1 /* $OpenBSD: if_upgt.c,v 1.86 2020/07/10 13:22:21 patrick Exp $ */ 2 3 /* 4 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include "bpfilter.h" 20 21 #include <sys/param.h> 22 #include <sys/sockio.h> 23 #include <sys/mbuf.h> 24 #include <sys/kernel.h> 25 #include <sys/socket.h> 26 #include <sys/systm.h> 27 #include <sys/timeout.h> 28 #include <sys/conf.h> 29 #include <sys/device.h> 30 #include <sys/endian.h> 31 32 #include <machine/intr.h> 33 34 #if NBPFILTER > 0 35 #include <net/bpf.h> 36 #endif 37 #include <net/if.h> 38 #include <net/if_dl.h> 39 #include <net/if_media.h> 40 41 #include <netinet/in.h> 42 #include <netinet/if_ether.h> 43 44 #include <net80211/ieee80211_var.h> 45 #include <net80211/ieee80211_radiotap.h> 46 47 #include <dev/usb/usb.h> 48 #include <dev/usb/usbdi.h> 49 #include <dev/usb/usbdi_util.h> 50 #include <dev/usb/usbdevs.h> 51 52 #include <dev/usb/if_upgtvar.h> 53 54 /* 55 * Driver for the USB PrismGT devices. 56 * 57 * For now just USB 2.0 devices with the GW3887 chipset are supported. 58 * The driver has been written based on the firmware version 2.13.1.0_LM87. 59 * 60 * TODO's: 61 * - Fix MONITOR mode (MAC filter). 62 * - Add HOSTAP mode. 63 * - Add IBSS mode. 64 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 65 * 66 * Parts of this driver has been influenced by reading the p54u driver 67 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 68 * Sebastien Bourdeauducq <lekernel@prism54.org>. 69 */ 70 71 #ifdef UPGT_DEBUG 72 int upgt_debug = 2; 73 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0) 74 #else 75 #define DPRINTF(l, x...) 76 #endif 77 78 /* 79 * Prototypes. 80 */ 81 int upgt_match(struct device *, void *, void *); 82 void upgt_attach(struct device *, struct device *, void *); 83 void upgt_attach_hook(struct device *); 84 int upgt_detach(struct device *, int); 85 86 int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t); 87 int upgt_device_init(struct upgt_softc *); 88 int upgt_mem_init(struct upgt_softc *); 89 uint32_t upgt_mem_alloc(struct upgt_softc *); 90 void upgt_mem_free(struct upgt_softc *, uint32_t); 91 int upgt_fw_alloc(struct upgt_softc *); 92 void upgt_fw_free(struct upgt_softc *); 93 int upgt_fw_verify(struct upgt_softc *); 94 int upgt_fw_load(struct upgt_softc *); 95 int upgt_fw_copy(char *, char *, int); 96 int upgt_eeprom_read(struct upgt_softc *); 97 int upgt_eeprom_parse(struct upgt_softc *); 98 void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 99 void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 100 void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 101 void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 102 103 int upgt_ioctl(struct ifnet *, u_long, caddr_t); 104 int upgt_init(struct ifnet *); 105 void upgt_stop(struct upgt_softc *); 106 int upgt_media_change(struct ifnet *); 107 void upgt_newassoc(struct ieee80211com *, struct ieee80211_node *, 108 int); 109 int upgt_newstate(struct ieee80211com *, enum ieee80211_state, int); 110 void upgt_newstate_task(void *); 111 void upgt_next_scan(void *); 112 void upgt_start(struct ifnet *); 113 void upgt_watchdog(struct ifnet *); 114 void upgt_tx_task(void *); 115 void upgt_tx_done(struct upgt_softc *, uint8_t *); 116 void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status); 117 void upgt_rx(struct upgt_softc *, uint8_t *, int); 118 void upgt_setup_rates(struct upgt_softc *); 119 uint8_t upgt_rx_rate(struct upgt_softc *, const int); 120 int upgt_set_macfilter(struct upgt_softc *, uint8_t state); 121 int upgt_set_channel(struct upgt_softc *, unsigned); 122 void upgt_set_led(struct upgt_softc *, int); 123 void upgt_set_led_blink(void *); 124 int upgt_get_stats(struct upgt_softc *); 125 126 int upgt_alloc_tx(struct upgt_softc *); 127 int upgt_alloc_rx(struct upgt_softc *); 128 int upgt_alloc_cmd(struct upgt_softc *); 129 void upgt_free_tx(struct upgt_softc *); 130 void upgt_free_rx(struct upgt_softc *); 131 void upgt_free_cmd(struct upgt_softc *); 132 int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *, 133 struct usbd_pipe *, uint32_t *, int); 134 135 void upgt_hexdump(void *, int); 136 uint32_t upgt_crc32_le(const void *, size_t); 137 uint32_t upgt_chksum_le(const uint32_t *, size_t); 138 139 struct cfdriver upgt_cd = { 140 NULL, "upgt", DV_IFNET 141 }; 142 143 const struct cfattach upgt_ca = { 144 sizeof(struct upgt_softc), upgt_match, upgt_attach, upgt_detach 145 }; 146 147 static const struct usb_devno upgt_devs_1[] = { 148 /* version 1 devices */ 149 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G } 150 }; 151 152 static const struct usb_devno upgt_devs_2[] = { 153 /* version 2 devices */ 154 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT }, 155 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G }, 156 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, 157 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG }, 158 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 }, 159 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_PRISM_GT }, 160 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 }, 161 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 }, 162 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 }, 163 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 }, 164 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 }, 165 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 }, 166 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT }, 167 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 }, 168 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 }, 169 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, 170 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 }, 171 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G }, 172 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_1 }, 173 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_2 }, 174 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 }, 175 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A } 176 }; 177 178 int 179 upgt_match(struct device *parent, void *match, void *aux) 180 { 181 struct usb_attach_arg *uaa = aux; 182 183 if (uaa->iface == NULL || uaa->configno != UPGT_CONFIG_NO) 184 return (UMATCH_NONE); 185 186 if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL) 187 return (UMATCH_VENDOR_PRODUCT); 188 189 if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL) 190 return (UMATCH_VENDOR_PRODUCT); 191 192 return (UMATCH_NONE); 193 } 194 195 void 196 upgt_attach(struct device *parent, struct device *self, void *aux) 197 { 198 struct upgt_softc *sc = (struct upgt_softc *)self; 199 struct usb_attach_arg *uaa = aux; 200 usb_interface_descriptor_t *id; 201 usb_endpoint_descriptor_t *ed; 202 usbd_status error; 203 int i; 204 205 /* 206 * Attach USB device. 207 */ 208 sc->sc_udev = uaa->device; 209 210 /* check device type */ 211 if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0) 212 return; 213 214 /* get the first interface handle */ 215 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX, 216 &sc->sc_iface); 217 if (error != 0) { 218 printf("%s: could not get interface handle!\n", 219 sc->sc_dev.dv_xname); 220 return; 221 } 222 223 /* find endpoints */ 224 id = usbd_get_interface_descriptor(sc->sc_iface); 225 sc->sc_rx_no = sc->sc_tx_no = -1; 226 for (i = 0; i < id->bNumEndpoints; i++) { 227 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 228 if (ed == NULL) { 229 printf("%s: no endpoint descriptor for iface %d!\n", 230 sc->sc_dev.dv_xname, i); 231 return; 232 } 233 234 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 235 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 236 sc->sc_tx_no = ed->bEndpointAddress; 237 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 238 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 239 sc->sc_rx_no = ed->bEndpointAddress; 240 241 /* 242 * 0x01 TX pipe 243 * 0x81 RX pipe 244 * 245 * Deprecated scheme (not used with fw version >2.5.6.x): 246 * 0x02 TX MGMT pipe 247 * 0x82 TX MGMT pipe 248 */ 249 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1) 250 break; 251 } 252 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 253 printf("%s: missing endpoint!