xref: /openbsd-src/sys/dev/usb/if_uath.c (revision f9ad557411bf5f7fb69005001ae3a28168e2de40)
1 /*	$OpenBSD: if_uath.c,v 1.73 2015/11/24 13:33:18 mpi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Driver for Atheros AR5005UG/AR5005UX chipsets.
22  *
23  * IMPORTANT NOTICE:
24  * This driver was written without any documentation or support from Atheros
25  * Communications. It is based on a black-box analysis of the Windows binary
26  * driver. It handles both pre and post-firmware devices.
27  */
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/timeout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/endian.h>
41 
42 #include <machine/bus.h>
43 #include <machine/intr.h>
44 
45 #if NBPFILTER > 0
46 #include <net/bpf.h>
47 #endif
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/if_ether.h>
55 
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_radiotap.h>
58 
59 #include <dev/usb/usb.h>
60 #include <dev/usb/usbdi.h>
61 #include <dev/usb/usbdivar.h>	/* needs_reattach() */
62 #include <dev/usb/usbdi_util.h>
63 #include <dev/usb/usbdevs.h>
64 
65 #include <dev/usb/if_uathreg.h>
66 #include <dev/usb/if_uathvar.h>
67 
68 #ifdef UATH_DEBUG
69 #define DPRINTF(x)	do { if (uath_debug) printf x; } while (0)
70 #define DPRINTFN(n, x)	do { if (uath_debug >= (n)) printf x; } while (0)
71 int uath_debug = 1;
72 #else
73 #define DPRINTF(x)
74 #define DPRINTFN(n, x)
75 #endif
76 
77 /*-
78  * Various supported device vendors/products.
79  * UB51: AR5005UG 802.11b/g, UB52: AR5005UX 802.11a/b/g
80  */
81 #define UATH_DEV(v, p, f)						\
82 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, (f) },		\
83 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p##_NF },		\
84 	    (f) | UATH_FLAG_PRE_FIRMWARE }
85 #define UATH_DEV_UG(v, p)	UATH_DEV(v, p, 0)
86 #define UATH_DEV_UX(v, p)	UATH_DEV(v, p, UATH_FLAG_ABG)
87 static const struct uath_type {
88 	struct usb_devno	dev;
89 	unsigned int		flags;
90 #define UATH_FLAG_PRE_FIRMWARE	(1 << 0)
91 #define UATH_FLAG_ABG		(1 << 1)
92 } uath_devs[] = {
93 	UATH_DEV_UG(ACCTON,		SMCWUSBTG2),
94 	UATH_DEV_UG(ATHEROS,		AR5523),
95 	UATH_DEV_UG(ATHEROS2,		AR5523_1),
96 	UATH_DEV_UG(ATHEROS2,		AR5523_2),
97 	UATH_DEV_UX(ATHEROS2,		AR5523_3),
98 	UATH_DEV_UG(CONCEPTRONIC,	AR5523_1),
99 	UATH_DEV_UX(CONCEPTRONIC,	AR5523_2),
100 	UATH_DEV_UX(DLINK,		DWLAG122),
101 	UATH_DEV_UX(DLINK,		DWLAG132),
102 	UATH_DEV_UG(DLINK,		DWLG132),
103 	UATH_DEV_UG(DLINK2,		WUA2340),
104 	UATH_DEV_UG(GIGASET,		AR5523),
105 	UATH_DEV_UG(GIGASET,		SMCWUSBTG),
106 	UATH_DEV_UG(GLOBALSUN,		AR5523_1),
107 	UATH_DEV_UX(GLOBALSUN,		AR5523_2),
108 	UATH_DEV_UG(IODATA,		USBWNG54US),
109 	UATH_DEV_UG(MELCO,		WLIU2KAMG54),
110 	UATH_DEV_UX(NETGEAR,		WG111U),
111 	UATH_DEV_UG(NETGEAR3,		WG111T),
112 	UATH_DEV_UG(NETGEAR3,		WPN111),
113 	UATH_DEV_UG(PHILIPS,		SNU6500),
114 	UATH_DEV_UX(UMEDIA,		AR5523_2),
115 	UATH_DEV_UG(UMEDIA,		TEW444UBEU),
116 	UATH_DEV_UG(WISTRONNEWEB,	AR5523_1),
117 	UATH_DEV_UX(WISTRONNEWEB,	AR5523_2),
118 	UATH_DEV_UG(ZCOM,		AR5523),
119 
120 	/* Devices that share one of the IDs above. */
121 	{ { USB_VENDOR_NETGEAR3, USB_PRODUCT_NETGEAR3_WG111T_1 }, 0 }		\
122 };
123 #define uath_lookup(v, p)	\
124 	((const struct uath_type *)usb_lookup(uath_devs, v, p))
125 
