xref: /openbsd-src/sys/dev/usb/if_upgt.c (revision 505ee9ea3b177e2387d907a91ca7da069f3f14d8)
1 /*	$OpenBSD: if_upgt.c,v 1.86 2020/07/10 13:22:21 patrick Exp $ */
2 
3 /*
4  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "bpfilter.h"
20 
21 #include <sys/param.h>
22 #include <sys/sockio.h>
23 #include <sys/mbuf.h>
24 #include <sys/kernel.h>
25 #include <sys/socket.h>
26 #include <sys/systm.h>
27 #include <sys/timeout.h>
28 #include <sys/conf.h>
29 #include <sys/device.h>
30 #include <sys/endian.h>
31 
32 #include <machine/intr.h>
33 
34 #if NBPFILTER > 0
35 #include <net/bpf.h>
36 #endif
37 #include <net/if.h>
38 #include <net/if_dl.h>
39 #include <net/if_media.h>
40 
41 #include <netinet/in.h>
42 #include <netinet/if_ether.h>
43 
44 #include <net80211/ieee80211_var.h>
45 #include <net80211/ieee80211_radiotap.h>
46 
47 #include <dev/usb/usb.h>
48 #include <dev/usb/usbdi.h>
49 #include <dev/usb/usbdi_util.h>
50 #include <dev/usb/usbdevs.h>
51 
52 #include <dev/usb/if_upgtvar.h>
53 
54 /*
55  * Driver for the USB PrismGT devices.
56  *
57  * For now just USB 2.0 devices with the GW3887 chipset are supported.
58  * The driver has been written based on the firmware version 2.13.1.0_LM87.
59  *
60  * TODO's:
61  * - Fix MONITOR mode (MAC filter).
62  * - Add HOSTAP mode.
63  * - Add IBSS mode.
64  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
65  *
66  * Parts of this driver has been influenced by reading the p54u driver
67  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
68  * Sebastien Bourdeauducq <lekernel@prism54.org>.
69  */
70 
71 #ifdef UPGT_DEBUG
72 int upgt_debug = 2;
73 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
74 #else
75 #define DPRINTF(l, x...)
76 #endif
77 
78 /*
79  * Prototypes.
80  */
81 int		upgt_match(struct device *, void *, void *);
82 void		upgt_attach(struct device *, struct device *, void *);
83 void		upgt_attach_hook(struct device *);
84 int		upgt_detach(struct device *, int);
85 
86 int		upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
87 int		upgt_device_init(struct upgt_softc *);
88 int		upgt_mem_init(struct upgt_softc *);
89 uint32_t	upgt_mem_alloc(struct upgt_softc *);
90 void		upgt_mem_free(struct upgt_softc *, uint32_t);
91 int		upgt_fw_alloc(struct upgt_softc *);
92 void		upgt_fw_free(struct upgt_softc *);
93 int		upgt_fw_verify(struct upgt_softc *);
94 int		upgt_fw_load(struct upgt_softc *);
95 int		upgt_fw_copy(char *, char *, int);
96 int		upgt_eeprom_read(struct upgt_softc *);
97 int		upgt_eeprom_parse(struct upgt_softc *);
98 void		upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
99 void		upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
100 void		upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
101 void		upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
102 
103 int		upgt_ioctl(struct ifnet *, u_long, caddr_t);
104 int		upgt_init(struct ifnet *);
105 void		upgt_stop(struct upgt_softc *);
106 int		upgt_media_change(struct ifnet *);
107 void		upgt_newassoc(struct ieee80211com *, struct ieee80211_node *,
108 		    int);
109 int		upgt_newstate(struct ieee80211com *, enum ieee80211_state, int);
110 void		upgt_newstate_task(void *);
111 void		upgt_next_scan(void *);
112 void		upgt_start(struct ifnet *);
113 void		upgt_watchdog(struct ifnet *);
114 void		upgt_tx_task(void *);
115 void		upgt_tx_done(struct upgt_softc *, uint8_t *);
116 void		upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
117 void		upgt_rx(struct upgt_softc *, uint8_t *, int);
118 void		upgt_setup_rates(struct upgt_softc *);
119 uint8_t		upgt_rx_rate(struct upgt_softc *, const int);
120 int		upgt_set_macfilter(struct upgt_softc *, uint8_t state);
121 int		upgt_set_channel(struct upgt_softc *, unsigned);
122 void		upgt_set_led(struct upgt_softc *, int);
123 void		upgt_set_led_blink(void *);
124 int		upgt_get_stats(struct upgt_softc *);
125 
126 int		upgt_alloc_tx(struct upgt_softc *);
127 int		upgt_alloc_rx(struct upgt_softc *);
128 int		upgt_alloc_cmd(struct upgt_softc *);
129 void		upgt_free_tx(struct upgt_softc *);
130 void		upgt_free_rx(struct upgt_softc *);
131 void		upgt_free_cmd(struct upgt_softc *);
132 int		upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
133 		    struct usbd_pipe *, uint32_t *, int);
134 
135 void		upgt_hexdump(void *, int);
136 uint32_t	upgt_crc32_le(const void *, size_t);
137 uint32_t	upgt_chksum_le(const uint32_t *, size_t);
138 
139 struct cfdriver upgt_cd = {
140 	NULL, "upgt", DV_IFNET
141 };
142 
143 const struct cfattach upgt_ca = {
144 	sizeof(struct upgt_softc), upgt_match, upgt_attach, upgt_detach
145 };
146 
147 static const struct usb_devno upgt_devs_1[] = {
148 	/* version 1 devices */
149 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G }
150 };
151 
152 static const struct usb_devno upgt_devs_2[] = {
153 	/* version 2 devices */
154 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
155 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
156 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
157 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
158 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
159 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_PRISM_GT },
160 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
161 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
162 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
163 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
164 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
165 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
166 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
167 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
168 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
169 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
170 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
171 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
172 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_1 },
173 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_2 },
174 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
175 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
176 };
177 
178 int
179 upgt_match(struct device *parent, void *match, void *aux)
180 {
181 	struct usb_attach_arg *uaa = aux;
182 
183 	if (uaa->iface == NULL || uaa->configno != UPGT_CONFIG_NO)
184 		return (UMATCH_NONE);
185 
186 	if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
187 		return (UMATCH_VENDOR_PRODUCT);
188 
189 	if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
190 		return (UMATCH_VENDOR_PRODUCT);
191 
192 	return (UMATCH_NONE);
193 }
194 
195 void
196 upgt_attach(struct device *parent, struct device *self, void *aux)
197 {
198 	struct upgt_softc *sc = (struct upgt_softc *)self;
199 	struct usb_attach_arg *uaa = aux;
200 	usb_interface_descriptor_t *id;
201 	usb_endpoint_descriptor_t *ed;
202 	usbd_status error;
203 	int i;
204 
205 	/*
206 	 * Attach USB device.
207 	 */
208 	sc->sc_udev = uaa->device;
209 
210 	/* check device type */
211 	if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
212 		return;
213 
214 	/* get the first interface handle */
215 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
216 	    &sc->sc_iface);
217 	if (error != 0) {
218 		printf("%s: could not get interface handle!\n",
219 		    sc->sc_dev.dv_xname);
220 		return;
221 	}
222 
223 	/* find endpoints */
224 	id = usbd_get_interface_descriptor(sc->sc_iface);
225 	sc->sc_rx_no = sc->sc_tx_no = -1;
226 	for (i = 0; i < id->bNumEndpoints; i++) {
227 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
228 		if (ed == NULL) {
229 			printf("%s: no endpoint descriptor for iface %d!\n",
230 			    sc->sc_dev.dv_xname, i);
231 			return;
232 		}
233 
234 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
235 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
236 			sc->sc_tx_no = ed->bEndpointAddress;
237 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
238 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
239 			sc->sc_rx_no = ed->bEndpointAddress;
240 
241 		/*
242 		 * 0x01 TX pipe
243 		 * 0x81 RX pipe
244 		 *
245 		 * Deprecated scheme (not used with fw version >2.5.6.x):
246 		 * 0x02 TX MGMT pipe
247 		 * 0x82 TX MGMT pipe
248 		 */
249 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
250 			break;
251 	}
252 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
253 		printf("%s: missing endpoint!\n", sc->sc_dev.dv_xname);
254 		return;
255 	}
256 
257 	/* setup tasks and timeouts */
258 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc,
259 	    USB_TASK_TYPE_GENERIC);
260 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, USB_TASK_TYPE_GENERIC);
261 	timeout_set(&sc->scan_to, upgt_next_scan, sc);
262 	timeout_set(&sc->led_to, upgt_set_led_blink, sc);
263 
264 	/*
265 	 * Open TX and RX USB bulk pipes.
266 	 */
267 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
268 	    &sc->sc_tx_pipeh);
269 	if (error != 0) {
270 		printf("%s: could not open TX pipe: %s!\n",
271 		    sc->sc_dev.dv_xname, usbd_errstr(error));
272 		goto fail;
273 	}
274 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
275 	    &sc->sc_rx_pipeh);
276 	if (error != 0) {
277 		printf("%s: could not open RX pipe: %s!\n",
278 		    sc->sc_dev.dv_xname, usbd_errstr(error));
279 		goto fail;
280 	}
281 
282 	/*
283 	 * Allocate TX, RX, and CMD xfers.