\n", sc->sc_dev.dv_xname); 254 return; 255 } 256 257 /* setup tasks and timeouts */ 258 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 259 USB_TASK_TYPE_GENERIC); 260 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, USB_TASK_TYPE_GENERIC); 261 timeout_set(&sc->scan_to, upgt_next_scan, sc); 262 timeout_set(&sc->led_to, upgt_set_led_blink, sc); 263 264 /* 265 * Open TX and RX USB bulk pipes. 266 */ 267 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 268 &sc->sc_tx_pipeh); 269 if (error != 0) { 270 printf("%s: could not open TX pipe: %s!\n", 271 sc->sc_dev.dv_xname, usbd_errstr(error)); 272 goto fail; 273 } 274 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 275 &sc->sc_rx_pipeh); 276 if (error != 0) { 277 printf("%s: could not open RX pipe: %s!\n", 278 sc->sc_dev.dv_xname, usbd_errstr(error)); 279 goto fail; 280 } 281 282 /* 283 * Allocate TX, RX, and CMD xfers. 284 */ 285 if (upgt_alloc_tx(sc) != 0) 286 goto fail; 287 if (upgt_alloc_rx(sc) != 0) 288 goto fail; 289 if (upgt_alloc_cmd(sc) != 0) 290 goto fail; 291 292 /* 293 * We need the firmware loaded to complete the attach. 294 */ 295 config_mountroot(self, upgt_attach_hook); 296 297 return; 298 fail: 299 printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__); 300 } 301 302 void 303 upgt_attach_hook(struct device *self) 304 { 305 struct upgt_softc *sc = (struct upgt_softc *)self; 306 struct ieee80211com *ic = &sc->sc_ic; 307 struct ifnet *ifp = &ic->ic_if; 308 usbd_status error; 309 int i; 310 311 /* 312 * Load firmware file into memory. 313 */ 314 if (upgt_fw_alloc(sc) != 0) 315 goto fail; 316 317 /* 318 * Initialize the device. 319 */ 320 if (upgt_device_init(sc) != 0) 321 goto fail; 322 323 /* 324 * Verify the firmware. 325 */ 326 if (upgt_fw_verify(sc) != 0) 327 goto fail; 328 329 /* 330 * Calculate device memory space. 331 */ 332 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 333 printf("%s: could not find memory space addresses on FW!\n", 334 sc->sc_dev.dv_xname); 335 goto fail; 336 } 337 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 338 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 339 340 DPRINTF(1, "%s: memory address frame start=0x%08x\n", 341 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start); 342 DPRINTF(1, "%s: memory address frame end=0x%08x\n", 343 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end); 344 DPRINTF(1, "%s: memory address rx start=0x%08x\n", 345 sc->sc_dev.dv_xname, sc->sc_memaddr_rx_start); 346 347 upgt_mem_init(sc); 348 349 /* 350 * Load the firmware. 351 */ 352 if (upgt_fw_load(sc) != 0) 353 goto fail; 354 355 /* 356 * Startup the RX pipe. 357 */ 358 struct upgt_data *data_rx = &sc->rx_data; 359 360 usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, 361 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 362 error = usbd_transfer(data_rx->xfer); 363 if (error != 0 && error != USBD_IN_PROGRESS) { 364 printf("%s: could not queue RX transfer!\n", 365 sc->sc_dev.dv_xname); 366 goto fail; 367 } 368 usbd_delay_ms(sc->sc_udev, 100); 369 370 /* 371 * Read the whole EEPROM content and parse it. 372 */ 373 if (upgt_eeprom_read(sc) != 0) 374 goto fail; 375 if (upgt_eeprom_parse(sc) != 0) 376 goto fail; 377 378 /* 379 * Setup the 802.11 device. 380 */ 381 ic->ic_phytype = IEEE80211_T_OFDM; 382 ic->ic_opmode = IEEE80211_M_STA; 383 ic->ic_state = IEEE80211_S_INIT; 384 ic->ic_caps = 385 IEEE80211_C_MONITOR | 386 IEEE80211_C_SHPREAMBLE | 387 IEEE80211_C_SHSLOT | 388 IEEE80211_C_WEP | 389 IEEE80211_C_RSN; 390 391 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 392 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 393 394 for (i = 1; i <= 14; i++) { 395 ic->ic_channels[i].ic_freq = 396 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 397 ic->ic_channels[i].ic_flags = 398 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 399 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 400 } 401 402 ifp->if_softc = sc; 403 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 404 ifp->if_ioctl = upgt_ioctl; 405 ifp->if_start = upgt_start; 406 ifp->if_watchdog = upgt_watchdog; 407 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 408 409 if_attach(ifp); 410 ieee80211_ifattach(ifp); 411 ic->ic_newassoc = upgt_newassoc; 412 413 sc->sc_newstate = ic->ic_newstate; 414 ic->ic_newstate = upgt_newstate; 415 ieee80211_media_init(ifp, upgt_media_change, ieee80211_media_status); 416 417 #if NBPFILTER > 0 418 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 419 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 420 421 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 422 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 423 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT); 424 425 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 426 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 427 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT); 428 #endif 429 430 printf("%s: address %s\n", 431 sc->sc_dev.dv_xname, ether_sprintf(ic->ic_myaddr)); 432 433 return; 434 fail: 435 printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__); 436 } 437 438 int 439 upgt_detach(struct device *self, int flags) 440 { 441 struct upgt_softc *sc = (struct upgt_softc *)self; 442 struct ifnet *ifp = &sc->sc_ic.ic_if; 443 int s; 444 445 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 446 447 s = splusb(); 448 449 /* abort and close TX / RX pipes */ 450 if (sc->sc_tx_pipeh != NULL) { 451 usbd_abort_pipe(sc->sc_tx_pipeh); 452 usbd_close_pipe(sc->sc_tx_pipeh); 453 } 454 if (sc->sc_rx_pipeh != NULL) { 455 usbd_abort_pipe(sc->sc_rx_pipeh); 456 usbd_close_pipe(sc->sc_rx_pipeh); 457 } 458 459 /* remove tasks and timeouts */ 460 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 461 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 462 if (timeout_initialized(&sc->scan_to)) 463 timeout_del(&sc->scan_to); 464 if (timeout_initialized(&sc->led_to)) 465 timeout_del(&sc->led_to); 466 467 /* free xfers */ 468 upgt_free_tx(sc); 469 upgt_free_rx(sc); 470 upgt_free_cmd(sc); 471 472 /* free firmware */ 473 upgt_fw_free(sc); 474 475 if (ifp->if_softc != NULL) { 476 /* detach interface */ 477 ieee80211_ifdetach(ifp); 478 if_detach(ifp); 479 } 480 481 splx(s); 482 483 return (0); 484 } 485 486 int 487 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product) 488 { 489 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) { 490 sc->sc_device_type = 1; 491 /* XXX */ 492 printf("%s: version 1 devices not supported yet!\n", 493 sc->sc_dev.dv_xname); 494 return (1); 495 } else { 496 sc->sc_device_type = 2; 497 } 498 499 return (0); 500 } 501 502 int 503 upgt_device_init(struct upgt_softc *sc) 504 { 505 struct upgt_data *data_cmd = &sc->cmd_data; 506 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 507 int len; 508 509 len = sizeof(init_cmd); 510 bcopy(init_cmd, data_cmd->buf, len); 511 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 512 printf("%s: could not send device init string!\n", 513 sc->sc_dev.dv_xname); 514 return (EIO); 515 } 516 usbd_delay_ms(sc->sc_udev, 100); 517 518 DPRINTF(1, "%s: device initialized\n", sc->sc_dev.dv_xname); 519 520 return (0); 521 } 522 523 int 524 upgt_mem_init(struct upgt_softc *sc) 525 { 526 int i; 527 528 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 529 sc->sc_memory.page[i].used = 0; 530 531 if (i == 0) { 532 /* 533 * The first memory page is always reserved for 534 * command data. 535 */ 536 sc->sc_memory.page[i].addr = 537 sc->sc_memaddr_frame_start + MCLBYTES; 538 } else { 539 sc->sc_memory.page[i].addr = 540 sc->sc_memory.page[i - 1].addr + MCLBYTES; 541 } 542 543 if (sc->sc_memory.page[i].addr + MCLBYTES >= 544 sc->sc_memaddr_frame_end) 545 break; 546 547 DPRINTF(2, "%s: memory address page %d=0x%08x\n", 548 sc->sc_dev.dv_xname, i, sc->sc_memory.page[i].addr); 549 } 550 551 sc->sc_memory.pages = i; 552 553 DPRINTF(2, "%s: memory pages=%d\n", 554 sc->sc_dev.dv_xname, sc->sc_memory.pages); 555 556 return (0); 557 } 558 559 uint32_t 560 upgt_mem_alloc(struct upgt_softc *sc) 561 { 562 int i; 563 564 for (i = 0; i < sc->sc_memory.pages; i++) { 565 if (sc->sc_memory.page[i].used == 0) { 566 sc->sc_memory.page[i].used = 1; 567 return (sc->sc_memory.page[i].addr); 568 } 569 } 570 571 return (0); 572 } 573 574 void 575 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 576 { 577 int i; 578 579 for (i = 0; i < sc->sc_memory.pages; i++) { 580 if (sc->sc_memory.page[i].addr == addr) { 581 sc->sc_memory.page[i].used = 0; 582 return; 583 } 584 } 585 586 printf("%s: could not free memory address 0x%08x!