126 void	uath_attachhook(void *);
127 int	uath_open_pipes(struct uath_softc *);
128 void	uath_close_pipes(struct uath_softc *);
129 int	uath_alloc_tx_data_list(struct uath_softc *);
130 void	uath_free_tx_data_list(struct uath_softc *);
131 int	uath_alloc_rx_data_list(struct uath_softc *);
132 void	uath_free_rx_data_list(struct uath_softc *);
133 int	uath_alloc_tx_cmd_list(struct uath_softc *);
134 void	uath_free_tx_cmd_list(struct uath_softc *);
135 int	uath_alloc_rx_cmd_list(struct uath_softc *);
136 void	uath_free_rx_cmd_list(struct uath_softc *);
137 int	uath_media_change(struct ifnet *);
138 void	uath_stat(void *);
139 void	uath_next_scan(void *);
140 void	uath_task(void *);
141 int	uath_newstate(struct ieee80211com *, enum ieee80211_state, int);
142 #ifdef UATH_DEBUG
143 void	uath_dump_cmd(const uint8_t *, int, char);
144 #endif
145 int	uath_cmd(struct uath_softc *, uint32_t, const void *, int, void *,
146 	    int);
147 int	uath_cmd_write(struct uath_softc *, uint32_t, const void *, int, int);
148 int	uath_cmd_read(struct uath_softc *, uint32_t, const void *, int, void *,
149 	    int);
150 int	uath_write_reg(struct uath_softc *, uint32_t, uint32_t);
151 int	uath_write_multi(struct uath_softc *, uint32_t, const void *, int);
152 int	uath_read_reg(struct uath_softc *, uint32_t, uint32_t *);
153 int	uath_read_eeprom(struct uath_softc *, uint32_t, void *);
154 void	uath_cmd_rxeof(struct usbd_xfer *, void *, usbd_status);
155 void	uath_data_rxeof(struct usbd_xfer *, void *, usbd_status);
156 void	uath_data_txeof(struct usbd_xfer *, void *, usbd_status);
157 int	uath_tx_null(struct uath_softc *);
158 int	uath_tx_data(struct uath_softc *, struct mbuf *,
159 	    struct ieee80211_node *);
160 void	uath_start(struct ifnet *);
161 void	uath_watchdog(struct ifnet *);
162 int	uath_ioctl(struct ifnet *, u_long, caddr_t);
163 int	uath_query_eeprom(struct uath_softc *);
164 int	uath_reset(struct uath_softc *);
165 int	uath_reset_tx_queues(struct uath_softc *);
166 int	uath_wme_init(struct uath_softc *);
167 int	uath_set_chan(struct uath_softc *, struct ieee80211_channel *);
168 int	uath_set_key(struct uath_softc *, const struct ieee80211_key *, int);
169 int	uath_set_keys(struct uath_softc *);
170 int	uath_set_rates(struct uath_softc *, const struct ieee80211_rateset *);
171 int	uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t);
172 int	uath_set_led(struct uath_softc *, int, int);
173 int	uath_switch_channel(struct uath_softc *, struct ieee80211_channel *);
174 int	uath_init(struct ifnet *);
175 void	uath_stop(struct ifnet *, int);
176 int	uath_loadfirmware(struct uath_softc *, const u_char *, int);
177 
178 int uath_match(struct device *, void *, void *);
179 void uath_attach(struct device *, struct device *, void *);
180 int uath_detach(struct device *, int);
181 
182 struct cfdriver uath_cd = {
183 	NULL, "uath", DV_IFNET
184 };
185 
186 const struct cfattach uath_ca = {
187 	sizeof(struct uath_softc), uath_match, uath_attach, uath_detach
188 };
189 
190 int
191 uath_match(struct device *parent, void *match, void *aux)
192 {
193 	struct usb_attach_arg *uaa = aux;
194 
195 	if (uaa->iface != NULL)
196 		return UMATCH_NONE;
197 
198 	return (uath_lookup(uaa->vendor, uaa->product) != NULL) ?
