xref: /openbsd-src/sys/dev/usb/if_upgt.c (revision 0b7734b3d77bb9b21afec6f4621cae6c805dbd45)
1 /*	$OpenBSD: if_upgt.c,v 1.77 2016/04/13 11:03:37 mpi Exp $ */
2 
3 /*
4  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "bpfilter.h"
20 
21 #include <sys/param.h>
22 #include <sys/sockio.h>
23 #include <sys/mbuf.h>
24 #include <sys/kernel.h>
25 #include <sys/socket.h>
26 #include <sys/systm.h>
27 #include <sys/timeout.h>
28 #include <sys/conf.h>
29 #include <sys/device.h>
30 #include <sys/endian.h>
31 
32 #include <machine/intr.h>
33 
34 #if NBPFILTER > 0
35 #include <net/bpf.h>
36 #endif
37 #include <net/if.h>
38 #include <net/if_dl.h>
39 #include <net/if_media.h>
40 
41 #include <netinet/in.h>
42 #include <netinet/if_ether.h>
43 
44 #include <net80211/ieee80211_var.h>
45 #include <net80211/ieee80211_radiotap.h>
46 
47 #include <dev/usb/usb.h>
48 #include <dev/usb/usbdi.h>
49 #include <dev/usb/usbdi_util.h>
50 #include <dev/usb/usbdevs.h>
51 
52 #include <dev/usb/if_upgtvar.h>
53 
54 /*
55  * Driver for the USB PrismGT devices.
56  *
57  * For now just USB 2.0 devices with the GW3887 chipset are supported.
58  * The driver has been written based on the firmware version 2.13.1.0_LM87.
59  *
60  * TODO's:
61  * - Fix MONITOR mode (MAC filter).
62  * - Add HOSTAP mode.
63  * - Add IBSS mode.
64  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
65  *
66  * Parts of this driver has been influenced by reading the p54u driver
67  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
68  * Sebastien Bourdeauducq <lekernel@prism54.org>.
69  */
70 
71 #ifdef UPGT_DEBUG
72 int upgt_debug = 2;
73 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
74 #else
75 #define DPRINTF(l, x...)
76 #endif
77 
78 /*
79  * Prototypes.
80  */
81 int		upgt_match(struct device *, void *, void *);
82 void		upgt_attach(struct device *, struct device *, void *);
83 void		upgt_attach_hook(struct device *);
84 int		upgt_detach(struct device *, int);
85 
86 int		upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
87 int		upgt_device_init(struct upgt_softc *);
88 int		upgt_mem_init(struct upgt_softc *);
89 uint32_t	upgt_mem_alloc(struct upgt_softc *);
90 void		upgt_mem_free(struct upgt_softc *, uint32_t);
91 int		upgt_fw_alloc(struct upgt_softc *);
92 void		upgt_fw_free(struct upgt_softc *);
93 int		upgt_fw_verify(struct upgt_softc *);
94 int		upgt_fw_load(struct upgt_softc *);
95 int		upgt_fw_copy(char *, char *, int);
96 int		upgt_eeprom_read(struct upgt_softc *);
97 int		upgt_eeprom_parse(struct upgt_softc *);
98 void		upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
99 void		upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
100 void		upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
101 void		upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
102 
103 int		upgt_ioctl(struct ifnet *, u_long, caddr_t);
104 int		upgt_init(struct ifnet *);
105 void		upgt_stop(struct upgt_softc *);
106 int		upgt_media_change(struct ifnet *);
107 void		upgt_newassoc(struct ieee80211com *, struct ieee80211_node *,
108 		    int);
109 int		upgt_newstate(struct ieee80211com *, enum ieee80211_state, int);
110 void		upgt_newstate_task(void *);
111 void		upgt_next_scan(void *);
112 void		upgt_start(struct ifnet *);
113 void		upgt_watchdog(struct ifnet *);
114 void		upgt_tx_task(void *);
115 void		upgt_tx_done(struct upgt_softc *, uint8_t *);
116 void		upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
117 void		upgt_rx(struct upgt_softc *, uint8_t *, int);
118 void		upgt_setup_rates(struct upgt_softc *);
119 uint8_t		upgt_rx_rate(struct upgt_softc *, const int);
120 int		upgt_set_macfilter(struct upgt_softc *, uint8_t state);
121 int		upgt_set_channel(struct upgt_softc *, unsigned);
122 void		upgt_set_led(struct upgt_softc *, int);
123 void		upgt_set_led_blink(void *);
124 int		upgt_get_stats(struct upgt_softc *);
125 
126 int		upgt_alloc_tx(struct upgt_softc *);
127 int		upgt_alloc_rx(struct upgt_softc *);
128 int		upgt_alloc_cmd(struct upgt_softc *);
129 void		upgt_free_tx(struct upgt_softc *);
130 void		upgt_free_rx(struct upgt_softc *);
131 void		upgt_free_cmd(struct upgt_softc *);
132 int		upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
133 		    struct usbd_pipe *, uint32_t *, int);
134 
135 void		upgt_hexdump(void *, int);
136 uint32_t	upgt_crc32_le(const void *, size_t);
137 uint32_t	upgt_chksum_le(const uint32_t *, size_t);
138 
139 struct cfdriver upgt_cd = {
140 	NULL, "upgt", DV_IFNET
141 };
142 
143 const struct cfattach upgt_ca = {
144 	sizeof(struct upgt_softc), upgt_match, upgt_attach, upgt_detach
145 };
146 
147 static const struct usb_devno upgt_devs_1[] = {
148 	/* version 1 devices */
149 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G }
150 };
151 
152 static const struct usb_devno upgt_devs_2[] = {
153 	/* version 2 devices */
154 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
155 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
156 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
157 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
158 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
159 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_PRISM_GT },
160 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
161 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
162 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
163 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
164 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
165 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
166 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
167 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
168 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
169 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
170 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
171 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
172 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_1 },
173 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_2 },
174 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
175 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
176 };
177 
178 int
179 upgt_match(struct device *parent, void *match, void *aux)
180 {
181 	struct usb_attach_arg *uaa = aux;
182 
183 	if (uaa->iface != NULL)
184 		return (UMATCH_NONE);
185 
186 	if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
187 		return (UMATCH_VENDOR_PRODUCT);
188 
189 	if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
190 		return (UMATCH_VENDOR_PRODUCT);
191 
192 	return (UMATCH_NONE);
193 }
194 
195 void
196 upgt_attach(struct device *parent, struct device *self, void *aux)
197 {
198 	struct upgt_softc *sc = (struct upgt_softc *)self;
199 	struct usb_attach_arg *uaa = aux;
200 	usb_interface_descriptor_t *id;
201 	usb_endpoint_descriptor_t *ed;
202 	usbd_status error;
203 	int i;
204 
205 	/*
206 	 * Attach USB device.
207 	 */
208 	sc->sc_udev = uaa->device;
209 
210 	/* check device type */
211 	if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
212 		return;
213 
214 	/* set configuration number */
215 	if (usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0) != 0) {
216 		printf("%s: could not set configuration no!\n",
217 		    sc->sc_dev.dv_xname);
218 		return;
219 	}
220 
221 	/* get the first interface handle */
222 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
223 	    &sc->sc_iface);
224 	if (error != 0) {
225 		printf("%s: could not get interface handle!\n",
226 		    sc->sc_dev.dv_xname);
227 		return;
228 	}
229 
230 	/* find endpoints */
231 	id = usbd_get_interface_descriptor(sc->sc_iface);
232 	sc->sc_rx_no = sc->sc_tx_no = -1;
233 	for (i = 0; i < id->bNumEndpoints; i++) {
234 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
235 		if (ed == NULL) {
236 			printf("%s: no endpoint descriptor for iface %d!\n",
237 			    sc->sc_dev.dv_xname, i);
238 			return;
239 		}
240 
241 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
242 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
243 			sc->sc_tx_no = ed->bEndpointAddress;
244 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
245 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
246 			sc->sc_rx_no = ed->bEndpointAddress;
247 
248 		/*
249 		 * 0x01 TX pipe
250 		 * 0x81 RX pipe
251 		 *
252 		 * Deprecated scheme (not used with fw version >2.5.6.x):
253 		 * 0x02 TX MGMT pipe
254 		 * 0x82 TX MGMT pipe
255 		 */
256 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
257 			break;
258 	}
259 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
260 		printf("%s: missing endpoint!\n", sc->sc_dev.dv_xname);
261 		return;
262 	}
263 
264 	/* setup tasks and timeouts */
265 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc,
266 	    USB_TASK_TYPE_GENERIC);
267 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, USB_TASK_TYPE_GENERIC);
268 	timeout_set(&sc->scan_to, upgt_next_scan, sc);
269 	timeout_set(&sc->led_to, upgt_set_led_blink, sc);
270 
271 	/*
272 	 * Open TX and RX USB bulk pipes.
273 	 */
274 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
275 	    &sc->sc_tx_pipeh);
276 	if (error != 0) {
277 		printf("%s: could not open TX pipe: %s!\n",
278 		    sc->sc_dev.dv_xname, usbd_errstr(error));
279 		goto fail;
280 	}
281 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
282 	    &sc->sc_rx_pipeh);
283 	if (error != 0) {
284 		printf("%s: could not open RX pipe: %s!\n",
285 		    sc->sc_dev.dv_xname, usbd_errstr(error));
286 		goto fail;
287 	}
288 
289 	/*
290 	 * Allocate TX, RX, and CMD xfers.