\n", 587 sc->sc_dev.dv_xname, addr); 588 } 589 590 591 int 592 upgt_fw_alloc(struct upgt_softc *sc) 593 { 594 const char *name = "upgt-gw3887"; 595 int error; 596 597 if (sc->sc_fw == NULL) { 598 error = loadfirmware(name, &sc->sc_fw, &sc->sc_fw_size); 599 if (error != 0) { 600 printf("%s: error %d, could not read firmware %s!\n", 601 sc->sc_dev.dv_xname, error, name); 602 return (EIO); 603 } 604 } 605 606 DPRINTF(1, "%s: firmware %s allocated\n", sc->sc_dev.dv_xname, name); 607 608 return (0); 609 } 610 611 void 612 upgt_fw_free(struct upgt_softc *sc) 613 { 614 if (sc->sc_fw != NULL) { 615 free(sc->sc_fw, M_DEVBUF, sc->sc_fw_size); 616 sc->sc_fw = NULL; 617 DPRINTF(1, "%s: firmware freed\n", sc->sc_dev.dv_xname); 618 } 619 } 620 621 int 622 upgt_fw_verify(struct upgt_softc *sc) 623 { 624 struct upgt_fw_bra_option *bra_option; 625 uint32_t bra_option_type, bra_option_len; 626 uint32_t *uc; 627 int offset, bra_end = 0; 628 629 /* 630 * Seek to beginning of Boot Record Area (BRA). 631 */ 632 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 633 uc = (uint32_t *)(sc->sc_fw + offset); 634 if (*uc == 0) 635 break; 636 } 637 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) { 638 uc = (uint32_t *)(sc->sc_fw + offset); 639 if (*uc != 0) 640 break; 641 } 642 if (offset == sc->sc_fw_size) { 643 printf("%s: firmware Boot Record Area not found!\n", 644 sc->sc_dev.dv_xname); 645 return (EIO); 646 } 647 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n", 648 sc->sc_dev.dv_xname, offset); 649 650 /* 651 * Parse Boot Record Area (BRA) options. 652 */ 653 while (offset < sc->sc_fw_size && bra_end == 0) { 654 /* get current BRA option */ 655 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset); 656 bra_option_type = letoh32(bra_option->type); 657 bra_option_len = letoh32(bra_option->len) * sizeof(*uc); 658 659 switch (bra_option_type) { 660 case UPGT_BRA_TYPE_FW: 661 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n", 662 sc->sc_dev.dv_xname, bra_option_len); 663 664 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 665 printf("%s: wrong UPGT_BRA_TYPE_FW len!\n", 666 sc->sc_dev.dv_xname); 667 return (EIO); 668 } 669 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data, 670 bra_option_len) == 0) { 671 sc->sc_fw_type = UPGT_FWTYPE_LM86; 672 break; 673 } 674 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data, 675 bra_option_len) == 0) { 676 sc->sc_fw_type = UPGT_FWTYPE_LM87; 677 break; 678 } 679 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data, 680 bra_option_len) == 0) { 681 sc->sc_fw_type = UPGT_FWTYPE_FMAC; 682 break; 683 } 684 printf("%s: unsupported firmware type!\n", 685 sc->sc_dev.dv_xname); 686 return (EIO); 687 case UPGT_BRA_TYPE_VERSION: 688 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n", 689 sc->sc_dev.dv_xname, bra_option_len); 690 break; 691 case UPGT_BRA_TYPE_DEPIF: 692 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n", 693 sc->sc_dev.dv_xname, bra_option_len); 694 break; 695 case UPGT_BRA_TYPE_EXPIF: 696 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n", 697 sc->sc_dev.dv_xname, bra_option_len); 698 break; 699 case UPGT_BRA_TYPE_DESCR: 700 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n", 701 sc->sc_dev.dv_xname, bra_option_len); 702 703 struct upgt_fw_bra_descr *descr = 704 (struct upgt_fw_bra_descr *)bra_option->data; 705 706 sc->sc_memaddr_frame_start = 707 letoh32(descr->memaddr_space_start); 708 sc->sc_memaddr_frame_end = 709 letoh32(descr->memaddr_space_end); 710 711 DPRINTF(2, "%s: memory address space start=0x%08x\n", 712 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start); 713 DPRINTF(2, "%s: memory address space end=0x%08x\n", 714 sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end); 715 break; 716 case UPGT_BRA_TYPE_END: 717 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n", 718 sc->sc_dev.dv_xname, bra_option_len); 719 bra_end = 1; 720 break; 721 default: 722 DPRINTF(1, "%s: unknown BRA option len=%d\n", 723 sc->sc_dev.dv_xname, bra_option_len); 724 return (EIO); 725 } 726 727 /* jump to next BRA option */ 728 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 729 } 730 731 DPRINTF(1, "%s: firmware verified\n", sc->sc_dev.dv_xname); 732 733 return (0); 734 } 735 736 int 737 upgt_fw_load(struct upgt_softc *sc) 738 { 739 struct upgt_data *data_cmd = &sc->cmd_data; 740 struct upgt_data *data_rx = &sc->rx_data; 741 char start_fwload_cmd[] = { 0x3c, 0x0d }; 742 int offset, bsize, n, i, len; 743 uint32_t crc32; 744 745 /* send firmware start load command */ 746 len = sizeof(start_fwload_cmd); 747 bcopy(start_fwload_cmd, data_cmd->buf, len); 748 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 749 printf("%s: could not send start_firmware_load command!\n", 750 sc->sc_dev.dv_xname); 751 return (EIO); 752 } 753 754 /* send X2 header */ 755 len = sizeof(struct upgt_fw_x2_header); 756 struct upgt_fw_x2_header *x2 = data_cmd->buf; 757 bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE); 758 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 759 x2->len = htole32(sc->sc_fw_size); 760 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE, 761 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 762 sizeof(uint32_t)); 763 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 764 printf("%s: could not send firmware X2 header!\n", 765 sc->sc_dev.dv_xname); 766 return (EIO); 767 } 768 769 /* download firmware */ 770 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) { 771 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE) 772 bsize = UPGT_FW_BLOCK_SIZE; 773 else 774 bsize = sc->sc_fw_size - offset; 775 776 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize); 777 778 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n", 779 sc->sc_dev.dv_xname, offset, n, bsize); 780 781 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0) 782 != 0) { 783 printf("%s: error while downloading firmware block!\n", 784 sc->sc_dev.dv_xname); 785 return (EIO); 786 } 787 788 bsize = n; 789 } 790 DPRINTF(1, "%s: firmware downloaded\n", sc->sc_dev.dv_xname); 791 792 /* load firmware */ 793 crc32 = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size); 794 *((uint32_t *)(data_cmd->buf) ) = crc32; 795 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 796 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 797 len = 6; 798 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 799 printf("%s: could not send load_firmware command!\n", 800 sc->sc_dev.dv_xname); 801 return (EIO); 802 } 803 804 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) { 805 len = UPGT_FW_BLOCK_SIZE; 806 bzero(data_rx->buf, MCLBYTES); 807 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len, 808 USBD_SHORT_XFER_OK) != 0) { 809 printf("%s: could not read firmware response!\n", 810 sc->sc_dev.dv_xname); 811 return (EIO); 812 } 813 814 if (memcmp(data_rx->buf, "OK", 2) == 0) 815 break; /* firmware load was successful */ 816 } 817 if (i == UPGT_FIRMWARE_TIMEOUT) { 818 printf("%s: firmware load failed!