199 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
200 }
201 
202 void
203 uath_attachhook(void *xsc)
204 {
205 	struct uath_softc *sc = xsc;
206 	u_char *fw;
207 	size_t size;
208 	int error;
209 
210 	if ((error = loadfirmware("uath-ar5523", &fw, &size)) != 0) {
211 		printf("%s: error %d, could not read firmware %s\n",
212 		    sc->sc_dev.dv_xname, error, "uath-ar5523");
213 		return;
214 	}
215 
216 	error = uath_loadfirmware(sc, fw, size);
217 	free(fw, M_DEVBUF, 0);
218 
219 	if (error == 0) {
220 		/*
221 		 * Hack alert: the device doesn't always gracefully detach
222 		 * from the bus after a firmware upload.  We need to force
223 		 * a port reset and a re-exploration on the parent hub.
224 		 */
225 		usbd_reset_port(sc->sc_uhub, sc->sc_port);
226 		usb_needs_reattach(sc->sc_udev);
227 	} else {
228 		printf("%s: could not load firmware (error=%s)\n",
229 		    sc->sc_dev.dv_xname, usbd_errstr(error));
230 	}
231 }
232 
233 void
234 uath_attach(struct device *parent, struct device *self, void *aux)
235 {
236 	struct uath_softc *sc = (struct uath_softc *)self;
237 	struct usb_attach_arg *uaa = aux;
238 	struct ieee80211com *ic = &sc->sc_ic;
239 	struct ifnet *ifp = &ic->ic_if;
240 	usbd_status error;
241 	int i;
242 
243 	sc->sc_udev = uaa->device;
244 	sc->sc_uhub = uaa->device->myhub;
245 	sc->sc_port = uaa->port;
246 
247 	sc->sc_flags = uath_lookup(uaa->vendor, uaa->product)->flags;
248 
249 	if (usbd_set_config_no(sc->sc_udev, UATH_CONFIG_NO, 0) != 0) {
250 		printf("%s: could not set configuration no\n",
251 		    sc->sc_dev.dv_xname);
252 		return;
253 	}
254 
255 	/* get the first interface handle */
256 	error = usbd_device2interface_handle(sc->sc_udev, UATH_IFACE_INDEX,
257 	    &sc->sc_iface);
258 	if (error != 0) {
259 		printf("%s: could not get interface handle\n",
260 		    sc->sc_dev.dv_xname);
261 		return;
262 	}
263 
264 	/*
265 	 * We must open the pipes early because they're used to upload the
266 	 * firmware (pre-firmware devices) or to send firmware commands.
267 	 */
268 	if (uath_open_pipes(sc) != 0) {
269 		printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
270 		return;
271 	}
272 
273 	if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
274 		if (rootvp == NULL)
275 			mountroothook_establish(uath_attachhook, sc);
276 		else
277 			uath_attachhook(sc);
278 		return;
279 	}
280 
281 	/*
282 	 * Only post-firmware devices here.