291 	 */
292 	if (upgt_alloc_tx(sc) != 0)
293 		goto fail;
294 	if (upgt_alloc_rx(sc) != 0)
295 		goto fail;
296 	if (upgt_alloc_cmd(sc) != 0)
297 		goto fail;
298 
299 	/*
300 	 * We need the firmware loaded to complete the attach.
301 	 */
302 	config_mountroot(self, upgt_attach_hook);
303 
304 	return;
305 fail:
306 	printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__);
307 }
308 
309 void
310 upgt_attach_hook(struct device *self)
311 {
312 	struct upgt_softc *sc = (struct upgt_softc *)self;
313 	struct ieee80211com *ic = &sc->sc_ic;
314 	struct ifnet *ifp = &ic->ic_if;
315 	usbd_status error;
316 	int i;
317 
318 	/*
319 	 * Load firmware file into memory.
320 	 */
321 	if (upgt_fw_alloc(sc) != 0)
322 		goto fail;
323 
324 	/*
325 	 * Initialize the device.
326 	 */
327 	if (upgt_device_init(sc) != 0)
328 		goto fail;
329 
330 	/*
331 	 * Verify the firmware.
332 	 */
333 	if (upgt_fw_verify(sc) != 0)
334 		goto fail;
335 
336 	/*
337 	 * Calculate device memory space.
338 	 */
339 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
340 		printf("%s: could not find memory space addresses on FW!\n",
341 		    sc->sc_dev.dv_xname);
342 		goto fail;
343 	}
344 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
345 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
346 
347 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
348 	    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start);
349 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
350 	    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end);
351 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
352 	    sc->sc_dev.dv_xname, sc->sc_memaddr_rx_start);
353 
354 	upgt_mem_init(sc);
355 
356 	/*
357 	 * Load the firmware.
358 	 */
359 	if (upgt_fw_load(sc) != 0)
360 		goto fail;
361 
362 	/*
363 	 * Startup the RX pipe.
364 	 */
365 	struct upgt_data *data_rx = &sc->rx_data;
366 
367 	usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
368 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
369 	error = usbd_transfer(data_rx->xfer);
370 	if (error != 0 && error != USBD_IN_PROGRESS) {
371 		printf("%s: could not queue RX transfer!\n",
372 		    sc->sc_dev.dv_xname);
373 		goto fail;
374 	}
375 	usbd_delay_ms(sc->sc_udev, 100);
376 
377 	/*
378 	 * Read the whole EEPROM content and parse it.
379 	 */
380 	if (upgt_eeprom_read(sc) != 0)
381 		goto fail;
382 	if (upgt_eeprom_parse(sc) != 0)
383 		goto fail;
384 
385 	/*
386 	 * Setup the 802.11 device.
387 	 */
388 	ic->ic_phytype = IEEE80211_T_OFDM;
389 	ic->ic_opmode = IEEE80211_M_STA;
390 	ic->ic_state = IEEE80211_S_INIT;
391 	ic->ic_caps =
392 	    IEEE80211_C_MONITOR |
393 	    IEEE80211_C_SHPREAMBLE |
394 	    IEEE80211_C_SHSLOT |
395 	    IEEE80211_C_WEP |
396 	    IEEE80211_C_RSN;
397 
398 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
399 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
400 
401 	for (i = 1; i <= 14; i++) {
402 		ic->ic_channels[i].ic_freq =
403 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
404 		ic->ic_channels[i].ic_flags =
405 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
406 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
407 	}
408 
409 	ifp->if_softc = sc;
410 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
411 	ifp->if_ioctl = upgt_ioctl;
412 	ifp->if_start = upgt_start;
413 	ifp->if_watchdog = upgt_watchdog;
414 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
415 
416 	if_attach(ifp);
417 	ieee80211_ifattach(ifp);
418 	ic->ic_newassoc = upgt_newassoc;
419 
420 	sc->sc_newstate = ic->ic_newstate;
421 	ic->ic_newstate = upgt_newstate;
422 	ieee80211_media_init(ifp, upgt_media_change, ieee80211_media_status);
423 
424 #if NBPFILTER > 0
425 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
426 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
427 
428 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
429 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
430 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
431 
432 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
433 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
434 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
435 #endif
436 
437 	printf("%s: address %s\n",
438 	    sc->sc_dev.dv_xname, ether_sprintf(ic->ic_myaddr));
439 
440 	return;
441 fail:
442 	printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__);
443 }
444 
445 int
446 upgt_detach(struct device *self, int flags)
447 {
448 	struct upgt_softc *sc = (struct upgt_softc *)self;
449 	struct ifnet *ifp = &sc->sc_ic.ic_if;
450 	int s;
451 
452 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
453 
454 	s = splusb();
455 
456 	/* abort and close TX / RX pipes */
457 	if (sc->sc_tx_pipeh != NULL) {
458 		usbd_abort_pipe(sc->sc_tx_pipeh);
459 		usbd_close_pipe(sc->sc_tx_pipeh);
460 	}
461 	if (sc->sc_rx_pipeh != NULL) {
462 		usbd_abort_pipe(sc->sc_rx_pipeh);
463 		usbd_close_pipe(sc->sc_rx_pipeh);
464 	}
465 
466 	/* remove tasks and timeouts */
467 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
468 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
469 	if (timeout_initialized(&sc->scan_to))
470 		timeout_del(&sc->scan_to);
471 	if (timeout_initialized(&sc->led_to))
472 		timeout_del(&sc->led_to);
473 
474 	/* free xfers */
475 	upgt_free_tx(sc);
476 	upgt_free_rx(sc);
477 	upgt_free_cmd(sc);
478 
479 	/* free firmware */
480 	upgt_fw_free(sc);
481 
482 	if (ifp->if_softc != NULL) {
483 		/* detach interface */
484 		ieee80211_ifdetach(ifp);
485 		if_detach(ifp);
486 	}
487 
488 	splx(s);
489 
490 	return (0);
491 }
492 
493 int
494 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
495 {
496 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
497 		sc->sc_device_type = 1;
498 		/* XXX */
499 		printf("%s: version 1 devices not supported yet!\n",
500 		    sc->sc_dev.dv_xname);
501 		return (1);
502 	} else {
503 		sc->sc_device_type = 2;
504 	}
505 
506 	return (0);
507 }
508 
509 int
510 upgt_device_init(struct upgt_softc *sc)
511 {
512 	struct upgt_data *data_cmd = &sc->cmd_data;
513 	char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
514 	int len;
515 
516 	len = sizeof(init_cmd);
517 	bcopy(init_cmd, data_cmd->buf, len);
518 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
519 		printf("%s: could not send device init string!\n",
520 		    sc->sc_dev.dv_xname);
521 		return (EIO);
522 	}
523 	usbd_delay_ms(sc->sc_udev, 100);
524 
525 	DPRINTF(1, "%s: device initialized\n", sc->sc_dev.dv_xname);
526 
527 	return (0);
528 }
529 
530 int
531 upgt_mem_init(struct upgt_softc *sc)
532 {
533 	int i;
534 
535 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
536 		sc->sc_memory.page[i].used = 0;
537 
538 		if (i == 0) {
539 			/*
540 			 * The first memory page is always reserved for
541 			 * command data.
542 			 */
543 			sc->sc_memory.page[i].addr =
544 			    sc->sc_memaddr_frame_start + MCLBYTES;
545 		} else {
546 			sc->sc_memory.page[i].addr =
547 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
548 		}
549 
550 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
551 		    sc->sc_memaddr_frame_end)
552 			break;
553 
554 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
555 		    sc->sc_dev.dv_xname, i, sc->sc_memory.page[i].addr);
556 	}
557 
558 	sc->sc_memory.pages = i;
559 
560 	DPRINTF(2, "%s: memory pages=%d\n",
561 	    sc->sc_dev.dv_xname, sc->sc_memory.pages);
562 
563 	return (0);
564 }
565 
566 uint32_t
567 upgt_mem_alloc(struct upgt_softc *sc)
568 {
569 	int i;
570 
571 	for (i = 0; i < sc->sc_memory.pages; i++) {
572 		if (sc->sc_memory.page[i].used == 0) {
573 			sc->sc_memory.page[i].used = 1;
574 			return (sc->sc_memory.page[i].addr);
575 		}
576 	}
577 
578 	return (0);
579 }
580 
581 void
582 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
583 {
584 	int i;
585 
586 	for (i = 0; i < sc->sc_memory.pages; i++) {
587 		if (sc->sc_memory.page[i].addr == addr) {
588 			sc->sc_memory.page[i].used = 0;
589 			return;
590 		}
591 	}
592 
593 	printf("%s: could not free memory address 0x%08x!\n",
594 	    sc->sc_dev.dv_xname, addr);
595 }
596 
597 
598 int
599 upgt_fw_alloc(struct upgt_softc *sc)
600 {
601 	const char *name = "upgt-gw3887";
602 	int error;
603 
604 	if (sc->sc_fw == NULL) {
605 		error = loadfirmware(name, &sc->sc_fw, &sc->sc_fw_size);
606 		if (error != 0) {
607 			printf("%s: error %d, could not read firmware %s!\n",
608 			    sc->sc_dev.dv_xname, error, name);
609 			return (EIO);
610 		}
611 	}
612 
613 	DPRINTF(1, "%s: firmware %s allocated\n", sc->sc_dev.dv_xname, name);
614 
615 	return (0);
616 }
617 
618 void
619 upgt_fw_free(struct upgt_softc *sc)
620 {
621 	if (sc->sc_fw != NULL) {
622 		free(sc->sc_fw, M_DEVBUF, 0);
623 		sc->sc_fw = NULL;
624 		DPRINTF(1, "%s: firmware freed\n", sc->sc_dev.dv_xname);
625 	}
626 }
627 
628 int
629 upgt_fw_verify(struct upgt_softc *sc)
630 {
631 	struct upgt_fw_bra_option *bra_option;
632 	uint32_t bra_option_type, bra_option_len;
633 	uint32_t *uc;
634 	int offset, bra_end = 0;
635 
636 	/*
637 	 * Seek to beginning of Boot Record Area (BRA).