\n", sc->sc_dev.dv_xname); 819 return (EIO); 820 } 821 DPRINTF(1, "%s: firmware loaded\n", sc->sc_dev.dv_xname); 822 823 return (0); 824 } 825 826 /* 827 * While copying the version 2 firmware, we need to replace two characters: 828 * 829 * 0x7e -> 0x7d 0x5e 830 * 0x7d -> 0x7d 0x5d 831 */ 832 int 833 upgt_fw_copy(char *src, char *dst, int size) 834 { 835 int i, j; 836 837 for (i = 0, j = 0; i < size && j < size; i++) { 838 switch (src[i]) { 839 case 0x7e: 840 dst[j] = 0x7d; 841 j++; 842 dst[j] = 0x5e; 843 j++; 844 break; 845 case 0x7d: 846 dst[j] = 0x7d; 847 j++; 848 dst[j] = 0x5d; 849 j++; 850 break; 851 default: 852 dst[j] = src[i]; 853 j++; 854 break; 855 } 856 } 857 858 return (i); 859 } 860 861 int 862 upgt_eeprom_read(struct upgt_softc *sc) 863 { 864 struct upgt_data *data_cmd = &sc->cmd_data; 865 struct upgt_lmac_mem *mem; 866 struct upgt_lmac_eeprom *eeprom; 867 int offset, block, len; 868 869 offset = 0; 870 block = UPGT_EEPROM_BLOCK_SIZE; 871 while (offset < UPGT_EEPROM_SIZE) { 872 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n", 873 sc->sc_dev.dv_xname, offset, block); 874 875 /* 876 * Transmit the URB containing the CMD data. 877 */ 878 bzero(data_cmd->buf, MCLBYTES); 879 880 mem = (struct upgt_lmac_mem *)data_cmd->buf; 881 mem->addr = htole32(sc->sc_memaddr_frame_start + 882 UPGT_MEMSIZE_FRAME_HEAD); 883 884 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 885 eeprom->header1.flags = 0; 886 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 887 eeprom->header1.len = htole16(( 888 sizeof(struct upgt_lmac_eeprom) - 889 sizeof(struct upgt_lmac_header)) + block); 890 891 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 892 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 893 eeprom->header2.flags = 0; 894 895 eeprom->offset = htole16(offset); 896 eeprom->len = htole16(block); 897 898 len = sizeof(*mem) + sizeof(*eeprom) + block; 899 900 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 901 len - sizeof(*mem)); 902 903 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 904 USBD_FORCE_SHORT_XFER) != 0) { 905 printf("%s: could not transmit EEPROM data URB!\n", 906 sc->sc_dev.dv_xname); 907 return (EIO); 908 } 909 if (tsleep_nsec(sc, 0, "eeprom_request", 910 MSEC_TO_NSEC(UPGT_USB_TIMEOUT))) { 911 printf("%s: timeout while waiting for EEPROM data!\n", 912 sc->sc_dev.dv_xname); 913 return (EIO); 914 } 915 916 offset += block; 917 if (UPGT_EEPROM_SIZE - offset < block) 918 block = UPGT_EEPROM_SIZE - offset; 919 } 920 921 return (0); 922 } 923 924 int 925 upgt_eeprom_parse(struct upgt_softc *sc) 926 { 927 struct ieee80211com *ic = &sc->sc_ic; 928 struct upgt_eeprom_header *eeprom_header; 929 struct upgt_eeprom_option *eeprom_option; 930 uint16_t option_len; 931 uint16_t option_type; 932 uint16_t preamble_len; 933 int option_end = 0; 934 935 /* calculate eeprom options start offset */ 936 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 937 preamble_len = letoh16(eeprom_header->preamble_len); 938 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 939 (sizeof(struct upgt_eeprom_header) + preamble_len)); 940 941 while (!option_end) { 942 /* the eeprom option length is stored in words */ 943 option_len = 944 (letoh16(eeprom_option->len) - 1) * sizeof(uint16_t); 945 option_type = 946 letoh16(eeprom_option->type); 947 948 switch (option_type) { 949 case UPGT_EEPROM_TYPE_NAME: 950 DPRINTF(1, "%s: EEPROM name len=%d\n", 951 sc->sc_dev.dv_xname, option_len); 952 break; 953 case UPGT_EEPROM_TYPE_SERIAL: 954 DPRINTF(1, "%s: EEPROM serial len=%d\n", 955 sc->sc_dev.dv_xname, option_len); 956 break; 957 case UPGT_EEPROM_TYPE_MAC: 958 DPRINTF(1, "%s: EEPROM mac len=%d\n", 959 sc->sc_dev.dv_xname, option_len); 960 961 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data); 962 break; 963 case UPGT_EEPROM_TYPE_HWRX: 964 DPRINTF(1, "%s: EEPROM hwrx len=%d\n", 965 sc->sc_dev.dv_xname, option_len); 966 967 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 968 break; 969 case UPGT_EEPROM_TYPE_CHIP: 970 DPRINTF(1, "%s: EEPROM chip len=%d\n", 971 sc->sc_dev.dv_xname, option_len); 972 break; 973 case UPGT_EEPROM_TYPE_FREQ3: 974 DPRINTF(1, "%s: EEPROM freq3 len=%d\n", 975 sc->sc_dev.dv_xname, option_len); 976 977 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 978 option_len); 979 break; 980 case UPGT_EEPROM_TYPE_FREQ4: 981 DPRINTF(1, "%s: EEPROM freq4 len=%d\n", 982 sc->sc_dev.dv_xname, option_len); 983 984 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 985 option_len); 986 break; 987 case UPGT_EEPROM_TYPE_FREQ5: 988 DPRINTF(1, "%s: EEPROM freq5 len=%d\n", 989 sc->sc_dev.dv_xname, option_len); 990 break; 991 case UPGT_EEPROM_TYPE_FREQ6: 992 DPRINTF(1, "%s: EEPROM freq6 len=%d\n", 993 sc->sc_dev.dv_xname, option_len); 994 995 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 996 option_len); 997 break; 998 case UPGT_EEPROM_TYPE_END: 999 DPRINTF(1, "%s: EEPROM end len=%d\n", 1000 sc->sc_dev.dv_xname, option_len); 1001 option_end = 1; 1002 break; 1003 case UPGT_EEPROM_TYPE_OFF: 1004 DPRINTF(1, "%s: EEPROM off without end option!\n", 1005 sc->sc_dev.dv_xname); 1006 return (EIO); 1007 default: 1008 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n", 1009 sc->sc_dev.dv_xname, option_type, option_len); 1010 break; 1011 } 1012 1013 /* jump to next EEPROM option */ 1014 eeprom_option = (struct upgt_eeprom_option *) 1015 (eeprom_option->data + option_len); 1016 } 1017 1018 return (0); 1019 } 1020 1021 void 1022 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1023 { 1024 struct upgt_eeprom_option_hwrx *option_hwrx; 1025 1026 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1027 1028 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1029 1030 DPRINTF(2, "%s: hwrx option value=0x%04x\n", 1031 sc->sc_dev.dv_xname, sc->sc_eeprom_hwrx); 1032 } 1033 1034 void 1035 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1036 { 1037 struct upgt_eeprom_freq3_header *freq3_header; 1038 struct upgt_lmac_freq3 *freq3; 1039 int i, elements, flags; 1040 unsigned channel; 1041 1042 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1043 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1044 1045 flags = freq3_header->flags; 1046 elements = freq3_header->elements; 1047 1048 DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags); 1049 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1050 1051 for (i = 0; i < elements; i++) { 1052 channel = ieee80211_mhz2ieee(letoh16(freq3[i].freq), 0); 1053 1054 sc->sc_eeprom_freq3[channel] = freq3[i]; 1055 1056 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1057 sc->sc_dev.dv_xname, 1058 letoh16(sc->sc_eeprom_freq3[channel].freq), channel); 1059 } 1060 } 1061 1062 void 1063 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1064 { 1065 struct upgt_eeprom_freq4_header *freq4_header; 1066 struct upgt_eeprom_freq4_1 *freq4_1; 1067 struct upgt_eeprom_freq4_2 *freq4_2; 1068 int i, j, elements, settings, flags; 1069 unsigned channel; 1070 1071 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1072 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1073 1074 flags = freq4_header->flags; 1075 elements = freq4_header->elements; 1076 settings = freq4_header->settings; 1077 1078 /* we need this value later */ 1079 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1080 1081 DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags); 1082 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1083 DPRINTF(2, "%s: settings=%d\n", sc->sc_dev.dv_xname, settings); 1084 1085 for (i = 0; i < elements; i++) { 1086 channel = ieee80211_mhz2ieee(letoh16(freq4_1[i].freq), 0); 1087 1088 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1089 1090 for (j = 0; j < settings; j++) { 1091 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1092 sc->sc_eeprom_freq4[channel][j].pad = 0; 1093 } 1094 1095 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1096 sc->sc_dev.dv_xname, 1097 letoh16(freq4_1[i].freq), channel); 1098 } 1099 } 1100 1101 void 1102 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1103 { 1104 struct upgt_lmac_freq6 *freq6; 1105 int i, elements; 1106 unsigned channel; 1107 1108 freq6 = (struct upgt_lmac_freq6 *)data; 1109 1110 elements = len / sizeof(struct upgt_lmac_freq6); 1111 1112 DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); 1113 1114 for (i = 0; i < elements; i++) { 1115 channel = ieee80211_mhz2ieee(letoh16(freq6[i].freq), 0); 1116 1117 sc->sc_eeprom_freq6[channel] = freq6[i]; 1118 1119 DPRINTF(2, "%s: frequence=%d, channel=%d\n", 1120 sc->sc_dev.dv_xname, 1121 letoh16(sc->sc_eeprom_freq6[channel].freq), channel); 1122 } 1123 } 1124 1125 int 1126 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1127 { 1128 struct upgt_softc *sc = ifp->if_softc; 1129 struct ieee80211com *ic = &sc->sc_ic; 1130 int s, error = 0; 1131 uint8_t chan; 1132 1133 s = splnet(); 1134 1135 switch (cmd) { 1136 case SIOCSIFADDR: 1137 ifp->if_flags |= IFF_UP; 1138 /* FALLTHROUGH */ 1139 case SIOCSIFFLAGS: 1140 if (ifp->if_flags & IFF_UP) { 1141 if ((ifp->if_flags & IFF_RUNNING) == 0) 1142 upgt_init(ifp); 1143 } else { 1144 if (ifp->if_flags & IFF_RUNNING) 1145 upgt_stop(sc); 1146 } 1147 break; 1148 case SIOCS80211CHANNEL: 1149 /* allow fast channel switching in monitor mode */ 1150 error = ieee80211_ioctl(ifp, cmd, data); 1151 if (error == ENETRESET && 1152 ic->ic_opmode == IEEE80211_M_MONITOR) { 1153 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1154 (IFF_UP | IFF_RUNNING)) { 1155 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1156 chan = ieee80211_chan2ieee(ic, 1157 ic->ic_bss->ni_chan); 1158 upgt_set_channel(sc, chan); 1159 } 1160 error = 0; 1161 } 1162 break; 1163 default: 1164 error = ieee80211_ioctl(ifp, cmd, data); 1165 break; 1166 } 1167 1168 if (error == ENETRESET) { 1169 if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) 1170 upgt_init(ifp); 1171 error = 0; 1172 } 1173 1174 splx(s); 1175 1176 return (error); 1177 } 1178 1179 int 1180 upgt_init(struct ifnet *ifp) 1181 { 1182 struct upgt_softc *sc = ifp->if_softc; 1183 struct ieee80211com *ic = &sc->sc_ic; 1184 1185 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1186 1187 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 1188 1189 /* select default channel */ 1190 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1191 sc->sc_cur_chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1192 1193 /* setup device rates */ 1194 upgt_setup_rates(sc); 1195 1196 ifp->if_flags |= IFF_RUNNING; 1197 ifq_clr_oactive(&ifp->if_snd); 1198 1199 upgt_set_macfilter(sc, IEEE80211_S_SCAN); 1200 1201 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 1202 upgt_set_channel(sc, sc->sc_cur_chan); 1203 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1204 } else 1205 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1206 1207 return (0); 1208 } 1209 1210 void 1211 upgt_stop(struct upgt_softc *sc) 1212 { 1213 struct ieee80211com *ic = &sc->sc_ic; 1214 struct ifnet *ifp = &ic->ic_if; 1215 1216 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1217 1218 /* device down */ 1219 ifp->if_timer = 0; 1220 ifp->if_flags &= ~IFF_RUNNING; 1221 ifq_clr_oactive(&ifp->if_snd); 1222 1223 upgt_set_led(sc, UPGT_LED_OFF); 1224 1225 /* change device back to initial state */ 1226 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1227 } 1228 1229 int 1230 upgt_media_change(struct ifnet *ifp) 1231 { 1232 struct upgt_softc *sc = ifp->if_softc; 1233 int error; 1234 1235 DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1236 1237 if ((error = ieee80211_media_change(ifp)) != ENETRESET) 1238 return (error); 1239 1240 if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1241 /* give pending USB transfers a chance to finish */ 1242 usbd_delay_ms(sc->sc_udev, 100); 1243 upgt_init(ifp); 1244 } 1245 1246 return (error); 1247 } 1248 1249 void 1250 upgt_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 1251 { 1252 ni->ni_txrate = 0; 1253 } 1254 1255 int 1256 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1257 { 1258 struct upgt_softc *sc = ic->ic_if.if_softc; 1259 1260 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); 1261 timeout_del(&sc->scan_to); 1262 1263 /* do it in a process context */ 1264 sc->sc_state = nstate; 1265 sc->sc_arg = arg; 1266 usb_add_task(sc->sc_udev, &sc->sc_task_newstate); 1267 1268 return (0); 1269 } 1270 1271 void 1272 upgt_newstate_task(void *arg) 1273 { 1274 struct upgt_softc *sc = arg; 1275 struct ieee80211com *ic = &sc->sc_ic; 1276 struct ieee80211_node *ni; 1277 unsigned channel; 1278 1279 switch (sc->sc_state) { 1280 case IEEE80211_S_INIT: 1281 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n", 1282 sc->sc_dev.dv_xname); 1283 1284 /* do not accept any frames if the device is down */ 1285 upgt_set_macfilter(sc, IEEE80211_S_INIT); 1286 upgt_set_led(sc, UPGT_LED_OFF); 1287 break; 1288 case IEEE80211_S_SCAN: 1289 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n", 1290 sc->sc_dev.dv_xname); 1291 1292 channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1293 upgt_set_channel(sc, channel); 1294 timeout_add_msec(&sc->scan_to, 200); 1295 break; 1296 case IEEE80211_S_AUTH: 1297 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n", 1298 sc->sc_dev.dv_xname); 1299 1300 channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); 1301 upgt_set_channel(sc, channel); 1302 break; 1303 case IEEE80211_S_ASSOC: 1304 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n", 1305 sc->sc_dev.dv_xname); 1306 break; 1307 case IEEE80211_S_RUN: 1308 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n", 1309 sc->sc_dev.dv_xname); 1310 1311 ni = ic->ic_bss; 1312 1313 /* 1314 * TX rate control is done by the firmware. 1315 * Report the maximum rate which is available therefore. 1316 */ 1317 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 1318 1319 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1320 upgt_set_macfilter(sc, IEEE80211_S_RUN); 1321 upgt_set_led(sc, UPGT_LED_ON); 1322 break; 1323 } 1324 1325 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 1326 } 1327 1328 void 1329 upgt_next_scan(void *arg) 1330 { 1331 struct upgt_softc *sc = arg; 1332 struct ieee80211com *ic = &sc->sc_ic; 1333 struct ifnet *ifp = &ic->ic_if; 1334 1335 DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1336 1337 if (ic->ic_state == IEEE80211_S_SCAN) 1338 ieee80211_next_scan(ifp); 1339 } 1340 1341 void 1342 upgt_start(struct ifnet *ifp) 1343 { 1344 struct upgt_softc *sc = ifp->if_softc; 1345 struct ieee80211com *ic = &sc->sc_ic; 1346 struct ieee80211_node *ni; 1347 struct mbuf *m; 1348 int i; 1349 1350 /* don't transmit packets if interface is busy or down */ 1351 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 1352 return; 1353 1354 DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1355 1356 for (i = 0; i < UPGT_TX_COUNT; i++) { 1357 struct upgt_data *data_tx = &sc->tx_data[i]; 1358 1359 m = mq_dequeue(&ic->ic_mgtq); 1360 if (m != NULL) { 1361 /* management frame */ 1362 ni = m->m_pkthdr.ph_cookie; 1363 #if NBPFILTER > 0 1364 if (ic->ic_rawbpf != NULL) 1365 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 1366 #endif 1367 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1368 printf("%s: no free prism memory!\n", 1369 sc->sc_dev.dv_xname); 1370 return; 1371 } 1372 data_tx->ni = ni; 1373 data_tx->m = m; 1374 sc->tx_queued++; 1375 } else { 1376 /* data frame */ 1377 if (ic->ic_state != IEEE80211_S_RUN) 1378 break; 1379 1380 m = ifq_dequeue(&ifp->if_snd); 1381 if (m == NULL) 1382 break; 1383 1384 #if NBPFILTER > 0 1385 if (ifp->if_bpf != NULL) 1386 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 1387 #endif 1388 m = ieee80211_encap(ifp, m, &ni); 1389 if (m == NULL) 1390 continue; 1391 #if NBPFILTER > 0 1392 if (ic->ic_rawbpf != NULL) 1393 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 1394 #endif 1395 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { 1396 printf("%s: no free prism memory!\n", 1397 sc->sc_dev.dv_xname); 1398 return; 1399 } 1400 data_tx->ni = ni; 1401 data_tx->m = m; 1402 sc->tx_queued++; 1403 } 1404 } 1405 1406 if (sc->tx_queued > 0) { 1407 DPRINTF(2, "%s: tx_queued=%d\n", 1408 sc->sc_dev.dv_xname, sc->tx_queued); 1409 /* process the TX queue in process context */ 1410 ifp->if_timer = 5; 1411 ifq_set_oactive(&ifp->if_snd); 1412 usb_rem_task(sc->sc_udev, &sc->sc_task_tx); 1413 usb_add_task(sc->sc_udev, &sc->sc_task_tx); 1414 } 1415 } 1416 1417 void 1418 upgt_watchdog(struct ifnet *ifp) 1419 { 1420 struct upgt_softc *sc = ifp->if_softc; 1421 struct ieee80211com *ic = &sc->sc_ic; 1422 1423 if (ic->ic_state == IEEE80211_S_INIT) 1424 return; 1425 1426 printf("%s: watchdog timeout!\n", sc->sc_dev.dv_xname); 1427 1428 /* TODO: what shall we do on TX timeout? */ 1429 1430 ieee80211_watchdog(ifp); 1431 } 1432 1433 void 1434 upgt_tx_task(void *arg) 1435 { 1436 struct upgt_softc *sc = arg; 1437 struct ieee80211com *ic = &sc->sc_ic; 1438 struct ieee80211_frame *wh; 1439 struct ieee80211_key *k; 1440 struct upgt_lmac_mem *mem; 1441 struct upgt_lmac_tx_desc *txdesc; 1442 struct mbuf *m; 1443 uint32_t addr; 1444 int len, i, s; 1445 usbd_status error; 1446 1447 s = splusb(); 1448 1449 upgt_set_led(sc, UPGT_LED_BLINK); 1450 1451 for (i = 0; i < UPGT_TX_COUNT; i++) { 1452 struct upgt_data *data_tx = &sc->tx_data[i]; 1453 1454 if (data_tx->m == NULL) { 1455 DPRINTF(2, "%s: %d: m is NULL\n", 1456 sc->sc_dev.dv_xname, i); 1457 continue; 1458 } 1459 1460 m = data_tx->m; 1461 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD; 1462 1463 /* 1464 * Software crypto. 