283 	 */
284 	usb_init_task(&sc->sc_task, uath_task, sc, USB_TASK_TYPE_GENERIC);
285 	timeout_set(&sc->scan_to, uath_next_scan, sc);
286 	timeout_set(&sc->stat_to, uath_stat, sc);
287 
288 	/*
289 	 * Allocate xfers for firmware commands.
290 	 */
291 	if (uath_alloc_tx_cmd_list(sc) != 0) {
292 		printf("%s: could not allocate Tx command list\n",
293 		    sc->sc_dev.dv_xname);
294 		goto fail;
295 	}
296 	if (uath_alloc_rx_cmd_list(sc) != 0) {
297 		printf("%s: could not allocate Rx command list\n",
298 		    sc->sc_dev.dv_xname);
299 		goto fail;
300 	}
301 
302 	/*
303 	 * Queue Rx command xfers.
304 	 */
305 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
306 		struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
307 
308 		usbd_setup_xfer(cmd->xfer, sc->cmd_rx_pipe, cmd, cmd->buf,
309 		    UATH_MAX_RXCMDSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
310 		    USBD_NO_TIMEOUT, uath_cmd_rxeof);
311 		error = usbd_transfer(cmd->xfer);
312 		if (error != USBD_IN_PROGRESS && error != 0) {
313 			printf("%s: could not queue Rx command xfer\n",
314 			    sc->sc_dev.dv_xname);
315 			goto fail;
316 		}
317 	}
318 
319 	/*
320 	 * We're now ready to send/receive firmware commands.
321 	 */
322 	if (uath_reset(sc) != 0) {
323 		printf("%s: could not initialize adapter\n",
324 		    sc->sc_dev.dv_xname);
325 		goto fail;
326 	}
327 	if (uath_query_eeprom(sc) != 0) {
328 		printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
329 		goto fail;
330 	}
331 
332 	printf("%s: MAC/BBP AR5523, RF AR%c112, address %s\n",
333 	    sc->sc_dev.dv_xname, (sc->sc_flags & UATH_FLAG_ABG) ? '5': '2',
334 	    ether_sprintf(ic->ic_myaddr));
335 
336 	/*
337 	 * Allocate xfers for Tx/Rx data pipes.
338 	 */
339 	if (uath_alloc_tx_data_list(sc) != 0) {
340 		printf("%s: could not allocate Tx data list\n",
341 		    sc->sc_dev.dv_xname);
342 		goto fail;
343 	}
344 	if (uath_alloc_rx_data_list(sc) != 0) {
345 		printf("%s: could not allocate Rx data list\n",
346 		    sc->sc_dev.dv_xname);
347 		goto fail;
348 	}
349 
350 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
351 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
352 	ic->ic_state = IEEE80211_S_INIT;
353 
354 	/* set device capabilities */
355 	ic->ic_caps =
356 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
357 	    IEEE80211_C_TXPMGT |	/* tx power management */
358 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
359 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
360 	    IEEE80211_C_WEP;		/* h/w WEP */
361 
362 	/* set supported .11b and .11g rates */
363 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
364 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
365 
366 	/* set supported .11b and .11g channels (1 through 14) */
367 	for (i = 1; i <= 14; i++) {
368 		ic->ic_channels[i].ic_freq =
369 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
370 		ic->ic_channels[i].ic_flags =
371 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
372 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
373 	}
374 
375 	ifp->if_softc = sc;
376 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
377 	ifp->if_ioctl = uath_ioctl;
378 	ifp->if_start = uath_start;
379 	ifp->if_watchdog = uath_watchdog;
380 	IFQ_SET_READY(&ifp->if_snd);
381 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