638 	 */
639 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
640 		uc = (uint32_t *)(sc->sc_fw + offset);
641 		if (*uc == 0)
642 			break;
643 	}
644 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
645 		uc = (uint32_t *)(sc->sc_fw + offset);
646 		if (*uc != 0)
647 			break;
648 	}
649 	if (offset == sc->sc_fw_size) {
650 		printf("%s: firmware Boot Record Area not found!\n",
651 		    sc->sc_dev.dv_xname);
652 		return (EIO);
653 	}
654 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
655 	    sc->sc_dev.dv_xname, offset);
656 
657 	/*
658 	 * Parse Boot Record Area (BRA) options.
659 	 */
660 	while (offset < sc->sc_fw_size && bra_end == 0) {
661 		/* get current BRA option */
662 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
663 		bra_option_type = letoh32(bra_option->type);
664 		bra_option_len = letoh32(bra_option->len) * sizeof(*uc);
665 
666 		switch (bra_option_type) {
667 		case UPGT_BRA_TYPE_FW:
668 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
669 			    sc->sc_dev.dv_xname, bra_option_len);
670 
671 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
672 				printf("%s: wrong UPGT_BRA_TYPE_FW len!\n",
673 				    sc->sc_dev.dv_xname);
674 				return (EIO);
675 			}
676 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
677 			    bra_option_len) == 0) {
678 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
679 				break;
680 			}
681 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
682 			    bra_option_len) == 0) {
683 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
684 				break;
685 			}
686 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
687 			    bra_option_len) == 0) {
688 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
689 				break;
690 			}
691 			printf("%s: unsupported firmware type!\n",
692 			    sc->sc_dev.dv_xname);
693 			return (EIO);
694 		case UPGT_BRA_TYPE_VERSION:
695 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
696 			    sc->sc_dev.dv_xname, bra_option_len);
697 			break;
698 		case UPGT_BRA_TYPE_DEPIF:
699 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
700 			    sc->sc_dev.dv_xname, bra_option_len);
701 			break;
702 		case UPGT_BRA_TYPE_EXPIF:
703 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
704 			    sc->sc_dev.dv_xname, bra_option_len);
705 			break;
706 		case UPGT_BRA_TYPE_DESCR:
707 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
708 			    sc->sc_dev.dv_xname, bra_option_len);
709 
710 			struct upgt_fw_bra_descr *descr =
711 				(struct upgt_fw_bra_descr *)bra_option->data;
712 
713 			sc->sc_memaddr_frame_start =
714 			    letoh32(descr->memaddr_space_start);
715 			sc->sc_memaddr_frame_end =
716 			    letoh32(descr->memaddr_space_end);
717 
718 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
719 			    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start);
720 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
721 			    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end);
722 			break;
723 		case UPGT_BRA_TYPE_END:
724 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
725 			    sc->sc_dev.dv_xname, bra_option_len);
726 			bra_end = 1;
727 			break;
728 		default:
729 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
730 			    sc->sc_dev.dv_xname, bra_option_len);
731 			return (EIO);
732 		}
733 
734 		/* jump to next BRA option */
735 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
736 	}
737 
738 	DPRINTF(1, "%s: firmware verified\n", sc->sc_dev.dv_xname);
739 
740 	return (0);
741 }
742 
743 int
744 upgt_fw_load(struct upgt_softc *sc)
745 {
746 	struct upgt_data *data_cmd = &sc->cmd_data;
747 	struct upgt_data *data_rx = &sc->rx_data;
748 	char start_fwload_cmd[] = { 0x3c, 0x0d };
749 	int offset, bsize, n, i, len;
750 	uint32_t crc32;
751 
752 	/* send firmware start load command */
753 	len = sizeof(start_fwload_cmd);
754 	bcopy(start_fwload_cmd, data_cmd->buf, len);
755 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
756 		printf("%s: could not send start_firmware_load command!\n",
757 		    sc->sc_dev.dv_xname);
758 		return (EIO);
759 	}
760 
761 	/* send X2 header */
762 	len = sizeof(struct upgt_fw_x2_header);
763 	struct upgt_fw_x2_header *x2 = data_cmd->buf;
764 	bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE);
765 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
766 	x2->len = htole32(sc->sc_fw_size);
767 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
768 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
769 	    sizeof(uint32_t));
770 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
771 		printf("%s: could not send firmware X2 header!\n",
772 		    sc->sc_dev.dv_xname);
773 		return (EIO);
774 	}
775 
776 	/* download firmware */
777 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
778 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
779 			bsize = UPGT_FW_BLOCK_SIZE;
780 		else
781 			bsize = sc->sc_fw_size - offset;
782 
783 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
784 
785 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
786 		    sc->sc_dev.dv_xname, offset, n, bsize);
787 
788 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
789 		    != 0) {
790 			printf("%s: error while downloading firmware block!\n",
791 			    sc->sc_dev.dv_xname);
792 			return (EIO);
793 		}
794 
795 		bsize = n;
796 	}
797 	DPRINTF(1, "%s: firmware downloaded\n", sc->sc_dev.dv_xname);
798 
799 	/* load firmware */
800 	crc32 = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
801 	*((uint32_t *)(data_cmd->buf)    ) = crc32;
802 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
803 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
804 	len = 6;
805 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
806 		printf("%s: could not send load_firmware command!\n",
807 		    sc->sc_dev.dv_xname);
808 		return (EIO);
809 	}
810 
811 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
812 		len = UPGT_FW_BLOCK_SIZE;
813 		bzero(data_rx->buf, MCLBYTES);
814 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
815 		    USBD_SHORT_XFER_OK) != 0) {
816 			printf("%s: could not read firmware response!\n",
817 			    sc->sc_dev.dv_xname);
818 			return (EIO);
819 		}
820 
821 		if (memcmp(data_rx->buf, "OK", 2) == 0)
822 			break;	/* firmware load was successful */
823 	}
824 	if (i == UPGT_FIRMWARE_TIMEOUT) {
825 		printf("%s: firmware load failed!\n", sc->sc_dev.dv_xname);
826 		return (EIO);
827 	}
828 	DPRINTF(1, "%s: firmware loaded\n", sc->sc_dev.dv_xname);
829 
830 	return (0);
831 }
832 
833 /*
834  * While copying the version 2 firmware, we need to replace two characters:
835  *
836  * 0x7e -> 0x7d 0x5e
837  * 0x7d -> 0x7d 0x5d
838  */
839 int
840 upgt_fw_copy(char *src, char *dst, int size)
841 {
842 	int i, j;
843 
844 	for (i = 0, j = 0; i < size && j < size; i++) {
845 		switch (src[i]) {
846 		case 0x7e:
847 			dst[j] = 0x7d;
848 			j++;
849 			dst[j] = 0x5e;
850 			j++;
851 			break;
852 		case 0x7d:
853 			dst[j] = 0x7d;
854 			j++;
855 			dst[j] = 0x5d;
856 			j++;
857 			break;
858 		default:
859 			dst[j] = src[i];
860 			j++;
861 			break;
862 		}
863 	}
864 
865 	return (i);
866 }
867 
868 int
869 upgt_eeprom_read(struct upgt_softc *sc)
870 {
871 	struct upgt_data *data_cmd = &sc->cmd_data;
872 	struct upgt_lmac_mem *mem;
873 	struct upgt_lmac_eeprom	*eeprom;
874 	int offset, block, len;
875 
876 	offset = 0;
877 	block = UPGT_EEPROM_BLOCK_SIZE;
878 	while (offset < UPGT_EEPROM_SIZE) {
879 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
880 		    sc->sc_dev.dv_xname, offset, block);
881 
882 		/*
883 		 * Transmit the URB containing the CMD data.
