX xfer!\n", 2198 sc->sc_dev.dv_xname); 2199 return (ENOMEM); 2200 } 2201 2202 data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES); 2203 if (data_cmd->buf == NULL) { 2204 printf("%s: could not allocate RX buffer!\n", 2205 sc->sc_dev.dv_xname); 2206 return (ENOMEM); 2207 } 2208 2209 bzero(data_cmd->buf, MCLBYTES); 2210 2211 return (0); 2212 } 2213 2214 void 2215 upgt_free_tx(struct upgt_softc *sc) 2216 { 2217 int i; 2218 2219 for (i = 0; i < UPGT_TX_COUNT; i++) { 2220 struct upgt_data *data_tx = &sc->tx_data[i]; 2221 2222 if (data_tx->xfer != NULL) { 2223 usbd_free_xfer(data_tx->xfer); 2224 data_tx->xfer = NULL; 2225 } 2226 2227 data_tx->ni = NULL; 2228 } 2229 } 2230 2231 void 2232 upgt_free_rx(struct upgt_softc *sc) 2233 { 2234 struct upgt_data *data_rx = &sc->rx_data; 2235 2236 if (data_rx->xfer != NULL) { 2237 usbd_free_xfer(data_rx->xfer); 2238 data_rx->xfer = NULL; 2239 } 2240 2241 data_rx->ni = NULL; 2242 } 2243 2244 void 2245 upgt_free_cmd(struct upgt_softc *sc) 2246 { 2247 struct upgt_data *data_cmd = &sc->cmd_data; 2248 2249 if (data_cmd->xfer != NULL) { 2250 usbd_free_xfer(data_cmd->xfer); 2251 data_cmd->xfer = NULL; 2252 } 2253 } 2254 2255 int 2256 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data, 2257 struct usbd_pipe *pipeh, uint32_t *size, int flags) 2258 { 2259 usbd_status status; 2260 2261 usbd_setup_xfer(data->xfer, pipeh, 0, data->buf, *size, 2262 USBD_NO_COPY | USBD_SYNCHRONOUS | flags, UPGT_USB_TIMEOUT, NULL); 2263 status = usbd_transfer(data->xfer); 2264 if (status != USBD_NORMAL_COMPLETION) { 2265 printf("%s: %s: error %s!\n", 2266 sc->sc_dev.dv_xname, __func__, usbd_errstr(status)); 2267 return (EIO); 2268 } 2269 2270 return (0); 2271 } 2272 2273 void 2274 upgt_hexdump(void *buf, int len) 2275 { 2276 int i; 2277 2278 for (i = 0; i < len; i++) { 2279 if (i % 16 == 0) 2280 printf("%s%5i:", i ? "\n" : "", i); 2281 if (i % 4 == 0) 2282 printf(" "); 2283 printf("%02x", (int)*((u_char *)buf + i)); 2284 } 2285 printf("\n"); 2286 } 2287 2288 uint32_t 2289 upgt_crc32_le(const void *buf, size_t size) 2290 { 2291 uint32_t crc; 2292 2293 crc = ether_crc32_le(buf, size); 2294 2295 /* apply final XOR value as common for CRC-32 */ 2296 crc = htole32(crc ^ 0xffffffffU); 2297 2298 return (crc); 2299 } 2300 2301 /* 2302 * The firmware awaits a checksum for each frame we send to it. 2303 * The algorithm used therefor is uncommon but somehow similar to CRC32. 2304 */ 2305 uint32_t 2306 upgt_chksum_le(const uint32_t *buf, size_t size) 2307 { 2308 int i; 2309 uint32_t crc = 0; 2310 2311 for (i = 0; i < size; i += sizeof(uint32_t)) { 2312 crc = htole32(crc ^ *buf++); 2313 crc = htole32((crc >> 5) ^ (crc << 3)); 2314 } 2315 2316 return (crc); 2317 } 2318