382 
383 	if_attach(ifp);
384 	ieee80211_ifattach(ifp);
385 
386 	/* override state transition machine */
387 	sc->sc_newstate = ic->ic_newstate;
388 	ic->ic_newstate = uath_newstate;
389 	ieee80211_media_init(ifp, uath_media_change, ieee80211_media_status);
390 
391 #if NBPFILTER > 0
392 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
393 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
394 
395 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
396 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
397 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UATH_RX_RADIOTAP_PRESENT);
398 
399 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
400 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
401 	sc->sc_txtap.wt_ihdr.it_present = htole32(UATH_TX_RADIOTAP_PRESENT);
402 #endif
403 
404 	return;
405 
406 fail:	uath_close_pipes(sc);
407 	uath_free_tx_data_list(sc);
408 	uath_free_rx_cmd_list(sc);
409 	uath_free_tx_cmd_list(sc);
410 	usbd_deactivate(sc->sc_udev);
411 }
412 
413 int
414 uath_detach(struct device *self, int flags)
415 {
416 	struct uath_softc *sc = (struct uath_softc *)self;
417 	struct ifnet *ifp = &sc->sc_ic.ic_if;
418 	int s;
419 
420 	s = splnet();
421 
422 	if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
423 		uath_close_pipes(sc);
424 		splx(s);
425 		return 0;
426 	}
427 
428 	/* post-firmware device */
429 
430 	usb_rem_task(sc->sc_udev, &sc->sc_task);
431 	if (timeout_initialized(&sc->scan_to))
432 		timeout_del(&sc->scan_to);
433 	if (timeout_initialized(&sc->stat_to))
434 		timeout_del(&sc->stat_to);
435 
436 	/* close Tx/Rx pipes */
437 	uath_close_pipes(sc);
438 
439 	/* free xfers */
440 	uath_free_tx_data_list(sc);
441 	uath_free_rx_data_list(sc);
442 	uath_free_tx_cmd_list(sc);
443 	uath_free_rx_cmd_list(sc);
444 
445 	if (ifp->if_softc != NULL) {
446 		ieee80211_ifdetach(ifp);	/* free all nodes */
447 		if_detach(ifp);
448 	}
449 
450 	splx(s);
451 
452 	return 0;
453 }
454 
455 int
456 uath_open_pipes(struct uath_softc *sc)
457 {
458 	int error;
459 
460 	/*
461 	 * XXX pipes numbers are hardcoded because we don't have any way
462 	 * to distinguish the data pipes from the firmware command pipes
463 	 * (both are bulk pipes) using the endpoints descriptors.
464 	 */
465 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
466 	    &sc->cmd_tx_pipe);
467 	if (error != 0) {
468 		printf("%s: could not open Tx command pipe: %s\n",
469 		    sc->sc_dev.dv_xname, usbd_errstr(error));
470 		goto fail;
471 	}
472 
473 	error = usbd_open_pipe(sc->sc_iface, 0x02, USBD_EXCLUSIVE_USE,
474 	    &sc->data_tx_pipe);
475 	if (error != 0) {
476 		printf("%s: could not open Tx data pipe: %s\n",
477 		    sc->sc_dev.dv_xname, usbd_errstr(error));
478 		goto fail;
479 	}
480 
481 	error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
482 	    &sc->cmd_rx_pipe);
483 	if (error != 0) {
484 		printf("%s: could not open Rx command pipe: %s\n",
485 		    sc->sc_dev.dv_xname, usbd_errstr(error));
486 		goto fail;
487 	}
488 
489 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
490 	    &sc->data_rx_pipe);
491 	if (error != 0) {
492 		printf("%s: could not open Rx data pipe: %s\n",
493 		    sc->sc_dev.dv_xname, usbd_errstr(error));
494 		goto fail;
495 	}
496 
497 	return 0;
498 
499 fail:	uath_close_pipes(sc);