884 		 */
885 		bzero(data_cmd->buf, MCLBYTES);
886 
887 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
888 		mem->addr = htole32(sc->sc_memaddr_frame_start +
889 		    UPGT_MEMSIZE_FRAME_HEAD);
890 
891 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
892 		eeprom->header1.flags = 0;
893 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
894 		eeprom->header1.len = htole16((
895 		    sizeof(struct upgt_lmac_eeprom) -
896 		    sizeof(struct upgt_lmac_header)) + block);
897 
898 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
899 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
900 		eeprom->header2.flags = 0;
901 
902 		eeprom->offset = htole16(offset);
903 		eeprom->len = htole16(block);
904 
905 		len = sizeof(*mem) + sizeof(*eeprom) + block;
906 
907 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
908 		    len - sizeof(*mem));
909 
910 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
911 		    USBD_FORCE_SHORT_XFER) != 0) {
912 			printf("%s: could not transmit EEPROM data URB!\n",
913 			    sc->sc_dev.dv_xname);
914 			return (EIO);
915 		}
916 		if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
917 			printf("%s: timeout while waiting for EEPROM data!\n",
918 			    sc->sc_dev.dv_xname);
919 			return (EIO);
920 		}
921 
922 		offset += block;
923 		if (UPGT_EEPROM_SIZE - offset < block)
924 			block = UPGT_EEPROM_SIZE - offset;
925 	}
926 
927 	return (0);
928 }
929 
930 int
931 upgt_eeprom_parse(struct upgt_softc *sc)
932 {
933 	struct ieee80211com *ic = &sc->sc_ic;
934 	struct upgt_eeprom_header *eeprom_header;
935 	struct upgt_eeprom_option *eeprom_option;
936 	uint16_t option_len;
937 	uint16_t option_type;
938 	uint16_t preamble_len;
939 	int option_end = 0;
940 
941 	/* calculate eeprom options start offset */
942 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
943 	preamble_len = letoh16(eeprom_header->preamble_len);
944 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
945 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
946 
947 	while (!option_end) {
948 		/* the eeprom option length is stored in words */
949 		option_len =
950 		    (letoh16(eeprom_option->len) - 1) * sizeof(uint16_t);
951 		option_type =
952 		    letoh16(eeprom_option->type);
953 
954 		switch (option_type) {
955 		case UPGT_EEPROM_TYPE_NAME:
956 			DPRINTF(1, "%s: EEPROM name len=%d\n",
957 			    sc->sc_dev.dv_xname, option_len);
958 			break;
959 		case UPGT_EEPROM_TYPE_SERIAL:
960 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
961 			    sc->sc_dev.dv_xname, option_len);
962 			break;
963 		case UPGT_EEPROM_TYPE_MAC:
964 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
965 			    sc->sc_dev.dv_xname, option_len);
966 
967 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
968 			break;
969 		case UPGT_EEPROM_TYPE_HWRX:
970 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
971 			    sc->sc_dev.dv_xname, option_len);
972 
973 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
974 			break;
975 		case UPGT_EEPROM_TYPE_CHIP:
976 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
977 			    sc->sc_dev.dv_xname, option_len);
978 			break;
979 		case UPGT_EEPROM_TYPE_FREQ3:
980 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
981 			    sc->sc_dev.dv_xname, option_len);
982 
983 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
984 			    option_len);
985 			break;
986 		case UPGT_EEPROM_TYPE_FREQ4:
987 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
988 			    sc->sc_dev.dv_xname, option_len);
989 
990 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
991 			    option_len);
992 			break;
993 		case UPGT_EEPROM_TYPE_FREQ5:
994 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
995 			    sc->sc_dev.dv_xname, option_len);
996 			break;
997 		case UPGT_EEPROM_TYPE_FREQ6:
998 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
999 			    sc->sc_dev.dv_xname, option_len);
1000 
1001 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1002 			    option_len);
1003 			break;
1004 		case UPGT_EEPROM_TYPE_END:
1005 			DPRINTF(1, "%s: EEPROM end len=%d\n",
1006 			    sc->sc_dev.dv_xname, option_len);
1007 			option_end = 1;
1008 			break;
1009 		case UPGT_EEPROM_TYPE_OFF:
1010 			DPRINTF(1, "%s: EEPROM off without end option!\n",
1011 			    sc->sc_dev.dv_xname);
1012 			return (EIO);
1013 		default:
1014 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1015 			    sc->sc_dev.dv_xname, option_type, option_len);
1016 			break;
1017 		}
1018 
1019 		/* jump to next EEPROM option */
1020 		eeprom_option = (struct upgt_eeprom_option *)
1021 		    (eeprom_option->data + option_len);
1022 	}
1023 
1024 	return (0);
1025 }
1026 
1027 void
1028 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1029 {
1030 	struct upgt_eeprom_option_hwrx *option_hwrx;
1031 
1032 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1033 
1034 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1035 
1036 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1037 	    sc->sc_dev.dv_xname, sc->sc_eeprom_hwrx);
1038 }
1039 
1040 void
1041 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1042 {
1043 	struct upgt_eeprom_freq3_header *freq3_header;
1044 	struct upgt_lmac_freq3 *freq3;
1045 	int i, elements, flags;
1046 	unsigned channel;
1047 
1048 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1049 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1050 
1051 	flags = freq3_header->flags;
1052 	elements = freq3_header->elements;
1053 
1054 	DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags);
1055 	DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements);
1056 
1057 	for (i = 0; i < elements; i++) {
1058 		channel = ieee80211_mhz2ieee(letoh16(freq3[i].freq), 0);
1059 
1060 		sc->sc_eeprom_freq3[channel] = freq3[i];
1061 
1062 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1063 		    sc->sc_dev.dv_xname,
1064 		    letoh16(sc->sc_eeprom_freq3[channel].freq), channel);
1065 	}
1066 }
1067 
1068 void
1069 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1070 {
1071 	struct upgt_eeprom_freq4_header *freq4_header;
1072 	struct upgt_eeprom_freq4_1 *freq4_1;
1073 	struct upgt_eeprom_freq4_2 *freq4_2;
1074 	int i, j, elements, settings, flags;
1075 	unsigned channel;
1076 
1077 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1078 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1079 
1080 	flags = freq4_header->flags;
1081 	elements = freq4_header->elements;
1082 	settings = freq4_header->settings;
1083 
1084 	/* we need this value later */
1085 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1086 
1087 	DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags);
1088 	DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements);
1089 	DPRINTF(2, "%s: settings=%d\n", sc->sc_dev.dv_xname, settings);
1090 
1091 	for (i = 0; i < elements; i++) {
1092 		channel = ieee80211_mhz2ieee(letoh16(freq4_1[i].freq), 0);
1093 
1094 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1095 
1096 		for (j = 0; j < settings; j++) {
1097 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1098 			sc->sc_eeprom_freq4[channel][j].pad = 0;
1099 		}
1100 
1101 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1102 		    sc->sc_dev.dv_xname,
1103 		    letoh16(freq4_1[i].freq), channel);
1104 	}
1105 }
1106 
1107 void
1108 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1109 {
1110 	struct upgt_lmac_freq6 *freq6;
1111 	int i, elements;
1112 	unsigned channel;
1113 
1114 	freq6 = (struct upgt_lmac_freq6 *)data;
1115 
1116 	elements = len / sizeof(struct upgt_lmac_freq6);
1117 
1118 	DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements);
1119 
1120 	for (i = 0; i < elements; i++) {
1121 		channel = ieee80211_mhz2ieee(letoh16(freq6[i].freq), 0);
1122 
1123 		sc->sc_eeprom_freq6[channel] = freq6[i];
1124 
1125 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1126 		    sc->sc_dev.dv_xname,
1127 		    letoh16(sc->sc_eeprom_freq6[channel].freq), channel);
1128 	}
1129 }
1130 
1131 int
1132 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1133 {
1134 	struct upgt_softc *sc = ifp->if_softc;
1135 	struct ieee80211com *ic = &sc->sc_ic;
1136 	struct ifreq *ifr;
1137 	int s, error = 0;
1138 	uint8_t chan;
1139 
1140 	s = splnet();
1141 
1142 	switch (cmd) {
1143 	case SIOCSIFADDR:
1144 		ifp->if_flags |= IFF_UP;
1145 		/* FALLTHROUGH */
1146 	case SIOCSIFFLAGS:
1147 		if (ifp->if_flags & IFF_UP) {
1148 			if ((ifp->if_flags & IFF_RUNNING) == 0)
1149 				upgt_init(ifp);
1150 		} else {
1151 			if (ifp->if_flags & IFF_RUNNING)
1152 				upgt_stop(sc);
1153 		}
1154 		break;
1155 	case SIOCADDMULTI:
1156 	case SIOCDELMULTI:
1157 		ifr = (struct ifreq *)data;
1158 		error = (cmd == SIOCADDMULTI) ?