284 	 */
285 	if (upgt_alloc_tx(sc) != 0)
286 		goto fail;
287 	if (upgt_alloc_rx(sc) != 0)
288 		goto fail;
289 	if (upgt_alloc_cmd(sc) != 0)
290 		goto fail;
291 
292 	/*
293 	 * We need the firmware loaded to complete the attach.
294 	 */
295 	config_mountroot(self, upgt_attach_hook);
296 
297 	return;
298 fail:
299 	printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__);
300 }
301 
302 void
303 upgt_attach_hook(struct device *self)
304 {
305 	struct upgt_softc *sc = (struct upgt_softc *)self;
306 	struct ieee80211com *ic = &sc->sc_ic;
307 	struct ifnet *ifp = &ic->ic_if;
308 	usbd_status error;
309 	int i;
310 
311 	/*
312 	 * Load firmware file into memory.
313 	 */
314 	if (upgt_fw_alloc(sc) != 0)
315 		goto fail;
316 
317 	/*
318 	 * Initialize the device.
319 	 */
320 	if (upgt_device_init(sc) != 0)
321 		goto fail;
322 
323 	/*
324 	 * Verify the firmware.
325 	 */
326 	if (upgt_fw_verify(sc) != 0)
327 		goto fail;
328 
329 	/*
330 	 * Calculate device memory space.
331 	 */
332 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
333 		printf("%s: could not find memory space addresses on FW!\n",
334 		    sc->sc_dev.dv_xname);
335 		goto fail;
336 	}
337 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
338 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
339 
340 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
341 	    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start);
342 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
343 	    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end);
344 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
345 	    sc->sc_dev.dv_xname, sc->sc_memaddr_rx_start);
346 
347 	upgt_mem_init(sc);
348 
349 	/*
350 	 * Load the firmware.
351 	 */
352 	if (upgt_fw_load(sc) != 0)
353 		goto fail;
354 
355 	/*
356 	 * Startup the RX pipe.
357 	 */
358 	struct upgt_data *data_rx = &sc->rx_data;
359 
360 	usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
361 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
362 	error = usbd_transfer(data_rx->xfer);
363 	if (error != 0 && error != USBD_IN_PROGRESS) {
364 		printf("%s: could not queue RX transfer!\n",
365 		    sc->sc_dev.dv_xname);
366 		goto fail;
367 	}
368 	usbd_delay_ms(sc->sc_udev, 100);
369 
370 	/*
371 	 * Read the whole EEPROM content and parse it.
372 	 */
373 	if (upgt_eeprom_read(sc) != 0)
374 		goto fail;
375 	if (upgt_eeprom_parse(sc) != 0)
376 		goto fail;
377 
378 	/*
379 	 * Setup the 802.11 device.
380 	 */
381 	ic->ic_phytype = IEEE80211_T_OFDM;
382 	ic->ic_opmode = IEEE80211_M_STA;
383 	ic->ic_state = IEEE80211_S_INIT;
384 	ic->ic_caps =
385 	    IEEE80211_C_MONITOR |
386 	    IEEE80211_C_SHPREAMBLE |
387 	    IEEE80211_C_SHSLOT |
388 	    IEEE80211_C_WEP |
389 	    IEEE80211_C_RSN;
390 
391 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
392 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
393 
394 	for (i = 1; i <= 14; i++) {
395 		ic->ic_channels[i].ic_freq =
396 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
397 		ic->ic_channels[i].ic_flags =
398 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
399 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
400 	}
401 
402 	ifp->if_softc = sc;
403 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
404 	ifp->if_ioctl = upgt_ioctl;
405 	ifp->if_start = upgt_start;
406 	ifp->if_watchdog = upgt_watchdog;
407 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
408 
409 	if_attach(ifp);
410 	ieee80211_ifattach(ifp);
411 	ic->ic_newassoc = upgt_newassoc;
412 
413 	sc->sc_newstate = ic->ic_newstate;
414 	ic->ic_newstate = upgt_newstate;
415 	ieee80211_media_init(ifp, upgt_media_change, ieee80211_media_status);
416 
417 #if NBPFILTER > 0
418 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
419 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
420 
421 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
422 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
423 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
424 
425 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
426 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
427 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
428 #endif
429 
430 	printf("%s: address %s\n",
431 	    sc->sc_dev.dv_xname, ether_sprintf(ic->ic_myaddr));
432 
433 	return;
434 fail:
435 	printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__);
436 }
437 
438 int
439 upgt_detach(struct device *self, int flags)
440 {
441 	struct upgt_softc *sc = (struct upgt_softc *)self;
442 	struct ifnet *ifp = &sc->sc_ic.ic_if;
443 	int s;
444 
445 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
446 
447 	s = splusb();
448 
449 	/* abort and close TX / RX pipes */
450 	if (sc->sc_tx_pipeh != NULL) {
451 		usbd_abort_pipe(sc->sc_tx_pipeh);
452 		usbd_close_pipe(sc->sc_tx_pipeh);
453 	}
454 	if (sc->sc_rx_pipeh != NULL) {
455 		usbd_abort_pipe(sc->sc_rx_pipeh);
456 		usbd_close_pipe(sc->sc_rx_pipeh);
457 	}
458 
459 	/* remove tasks and timeouts */
460 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
461 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
462 	if (timeout_initialized(&sc->scan_to))
463 		timeout_del(&sc->scan_to);
464 	if (timeout_initialized(&sc->led_to))
465 		timeout_del(&sc->led_to);
466 
467 	/* free xfers */
468 	upgt_free_tx(sc);
469 	upgt_free_rx(sc);
470 	upgt_free_cmd(sc);
471 
472 	/* free firmware */
473 	upgt_fw_free(sc);
474 
475 	if (ifp->if_softc != NULL) {
476 		/* detach interface */
477 		ieee80211_ifdetach(ifp);
478 		if_detach(ifp);
479 	}
480 
481 	splx(s);
482 
483 	return (0);
484 }
485 
486 int
487 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
488 {
489 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
490 		sc->sc_device_type = 1;
491 		/* XXX */
492 		printf("%s: version 1 devices not supported yet!\n",
493 		    sc->sc_dev.dv_xname);
494 		return (1);
495 	} else {
496 		sc->sc_device_type = 2;
497 	}
498 
499 	return (0);
500 }
501 
502 int
503 upgt_device_init(struct upgt_softc *sc)
504 {
505 	struct upgt_data *data_cmd = &sc->cmd_data;
506 	char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
507 	int len;
508 
509 	len = sizeof(init_cmd);
510 	bcopy(init_cmd, data_cmd->buf, len);
511 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
512 		printf("%s: could not send device init string!\n",
513 		    sc->sc_dev.dv_xname);
514 		return (EIO);
515 	}
516 	usbd_delay_ms(sc->sc_udev, 100);
517 
518 	DPRINTF(1, "%s: device initialized\n", sc->sc_dev.dv_xname);
519 
520 	return (0);
521 }
522 
523 int
524 upgt_mem_init(struct upgt_softc *sc)
525 {
526 	int i;
527 
528 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
529 		sc->sc_memory.page[i].used = 0;
530 
531 		if (i == 0) {
532 			/*
533 			 * The first memory page is always reserved for
534 			 * command data.
535 			 */
536 			sc->sc_memory.page[i].addr =
537 			    sc->sc_memaddr_frame_start + MCLBYTES;
538 		} else {
539 			sc->sc_memory.page[i].addr =
540 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
541 		}
542 
543 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
544 		    sc->sc_memaddr_frame_end)
545 			break;
546 
547 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
548 		    sc->sc_dev.dv_xname, i, sc->sc_memory.page[i].addr);
549 	}
550 
551 	sc->sc_memory.pages = i;
552 
553 	DPRINTF(2, "%s: memory pages=%d\n",
554 	    sc->sc_dev.dv_xname, sc->sc_memory.pages);
555 
556 	return (0);
557 }
558 
559 uint32_t
560 upgt_mem_alloc(struct upgt_softc *sc)
561 {
562 	int i;
563 
564 	for (i = 0; i < sc->sc_memory.pages; i++) {
565 		if (sc->sc_memory.page[i].used == 0) {
566 			sc->sc_memory.page[i].used = 1;
567 			return (sc->sc_memory.page[i].addr);
568 		}
569 	}
570 
571 	return (0);
572 }
573 
574 void
575 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
576 {
577 	int i;
578 
579 	for (i = 0; i < sc->sc_memory.pages; i++) {
580 		if (sc->sc_memory.page[i].addr == addr) {
581 			sc->sc_memory.page[i].used = 0;
582 			return;
583 		}
584 	}
585 
586 	printf("%s: could not free memory address 0x%08x!\n",
587 	    sc->sc_dev.dv_xname, addr);
588 }
589 
590 
591 int
592 upgt_fw_alloc(struct upgt_softc *sc)
593 {
594 	const char *name = "upgt-gw3887";
595 	int error;
596 
597 	if (sc->sc_fw == NULL) {
598 		error = loadfirmware(name, &sc->sc_fw, &sc->sc_fw_size);
599 		if (error != 0) {
600 			printf("%s: error %d, could not read firmware %s!\n",
601 			    sc->sc_dev.dv_xname, error, name);
602 			return (EIO);
603 		}
604 	}
605 
606 	DPRINTF(1, "%s: firmware %s allocated\n", sc->sc_dev.dv_xname, name);
607 
608 	return (0);
609 }
610 
611 void
612 upgt_fw_free(struct upgt_softc *sc)
613 {
614 	if (sc->sc_fw != NULL) {
615 		free(sc->sc_fw, M_DEVBUF, sc->sc_fw_size);
616 		sc->sc_fw = NULL;
617 		DPRINTF(1, "%s: firmware freed\n", sc->sc_dev.dv_xname);
618 	}
619 }
620 
621 int
622 upgt_fw_verify(struct upgt_softc *sc)
623 {
624 	struct upgt_fw_bra_option *bra_option;
625 	uint32_t bra_option_type, bra_option_len;
626 	uint32_t *uc;
627 	int offset, bra_end = 0;
628 
629 	/*
630 	 * Seek to beginning of Boot Record Area (BRA).