500 	return error;
501 }
502 
503 void
504 uath_close_pipes(struct uath_softc *sc)
505 {
506 	if (sc->data_tx_pipe != NULL) {
507 		usbd_close_pipe(sc->data_tx_pipe);
508 		sc->data_tx_pipe = NULL;
509 	}
510 
511 	if (sc->data_rx_pipe != NULL) {
512 		usbd_close_pipe(sc->data_rx_pipe);
513 		sc->data_rx_pipe = NULL;
514 	}
515 
516 	if (sc->cmd_tx_pipe != NULL) {
517 		usbd_close_pipe(sc->cmd_tx_pipe);
518 		sc->cmd_tx_pipe = NULL;
519 	}
520 
521 	if (sc->cmd_rx_pipe != NULL) {
522 		usbd_close_pipe(sc->cmd_rx_pipe);
523 		sc->cmd_rx_pipe = NULL;
524 	}
525 }
526 
527 int
528 uath_alloc_tx_data_list(struct uath_softc *sc)
529 {
530 	int i, error;
531 
532 	for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) {
533 		struct uath_tx_data *data = &sc->tx_data[i];
534 
535 		data->sc = sc;	/* backpointer for callbacks */
536 
537 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
538 		if (data->xfer == NULL) {
539 			printf("%s: could not allocate xfer\n",
540 			    sc->sc_dev.dv_xname);
541 			error = ENOMEM;
542 			goto fail;
543 		}
544 		data->buf = usbd_alloc_buffer(data->xfer, UATH_MAX_TXBUFSZ);
545 		if (data->buf == NULL) {
546 			printf("%s: could not allocate xfer buffer\n",
547 			    sc->sc_dev.dv_xname);
548 			error = ENOMEM;
549 			goto fail;
550 		}
551 	}
552 	return 0;
553 
554 fail:	uath_free_tx_data_list(sc);
555 	return error;
556 }
557 
558 void
559 uath_free_tx_data_list(struct uath_softc *sc)
560 {
561 	int i;
562 
563 	for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++)
564 		if (sc->tx_data[i].xfer != NULL) {
565 			usbd_free_xfer(sc->tx_data[i].xfer);
566 			sc->tx_data[i].xfer = NULL;
567 		}
568 }
569 
570 int
571 uath_alloc_rx_data_list(struct uath_softc *sc)
572 {
573 	int i, error;
574 
575 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
576 		struct uath_rx_data *data = &sc->rx_data[i];
577 
578 		data->sc = sc;	/* backpointer for callbacks */
579 
580 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
581 		if (data->xfer == NULL) {
582 			printf("%s: could not allocate xfer\n",
583 			    sc->sc_dev.dv_xname);
584 			error = ENOMEM;
585 			goto fail;
586 		}
587 		if (usbd_alloc_buffer(data->xfer, sc->rxbufsz) == NULL) {
588 			printf("%s: could not allocate xfer buffer\n",
589 			    sc->sc_dev.dv_xname);
590 			error = ENOMEM;
591 			goto fail;
592 		}
593 
594 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
595 		if (data->m == NULL) {
596 			printf("%s: could not allocate rx mbuf\n",
597 			    sc->sc_dev.dv_xname);
598 			error = ENOMEM;
599 			goto fail;
600 		}
601 		MCLGET(data->m, M_DONTWAIT);
602 		if (!(data->m->m_flags & M_EXT)) {
603 			printf("%s: could not allocate rx mbuf cluster\n",
604 			    sc->sc_dev.dv_xname);
605 			error = ENOMEM;
606 			goto fail;
607 		}
608 
609 		data->buf = mtod(data->m, uint8_t *);
610 	}
611 	return 0;
612 
613 fail:	uath_free_rx_data_list(sc);
614 	return error;
615 }
616 
617 void
618 uath_free_rx_data_list(struct uath_softc *sc)
619 {
620 	int i;
621 
622 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
623 		struct uath_rx_data *data = &sc->rx_data[i];
624 
625 		if (data->xfer != NULL) {
626 			usbd_free_xfer(data->xfer);
627 			data->xfer = NULL;
628 		}
629 
630 		if (data->m != NULL) {
631 			m_freem(data->m);
632 			data->m = NULL;
633 		}
634 	}