1159 		    ether_addmulti(ifr, &ic->ic_ac) :
1160 		    ether_delmulti(ifr, &ic->ic_ac);
1161 		if (error == ENETRESET)
1162 			error = 0;
1163 		break;
1164 	case SIOCS80211CHANNEL:
1165 		/* allow fast channel switching in monitor mode */
1166 		error = ieee80211_ioctl(ifp, cmd, data);
1167 		if (error == ENETRESET &&
1168 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1169 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1170 			    (IFF_UP | IFF_RUNNING)) {
1171 				ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1172 				chan = ieee80211_chan2ieee(ic,
1173 				    ic->ic_bss->ni_chan);
1174 				upgt_set_channel(sc, chan);
1175 			}
1176 			error = 0;
1177 		}
1178 		break;
1179 	default:
1180 		error = ieee80211_ioctl(ifp, cmd, data);
1181 		break;
1182 	}
1183 
1184 	if (error == ENETRESET) {
1185 		if (ifp->if_flags & (IFF_UP | IFF_RUNNING))
1186 			upgt_init(ifp);
1187 		error = 0;
1188 	}
1189 
1190 	splx(s);
1191 
1192 	return (error);
1193 }
1194 
1195 int
1196 upgt_init(struct ifnet *ifp)
1197 {
1198 	struct upgt_softc *sc = ifp->if_softc;
1199 	struct ieee80211com *ic = &sc->sc_ic;
1200 
1201 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1202 
1203 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1204 
1205 	/* select default channel */
1206 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1207 	sc->sc_cur_chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1208 
1209 	/* setup device rates */
1210 	upgt_setup_rates(sc);
1211 
1212 	ifp->if_flags |= IFF_RUNNING;
1213 	ifq_clr_oactive(&ifp->if_snd);
1214 
1215 	upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1216 
1217 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1218 		upgt_set_channel(sc, sc->sc_cur_chan);
1219 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1220 	} else
1221 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1222 
1223 	return (0);
1224 }
1225 
1226 void
1227 upgt_stop(struct upgt_softc *sc)
1228 {
1229 	struct ieee80211com *ic = &sc->sc_ic;
1230 	struct ifnet *ifp = &ic->ic_if;
1231 
1232 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1233 
1234 	/* device down */
1235 	ifp->if_timer = 0;
1236 	ifp->if_flags &= ~IFF_RUNNING;
1237 	ifq_clr_oactive(&ifp->if_snd);
1238 
1239 	upgt_set_led(sc, UPGT_LED_OFF);
1240 
1241 	/* change device back to initial state */
1242 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1243 }
1244 
1245 int
1246 upgt_media_change(struct ifnet *ifp)
1247 {
1248 	struct upgt_softc *sc = ifp->if_softc;
1249 	int error;
1250 
1251 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1252 
1253 	if ((error = ieee80211_media_change(ifp) != ENETRESET))
1254 		return (error);
1255 
1256 	if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1257 		/* give pending USB transfers a chance to finish */
1258 		usbd_delay_ms(sc->sc_udev, 100);
1259 		upgt_init(ifp);
1260 	}
1261 
1262 	return (0);
1263 }
1264 
1265 void
1266 upgt_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
1267 {
1268 	ni->ni_txrate = 0;
1269 }
1270 
1271 int
1272 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1273 {
1274 	struct upgt_softc *sc = ic->ic_if.if_softc;
1275 
1276 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1277 	timeout_del(&sc->scan_to);
1278 
1279 	/* do it in a process context */
1280 	sc->sc_state = nstate;
1281 	sc->sc_arg = arg;
1282 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate);
1283 
1284 	return (0);
1285 }
1286 
1287 void
1288 upgt_newstate_task(void *arg)
1289 {
1290 	struct upgt_softc *sc = arg;
1291 	struct ieee80211com *ic = &sc->sc_ic;
1292 	struct ieee80211_node *ni;
1293 	unsigned channel;
1294 
1295 	switch (sc->sc_state) {
1296 	case IEEE80211_S_INIT:
1297 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1298 		    sc->sc_dev.dv_xname);
1299 
1300 		/* do not accept any frames if the device is down */
1301 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
1302 		upgt_set_led(sc, UPGT_LED_OFF);
1303 		break;
1304 	case IEEE80211_S_SCAN:
1305 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1306 		    sc->sc_dev.dv_xname);
1307 
1308 		channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1309 		upgt_set_channel(sc, channel);
1310 		timeout_add_msec(&sc->scan_to, 200);
1311 		break;
1312 	case IEEE80211_S_AUTH:
1313 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1314 		    sc->sc_dev.dv_xname);
1315 
1316 		channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1317 		upgt_set_channel(sc, channel);
1318 		break;
1319 	case IEEE80211_S_ASSOC:
1320 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1321 		    sc->sc_dev.dv_xname);
1322 		break;
1323 	case IEEE80211_S_RUN:
1324 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1325 		    sc->sc_dev.dv_xname);
1326 
1327 		ni = ic->ic_bss;
1328 
1329 		/*
1330 		 * TX rate control is done by the firmware.
1331 		 * Report the maximum rate which is available therefore.
1332 		 */
1333 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1334 
1335 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1336 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
1337 		upgt_set_led(sc, UPGT_LED_ON);
1338 		break;
1339 	}
1340 
1341 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1342 }
1343 
1344 void
1345 upgt_next_scan(void *arg)
1346 {
1347 	struct upgt_softc *sc = arg;
1348 	struct ieee80211com *ic = &sc->sc_ic;
1349 	struct ifnet *ifp = &ic->ic_if;
1350 
1351 	DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1352 
1353 	if (ic->ic_state == IEEE80211_S_SCAN)
1354 		ieee80211_next_scan(ifp);
1355 }
1356 
1357 void
1358 upgt_start(struct ifnet *ifp)
1359 {
1360 	struct upgt_softc *sc = ifp->if_softc;
1361 	struct ieee80211com *ic = &sc->sc_ic;
1362 	struct ieee80211_node *ni;
1363 	struct mbuf *m;
1364 	int i;
1365 
1366 	/* don't transmit packets if interface is busy or down */
1367 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1368 		return;
1369 
1370 	DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1371 
1372 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1373 		struct upgt_data *data_tx = &sc->tx_data[i];
1374 
1375 		m = mq_dequeue(&ic->ic_mgtq);
1376 		if (m != NULL) {
1377 			/* management frame */
1378 			ni = m->m_pkthdr.ph_cookie;
1379 #if NBPFILTER > 0
1380 			if (ic->ic_rawbpf != NULL)
1381 				bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1382 #endif
1383 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1384 				printf("%s: no free prism memory!\n",
1385 				    sc->sc_dev.dv_xname);
1386 				return;
1387 			}
1388 			data_tx->ni = ni;
1389 			data_tx->m = m;
1390 			sc->tx_queued++;
1391 		} else {
1392 			/* data frame */
1393 			if (ic->ic_state != IEEE80211_S_RUN)
1394 				break;
1395 
1396 			IFQ_DEQUEUE(&ifp->if_snd, m);
1397 			if (m == NULL)
1398 				break;
1399 
1400 #if NBPFILTER > 0
1401 			if (ifp->if_bpf != NULL)
1402 				bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1403 #endif
1404 			m = ieee80211_encap(ifp, m, &ni);
1405 			if (m == NULL)
1406 				continue;
1407 #if NBPFILTER > 0
1408 			if (ic->ic_rawbpf != NULL)
1409 				bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1410 #endif
1411 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1412 				printf("%s: no free prism memory!\n",
1413 				    sc->sc_dev.dv_xname);
1414 				return;
1415 			}
1416 			data_tx->ni = ni;
1417 			data_tx->m = m;
1418 			sc->tx_queued++;
1419 		}
1420 	}
1421 
1422 	if (sc->tx_queued > 0) {
1423 		DPRINTF(2, "%s: tx_queued=%d\n",
1424 		    sc->sc_dev.dv_xname, sc->tx_queued);
1425 		/* process the TX queue in process context */
1426 		ifp->if_timer = 5;
1427 		ifq_set_oactive(&ifp->if_snd);
1428 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1429 		usb_add_task(sc->sc_udev, &sc->sc_task_tx);
1430 	}
1431 }
1432 
1433 void
1434 upgt_watchdog(struct ifnet *ifp)
1435 {
1436 	struct upgt_softc *sc = ifp->if_softc;
1437 	struct ieee80211com *ic = &sc->sc_ic;
1438 
1439 	if (ic->ic_state == IEEE80211_S_INIT)
1440 		return;
1441 
1442 	printf("%s: watchdog timeout!\n", sc->sc_dev.dv_xname);
1443 
1444 	/* TODO: what shall we do on TX timeout? */
1445 
1446 	ieee80211_watchdog(ifp);
1447 }
1448 
1449 void
1450 upgt_tx_task(void *arg)
1451 {
1452 	struct upgt_softc *sc = arg;
1453 	struct ieee80211com *ic = &sc->sc_ic;
1454 	struct ieee80211_frame *wh;
1455 	struct ieee80211_key *k;
1456 	struct upgt_lmac_mem *mem;
1457 	struct upgt_lmac_tx_desc *txdesc;
1458 	struct mbuf *m;
1459 	uint32_t addr;
1460 	int len, i, s;
1461 	usbd_status error;
1462 
1463 	s = splusb();
1464 
1465 	upgt_set_led(sc, UPGT_LED_BLINK);
1466 
1467 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1468 		struct upgt_data *data_tx = &sc->tx_data[i];
1469 
1470 		if (data_tx->m == NULL) {
1471 			DPRINTF(2, "%s: %d: m is NULL\n",
1472 			    sc->sc_dev.dv_xname, i);
1473 			continue;
1474 		}
1475 
1476 		m = data_tx->m;
1477 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1478 
1479 		/*
1480 		 * Software crypto.
1481 		 */
1482 		wh = mtod(m, struct ieee80211_frame *);
1483 
1484 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1485 			k = ieee80211_get_txkey(ic, wh, ic->ic_bss);
1486 
1487 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL) {
1488 				splx(s);
1489 				return;
1490 			}
1491 
1492 			/* in case packet header moved, reset pointer */
1493 			wh = mtod(m, struct ieee80211_frame *);
1494 		}
1495 
1496 		/*
1497 		 * Transmit the URB containing the TX data.