631 	 */
632 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
633 		uc = (uint32_t *)(sc->sc_fw + offset);
634 		if (*uc == 0)
635 			break;
636 	}
637 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
638 		uc = (uint32_t *)(sc->sc_fw + offset);
639 		if (*uc != 0)
640 			break;
641 	}
642 	if (offset == sc->sc_fw_size) {
643 		printf("%s: firmware Boot Record Area not found!\n",
644 		    sc->sc_dev.dv_xname);
645 		return (EIO);
646 	}
647 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
648 	    sc->sc_dev.dv_xname, offset);
649 
650 	/*
651 	 * Parse Boot Record Area (BRA) options.
652 	 */
653 	while (offset < sc->sc_fw_size && bra_end == 0) {
654 		/* get current BRA option */
655 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
656 		bra_option_type = letoh32(bra_option->type);
657 		bra_option_len = letoh32(bra_option->len) * sizeof(*uc);
658 
659 		switch (bra_option_type) {
660 		case UPGT_BRA_TYPE_FW:
661 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
662 			    sc->sc_dev.dv_xname, bra_option_len);
663 
664 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
665 				printf("%s: wrong UPGT_BRA_TYPE_FW len!\n",
666 				    sc->sc_dev.dv_xname);
667 				return (EIO);
668 			}
669 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
670 			    bra_option_len) == 0) {
671 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
672 				break;
673 			}
674 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
675 			    bra_option_len) == 0) {
676 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
677 				break;
678 			}
679 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
680 			    bra_option_len) == 0) {
681 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
682 				break;
683 			}
684 			printf("%s: unsupported firmware type!\n",
685 			    sc->sc_dev.dv_xname);
686 			return (EIO);
687 		case UPGT_BRA_TYPE_VERSION:
688 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
689 			    sc->sc_dev.dv_xname, bra_option_len);
690 			break;
691 		case UPGT_BRA_TYPE_DEPIF:
692 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
693 			    sc->sc_dev.dv_xname, bra_option_len);
694 			break;
695 		case UPGT_BRA_TYPE_EXPIF:
696 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
697 			    sc->sc_dev.dv_xname, bra_option_len);
698 			break;
699 		case UPGT_BRA_TYPE_DESCR:
700 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
701 			    sc->sc_dev.dv_xname, bra_option_len);
702 
703 			struct upgt_fw_bra_descr *descr =
704 				(struct upgt_fw_bra_descr *)bra_option->data;
705 
706 			sc->sc_memaddr_frame_start =
707 			    letoh32(descr->memaddr_space_start);
708 			sc->sc_memaddr_frame_end =
709 			    letoh32(descr->memaddr_space_end);
710 
711 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
712 			    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start);
713 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
714 			    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end);
715 			break;
716 		case UPGT_BRA_TYPE_END:
717 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
718 			    sc->sc_dev.dv_xname, bra_option_len);
719 			bra_end = 1;
720 			break;
721 		default:
722 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
723 			    sc->sc_dev.dv_xname, bra_option_len);
724 			return (EIO);
725 		}
726 
727 		/* jump to next BRA option */
728 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
729 	}
730 
731 	DPRINTF(1, "%s: firmware verified\n", sc->sc_dev.dv_xname);
732 
733 	return (0);
734 }
735 
736 int
737 upgt_fw_load(struct upgt_softc *sc)
738 {
739 	struct upgt_data *data_cmd = &sc->cmd_data;
740 	struct upgt_data *data_rx = &sc->rx_data;
741 	char start_fwload_cmd[] = { 0x3c, 0x0d };
742 	int offset, bsize, n, i, len;
743 	uint32_t crc32;
744 
745 	/* send firmware start load command */
746 	len = sizeof(start_fwload_cmd);
747 	bcopy(start_fwload_cmd, data_cmd->buf, len);
748 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
749 		printf("%s: could not send start_firmware_load command!\n",
750 		    sc->sc_dev.dv_xname);
751 		return (EIO);
752 	}
753 
754 	/* send X2 header */
755 	len = sizeof(struct upgt_fw_x2_header);
756 	struct upgt_fw_x2_header *x2 = data_cmd->buf;
757 	bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE);
758 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
759 	x2->len = htole32(sc->sc_fw_size);
760 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
761 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
762 	    sizeof(uint32_t));
763 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
764 		printf("%s: could not send firmware X2 header!\n",
765 		    sc->sc_dev.dv_xname);
766 		return (EIO);
767 	}
768 
769 	/* download firmware */
770 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
771 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
772 			bsize = UPGT_FW_BLOCK_SIZE;
773 		else
774 			bsize = sc->sc_fw_size - offset;
775 
776 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
777 
778 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
779 		    sc->sc_dev.dv_xname, offset, n, bsize);
780 
781 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
782 		    != 0) {
783 			printf("%s: error while downloading firmware block!\n",
784 			    sc->sc_dev.dv_xname);
785 			return (EIO);
786 		}
787 
788 		bsize = n;
789 	}
790 	DPRINTF(1, "%s: firmware downloaded\n", sc->sc_dev.dv_xname);
791 
792 	/* load firmware */
793 	crc32 = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
794 	*((uint32_t *)(data_cmd->buf)    ) = crc32;
795 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
796 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
797 	len = 6;
798 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
799 		printf("%s: could not send load_firmware command!\n",
800 		    sc->sc_dev.dv_xname);
801 		return (EIO);
802 	}
803 
804 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
805 		len = UPGT_FW_BLOCK_SIZE;
806 		bzero(data_rx->buf, MCLBYTES);
807 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
808 		    USBD_SHORT_XFER_OK) != 0) {
809 			printf("%s: could not read firmware response!\n",
810 			    sc->sc_dev.dv_xname);
811 			return (EIO);
812 		}
813 
814 		if (memcmp(data_rx->buf, "OK", 2) == 0)
815 			break;	/* firmware load was successful */
816 	}
817 	if (i == UPGT_FIRMWARE_TIMEOUT) {
818 		printf("%s: firmware load failed!\n", sc->sc_dev.dv_xname);
819 		return (EIO);
820 	}
821 	DPRINTF(1, "%s: firmware loaded\n", sc->sc_dev.dv_xname);
822 
823 	return (0);
824 }
825 
826 /*
827  * While copying the version 2 firmware, we need to replace two characters:
828  *
829  * 0x7e -> 0x7d 0x5e
830  * 0x7d -> 0x7d 0x5d
831  */
832 int
833 upgt_fw_copy(char *src, char *dst, int size)
834 {
835 	int i, j;
836 
837 	for (i = 0, j = 0; i < size && j < size; i++) {
838 		switch (src[i]) {
839 		case 0x7e:
840 			dst[j] = 0x7d;
841 			j++;
842 			dst[j] = 0x5e;
843 			j++;
844 			break;
845 		case 0x7d:
846 			dst[j] = 0x7d;
847 			j++;
848 			dst[j] = 0x5d;
849 			j++;
850 			break;
851 		default:
852 			dst[j] = src[i];
853 			j++;
854 			break;
855 		}
856 	}
857 
858 	return (i);
859 }
860 
861 int
862 upgt_eeprom_read(struct upgt_softc *sc)
863 {
864 	struct upgt_data *data_cmd = &sc->cmd_data;
865 	struct upgt_lmac_mem *mem;
866 	struct upgt_lmac_eeprom	*eeprom;
867 	int offset, block, len;
868 
869 	offset = 0;
870 	block = UPGT_EEPROM_BLOCK_SIZE;
871 	while (offset < UPGT_EEPROM_SIZE) {
872 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
873 		    sc->sc_dev.dv_xname, offset, block);
874 
875 		/*
876 		 * Transmit the URB containing the CMD data.