1465 */ 1466 wh = mtod(m, struct ieee80211_frame *); 1467 1468 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1469 k = ieee80211_get_txkey(ic, wh, ic->ic_bss); 1470 1471 if ((m = ieee80211_encrypt(ic, m, k)) == NULL) { 1472 splx(s); 1473 return; 1474 } 1475 1476 /* in case packet header moved, reset pointer */ 1477 wh = mtod(m, struct ieee80211_frame *); 1478 } 1479 1480 /* 1481 * Transmit the URB containing the TX data. 1482 */ 1483 bzero(data_tx->buf, MCLBYTES); 1484 1485 mem = (struct upgt_lmac_mem *)data_tx->buf; 1486 mem->addr = htole32(addr); 1487 1488 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 1489 1490 /* XXX differ between data and mgmt frames? */ 1491 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 1492 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 1493 txdesc->header1.len = htole16(m->m_pkthdr.len); 1494 1495 txdesc->header2.reqid = htole32(data_tx->addr); 1496 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 1497 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 1498 1499 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1500 IEEE80211_FC0_TYPE_MGT) { 1501 /* always send mgmt frames at lowest rate (DS1) */ 1502 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 1503 } else { 1504 bcopy(sc->sc_cur_rateset, txdesc->rates, 1505 sizeof(txdesc->rates)); 1506 } 1507 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 1508 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 1509 1510 #if NBPFILTER > 0 1511 if (sc->sc_drvbpf != NULL) { 1512 struct mbuf mb; 1513 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 1514 1515 tap->wt_flags = 0; 1516 tap->wt_rate = 0; /* TODO: where to get from? */ 1517 tap->wt_chan_freq = 1518 htole16(ic->ic_bss->ni_chan->ic_freq); 1519 tap->wt_chan_flags = 1520 htole16(ic->ic_bss->ni_chan->ic_flags); 1521 1522 mb.m_data = (caddr_t)tap; 1523 mb.m_len = sc->sc_txtap_len; 1524 mb.m_next = m; 1525 mb.m_nextpkt = NULL; 1526 mb.m_type = 0; 1527 mb.m_flags = 0; 1528 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 1529 } 1530 #endif 1531 /* copy frame below our TX descriptor header */ 1532 m_copydata(m, 0, m->m_pkthdr.len, 1533 data_tx->buf + (sizeof(*mem) + sizeof(*txdesc))); 1534 1535 /* calculate frame size */ 1536 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 1537 1538 /* we need to align the frame to a 4 byte boundary */ 1539 len = (len + 3) & ~3; 1540 1541 /* calculate frame checksum */ 1542 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, 1543 len - sizeof(*mem)); 1544 1545 /* we do not need the mbuf anymore */ 1546 m_freem(m); 1547 data_tx->m = NULL; 1548 1549 DPRINTF(2, "%s: TX start data sending\n", sc->sc_dev.dv_xname); 1550 1551 usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx, 1552 data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1553 UPGT_USB_TIMEOUT, NULL); 1554 error = usbd_transfer(data_tx->xfer); 1555 if (error != 0 && error != USBD_IN_PROGRESS) { 1556 printf("%s: could not transmit TX data URB!\n", 1557 sc->sc_dev.dv_xname); 1558 splx(s); 1559 return; 1560 } 1561 1562 DPRINTF(2, "%s: TX sent (%d bytes)\n", 1563 sc->sc_dev.dv_xname, len); 1564 } 1565 1566 /* 1567 * If we don't regulary read the device statistics, the RX queue 1568 * will stall. It's strange, but it works, so we keep reading 1569 * the statistics here. *shrug* 1570 */ 1571 upgt_get_stats(sc); 1572 1573 splx(s); 1574 } 1575 1576 void 1577 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1578 { 1579 struct ieee80211com *ic = &sc->sc_ic; 1580 struct ifnet *ifp = &ic->ic_if; 1581 struct upgt_lmac_tx_done_desc *desc; 1582 int i, s; 1583 1584 s = splnet(); 1585 1586 desc = (struct upgt_lmac_tx_done_desc *)data; 1587 1588 for (i = 0; i < UPGT_TX_COUNT; i++) { 1589 struct upgt_data *data_tx = &sc->tx_data[i]; 1590 1591 if (data_tx->addr == letoh32(desc->header2.reqid)) { 1592 upgt_mem_free(sc, data_tx->addr); 1593 ieee80211_release_node(ic, data_tx->ni); 1594 data_tx->ni = NULL; 1595 data_tx->addr = 0; 1596 1597 sc->tx_queued--; 1598 1599 DPRINTF(2, "%s: TX done: ", sc->sc_dev.dv_xname); 1600 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1601 letoh32(desc->header2.reqid), 1602 letoh16(desc->status), 1603 letoh16(desc->rssi)); 1604 DPRINTF(2, "seq=%d\n", letoh16(desc->seq)); 1605 break; 1606 } 1607 } 1608 1609 if (sc->tx_queued == 0) { 1610 /* TX queued was processed, continue */ 1611 ifp->if_timer = 0; 1612 ifq_clr_oactive(&ifp->if_snd); 1613 upgt_start(ifp); 1614 } 1615 1616 splx(s); 1617 } 1618 1619 void 1620 upgt_rx_cb(struct usbd_xfer *xfer, void *priv, usbd_status status) 1621 { 1622 struct upgt_data *data_rx = priv; 1623 struct upgt_softc *sc = data_rx->sc; 1624 int len; 1625 struct upgt_lmac_header *header; 1626 struct upgt_lmac_eeprom *eeprom; 1627 uint8_t h1_type; 1628 uint16_t h2_type; 1629 1630 DPRINTF(3, "%s: %s\n", sc->sc_dev.dv_xname, __func__); 1631 1632 if (status != USBD_NORMAL_COMPLETION) { 1633 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1634 return; 1635 if (status == USBD_STALLED) 1636 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 1637 goto skip; 1638 } 1639 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 1640 1641 /* 1642 * Check what type of frame came in. 1643 */ 1644 header = (struct upgt_lmac_header *)(data_rx->buf + 4); 1645 1646 h1_type = header->header1.type; 1647 h2_type = letoh16(header->header2.type); 1648 1649 if (h1_type == UPGT_H1_TYPE_CTRL && 1650 h2_type == UPGT_H2_TYPE_EEPROM) { 1651 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4); 1652 uint16_t eeprom_offset = letoh16(eeprom->offset); 1653 uint16_t eeprom_len = letoh16(eeprom->len); 1654 1655 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n", 1656 sc->sc_dev.dv_xname, eeprom_offset, eeprom_len); 1657 1658 bcopy(data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1659 sc->sc_eeprom + eeprom_offset, eeprom_len); 1660 1661 /* EEPROM data has arrived in time, wakeup tsleep() */ 1662 wakeup(sc); 1663 } else 1664 if (h1_type == UPGT_H1_TYPE_CTRL && 1665 h2_type == UPGT_H2_TYPE_TX_DONE) { 1666 DPRINTF(2, "%s: received 802.11 TX done\n", 1667 sc->sc_dev.dv_xname); 1668 1669 upgt_tx_done(sc, data_rx->buf + 4); 1670 } else 1671 if (h1_type == UPGT_H1_TYPE_RX_DATA || 1672 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1673 DPRINTF(3, "%s: received 802.11 RX data\n", 1674 sc->sc_dev.dv_xname); 1675 1676 upgt_rx(sc, data_rx->buf + 4, letoh16(header->header1.len)); 1677 } else 1678 if (h1_type == UPGT_H1_TYPE_CTRL && 1679 h2_type == UPGT_H2_TYPE_STATS) { 1680 DPRINTF(2, "%s: received statistic data\n", 1681 sc->sc_dev.dv_xname); 1682 1683 /* TODO: what could we do with the statistic data? */ 1684 } else { 1685 /* ignore unknown frame types */ 1686 DPRINTF(1, "%s: received unknown frame type 0x%02x\n", 1687 sc->sc_dev.dv_xname, header->header1.type); 1688 } 1689 1690 skip: /* setup new transfer */ 1691 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES, 1692 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); 1693 (void)usbd_transfer(xfer); 1694 } 1695 1696 void 1697 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen) 1698 { 1699 struct ieee80211com *ic = &sc->sc_ic; 1700 struct ifnet *ifp = &ic->ic_if; 1701 struct upgt_lmac_rx_desc *rxdesc; 1702 struct ieee80211_frame *wh; 1703 struct ieee80211_rxinfo rxi; 1704 struct ieee80211_node *ni; 1705 struct mbuf *m; 1706 int s; 1707 1708 /* access RX packet descriptor */ 1709 rxdesc = (struct upgt_lmac_rx_desc *)data; 1710 1711 /* create mbuf which is suitable for strict alignment archs */ 1712 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN); 1713 if (m == NULL) { 1714 DPRINTF(1, "%s: could not create RX mbuf!