1498 		 */
1499 		bzero(data_tx->buf, MCLBYTES);
1500 
1501 		mem = (struct upgt_lmac_mem *)data_tx->buf;
1502 		mem->addr = htole32(addr);
1503 
1504 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1505 
1506 		/* XXX differ between data and mgmt frames? */
1507 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1508 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1509 		txdesc->header1.len = htole16(m->m_pkthdr.len);
1510 
1511 		txdesc->header2.reqid = htole32(data_tx->addr);
1512 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1513 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1514 
1515 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1516 		    IEEE80211_FC0_TYPE_MGT) {
1517 			/* always send mgmt frames at lowest rate (DS1) */
1518 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1519 		} else {
1520 			bcopy(sc->sc_cur_rateset, txdesc->rates,
1521 			    sizeof(txdesc->rates));
1522 		}
1523 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1524 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1525 
1526 #if NBPFILTER > 0
1527 		if (sc->sc_drvbpf != NULL) {
1528 			struct mbuf mb;
1529 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1530 
1531 			tap->wt_flags = 0;
1532 			tap->wt_rate = 0;	/* TODO: where to get from? */
1533 			tap->wt_chan_freq =
1534 			    htole16(ic->ic_bss->ni_chan->ic_freq);
1535 			tap->wt_chan_flags =
1536 			    htole16(ic->ic_bss->ni_chan->ic_flags);
1537 
1538 			mb.m_data = (caddr_t)tap;
1539 			mb.m_len = sc->sc_txtap_len;
1540 			mb.m_next = m;
1541 			mb.m_nextpkt = NULL;
1542 			mb.m_type = 0;
1543 			mb.m_flags = 0;
1544 			bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1545 		}
1546 #endif
1547 		/* copy frame below our TX descriptor header */
1548 		m_copydata(m, 0, m->m_pkthdr.len,
1549 		    data_tx->buf + (sizeof(*mem) + sizeof(*txdesc)));
1550 
1551 		/* calculate frame size */
1552 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1553 
1554 		/* we need to align the frame to a 4 byte boundary */
1555 		len = (len + 3) & ~3;
1556 
1557 		/* calculate frame checksum */
1558 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1559 		    len - sizeof(*mem));
1560 
1561 		/* we do not need the mbuf anymore */
1562 		m_freem(m);
1563 		data_tx->m = NULL;
1564 
1565 		DPRINTF(2, "%s: TX start data sending\n", sc->sc_dev.dv_xname);
1566 
1567 		usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
1568 		    data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1569 		    UPGT_USB_TIMEOUT, NULL);
1570 		error = usbd_transfer(data_tx->xfer);
1571 		if (error != 0 && error != USBD_IN_PROGRESS) {
1572 			printf("%s: could not transmit TX data URB!\n",
1573 			    sc->sc_dev.dv_xname);
1574 			splx(s);
1575 			return;
1576 		}
1577 
1578 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
1579 		    sc->sc_dev.dv_xname, len);
1580 	}
1581 
1582 	/*
1583 	 * If we don't regulary read the device statistics, the RX queue
1584 	 * will stall.  It's strange, but it works, so we keep reading
1585 	 * the statistics here.  *shrug*
1586 	 */
1587 	upgt_get_stats(sc);
1588 
1589 	splx(s);
1590 }
1591 
1592 void
1593 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1594 {
1595 	struct ieee80211com *ic = &sc->sc_ic;
1596 	struct ifnet *ifp = &ic->ic_if;
1597 	struct upgt_lmac_tx_done_desc *desc;
1598 	int i, s;
1599 
1600 	s = splnet();
1601 
1602 	desc = (struct upgt_lmac_tx_done_desc *)data;
1603 
1604 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1605 		struct upgt_data *data_tx = &sc->tx_data[i];
1606 
1607 		if (data_tx->addr == letoh32(desc->header2.reqid)) {
1608 			upgt_mem_free(sc, data_tx->addr);
1609 			ieee80211_release_node(ic, data_tx->ni);
1610 			data_tx->ni = NULL;
1611 			data_tx->addr = 0;
1612 
1613 			sc->tx_queued--;
1614 			ifp->if_opackets++;
1615 
1616 			DPRINTF(2, "%s: TX done: ", sc->sc_dev.dv_xname);
1617 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1618 			    letoh32(desc->header2.reqid),
1619 			    letoh16(desc->status),
1620 			    letoh16(desc->rssi));
1621 			DPRINTF(2, "seq=%d\n", letoh16(desc->seq));
1622 			break;
1623 		}
1624 	}
1625 
1626 	if (sc->tx_queued == 0) {
1627 		/* TX queued was processed, continue */
1628 		ifp->if_timer = 0;
1629 		ifq_clr_oactive(&ifp->if_snd);
1630 		upgt_start(ifp);
1631 	}
1632 
1633 	splx(s);
1634 }
1635 
1636 void
1637 upgt_rx_cb(struct usbd_xfer *xfer, void *priv, usbd_status status)
1638 {
1639 	struct upgt_data *data_rx = priv;
1640 	struct upgt_softc *sc = data_rx->sc;
1641 	int len;
1642 	struct upgt_lmac_header *header;
1643 	struct upgt_lmac_eeprom *eeprom;
1644 	uint8_t h1_type;
1645 	uint16_t h2_type;
1646 
1647 	DPRINTF(3, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1648 
1649 	if (status != USBD_NORMAL_COMPLETION) {
1650 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1651 			return;
1652 		if (status == USBD_STALLED)
1653 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1654 		goto skip;
1655 	}
1656 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1657 
1658 	/*
1659 	 * Check what type of frame came in.
1660 	 */
1661 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1662 
1663 	h1_type = header->header1.type;
1664 	h2_type = letoh16(header->header2.type);
1665 
1666 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1667 	    h2_type == UPGT_H2_TYPE_EEPROM) {
1668 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1669 		uint16_t eeprom_offset = letoh16(eeprom->offset);
1670 		uint16_t eeprom_len = letoh16(eeprom->len);
1671 
1672 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1673 			sc->sc_dev.dv_xname, eeprom_offset, eeprom_len);
1674 
1675 		bcopy(data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1676 			sc->sc_eeprom + eeprom_offset, eeprom_len);
1677 
1678 		/* EEPROM data has arrived in time, wakeup tsleep() */
1679 		wakeup(sc);
1680 	} else
1681 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1682 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1683 		DPRINTF(2, "%s: received 802.11 TX done\n",
1684 		    sc->sc_dev.dv_xname);
1685 
1686 		upgt_tx_done(sc, data_rx->buf + 4);
1687 	} else
1688 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1689 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1690 		DPRINTF(3, "%s: received 802.11 RX data\n",
1691 		    sc->sc_dev.dv_xname);
1692 
1693 		upgt_rx(sc, data_rx->buf + 4, letoh16(header->header1.len));
1694 	} else
1695 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1696 	    h2_type == UPGT_H2_TYPE_STATS) {
1697 		DPRINTF(2, "%s: received statistic data\n",
1698 		    sc->sc_dev.dv_xname);
1699 
1700 		/* TODO: what could we do with the statistic data? */
1701 	} else {
1702 		/* ignore unknown frame types */
1703 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1704 		    sc->sc_dev.dv_xname, header->header1.type);
1705 	}
1706 
1707 skip:	/* setup new transfer */
1708 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
1709 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1710 	(void)usbd_transfer(xfer);
1711 }
1712 
1713 void
1714 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1715 {
1716 	struct ieee80211com *ic = &sc->sc_ic;
1717 	struct ifnet *ifp = &ic->ic_if;
1718 	struct upgt_lmac_rx_desc *rxdesc;
1719 	struct ieee80211_frame *wh;
1720 	struct ieee80211_rxinfo rxi;
1721 	struct ieee80211_node *ni;
1722 	struct mbuf *m;
1723 	int s;
1724 
1725 	/* access RX packet descriptor */
1726 	rxdesc = (struct upgt_lmac_rx_desc *)data;
1727 
1728 	/* create mbuf which is suitable for strict alignment archs */
1729 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN);
1730 	if (m == NULL) {
1731 		DPRINTF(1, "%s: could not create RX mbuf!\n", sc->sc_dev.dv_xname);
1732 		ifp->if_ierrors++;
1733 		return;
1734 	}
1735 
1736 	s = splnet();
1737 
1738 #if NBPFILTER > 0
1739 	if (sc->sc_drvbpf != NULL) {
1740 		struct mbuf mb;
1741 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1742 
1743 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1744 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1745 		tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1746 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1747 		tap->wr_antsignal = rxdesc->rssi;
1748 
1749 		mb.m_data = (caddr_t)tap;
1750 		mb.m_len = sc->sc_rxtap_len;
1751 		mb.m_next = m;
1752 		mb.m_nextpkt = NULL;
1753 		mb.m_type = 0;
1754 		mb.m_flags = 0;
1755 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1756 	}
1757 #endif
1758 	/* trim FCS */
1759 	m_adj(m, -IEEE80211_CRC_LEN);
1760 
1761 	wh = mtod(m, struct ieee80211_frame *);
1762 	ni = ieee80211_find_rxnode(ic, wh);
1763 
1764 	/* push the frame up to the 802.11 stack */
1765 	rxi.rxi_flags = 0;
1766 	rxi.rxi_rssi = rxdesc->rssi;
1767 	rxi.rxi_tstamp = 0;	/* unused */
1768 	ieee80211_input(ifp, m, ni, &rxi);
1769 
1770 	/* node is no longer needed */
1771 	ieee80211_release_node(ic, ni);
1772 
1773 	splx(s);
1774 
1775 	DPRINTF(3, "%s: RX done\n", sc->sc_dev.dv_xname);
1776 }
1777 
1778 void
1779 upgt_setup_rates(struct upgt_softc *sc)
1780 {
1781 	struct ieee80211com *ic = &sc->sc_ic;
1782 
1783 	/*
1784 	 * 0x01 = OFMD6   0x10 = DS1
1785 	 * 0x04 = OFDM9   0x11 = DS2
1786 	 * 0x06 = OFDM12  0x12 = DS5
1787 	 * 0x07 = OFDM18  0x13 = DS11
1788 	 * 0x08 = OFDM24
1789 	 * 0x09 = OFDM36
1790 	 * 0x0a = OFDM48
1791 	 * 0x0b = OFDM54
1792 	 */
1793 	const uint8_t rateset_auto_11b[] =
1794 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1795 	const uint8_t rateset_auto_11g[] =
1796 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1797 	const uint8_t rateset_fix_11bg[] =
1798 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1799 	      0x08, 0x09, 0x0a, 0x0b };
1800 
1801 	if (ic->ic_fixed_rate == -1) {
1802 		/*
1803 		 * Automatic rate control is done by the device.