877 		 */
878 		bzero(data_cmd->buf, MCLBYTES);
879 
880 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
881 		mem->addr = htole32(sc->sc_memaddr_frame_start +
882 		    UPGT_MEMSIZE_FRAME_HEAD);
883 
884 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
885 		eeprom->header1.flags = 0;
886 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
887 		eeprom->header1.len = htole16((
888 		    sizeof(struct upgt_lmac_eeprom) -
889 		    sizeof(struct upgt_lmac_header)) + block);
890 
891 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
892 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
893 		eeprom->header2.flags = 0;
894 
895 		eeprom->offset = htole16(offset);
896 		eeprom->len = htole16(block);
897 
898 		len = sizeof(*mem) + sizeof(*eeprom) + block;
899 
900 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
901 		    len - sizeof(*mem));
902 
903 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
904 		    USBD_FORCE_SHORT_XFER) != 0) {
905 			printf("%s: could not transmit EEPROM data URB!\n",
906 			    sc->sc_dev.dv_xname);
907 			return (EIO);
908 		}
909 		if (tsleep_nsec(sc, 0, "eeprom_request",
910 		    MSEC_TO_NSEC(UPGT_USB_TIMEOUT))) {
911 			printf("%s: timeout while waiting for EEPROM data!\n",
912 			    sc->sc_dev.dv_xname);
913 			return (EIO);
914 		}
915 
916 		offset += block;
917 		if (UPGT_EEPROM_SIZE - offset < block)
918 			block = UPGT_EEPROM_SIZE - offset;
919 	}
920 
921 	return (0);
922 }
923 
924 int
925 upgt_eeprom_parse(struct upgt_softc *sc)
926 {
927 	struct ieee80211com *ic = &sc->sc_ic;
928 	struct upgt_eeprom_header *eeprom_header;
929 	struct upgt_eeprom_option *eeprom_option;
930 	uint16_t option_len;
931 	uint16_t option_type;
932 	uint16_t preamble_len;
933 	int option_end = 0;
934 
935 	/* calculate eeprom options start offset */
936 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
937 	preamble_len = letoh16(eeprom_header->preamble_len);
938 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
939 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
940 
941 	while (!option_end) {
942 		/* the eeprom option length is stored in words */
943 		option_len =
944 		    (letoh16(eeprom_option->len) - 1) * sizeof(uint16_t);
945 		option_type =
946 		    letoh16(eeprom_option->type);
947 
948 		switch (option_type) {
949 		case UPGT_EEPROM_TYPE_NAME:
950 			DPRINTF(1, "%s: EEPROM name len=%d\n",
951 			    sc->sc_dev.dv_xname, option_len);
952 			break;
953 		case UPGT_EEPROM_TYPE_SERIAL:
954 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
955 			    sc->sc_dev.dv_xname, option_len);
956 			break;
957 		case UPGT_EEPROM_TYPE_MAC:
958 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
959 			    sc->sc_dev.dv_xname, option_len);
960 
961 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
962 			break;
963 		case UPGT_EEPROM_TYPE_HWRX:
964 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
965 			    sc->sc_dev.dv_xname, option_len);
966 
967 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
968 			break;
969 		case UPGT_EEPROM_TYPE_CHIP:
970 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
971 			    sc->sc_dev.dv_xname, option_len);
972 			break;
973 		case UPGT_EEPROM_TYPE_FREQ3:
974 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
975 			    sc->sc_dev.dv_xname, option_len);
976 
977 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
978 			    option_len);
979 			break;
980 		case UPGT_EEPROM_TYPE_FREQ4:
981 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
982 			    sc->sc_dev.dv_xname, option_len);
983 
984 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
985 			    option_len);
986 			break;
987 		case UPGT_EEPROM_TYPE_FREQ5:
988 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
989 			    sc->sc_dev.dv_xname, option_len);
990 			break;
991 		case UPGT_EEPROM_TYPE_FREQ6:
992 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
993 			    sc->sc_dev.dv_xname, option_len);
994 
995 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
996 			    option_len);
997 			break;
998 		case UPGT_EEPROM_TYPE_END:
999 			DPRINTF(1, "%s: EEPROM end len=%d\n",
1000 			    sc->sc_dev.dv_xname, option_len);
1001 			option_end = 1;
1002 			break;
1003 		case UPGT_EEPROM_TYPE_OFF:
1004 			DPRINTF(1, "%s: EEPROM off without end option!\n",
1005 			    sc->sc_dev.dv_xname);
1006 			return (EIO);
1007 		default:
1008 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1009 			    sc->sc_dev.dv_xname, option_type, option_len);
1010 			break;
1011 		}
1012 
1013 		/* jump to next EEPROM option */
1014 		eeprom_option = (struct upgt_eeprom_option *)
1015 		    (eeprom_option->data + option_len);
1016 	}
1017 
1018 	return (0);
1019 }
1020 
1021 void
1022 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1023 {
1024 	struct upgt_eeprom_option_hwrx *option_hwrx;
1025 
1026 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1027 
1028 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1029 
1030 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1031 	    sc->sc_dev.dv_xname, sc->sc_eeprom_hwrx);
1032 }
1033 
1034 void
1035 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1036 {
1037 	struct upgt_eeprom_freq3_header *freq3_header;
1038 	struct upgt_lmac_freq3 *freq3;
1039 	int i, elements, flags;
1040 	unsigned channel;
1041 
1042 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1043 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1044 
1045 	flags = freq3_header->flags;
1046 	elements = freq3_header->elements;
1047 
1048 	DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags);
1049 	DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements);
1050 
1051 	for (i = 0; i < elements; i++) {
1052 		channel = ieee80211_mhz2ieee(letoh16(freq3[i].freq), 0);
1053 
1054 		sc->sc_eeprom_freq3[channel] = freq3[i];
1055 
1056 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1057 		    sc->sc_dev.dv_xname,
1058 		    letoh16(sc->sc_eeprom_freq3[channel].freq), channel);
1059 	}
1060 }
1061 
1062 void
1063 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1064 {
1065 	struct upgt_eeprom_freq4_header *freq4_header;
1066 	struct upgt_eeprom_freq4_1 *freq4_1;
1067 	struct upgt_eeprom_freq4_2 *freq4_2;
1068 	int i, j, elements, settings, flags;
1069 	unsigned channel;
1070 
1071 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1072 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1073 
1074 	flags = freq4_header->flags;
1075 	elements = freq4_header->elements;
1076 	settings = freq4_header->settings;
1077 
1078 	/* we need this value later */
1079 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1080 
1081 	DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags);
1082 	DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements);
1083 	DPRINTF(2, "%s: settings=%d\n", sc->sc_dev.dv_xname, settings);
1084 
1085 	for (i = 0; i < elements; i++) {
1086 		channel = ieee80211_mhz2ieee(letoh16(freq4_1[i].freq), 0);
1087 
1088 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1089 
1090 		for (j = 0; j < settings; j++) {
1091 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1092 			sc->sc_eeprom_freq4[channel][j].pad = 0;
1093 		}
1094 
1095 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1096 		    sc->sc_dev.dv_xname,
1097 		    letoh16(freq4_1[i].freq), channel);
1098 	}
1099 }
1100 
1101 void
1102 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1103 {
1104 	struct upgt_lmac_freq6 *freq6;
1105 	int i, elements;
1106 	unsigned channel;
1107 
1108 	freq6 = (struct upgt_lmac_freq6 *)data;
1109 
1110 	elements = len / sizeof(struct upgt_lmac_freq6);
1111 
1112 	DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements);
1113 
1114 	for (i = 0; i < elements; i++) {
1115 		channel = ieee80211_mhz2ieee(letoh16(freq6[i].freq), 0);
1116 
1117 		sc->sc_eeprom_freq6[channel] = freq6[i];
1118 
1119 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1120 		    sc->sc_dev.dv_xname,
1121 		    letoh16(sc->sc_eeprom_freq6[channel].freq), channel);
1122 	}
1123 }
1124 
1125 int
1126 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1127 {
1128 	struct upgt_softc *sc = ifp->if_softc;
1129 	struct ieee80211com *ic = &sc->sc_ic;
1130 	int s, error = 0;
1131 	uint8_t chan;
1132 
1133 	s = splnet();
1134 
1135 	switch (cmd) {
1136 	case SIOCSIFADDR:
1137 		ifp->if_flags |= IFF_UP;
1138 		/* FALLTHROUGH */
1139 	case SIOCSIFFLAGS:
1140 		if (ifp->if_flags & IFF_UP) {
1141 			if ((ifp->if_flags & IFF_RUNNING) == 0)
1142 				upgt_init(ifp);
1143 		} else {
1144 			if (ifp->if_flags & IFF_RUNNING)
1145 				upgt_stop(sc);
1146 		}
1147 		break;
1148 	case SIOCS80211CHANNEL:
1149 		/* allow fast channel switching in monitor mode */
1150 		error = ieee80211_ioctl(ifp, cmd, data);
1151 		if (error == ENETRESET &&
1152 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1153 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1154 			    (IFF_UP | IFF_RUNNING)) {