\n", sc->sc_dev.dv_xname); 1715 ifp->if_ierrors++; 1716 return; 1717 } 1718 1719 s = splnet(); 1720 1721 #if NBPFILTER > 0 1722 if (sc->sc_drvbpf != NULL) { 1723 struct mbuf mb; 1724 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1725 1726 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 1727 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1728 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1729 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1730 tap->wr_antsignal = rxdesc->rssi; 1731 1732 mb.m_data = (caddr_t)tap; 1733 mb.m_len = sc->sc_rxtap_len; 1734 mb.m_next = m; 1735 mb.m_nextpkt = NULL; 1736 mb.m_type = 0; 1737 mb.m_flags = 0; 1738 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 1739 } 1740 #endif 1741 /* trim FCS */ 1742 m_adj(m, -IEEE80211_CRC_LEN); 1743 1744 wh = mtod(m, struct ieee80211_frame *); 1745 ni = ieee80211_find_rxnode(ic, wh); 1746 1747 /* push the frame up to the 802.11 stack */ 1748 rxi.rxi_flags = 0; 1749 rxi.rxi_rssi = rxdesc->rssi; 1750 rxi.rxi_tstamp = 0; /* unused */ 1751 ieee80211_input(ifp, m, ni, &rxi); 1752 1753 /* node is no longer needed */ 1754 ieee80211_release_node(ic, ni); 1755 1756 splx(s); 1757 1758 DPRINTF(3, "%s: RX done\n", sc->sc_dev.dv_xname); 1759 } 1760 1761 void 1762 upgt_setup_rates(struct upgt_softc *sc) 1763 { 1764 struct ieee80211com *ic = &sc->sc_ic; 1765 1766 /* 1767 * 0x01 = OFMD6 0x10 = DS1 1768 * 0x04 = OFDM9 0x11 = DS2 1769 * 0x06 = OFDM12 0x12 = DS5 1770 * 0x07 = OFDM18 0x13 = DS11 1771 * 0x08 = OFDM24 1772 * 0x09 = OFDM36 1773 * 0x0a = OFDM48 1774 * 0x0b = OFDM54 1775 */ 1776 const uint8_t rateset_auto_11b[] = 1777 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 1778 const uint8_t rateset_auto_11g[] = 1779 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 1780 const uint8_t rateset_fix_11bg[] = 1781 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 1782 0x08, 0x09, 0x0a, 0x0b }; 1783 1784 if (ic->ic_fixed_rate == -1) { 1785 /* 1786 * Automatic rate control is done by the device. 1787 * We just pass the rateset from which the device 1788 * will pickup a rate. 1789 */ 1790 if (ic->ic_curmode == IEEE80211_MODE_11B) 1791 bcopy(rateset_auto_11b, sc->sc_cur_rateset, 1792 sizeof(sc->sc_cur_rateset)); 1793 if (ic->ic_curmode == IEEE80211_MODE_11G || 1794 ic->ic_curmode == IEEE80211_MODE_AUTO) 1795 bcopy(rateset_auto_11g, sc->sc_cur_rateset, 1796 sizeof(sc->sc_cur_rateset)); 1797 } else { 1798 /* set a fixed rate */ 1799 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate], 1800 sizeof(sc->sc_cur_rateset)); 1801 } 1802 } 1803 1804 uint8_t 1805 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1806 { 1807 struct ieee80211com *ic = &sc->sc_ic; 1808 1809 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1810 if (rate < 0 || rate > 3) 1811 /* invalid rate */ 1812 return (0); 1813 1814 switch (rate) { 1815 case 0: 1816 return (2); 1817 case 1: 1818 return (4); 1819 case 2: 1820 return (11); 1821 case 3: 1822 return (22); 1823 default: 1824 return (0); 1825 } 1826 } 1827 1828 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1829 if (rate < 0 || rate > 11) 1830 /* invalid rate */ 1831 return (0); 1832 1833 switch (rate) { 1834 case 0: 1835 return (2); 1836 case 1: 1837 return (4); 1838 case 2: 1839 return (11); 1840 case 3: 1841 return (22); 1842 case 4: 1843 return (12); 1844 case 5: 1845 return (18); 1846 case 6: 1847 return (24); 1848 case 7: 1849 return (36); 1850 case 8: 1851 return (48); 1852 case 9: 1853 return (72); 1854 case 10: 1855 return (96); 1856 case 11: 1857 return (108); 1858 default: 1859 return (0); 1860 } 1861 } 1862 1863 return (0); 1864 } 1865 1866 int 1867 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 1868 { 1869 struct ieee80211com *ic = &sc->sc_ic; 1870 struct ieee80211_node *ni = ic->ic_bss; 1871 struct upgt_data *data_cmd = &sc->cmd_data; 1872 struct upgt_lmac_mem *mem; 1873 struct upgt_lmac_filter *filter; 1874 int len; 1875 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1876 1877 /* 1878 * Transmit the URB containing the CMD data. 1879 */ 1880 bzero(data_cmd->buf, MCLBYTES); 1881 1882 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1883 mem->addr = htole32(sc->sc_memaddr_frame_start + 1884 UPGT_MEMSIZE_FRAME_HEAD); 1885 1886 filter = (struct upgt_lmac_filter *)(mem + 1); 1887 1888 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 1889 filter->header1.type = UPGT_H1_TYPE_CTRL; 1890 filter->header1.len = htole16( 1891 sizeof(struct upgt_lmac_filter) - 1892 sizeof(struct upgt_lmac_header)); 1893 1894 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1895 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 1896 filter->header2.flags = 0; 1897 1898 switch (state) { 1899 case IEEE80211_S_INIT: 1900 DPRINTF(1, "%s: set MAC filter to INIT\n", 1901 sc->sc_dev.dv_xname); 1902 1903 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 1904 break; 1905 case IEEE80211_S_SCAN: 1906 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n", 1907 sc->sc_dev.dv_xname, ether_sprintf(broadcast)); 1908 1909 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 1910 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 1911 IEEE80211_ADDR_COPY(filter->src, broadcast); 1912 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 1913 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 1914 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 1915 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 1916 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 1917 break; 1918 case IEEE80211_S_RUN: 1919 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n", 1920 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid)); 1921 1922 filter->type = htole16(UPGT_FILTER_TYPE_STA); 1923 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); 1924 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 1925 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 1926 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 1927 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 1928 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 1929 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 1930 break; 1931 default: 1932 printf("%s: MAC filter does not know that state!\n", 1933 sc->sc_dev.dv_xname); 1934 break; 1935 } 1936 1937 len = sizeof(*mem) + sizeof(*filter); 1938 1939 mem->chksum = upgt_chksum_le((uint32_t *)filter, 1940 len - sizeof(*mem)); 1941 1942 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 1943 printf("%s: could not transmit macfilter CMD data URB!\n", 1944 sc->sc_dev.dv_xname); 1945 return (EIO); 1946 } 1947 1948 return (0); 1949 } 1950 1951 int 1952 upgt_set_channel(struct upgt_softc *sc, unsigned channel) 1953 { 1954 struct upgt_data *data_cmd = &sc->cmd_data; 1955 struct upgt_lmac_mem *mem; 1956 struct upgt_lmac_channel *chan; 1957 int len; 1958 1959 DPRINTF(1, "%s: %s: %d\n", sc->sc_dev.dv_xname, __func__, channel); 1960 1961 /* 1962 * Transmit the URB containing the CMD data. 1963 */ 1964 bzero(data_cmd->buf, MCLBYTES); 1965 1966 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1967 mem->addr = htole32(sc->sc_memaddr_frame_start + 1968 UPGT_MEMSIZE_FRAME_HEAD); 1969 1970 chan = (struct upgt_lmac_channel *)(mem + 1); 1971 1972 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 1973 chan->header1.type = UPGT_H1_TYPE_CTRL; 1974 chan->header1.len = htole16( 1975 sizeof(struct upgt_lmac_channel) - 1976 sizeof(struct upgt_lmac_header)); 1977 1978 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1979 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 1980 chan->header2.flags = 0; 1981 1982 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 1983 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 1984 chan->freq6 = sc->sc_eeprom_freq6[channel]; 1985 chan->settings = sc->sc_eeprom_freq6_settings; 1986 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 1987 1988 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1, 1989 sizeof(chan->freq3_1)); 1990 1991 bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4, 1992 sizeof(sc->sc_eeprom_freq4[channel])); 1993 1994 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2, 1995 sizeof(chan->freq3_2)); 1996 1997 len = sizeof(*mem) + sizeof(*chan); 1998 1999 mem->chksum = upgt_chksum_le((uint32_t *)chan, 2000 len - sizeof(*mem)); 2001 2002 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2003 printf("%s: could not transmit channel CMD data URB!