1804 		 * We just pass the rateset from which the device
1805 		 * will pickup a rate.
1806 		 */
1807 		if (ic->ic_curmode == IEEE80211_MODE_11B)
1808 			bcopy(rateset_auto_11b, sc->sc_cur_rateset,
1809 			    sizeof(sc->sc_cur_rateset));
1810 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
1811 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
1812 			bcopy(rateset_auto_11g, sc->sc_cur_rateset,
1813 			    sizeof(sc->sc_cur_rateset));
1814 	} else {
1815 		/* set a fixed rate */
1816 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1817 		    sizeof(sc->sc_cur_rateset));
1818 	}
1819 }
1820 
1821 uint8_t
1822 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1823 {
1824 	struct ieee80211com *ic = &sc->sc_ic;
1825 
1826 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1827 		if (rate < 0 || rate > 3)
1828 			/* invalid rate */
1829 			return (0);
1830 
1831 		switch (rate) {
1832 		case 0:
1833 			return (2);
1834 		case 1:
1835 			return (4);
1836 		case 2:
1837 			return (11);
1838 		case 3:
1839 			return (22);
1840 		default:
1841 			return (0);
1842 		}
1843 	}
1844 
1845 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1846 		if (rate < 0 || rate > 11)
1847 			/* invalid rate */
1848 			return (0);
1849 
1850 		switch (rate) {
1851 		case 0:
1852 			return (2);
1853 		case 1:
1854 			return (4);
1855 		case 2:
1856 			return (11);
1857 		case 3:
1858 			return (22);
1859 		case 4:
1860 			return (12);
1861 		case 5:
1862 			return (18);
1863 		case 6:
1864 			return (24);
1865 		case 7:
1866 			return (36);
1867 		case 8:
1868 			return (48);
1869 		case 9:
1870 			return (72);
1871 		case 10:
1872 			return (96);
1873 		case 11:
1874 			return (108);
1875 		default:
1876 			return (0);
1877 		}
1878 	}
1879 
1880 	return (0);
1881 }
1882 
1883 int
1884 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1885 {
1886 	struct ieee80211com *ic = &sc->sc_ic;
1887 	struct ieee80211_node *ni = ic->ic_bss;
1888 	struct upgt_data *data_cmd = &sc->cmd_data;
1889 	struct upgt_lmac_mem *mem;
1890 	struct upgt_lmac_filter *filter;
1891 	int len;
1892 	uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1893 
1894 	/*
1895 	 * Transmit the URB containing the CMD data.
1896 	 */
1897 	bzero(data_cmd->buf, MCLBYTES);
1898 
1899 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
1900 	mem->addr = htole32(sc->sc_memaddr_frame_start +
1901 	    UPGT_MEMSIZE_FRAME_HEAD);
1902 
1903 	filter = (struct upgt_lmac_filter *)(mem + 1);
1904 
1905 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1906 	filter->header1.type = UPGT_H1_TYPE_CTRL;
1907 	filter->header1.len = htole16(
1908 	    sizeof(struct upgt_lmac_filter) -
1909 	    sizeof(struct upgt_lmac_header));
1910 
1911 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1912 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
1913 	filter->header2.flags = 0;
1914 
1915 	switch (state) {
1916 	case IEEE80211_S_INIT:
1917 		DPRINTF(1, "%s: set MAC filter to INIT\n",
1918 		    sc->sc_dev.dv_xname);
1919 
1920 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
1921 		break;
1922 	case IEEE80211_S_SCAN:
1923 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
1924 		    sc->sc_dev.dv_xname, ether_sprintf(broadcast));
1925 
1926 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
1927 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
1928 		IEEE80211_ADDR_COPY(filter->src, broadcast);
1929 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
1930 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
1931 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
1932 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
1933 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
1934 		break;
1935 	case IEEE80211_S_RUN:
1936 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
1937 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
1938 
1939 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
1940 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
1941 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
1942 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
1943 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
1944 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
1945 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
1946 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
1947 		break;
1948 	default:
1949 		printf("%s: MAC filter does not know that state!\n",
1950 		    sc->sc_dev.dv_xname);
1951 		break;
1952 	}
1953 
1954 	len = sizeof(*mem) + sizeof(*filter);
1955 
1956 	mem->chksum = upgt_chksum_le((uint32_t *)filter,
1957 	    len - sizeof(*mem));
1958 
1959 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
1960 		printf("%s: could not transmit macfilter CMD data URB!\n",
1961 		    sc->sc_dev.dv_xname);
1962 		return (EIO);
1963 	}
1964 
1965 	return (0);
1966 }
1967 
1968 int
1969 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
1970 {
1971 	struct upgt_data *data_cmd = &sc->cmd_data;
1972 	struct upgt_lmac_mem *mem;
1973 	struct upgt_lmac_channel *chan;
1974 	int len;
1975 
1976 	DPRINTF(1, "%s: %s: %d\n", sc->sc_dev.dv_xname, __func__, channel);
1977 
1978 	/*
1979 	 * Transmit the URB containing the CMD data.
1980 	 */
1981 	bzero(data_cmd->buf, MCLBYTES);
1982 
1983 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
1984 	mem->addr = htole32(sc->sc_memaddr_frame_start +
1985 	    UPGT_MEMSIZE_FRAME_HEAD);
1986 
1987 	chan = (struct upgt_lmac_channel *)(mem + 1);
1988 
1989 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1990 	chan->header1.type = UPGT_H1_TYPE_CTRL;
1991 	chan->header1.len = htole16(
1992 	    sizeof(struct upgt_lmac_channel) -
1993 	    sizeof(struct upgt_lmac_header));
1994 
1995 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1996 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
1997 	chan->header2.flags = 0;
1998 
1999 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2000 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2001 	chan->freq6 = sc->sc_eeprom_freq6[channel];
2002 	chan->settings = sc->sc_eeprom_freq6_settings;
2003 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2004 
2005 	bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1,
2006 	    sizeof(chan->freq3_1));
2007 
2008 	bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4,
2009 	    sizeof(sc->sc_eeprom_freq4[channel]));
2010 
2011 	bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2,
2012 	    sizeof(chan->freq3_2));
2013 
2014 	len = sizeof(*mem) + sizeof(*chan);
2015 
2016 	mem->chksum = upgt_chksum_le((uint32_t *)chan,
2017 	    len - sizeof(*mem));
2018 
2019 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2020 		printf("%s: could not transmit channel CMD data URB!\n",
2021 		    sc->sc_dev.dv_xname);
2022 		return (EIO);
2023 	}
2024 
2025 	return (0);
2026 }
2027 
2028 void
2029 upgt_set_led(struct upgt_softc *sc, int action)
2030 {
2031 	struct ieee80211com *ic = &sc->sc_ic;
2032 	struct upgt_data *data_cmd = &sc->cmd_data;
2033 	struct upgt_lmac_mem *mem;
2034 	struct upgt_lmac_led *led;
2035 	struct timeval t;
2036 	int len;
2037 
2038 	/*
2039 	 * Transmit the URB containing the CMD data.