1155 				ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1156 				chan = ieee80211_chan2ieee(ic,
1157 				    ic->ic_bss->ni_chan);
1158 				upgt_set_channel(sc, chan);
1159 			}
1160 			error = 0;
1161 		}
1162 		break;
1163 	default:
1164 		error = ieee80211_ioctl(ifp, cmd, data);
1165 		break;
1166 	}
1167 
1168 	if (error == ENETRESET) {
1169 		if (ifp->if_flags & (IFF_UP | IFF_RUNNING))
1170 			upgt_init(ifp);
1171 		error = 0;
1172 	}
1173 
1174 	splx(s);
1175 
1176 	return (error);
1177 }
1178 
1179 int
1180 upgt_init(struct ifnet *ifp)
1181 {
1182 	struct upgt_softc *sc = ifp->if_softc;
1183 	struct ieee80211com *ic = &sc->sc_ic;
1184 
1185 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1186 
1187 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1188 
1189 	/* select default channel */
1190 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1191 	sc->sc_cur_chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1192 
1193 	/* setup device rates */
1194 	upgt_setup_rates(sc);
1195 
1196 	ifp->if_flags |= IFF_RUNNING;
1197 	ifq_clr_oactive(&ifp->if_snd);
1198 
1199 	upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1200 
1201 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1202 		upgt_set_channel(sc, sc->sc_cur_chan);
1203 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1204 	} else
1205 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1206 
1207 	return (0);
1208 }
1209 
1210 void
1211 upgt_stop(struct upgt_softc *sc)
1212 {
1213 	struct ieee80211com *ic = &sc->sc_ic;
1214 	struct ifnet *ifp = &ic->ic_if;
1215 
1216 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1217 
1218 	/* device down */
1219 	ifp->if_timer = 0;
1220 	ifp->if_flags &= ~IFF_RUNNING;
1221 	ifq_clr_oactive(&ifp->if_snd);
1222 
1223 	upgt_set_led(sc, UPGT_LED_OFF);
1224 
1225 	/* change device back to initial state */
1226 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1227 }
1228 
1229 int
1230 upgt_media_change(struct ifnet *ifp)
1231 {
1232 	struct upgt_softc *sc = ifp->if_softc;
1233 	int error;
1234 
1235 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1236 
1237 	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1238 		return (error);
1239 
1240 	if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1241 		/* give pending USB transfers a chance to finish */
1242 		usbd_delay_ms(sc->sc_udev, 100);
1243 		upgt_init(ifp);
1244 	}
1245 
1246 	return (error);
1247 }
1248 
1249 void
1250 upgt_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
1251 {
1252 	ni->ni_txrate = 0;
1253 }
1254 
1255 int
1256 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1257 {
1258 	struct upgt_softc *sc = ic->ic_if.if_softc;
1259 
1260 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1261 	timeout_del(&sc->scan_to);
1262 
1263 	/* do it in a process context */
1264 	sc->sc_state = nstate;
1265 	sc->sc_arg = arg;
1266 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate);
1267 
1268 	return (0);
1269 }
1270 
1271 void
1272 upgt_newstate_task(void *arg)
1273 {
1274 	struct upgt_softc *sc = arg;
1275 	struct ieee80211com *ic = &sc->sc_ic;
1276 	struct ieee80211_node *ni;
1277 	unsigned channel;
1278 
1279 	switch (sc->sc_state) {
1280 	case IEEE80211_S_INIT:
1281 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1282 		    sc->sc_dev.dv_xname);
1283 
1284 		/* do not accept any frames if the device is down */
1285 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
1286 		upgt_set_led(sc, UPGT_LED_OFF);
1287 		break;
1288 	case IEEE80211_S_SCAN:
1289 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1290 		    sc->sc_dev.dv_xname);
1291 
1292 		channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1293 		upgt_set_channel(sc, channel);
1294 		timeout_add_msec(&sc->scan_to, 200);
1295 		break;
1296 	case IEEE80211_S_AUTH:
1297 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1298 		    sc->sc_dev.dv_xname);
1299 
1300 		channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1301 		upgt_set_channel(sc, channel);
1302 		break;
1303 	case IEEE80211_S_ASSOC:
1304 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1305 		    sc->sc_dev.dv_xname);
1306 		break;
1307 	case IEEE80211_S_RUN:
1308 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1309 		    sc->sc_dev.dv_xname);
1310 
1311 		ni = ic->ic_bss;
1312 
1313 		/*
1314 		 * TX rate control is done by the firmware.
1315 		 * Report the maximum rate which is available therefore.
1316 		 */
1317 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1318 
1319 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1320 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
1321 		upgt_set_led(sc, UPGT_LED_ON);
1322 		break;
1323 	}
1324 
1325 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1326 }
1327 
1328 void
1329 upgt_next_scan(void *arg)
1330 {
1331 	struct upgt_softc *sc = arg;
1332 	struct ieee80211com *ic = &sc->sc_ic;
1333 	struct ifnet *ifp = &ic->ic_if;
1334 
1335 	DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1336 
1337 	if (ic->ic_state == IEEE80211_S_SCAN)
1338 		ieee80211_next_scan(ifp);
1339 }
1340 
1341 void
1342 upgt_start(struct ifnet *ifp)
1343 {
1344 	struct upgt_softc *sc = ifp->if_softc;
1345 	struct ieee80211com *ic = &sc->sc_ic;
1346 	struct ieee80211_node *ni;
1347 	struct mbuf *m;
1348 	int i;
1349 
1350 	/* don't transmit packets if interface is busy or down */
1351 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1352 		return;
1353 
1354 	DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1355 
1356 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1357 		struct upgt_data *data_tx = &sc->tx_data[i];
1358 
1359 		m = mq_dequeue(&ic->ic_mgtq);
1360 		if (m != NULL) {
1361 			/* management frame */
1362 			ni = m->m_pkthdr.ph_cookie;
1363 #if NBPFILTER > 0
1364 			if (ic->ic_rawbpf != NULL)
1365 				bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1366 #endif
1367 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1368 				printf("%s: no free prism memory!\n",
1369 				    sc->sc_dev.dv_xname);
1370 				return;
1371 			}
1372 			data_tx->ni = ni;
1373 			data_tx->m = m;
1374 			sc->tx_queued++;
1375 		} else {
1376 			/* data frame */
1377 			if (ic->ic_state != IEEE80211_S_RUN)
1378 				break;
1379 
1380 			m = ifq_dequeue(&ifp->if_snd);
1381 			if (m == NULL)
1382 				break;
1383 
1384 #if NBPFILTER > 0
1385 			if (ifp->if_bpf != NULL)
1386 				bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1387 #endif
1388 			m = ieee80211_encap(ifp, m, &ni);
1389 			if (m == NULL)
1390 				continue;
1391 #if NBPFILTER > 0
1392 			if (ic->ic_rawbpf != NULL)
1393 				bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1394 #endif
1395 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1396 				printf("%s: no free prism memory!\n",
1397 				    sc->sc_dev.dv_xname);
1398 				return;
1399 			}
1400 			data_tx->ni = ni;
1401 			data_tx->m = m;
1402 			sc->tx_queued++;
1403 		}
1404 	}
1405 
1406 	if (sc->tx_queued > 0) {
1407 		DPRINTF(2, "%s: tx_queued=%d\n",
1408 		    sc->sc_dev.dv_xname, sc->tx_queued);
1409 		/* process the TX queue in process context */
1410 		ifp->if_timer = 5;
1411 		ifq_set_oactive(&ifp->if_snd);
1412 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1413 		usb_add_task(sc->sc_udev, &sc->sc_task_tx);
1414 	}
1415 }
1416 
1417 void
1418 upgt_watchdog(struct ifnet *ifp)
1419 {
1420 	struct upgt_softc *sc = ifp->if_softc;
1421 	struct ieee80211com *ic = &sc->sc_ic;
1422 
1423 	if (ic->ic_state == IEEE80211_S_INIT)
1424 		return;
1425 
1426 	printf("%s: watchdog timeout!\n", sc->sc_dev.dv_xname);
1427 
1428 	/* TODO: what shall we do on TX timeout? */
1429 
1430 	ieee80211_watchdog(ifp);
1431 }
1432 
1433 void
1434 upgt_tx_task(void *arg)
1435 {
1436 	struct upgt_softc *sc = arg;
1437 	struct ieee80211com *ic = &sc->sc_ic;
1438 	struct ieee80211_frame *wh;
1439 	struct ieee80211_key *k;
1440 	struct upgt_lmac_mem *mem;
1441 	struct upgt_lmac_tx_desc *txdesc;
1442 	struct mbuf *m;
1443 	uint32_t addr;
1444 	int len, i, s;
1445 	usbd_status error;
1446 
1447 	s = splusb();
1448 
1449 	upgt_set_led(sc, UPGT_LED_BLINK);
1450 
1451 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1452 		struct upgt_data *data_tx = &sc->tx_data[i];
1453 
1454 		if (data_tx->m == NULL) {
1455 			DPRINTF(2, "%s: %d: m is NULL\n",
1456 			    sc->sc_dev.dv_xname, i);
1457 			continue;
1458 		}
1459 
1460 		m = data_tx->m;
1461 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1462 
1463 		/*
1464 		 * Software crypto.
1465 		 */
1466 		wh = mtod(m, struct ieee80211_frame *);
1467 
1468 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1469 			k = ieee80211_get_txkey(ic, wh, ic->ic_bss);
1470 
1471 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL) {
1472 				splx(s);
1473 				return;
1474 			}
1475 
1476 			/* in case packet header moved, reset pointer */
1477 			wh = mtod(m, struct ieee80211_frame *);
1478 		}
1479 
1480 		/*
1481 		 * Transmit the URB containing the TX data.