\n", 2004 sc->sc_dev.dv_xname); 2005 return (EIO); 2006 } 2007 2008 return (0); 2009 } 2010 2011 void 2012 upgt_set_led(struct upgt_softc *sc, int action) 2013 { 2014 struct ieee80211com *ic = &sc->sc_ic; 2015 struct upgt_data *data_cmd = &sc->cmd_data; 2016 struct upgt_lmac_mem *mem; 2017 struct upgt_lmac_led *led; 2018 int len; 2019 2020 /* 2021 * Transmit the URB containing the CMD data. 2022 */ 2023 bzero(data_cmd->buf, MCLBYTES); 2024 2025 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2026 mem->addr = htole32(sc->sc_memaddr_frame_start + 2027 UPGT_MEMSIZE_FRAME_HEAD); 2028 2029 led = (struct upgt_lmac_led *)(mem + 1); 2030 2031 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 2032 led->header1.type = UPGT_H1_TYPE_CTRL; 2033 led->header1.len = htole16( 2034 sizeof(struct upgt_lmac_led) - 2035 sizeof(struct upgt_lmac_header)); 2036 2037 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2038 led->header2.type = htole16(UPGT_H2_TYPE_LED); 2039 led->header2.flags = 0; 2040 2041 switch (action) { 2042 case UPGT_LED_OFF: 2043 led->mode = htole16(UPGT_LED_MODE_SET); 2044 led->action_fix = 0; 2045 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 2046 led->action_tmp_dur = 0; 2047 break; 2048 case UPGT_LED_ON: 2049 led->mode = htole16(UPGT_LED_MODE_SET); 2050 led->action_fix = 0; 2051 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2052 led->action_tmp_dur = 0; 2053 break; 2054 case UPGT_LED_BLINK: 2055 if (ic->ic_state != IEEE80211_S_RUN) 2056 return; 2057 if (sc->sc_led_blink) 2058 /* previous blink was not finished */ 2059 return; 2060 led->mode = htole16(UPGT_LED_MODE_SET); 2061 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 2062 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 2063 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 2064 /* lock blink */ 2065 sc->sc_led_blink = 1; 2066 timeout_add_msec(&sc->led_to, UPGT_LED_ACTION_TMP_DUR); 2067 break; 2068 default: 2069 return; 2070 } 2071 2072 len = sizeof(*mem) + sizeof(*led); 2073 2074 mem->chksum = upgt_chksum_le((uint32_t *)led, 2075 len - sizeof(*mem)); 2076 2077 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2078 printf("%s: could not transmit led CMD URB!\n", 2079 sc->sc_dev.dv_xname); 2080 } 2081 } 2082 2083 void 2084 upgt_set_led_blink(void *arg) 2085 { 2086 struct upgt_softc *sc = arg; 2087 2088 /* blink finished, we are ready for a next one */ 2089 sc->sc_led_blink = 0; 2090 timeout_del(&sc->led_to); 2091 } 2092 2093 int 2094 upgt_get_stats(struct upgt_softc *sc) 2095 { 2096 struct upgt_data *data_cmd = &sc->cmd_data; 2097 struct upgt_lmac_mem *mem; 2098 struct upgt_lmac_stats *stats; 2099 int len; 2100 2101 /* 2102 * Transmit the URB containing the CMD data. 2103 */ 2104 bzero(data_cmd->buf, MCLBYTES); 2105 2106 mem = (struct upgt_lmac_mem *)data_cmd->buf; 2107 mem->addr = htole32(sc->sc_memaddr_frame_start + 2108 UPGT_MEMSIZE_FRAME_HEAD); 2109 2110 stats = (struct upgt_lmac_stats *)(mem + 1); 2111 2112 stats->header1.flags = 0; 2113 stats->header1.type = UPGT_H1_TYPE_CTRL; 2114 stats->header1.len = htole16( 2115 sizeof(struct upgt_lmac_stats) - 2116 sizeof(struct upgt_lmac_header)); 2117 2118 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 2119 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 2120 stats->header2.flags = 0; 2121 2122 len = sizeof(*mem) + sizeof(*stats); 2123 2124 mem->chksum = upgt_chksum_le((uint32_t *)stats, 2125 len - sizeof(*mem)); 2126 2127 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { 2128 printf("%s: could not transmit statistics CMD data URB!\n", 2129 sc->sc_dev.dv_xname); 2130 return (EIO); 2131 } 2132 2133 return (0); 2134 2135 } 2136 2137 int 2138 upgt_alloc_tx(struct upgt_softc *sc) 2139 { 2140 int i; 2141 2142 sc->tx_queued = 0; 2143 2144 for (i = 0; i < UPGT_TX_COUNT; i++) { 2145 struct upgt_data *data_tx = &sc->tx_data[i]; 2146 2147 data_tx->sc = sc; 2148 2149 data_tx->xfer = usbd_alloc_xfer(sc->sc_udev); 2150 if (data_tx->xfer == NULL) { 2151 printf("%s: could not allocate TX xfer!\n", 2152 sc->sc_dev.dv_xname); 2153 return (ENOMEM); 2154 } 2155 2156 data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES); 2157 if (data_tx->buf == NULL) { 2158 printf("%s: could not allocate TX buffer!\n", 2159 sc->sc_dev.dv_xname); 2160 return (ENOMEM); 2161 } 2162 2163 bzero(data_tx->buf, MCLBYTES); 2164 } 2165 2166 return (0); 2167 } 2168 2169 int 2170 upgt_alloc_rx(struct upgt_softc *sc) 2171 { 2172 struct upgt_data *data_rx = &sc->rx_data; 2173 2174 data_rx->sc = sc; 2175 2176 data_rx->xfer = usbd_alloc_xfer(sc->sc_udev); 2177 if (data_rx->xfer == NULL) { 2178 printf("%s: could not allocate RX xfer!\n", 2179 sc->sc_dev.dv_xname); 2180 return (ENOMEM); 2181 } 2182 2183 data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES); 2184 if (data_rx->buf == NULL) { 2185 printf("%s: could not allocate RX buffer!\n", 2186 sc->sc_dev.dv_xname); 2187 return (ENOMEM); 2188 } 2189 2190 bzero(data_rx->buf, MCLBYTES); 2191 2192 return (0); 2193 } 2194 2195 int 2196 upgt_alloc_cmd(struct upgt_softc *sc) 2197 { 2198 struct upgt_data *data_cmd = &sc->cmd_data; 2199 2200 data_cmd->sc = sc; 2201 2202 data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev); 2203 if (data_cmd->xfer == NULL) { 2204 printf("%s: could not allocate RX xfer!\n", 2205 sc->sc_dev.dv_xname); 2206 return (ENOMEM); 2207 } 2208 2209 data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES); 2210 if (data_cmd->buf == NULL) { 2211 printf("%s: could not allocate RX buffer!\n", 2212 sc->sc_dev.dv_xname); 2213 return (ENOMEM); 2214 } 2215 2216 bzero(data_cmd->buf, MCLBYTES); 2217 2218 return (0); 2219 } 2220 2221 void 2222 upgt_free_tx(struct upgt_softc *sc) 2223 { 2224 int i; 2225 2226 for (i = 0; i < UPGT_TX_COUNT; i++) { 2227 struct upgt_data *data_tx = &sc->tx_data[i]; 2228 2229 if (data_tx->xfer != NULL) { 2230 usbd_free_xfer(data_tx->xfer); 2231 data_tx->xfer = NULL; 2232 } 2233 2234 data_tx->ni = NULL; 2235 } 2236 } 2237 2238 void 2239 upgt_free_rx(struct upgt_softc *sc) 2240 { 2241 struct upgt_data *data_rx = &sc->rx_data; 2242 2243 if (data_rx->xfer != NULL) { 2244 usbd_free_xfer(data_rx->xfer); 2245 data_rx->xfer = NULL; 2246 } 2247 2248 data_rx->ni = NULL; 2249 } 2250 2251 void 2252 upgt_free_cmd(struct upgt_softc *sc) 2253 { 2254 struct upgt_data *data_cmd = &sc->cmd_data; 2255 2256 if (data_cmd->xfer != NULL) { 2257 usbd_free_xfer(data_cmd->xfer); 2258 data_cmd->xfer = NULL; 2259 } 2260 } 2261 2262 int 2263 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data, 2264 struct usbd_pipe *pipeh, uint32_t *size, int flags) 2265 { 2266 usbd_status status; 2267 2268 usbd_setup_xfer(data->xfer, pipeh, 0, data->buf, *size, 2269 USBD_NO_COPY | USBD_SYNCHRONOUS | flags, UPGT_USB_TIMEOUT, NULL); 2270 status = usbd_transfer(data->xfer); 2271 if (status != USBD_NORMAL_COMPLETION) { 2272 printf("%s: %s: error %s!\n", 2273 sc->sc_dev.dv_xname, __func__, usbd_errstr(status)); 2274 return (EIO); 2275 } 2276 2277 return (0); 2278 } 2279 2280 void 2281 upgt_hexdump(void *buf, int len) 2282 { 2283 int i; 2284 2285 for (i = 0; i < len; i++) { 2286 if (i % 16 == 0) 2287 printf("%s%5i:", i ? "\n" : "", i); 2288 if (i % 4 == 0) 2289 printf(" "); 2290 printf("%02x", (int)*((u_char *)buf + i)); 2291 } 2292 printf("\n"); 2293 } 2294 2295 uint32_t 2296 upgt_crc32_le(const void *buf, size_t size) 2297 { 2298 uint32_t crc; 2299 2300 crc = ether_crc32_le(buf, size); 2301 2302 /* apply final XOR value as common for CRC-32 */ 2303 crc = htole32(crc ^ 0xffffffffU); 2304 2305 return (crc); 2306 } 2307 2308 /* 2309 * The firmware awaits a checksum for each frame we send to it. 2310 * The algorithm used therefor is uncommon but somehow similar to CRC32. 2311 */ 2312 uint32_t 2313 upgt_chksum_le(const uint32_t *buf, size_t size) 2314 { 2315 int i; 2316 uint32_t crc = 0; 2317 2318 for (i = 0; i < size; i += sizeof(uint32_t)) { 2319 crc = htole32(crc ^ *buf++); 2320 crc = htole32((crc >> 5) ^ (crc << 3)); 2321 } 2322 2323 return (crc); 2324 } 2325