2040 	 */
2041 	bzero(data_cmd->buf, MCLBYTES);
2042 
2043 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2044 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2045 	    UPGT_MEMSIZE_FRAME_HEAD);
2046 
2047 	led = (struct upgt_lmac_led *)(mem + 1);
2048 
2049 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2050 	led->header1.type = UPGT_H1_TYPE_CTRL;
2051 	led->header1.len = htole16(
2052 	    sizeof(struct upgt_lmac_led) -
2053 	    sizeof(struct upgt_lmac_header));
2054 
2055 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2056 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
2057 	led->header2.flags = 0;
2058 
2059 	switch (action) {
2060 	case UPGT_LED_OFF:
2061 		led->mode = htole16(UPGT_LED_MODE_SET);
2062 		led->action_fix = 0;
2063 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2064 		led->action_tmp_dur = 0;
2065 		break;
2066 	case UPGT_LED_ON:
2067 		led->mode = htole16(UPGT_LED_MODE_SET);
2068 		led->action_fix = 0;
2069 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2070 		led->action_tmp_dur = 0;
2071 		break;
2072 	case UPGT_LED_BLINK:
2073 		if (ic->ic_state != IEEE80211_S_RUN)
2074 			return;
2075 		if (sc->sc_led_blink)
2076 			/* previous blink was not finished */
2077 			return;
2078 		led->mode = htole16(UPGT_LED_MODE_SET);
2079 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2080 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2081 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2082 		/* lock blink */
2083 		sc->sc_led_blink = 1;
2084 		t.tv_sec = 0;
2085 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2086 		timeout_add(&sc->led_to, tvtohz(&t));
2087 		break;
2088 	default:
2089 		return;
2090 	}
2091 
2092 	len = sizeof(*mem) + sizeof(*led);
2093 
2094 	mem->chksum = upgt_chksum_le((uint32_t *)led,
2095 	    len - sizeof(*mem));
2096 
2097 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2098 		printf("%s: could not transmit led CMD URB!\n",
2099 		    sc->sc_dev.dv_xname);
2100 	}
2101 }
2102 
2103 void
2104 upgt_set_led_blink(void *arg)
2105 {
2106 	struct upgt_softc *sc = arg;
2107 
2108 	/* blink finished, we are ready for a next one */
2109 	sc->sc_led_blink = 0;
2110 	timeout_del(&sc->led_to);
2111 }
2112 
2113 int
2114 upgt_get_stats(struct upgt_softc *sc)
2115 {
2116 	struct upgt_data *data_cmd = &sc->cmd_data;
2117 	struct upgt_lmac_mem *mem;
2118 	struct upgt_lmac_stats *stats;
2119 	int len;
2120 
2121 	/*
2122 	 * Transmit the URB containing the CMD data.
2123 	 */
2124 	bzero(data_cmd->buf, MCLBYTES);
2125 
2126 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2127 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2128 	    UPGT_MEMSIZE_FRAME_HEAD);
2129 
2130 	stats = (struct upgt_lmac_stats *)(mem + 1);
2131 
2132 	stats->header1.flags = 0;
2133 	stats->header1.type = UPGT_H1_TYPE_CTRL;
2134 	stats->header1.len = htole16(
2135 	    sizeof(struct upgt_lmac_stats) -
2136 	    sizeof(struct upgt_lmac_header));
2137 
2138 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2139 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2140 	stats->header2.flags = 0;
2141 
2142 	len = sizeof(*mem) + sizeof(*stats);
2143 
2144 	mem->chksum = upgt_chksum_le((uint32_t *)stats,
2145 	    len - sizeof(*mem));
2146 
2147 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2148 		printf("%s: could not transmit statistics CMD data URB!\n",
2149 		    sc->sc_dev.dv_xname);
2150 		return (EIO);
2151 	}
2152 
2153 	return (0);
2154 
2155 }
2156 
2157 int
2158 upgt_alloc_tx(struct upgt_softc *sc)
2159 {
2160 	int i;
2161 
2162 	sc->tx_queued = 0;
2163 
2164 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2165 		struct upgt_data *data_tx = &sc->tx_data[i];
2166 
2167 		data_tx->sc = sc;
2168 
2169 		data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
2170 		if (data_tx->xfer == NULL) {
2171 			printf("%s: could not allocate TX xfer!\n",
2172 			    sc->sc_dev.dv_xname);
2173 			return (ENOMEM);
2174 		}
2175 
2176 		data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
2177 		if (data_tx->buf == NULL) {
2178 			printf("%s: could not allocate TX buffer!\n",
2179 			    sc->sc_dev.dv_xname);
2180 			return (ENOMEM);
2181 		}
2182 
2183 		bzero(data_tx->buf, MCLBYTES);
2184 	}
2185 
2186 	return (0);
2187 }
2188 
2189 int
2190 upgt_alloc_rx(struct upgt_softc *sc)
2191 {
2192 	struct upgt_data *data_rx = &sc->rx_data;
2193 
2194 	data_rx->sc = sc;
2195 
2196 	data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
2197 	if (data_rx->xfer == NULL) {
2198 		printf("%s: could not allocate RX xfer!\n",
2199 		    sc->sc_dev.dv_xname);
2200 		return (ENOMEM);
2201 	}
2202 
2203 	data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
2204 	if (data_rx->buf == NULL) {
2205 		printf("%s: could not allocate RX buffer!\n",
2206 		    sc->sc_dev.dv_xname);
2207 		return (ENOMEM);
2208 	}
2209 
2210 	bzero(data_rx->buf, MCLBYTES);
2211 
2212 	return (0);
2213 }
2214 
2215 int
2216 upgt_alloc_cmd(struct upgt_softc *sc)
2217 {
2218 	struct upgt_data *data_cmd = &sc->cmd_data;
2219 
2220 	data_cmd->sc = sc;
2221 
2222 	data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
2223 	if (data_cmd->xfer == NULL) {
2224 		printf("%s: could not allocate RX xfer!\n",
2225 		    sc->sc_dev.dv_xname);
2226 		return (ENOMEM);
2227 	}
2228 
2229 	data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
2230 	if (data_cmd->buf == NULL) {
2231 		printf("%s: could not allocate RX buffer!\n",
2232 		    sc->sc_dev.dv_xname);
2233 		return (ENOMEM);
2234 	}
2235 
2236 	bzero(data_cmd->buf, MCLBYTES);
2237 
2238 	return (0);
2239 }
2240 
2241 void
2242 upgt_free_tx(struct upgt_softc *sc)
2243 {
2244 	int i;
2245 
2246 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2247 		struct upgt_data *data_tx = &sc->tx_data[i];
2248 
2249 		if (data_tx->xfer != NULL) {
2250 			usbd_free_xfer(data_tx->xfer);
2251 			data_tx->xfer = NULL;
2252 		}
2253 
2254 		data_tx->ni = NULL;
2255 	}
2256 }
2257 
2258 void
2259 upgt_free_rx(struct upgt_softc *sc)
2260 {
2261 	struct upgt_data *data_rx = &sc->rx_data;
2262 
2263 	if (data_rx->xfer != NULL) {
2264 		usbd_free_xfer(data_rx->xfer);
2265 		data_rx->xfer = NULL;
2266 	}
2267 
2268 	data_rx->ni = NULL;
2269 }
2270 
2271 void
2272 upgt_free_cmd(struct upgt_softc *sc)
2273 {
2274 	struct upgt_data *data_cmd = &sc->cmd_data;
2275 
2276 	if (data_cmd->xfer != NULL) {
2277 		usbd_free_xfer(data_cmd->xfer);
2278 		data_cmd->xfer = NULL;
2279 	}
2280 }
2281 
2282 int
2283 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2284     struct usbd_pipe *pipeh, uint32_t *size, int flags)
2285 {
2286         usbd_status status;
2287 
2288 	usbd_setup_xfer(data->xfer, pipeh, 0, data->buf, *size,
2289 	    USBD_NO_COPY | USBD_SYNCHRONOUS | flags, UPGT_USB_TIMEOUT, NULL);
2290 	status = usbd_transfer(data->xfer);
2291 	if (status != USBD_NORMAL_COMPLETION) {
2292 		printf("%s: %s: error %s!\n",
2293 		    sc->sc_dev.dv_xname, __func__, usbd_errstr(status));
2294 		return (EIO);
2295 	}
2296 
2297 	return (0);
2298 }
2299 
2300 void
2301 upgt_hexdump(void *buf, int len)
2302 {
2303 	int i;
2304 
2305 	for (i = 0; i < len; i++) {
2306 		if (i % 16 == 0)
2307 			printf("%s%5i:", i ? "\n" : "", i);
2308 		if (i % 4 == 0)
2309 			printf(" ");
2310 		printf("%02x", (int)*((u_char *)buf + i));
2311 	}
2312 	printf("\n");
2313 }
2314 
2315 uint32_t
2316 upgt_crc32_le(const void *buf, size_t size)
2317 {
2318 	uint32_t crc;
2319 
2320 	crc = ether_crc32_le(buf, size);
2321 
2322 	/* apply final XOR value as common for CRC-32 */
2323 	crc = htole32(crc ^ 0xffffffffU);
2324 
2325 	return (crc);
2326 }
2327 
2328 /*
2329  * The firmware awaits a checksum for each frame we send to it.
2330  * The algorithm used therefor is uncommon but somehow similar to CRC32.
2331  */
2332 uint32_t
2333 upgt_chksum_le(const uint32_t *buf, size_t size)
2334 {
2335 	int i;
2336 	uint32_t crc = 0;
2337 
2338 	for (i = 0; i < size; i += sizeof(uint32_t)) {
2339 		crc = htole32(crc ^ *buf++);
2340 		crc = htole32((crc >> 5) ^ (crc << 3));
2341 	}
2342 
2343 	return (crc);
2344 }
2345