1482 		 */
1483 		bzero(data_tx->buf, MCLBYTES);
1484 
1485 		mem = (struct upgt_lmac_mem *)data_tx->buf;
1486 		mem->addr = htole32(addr);
1487 
1488 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1489 
1490 		/* XXX differ between data and mgmt frames? */
1491 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1492 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1493 		txdesc->header1.len = htole16(m->m_pkthdr.len);
1494 
1495 		txdesc->header2.reqid = htole32(data_tx->addr);
1496 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1497 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1498 
1499 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1500 		    IEEE80211_FC0_TYPE_MGT) {
1501 			/* always send mgmt frames at lowest rate (DS1) */
1502 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1503 		} else {
1504 			bcopy(sc->sc_cur_rateset, txdesc->rates,
1505 			    sizeof(txdesc->rates));
1506 		}
1507 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1508 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1509 
1510 #if NBPFILTER > 0
1511 		if (sc->sc_drvbpf != NULL) {
1512 			struct mbuf mb;
1513 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1514 
1515 			tap->wt_flags = 0;
1516 			tap->wt_rate = 0;	/* TODO: where to get from? */
1517 			tap->wt_chan_freq =
1518 			    htole16(ic->ic_bss->ni_chan->ic_freq);
1519 			tap->wt_chan_flags =
1520 			    htole16(ic->ic_bss->ni_chan->ic_flags);
1521 
1522 			mb.m_data = (caddr_t)tap;
1523 			mb.m_len = sc->sc_txtap_len;
1524 			mb.m_next = m;
1525 			mb.m_nextpkt = NULL;
1526 			mb.m_type = 0;
1527 			mb.m_flags = 0;
1528 			bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1529 		}
1530 #endif
1531 		/* copy frame below our TX descriptor header */
1532 		m_copydata(m, 0, m->m_pkthdr.len,
1533 		    data_tx->buf + (sizeof(*mem) + sizeof(*txdesc)));
1534 
1535 		/* calculate frame size */
1536 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1537 
1538 		/* we need to align the frame to a 4 byte boundary */
1539 		len = (len + 3) & ~3;
1540 
1541 		/* calculate frame checksum */
1542 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1543 		    len - sizeof(*mem));
1544 
1545 		/* we do not need the mbuf anymore */
1546 		m_freem(m);
1547 		data_tx->m = NULL;
1548 
1549 		DPRINTF(2, "%s: TX start data sending\n", sc->sc_dev.dv_xname);
1550 
1551 		usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
1552 		    data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1553 		    UPGT_USB_TIMEOUT, NULL);
1554 		error = usbd_transfer(data_tx->xfer);
1555 		if (error != 0 && error != USBD_IN_PROGRESS) {
1556 			printf("%s: could not transmit TX data URB!\n",
1557 			    sc->sc_dev.dv_xname);
1558 			splx(s);
1559 			return;
1560 		}
1561 
1562 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
1563 		    sc->sc_dev.dv_xname, len);
1564 	}
1565 
1566 	/*
1567 	 * If we don't regulary read the device statistics, the RX queue
1568 	 * will stall.  It's strange, but it works, so we keep reading
1569 	 * the statistics here.  *shrug*
1570 	 */
1571 	upgt_get_stats(sc);
1572 
1573 	splx(s);
1574 }
1575 
1576 void
1577 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1578 {
1579 	struct ieee80211com *ic = &sc->sc_ic;
1580 	struct ifnet *ifp = &ic->ic_if;
1581 	struct upgt_lmac_tx_done_desc *desc;
1582 	int i, s;
1583 
1584 	s = splnet();
1585 
1586 	desc = (struct upgt_lmac_tx_done_desc *)data;
1587 
1588 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1589 		struct upgt_data *data_tx = &sc->tx_data[i];
1590 
1591 		if (data_tx->addr == letoh32(desc->header2.reqid)) {
1592 			upgt_mem_free(sc, data_tx->addr);
1593 			ieee80211_release_node(ic, data_tx->ni);
1594 			data_tx->ni = NULL;
1595 			data_tx->addr = 0;
1596 
1597 			sc->tx_queued--;
1598 
1599 			DPRINTF(2, "%s: TX done: ", sc->sc_dev.dv_xname);
1600 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1601 			    letoh32(desc->header2.reqid),
1602 			    letoh16(desc->status),
1603 			    letoh16(desc->rssi));
1604 			DPRINTF(2, "seq=%d\n", letoh16(desc->seq));
1605 			break;
1606 		}
1607 	}
1608 
1609 	if (sc->tx_queued == 0) {
1610 		/* TX queued was processed, continue */
1611 		ifp->if_timer = 0;
1612 		ifq_clr_oactive(&ifp->if_snd);
1613 		upgt_start(ifp);
1614 	}
1615 
1616 	splx(s);
1617 }
1618 
1619 void
1620 upgt_rx_cb(struct usbd_xfer *xfer, void *priv, usbd_status status)
1621 {
1622 	struct upgt_data *data_rx = priv;
1623 	struct upgt_softc *sc = data_rx->sc;
1624 	int len;
1625 	struct upgt_lmac_header *header;
1626 	struct upgt_lmac_eeprom *eeprom;
1627 	uint8_t h1_type;
1628 	uint16_t h2_type;
1629 
1630 	DPRINTF(3, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1631 
1632 	if (status != USBD_NORMAL_COMPLETION) {
1633 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1634 			return;
1635 		if (status == USBD_STALLED)
1636 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1637 		goto skip;
1638 	}
1639 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1640 
1641 	/*
1642 	 * Check what type of frame came in.
1643 	 */
1644 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1645 
1646 	h1_type = header->header1.type;
1647 	h2_type = letoh16(header->header2.type);
1648 
1649 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1650 	    h2_type == UPGT_H2_TYPE_EEPROM) {
1651 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1652 		uint16_t eeprom_offset = letoh16(eeprom->offset);
1653 		uint16_t eeprom_len = letoh16(eeprom->len);
1654 
1655 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1656 			sc->sc_dev.dv_xname, eeprom_offset, eeprom_len);
1657 
1658 		bcopy(data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1659 			sc->sc_eeprom + eeprom_offset, eeprom_len);
1660 
1661 		/* EEPROM data has arrived in time, wakeup tsleep() */
1662 		wakeup(sc);
1663 	} else
1664 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1665 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1666 		DPRINTF(2, "%s: received 802.11 TX done\n",
1667 		    sc->sc_dev.dv_xname);
1668 
1669 		upgt_tx_done(sc, data_rx->buf + 4);
1670 	} else
1671 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1672 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1673 		DPRINTF(3, "%s: received 802.11 RX data\n",
1674 		    sc->sc_dev.dv_xname);
1675 
1676 		upgt_rx(sc, data_rx->buf + 4, letoh16(header->header1.len));
1677 	} else
1678 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1679 	    h2_type == UPGT_H2_TYPE_STATS) {
1680 		DPRINTF(2, "%s: received statistic data\n",
1681 		    sc->sc_dev.dv_xname);
1682 
1683 		/* TODO: what could we do with the statistic data? */
1684 	} else {
1685 		/* ignore unknown frame types */
1686 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1687 		    sc->sc_dev.dv_xname, header->header1.type);
1688 	}
1689 
1690 skip:	/* setup new transfer */
1691 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
1692 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1693 	(void)usbd_transfer(xfer);
1694 }
1695 
1696 void
1697 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1698 {
1699 	struct ieee80211com *ic = &sc->sc_ic;
1700 	struct ifnet *ifp = &ic->ic_if;
1701 	struct upgt_lmac_rx_desc *rxdesc;
1702 	struct ieee80211_frame *wh;
1703 	struct ieee80211_rxinfo rxi;
1704 	struct ieee80211_node *ni;
1705 	struct mbuf *m;
1706 	int s;
1707 
1708 	/* access RX packet descriptor */
1709 	rxdesc = (struct upgt_lmac_rx_desc *)data;
1710 
1711 	/* create mbuf which is suitable for strict alignment archs */
1712 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN);
1713 	if (m == NULL) {
1714 		DPRINTF(1, "%s: could not create RX mbuf!\n", sc->sc_dev.dv_xname);
1715 		ifp->if_ierrors++;
1716 		return;
1717 	}
1718 
1719 	s = splnet();
1720 
1721 #if NBPFILTER > 0
1722 	if (sc->sc_drvbpf != NULL) {
1723 		struct mbuf mb;
1724 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1725 
1726 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1727 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1728 		tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1729 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1730 		tap->wr_antsignal = rxdesc->rssi;
1731 
1732 		mb.m_data = (caddr_t)tap;
1733 		mb.m_len = sc->sc_rxtap_len;
1734 		mb.m_next = m;
1735 		mb.m_nextpkt = NULL;
1736 		mb.m_type = 0;
1737 		mb.m_flags = 0;
1738 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1739 	}
1740 #endif
1741 	/* trim FCS */
1742 	m_adj(m, -IEEE80211_CRC_LEN);
1743 
1744 	wh = mtod(m, struct ieee80211_frame *);
1745 	ni = ieee80211_find_rxnode(ic, wh);
1746 
1747 	/* push the frame up to the 802.11 stack */
1748 	rxi.rxi_flags = 0;
1749 	rxi.rxi_rssi = rxdesc->rssi;
1750 	rxi.rxi_tstamp = 0;	/* unused */
1751 	ieee80211_input(ifp, m, ni, &rxi);
1752 
1753 	/* node is no longer needed */
1754 	ieee80211_release_node(ic, ni);
1755 
1756 	splx(s);
1757 
1758 	DPRINTF(3, "%s: RX done\n", sc->sc_dev.dv_xname);
1759 }
1760 
1761 void
1762 upgt_setup_rates(struct upgt_softc *sc)
1763 {
1764 	struct ieee80211com *ic = &sc->sc_ic;
1765 
1766 	/*
1767 	 * 0x01 = OFMD6   0x10 = DS1
1768 	 * 0x04 = OFDM9   0x11 = DS2
1769 	 * 0x06 = OFDM12  0x12 = DS5
1770 	 * 0x07 = OFDM18  0x13 = DS11
1771 	 * 0x08 = OFDM24
1772 	 * 0x09 = OFDM36
1773 	 * 0x0a = OFDM48
1774 	 * 0x0b = OFDM54
1775 	 */
1776 	const uint8_t rateset_auto_11b[] =
1777 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1778 	const uint8_t rateset_auto_11g[] =
1779 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1780 	const uint8_t rateset_fix_11bg[] =
1781 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1782 	      0x08, 0x09, 0x0a, 0x0b };
1783 
1784 	if (ic->ic_fixed_rate == -1) {
1785 		/*
1786 		 * Automatic rate control is done by the device.
1787 		 * We just pass the rateset from which the device
1788 		 * will pickup a rate.
1789 		 */
1790 		if (ic->ic_curmode == IEEE80211_MODE_11B)
1791 			bcopy(rateset_auto_11b, sc->sc_cur_rateset,
1792 			    sizeof(sc->sc_cur_rateset));
1793 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
1794 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
1795 			bcopy(rateset_auto_11g, sc->sc_cur_rateset,
1796 			    sizeof(sc->sc_cur_rateset));
1797 	} else {
1798 		/* set a fixed rate */
1799 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1800 		    sizeof(sc->sc_cur_rateset));
1801 	}
1802 }
1803 
1804 uint8_t
1805 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1806 {
1807 	struct ieee80211com *ic = &sc->sc_ic;
1808 
1809 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1810 		if (rate < 0 || rate > 3)
1811 			/* invalid rate */
1812 			return (0);
1813 
1814 		switch (rate) {
1815 		case 0:
1816 			return (2);
1817 		case 1:
1818 			return (4);
1819 		case 2:
1820 			return (11);
1821 		case 3:
1822 			return (22);
1823 		default:
1824 			return (0);
1825 		}
1826 	}
1827 
1828 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1829 		if (rate < 0 || rate > 11)
1830 			/* invalid rate */
1831 			return (0);
1832 
1833 		switch (rate) {
1834 		case 0:
1835 			return (2);
1836 		case 1:
1837 			return (4);
1838 		case 2:
1839 			return (11);
1840 		case 3:
1841 			return (22);
1842 		case 4:
1843 			return (12);
1844 		case 5:
1845 			return (18);
1846 		case 6:
1847 			return (24);
1848 		case 7:
1849 			return (36);
1850 		case 8:
1851 			return (48);
1852 		case 9:
1853 			return (72);
1854 		case 10:
1855 			return (96);
1856 		case 11:
1857 			return (108);
1858 		default:
1859 			return (0);
1860 		}
1861 	}
1862 
1863 	return (0);
1864 }
1865 
1866 int
1867 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1868 {
1869 	struct ieee80211com *ic = &sc->sc_ic;
1870 	struct ieee80211_node *ni = ic->ic_bss;
1871 	struct upgt_data *data_cmd = &sc->cmd_data;
1872 	struct upgt_lmac_mem *mem;
1873 	struct upgt_lmac_filter *filter;
1874 	int len;
1875 	uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1876 
1877 	/*
1878 	 * Transmit the URB containing the CMD data.
1879 	 */
1880 	bzero(data_cmd->buf, MCLBYTES);
1881 
1882 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
1883 	mem->addr = htole32(sc->sc_memaddr_frame_start +
1884 	    UPGT_MEMSIZE_FRAME_HEAD);
1885 
1886 	filter = (struct upgt_lmac_filter *)(mem + 1);
1887 
1888 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1889 	filter->header1.type = UPGT_H1_TYPE_CTRL;
1890 	filter->header1.len = htole16(
1891 	    sizeof(struct upgt_lmac_filter) -
1892 	    sizeof(struct upgt_lmac_header));
1893 
1894 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1895 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
1896 	filter->header2.flags = 0;
1897 
1898 	switch (state) {
1899 	case IEEE80211_S_INIT:
1900 		DPRINTF(1, "%s: set MAC filter to INIT\n",
1901 		    sc->sc_dev.dv_xname);
1902 
1903 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
1904 		break;
1905 	case IEEE80211_S_SCAN:
1906 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
1907 		    sc->sc_dev.dv_xname, ether_sprintf(broadcast));
1908 
1909 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
1910 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
1911 		IEEE80211_ADDR_COPY(filter->src, broadcast);
1912 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
1913 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
1914 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
1915 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
1916 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
1917 		break;
1918 	case IEEE80211_S_RUN:
1919 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
1920 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
1921 
1922 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
1923 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
1924 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
1925 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
1926 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
1927 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
1928 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
1929 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
1930 		break;
1931 	default:
1932 		printf("%s: MAC filter does not know that state!\n",
1933 		    sc->sc_dev.dv_xname);
1934 		break;
1935 	}
1936 
1937 	len = sizeof(*mem) + sizeof(*filter);
1938 
1939 	mem->chksum = upgt_chksum_le((uint32_t *)filter,
1940 	    len - sizeof(*mem));
1941 
1942 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
1943 		printf("%s: could not transmit macfilter CMD data URB!\n",
1944 		    sc->sc_dev.dv_xname);
1945 		return (EIO);
1946 	}
1947 
1948 	return (0);
1949 }
1950 
1951 int
1952 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
1953 {
1954 	struct upgt_data *data_cmd = &sc->cmd_data;
1955 	struct upgt_lmac_mem *mem;
1956 	struct upgt_lmac_channel *chan;
1957 	int len;
1958 
1959 	DPRINTF(1, "%s: %s: %d\n", sc->sc_dev.dv_xname, __func__, channel);
1960 
1961 	/*
1962 	 * Transmit the URB containing the CMD data.
1963 	 */
1964 	bzero(data_cmd->buf, MCLBYTES);
1965 
1966 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
1967 	mem->addr = htole32(sc->sc_memaddr_frame_start +
1968 	    UPGT_MEMSIZE_FRAME_HEAD);
1969 
1970 	chan = (struct upgt_lmac_channel *)(mem + 1);
1971 
1972 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1973 	chan->header1.type = UPGT_H1_TYPE_CTRL;
1974 	chan->header1.len = htole16(
1975 	    sizeof(struct upgt_lmac_channel) -
1976 	    sizeof(struct upgt_lmac_header));
1977 
1978 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1979 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
1980 	chan->header2.flags = 0;
1981 
1982 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
1983 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
1984 	chan->freq6 = sc->sc_eeprom_freq6[channel];
1985 	chan->settings = sc->sc_eeprom_freq6_settings;
1986 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
1987 
1988 	bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1,
1989 	    sizeof(chan->freq3_1));
1990 
1991 	bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4,
1992 	    sizeof(sc->sc_eeprom_freq4[channel]));
1993 
1994 	bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2,
1995 	    sizeof(chan->freq3_2));
1996 
1997 	len = sizeof(*mem) + sizeof(*chan);
1998 
1999 	mem->chksum = upgt_chksum_le((uint32_t *)chan,
2000 	    len - sizeof(*mem));
2001 
2002 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2003 		printf("%s: could not transmit channel CMD data URB!\n",
2004 		    sc->sc_dev.dv_xname);
2005 		return (EIO);
2006 	}
2007 
2008 	return (0);
2009 }
2010 
2011 void
2012 upgt_set_led(struct upgt_softc *sc, int action)
2013 {
2014 	struct ieee80211com *ic = &sc->sc_ic;
2015 	struct upgt_data *data_cmd = &sc->cmd_data;
2016 	struct upgt_lmac_mem *mem;
2017 	struct upgt_lmac_led *led;
2018 	int len;
2019 
2020 	/*
2021 	 * Transmit the URB containing the CMD data.
2022 	 */
2023 	bzero(data_cmd->buf, MCLBYTES);
2024 
2025 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2026 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2027 	    UPGT_MEMSIZE_FRAME_HEAD);
2028 
2029 	led = (struct upgt_lmac_led *)(mem + 1);
2030 
2031 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2032 	led->header1.type = UPGT_H1_TYPE_CTRL;
2033 	led->header1.len = htole16(
2034 	    sizeof(struct upgt_lmac_led) -
2035 	    sizeof(struct upgt_lmac_header));
2036 
2037 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2038 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
2039 	led->header2.flags = 0;
2040 
2041 	switch (action) {
2042 	case UPGT_LED_OFF:
2043 		led->mode = htole16(UPGT_LED_MODE_SET);
2044 		led->action_fix = 0;
2045 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2046 		led->action_tmp_dur = 0;
2047 		break;
2048 	case UPGT_LED_ON:
2049 		led->mode = htole16(UPGT_LED_MODE_SET);
2050 		led->action_fix = 0;
2051 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2052 		led->action_tmp_dur = 0;
2053 		break;
2054 	case UPGT_LED_BLINK:
2055 		if (ic->ic_state != IEEE80211_S_RUN)
2056 			return;
2057 		if (sc->sc_led_blink)
2058 			/* previous blink was not finished */
2059 			return;
2060 		led->mode = htole16(UPGT_LED_MODE_SET);
2061 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2062 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2063 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2064 		/* lock blink */
2065 		sc->sc_led_blink = 1;
2066 		timeout_add_msec(&sc->led_to, UPGT_LED_ACTION_TMP_DUR);
2067 		break;
2068 	default:
2069 		return;
2070 	}
2071 
2072 	len = sizeof(*mem) + sizeof(*led);
2073 
2074 	mem->chksum = upgt_chksum_le((uint32_t *)led,
2075 	    len - sizeof(*mem));
2076 
2077 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2078 		printf("%s: could not transmit led CMD URB!\n",
2079 		    sc->sc_dev.dv_xname);
2080 	}
2081 }
2082 
2083 void
2084 upgt_set_led_blink(void *arg)
2085 {
2086 	struct upgt_softc *sc = arg;
2087 
2088 	/* blink finished, we are ready for a next one */
2089 	sc->sc_led_blink = 0;
2090 	timeout_del(&sc->led_to);
2091 }
2092 
2093 int
2094 upgt_get_stats(struct upgt_softc *sc)
2095 {
2096 	struct upgt_data *data_cmd = &sc->cmd_data;
2097 	struct upgt_lmac_mem *mem;
2098 	struct upgt_lmac_stats *stats;
2099 	int len;
2100 
2101 	/*
2102 	 * Transmit the URB containing the CMD data.
2103 	 */
2104 	bzero(data_cmd->buf, MCLBYTES);
2105 
2106 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2107 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2108 	    UPGT_MEMSIZE_FRAME_HEAD);
2109 
2110 	stats = (struct upgt_lmac_stats *)(mem + 1);
2111 
2112 	stats->header1.flags = 0;
2113 	stats->header1.type = UPGT_H1_TYPE_CTRL;
2114 	stats->header1.len = htole16(
2115 	    sizeof(struct upgt_lmac_stats) -
2116 	    sizeof(struct upgt_lmac_header));
2117 
2118 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2119 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2120 	stats->header2.flags = 0;
2121 
2122 	len = sizeof(*mem) + sizeof(*stats);
2123 
2124 	mem->chksum = upgt_chksum_le((uint32_t *)stats,
2125 	    len - sizeof(*mem));
2126 
2127 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2128 		printf("%s: could not transmit statistics CMD data URB!\n",
2129 		    sc->sc_dev.dv_xname);
2130 		return (EIO);
2131 	}
2132 
2133 	return (0);
2134 
2135 }
2136 
2137 int
2138 upgt_alloc_tx(struct upgt_softc *sc)
2139 {
2140 	int i;
2141 
2142 	sc->tx_queued = 0;
2143 
2144 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2145 		struct upgt_data *data_tx = &sc->tx_data[i];
2146 
2147 		data_tx->sc = sc;
2148 
2149 		data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
2150 		if (data_tx->xfer == NULL) {
2151 			printf("%s: could not allocate TX xfer!\n",
2152 			    sc->sc_dev.dv_xname);
2153 			return (ENOMEM);
2154 		}
2155 
2156 		data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
2157 		if (data_tx->buf == NULL) {
2158 			printf("%s: could not allocate TX buffer!\n",
2159 			    sc->sc_dev.dv_xname);
2160 			return (ENOMEM);
2161 		}
2162 
2163 		bzero(data_tx->buf, MCLBYTES);
2164 	}
2165 
2166 	return (0);
2167 }
2168 
2169 int
2170 upgt_alloc_rx(struct upgt_softc *sc)
2171 {
2172 	struct upgt_data *data_rx = &sc->rx_data;
2173 
2174 	data_rx->sc = sc;
2175 
2176 	data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
2177 	if (data_rx->xfer == NULL) {
2178 		printf("%s: could not allocate RX xfer!\n",
2179 		    sc->sc_dev.dv_xname);
2180 		return (ENOMEM);
2181 	}
2182 
2183 	data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
2184 	if (data_rx->buf == NULL) {
2185 		printf("%s: could not allocate RX buffer!\n",
2186 		    sc->sc_dev.dv_xname);
2187 		return (ENOMEM);
2188 	}
2189 
2190 	bzero(data_rx->buf, MCLBYTES);
2191 
2192 	return (0);
2193 }
2194 
2195 int
2196 upgt_alloc_cmd(struct upgt_softc *sc)
2197 {
2198 	struct upgt_data *data_cmd = &sc->cmd_data;
2199 
2200 	data_cmd->sc = sc;
2201 
2202 	data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
2203 	if (data_cmd->xfer == NULL) {
2204 		printf("%s: could not allocate RX xfer!\n",
2205 		    sc->sc_dev.dv_xname);
2206 		return (ENOMEM);
2207 	}
2208 
2209 	data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
2210 	if (data_cmd->buf == NULL) {
2211 		printf("%s: could not allocate RX buffer!\n",
2212 		    sc->sc_dev.dv_xname);
2213 		return (ENOMEM);
2214 	}
2215 
2216 	bzero(data_cmd->buf, MCLBYTES);
2217 
2218 	return (0);
2219 }
2220 
2221 void
2222 upgt_free_tx(struct upgt_softc *sc)
2223 {
2224 	int i;
2225 
2226 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2227 		struct upgt_data *data_tx = &sc->tx_data[i];
2228 
2229 		if (data_tx->xfer != NULL) {
2230 			usbd_free_xfer(data_tx->xfer);
2231 			data_tx->xfer = NULL;
2232 		}
2233 
2234 		data_tx->ni = NULL;
2235 	}
2236 }
2237 
2238 void
2239 upgt_free_rx(struct upgt_softc *sc)
2240 {
2241 	struct upgt_data *data_rx = &sc->rx_data;
2242 
2243 	if (data_rx->xfer != NULL) {
2244 		usbd_free_xfer(data_rx->xfer);
2245 		data_rx->xfer = NULL;
2246 	}
2247 
2248 	data_rx->ni = NULL;
2249 }
2250 
2251 void
2252 upgt_free_cmd(struct upgt_softc *sc)
2253 {
2254 	struct upgt_data *data_cmd = &sc->cmd_data;
2255 
2256 	if (data_cmd->xfer != NULL) {
2257 		usbd_free_xfer(data_cmd->xfer);
2258 		data_cmd->xfer = NULL;
2259 	}
2260 }
2261 
2262 int
2263 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2264     struct usbd_pipe *pipeh, uint32_t *size, int flags)
2265 {
2266         usbd_status status;
2267 
2268 	usbd_setup_xfer(data->xfer, pipeh, 0, data->buf, *size,
2269 	    USBD_NO_COPY | USBD_SYNCHRONOUS | flags, UPGT_USB_TIMEOUT, NULL);
2270 	status = usbd_transfer(data->xfer);
2271 	if (status != USBD_NORMAL_COMPLETION) {
2272 		printf("%s: %s: error %s!\n",
2273 		    sc->sc_dev.dv_xname, __func__, usbd_errstr(status));
2274 		return (EIO);
2275 	}
2276 
2277 	return (0);
2278 }
2279 
2280 void
2281 upgt_hexdump(void *buf, int len)
2282 {
2283 	int i;
2284 
2285 	for (i = 0; i < len; i++) {
2286 		if (i % 16 == 0)
2287 			printf("%s%5i:", i ? "\n" : "", i);
2288 		if (i % 4 == 0)
2289 			printf(" ");
2290 		printf("%02x", (int)*((u_char *)buf + i));
2291 	}
2292 	printf("\n");
2293 }
2294 
2295 uint32_t
2296 upgt_crc32_le(const void *buf, size_t size)
2297 {
2298 	uint32_t crc;
2299 
2300 	crc = ether_crc32_le(buf, size);
2301 
2302 	/* apply final XOR value as common for CRC-32 */
2303 	crc = htole32(crc ^ 0xffffffffU);
2304 
2305 	return (crc);
2306 }
2307 
2308 /*
2309  * The firmware awaits a checksum for each frame we send to it.
2310  * The algorithm used therefor is uncommon but somehow similar to CRC32.
2311  */
2312 uint32_t
2313 upgt_chksum_le(const uint32_t *buf, size_t size)
2314 {
2315 	int i;
2316 	uint32_t crc = 0;
2317 
2318 	for (i = 0; i < size; i += sizeof(uint32_t)) {
2319 		crc = htole32(crc ^ *buf++);
2320 		crc = htole32((crc >> 5) ^ (crc << 3));
2321 	}
2322 
2323 	return (crc);
2324 }
2325