635 }
636 
637 int
638 uath_alloc_tx_cmd_list(struct uath_softc *sc)
639 {
640 	int i, error;
641 
642 	for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++) {
643 		struct uath_tx_cmd *cmd = &sc->tx_cmd[i];
644 
645 		cmd->sc = sc;	/* backpointer for callbacks */
646 
647 		cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
648 		if (cmd->xfer == NULL) {
649 			printf("%s: could not allocate xfer\n",
650 			    sc->sc_dev.dv_xname);
651 			error = ENOMEM;
652 			goto fail;
653 		}
654 		cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_TXCMDSZ);
655 		if (cmd->buf == NULL) {
656 			printf("%s: could not allocate xfer buffer\n",
657 			    sc->sc_dev.dv_xname);
658 			error = ENOMEM;
659 			goto fail;
660 		}
661 	}
662 	return 0;
663 
664 fail:	uath_free_tx_cmd_list(sc);
665 	return error;
666 }
667 
668 void
669 uath_free_tx_cmd_list(struct uath_softc *sc)
670 {
671 	int i;
672 
673 	for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++)
674 		if (sc->tx_cmd[i].xfer != NULL) {
675 			usbd_free_xfer(sc->tx_cmd[i].xfer);
676 			sc->tx_cmd[i].xfer = NULL;
677 		}
678 }
679 
680 int
681 uath_alloc_rx_cmd_list(struct uath_softc *sc)
682 {
683 	int i, error;
684 
685 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
686 		struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
687 
688 		cmd->sc = sc;	/* backpointer for callbacks */
689 
690 		cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
691 		if (cmd->xfer == NULL) {
692 			printf("%s: could not allocate xfer\n",
693 			    sc->sc_dev.dv_xname);
694 			error = ENOMEM;
695 			goto fail;
696 		}
697 		cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_RXCMDSZ);
698 		if (cmd->buf == NULL) {
699 			printf("%s: could not allocate xfer buffer\n",
700 			    sc->sc_dev.dv_xname);
701 			error = ENOMEM;
702 			goto fail;
703 		}
704 	}
705 	return 0;
706 
707 fail:	uath_free_rx_cmd_list(sc);
708 	return error;
709 }
710 
711 void
712 uath_free_rx_cmd_list(struct uath_softc *sc)
713 {
714 	int i;
715 
716 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++)
717 		if (sc->rx_cmd[i].xfer != NULL) {
718 			usbd_free_xfer(sc->rx_cmd[i].xfer);
719 			sc->rx_cmd[i].xfer = NULL;
720 		}
721 }
722 
723 int
724 uath_media_change(struct ifnet *ifp)
725 {
726 	int error;
727 
728 	error = ieee80211_media_change(ifp);
729 	if (error != ENETRESET)
730 		return error;
731 
732 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
733 		uath_init(ifp);
734 
735 	return 0;
736 }
737 
738 /*
739  * This function is called periodically (every second) when associated to
740  * query device statistics.
741  */
742 void
743 uath_stat(void *arg)
744 {
745 	struct uath_softc *sc = arg;
746 	int error;
747 
748 	/*
749 	 * Send request for statistics asynchronously. The timer will be
750 	 * restarted when we'll get the stats notification.
751 	 */
752 	error = uath_cmd_write(sc, UATH_CMD_STATS, NULL, 0,
753 	    UATH_CMD_FLAG_ASYNC);
754 	if (error != 0) {
755 		printf("%s: could not query statistics (error=%d)\n",
756 		    sc->sc_dev.dv_xname, error);
757 	}
758 }
759 
760 /*
761  * This function is called periodically (every 250ms) during scanning to
762  * switch from one channel to another.
763  */
764 void
765 uath_next_scan(void *arg)
766 {
767 	struct uath_softc *sc = arg;
768 	struct ieee80211com *ic = &sc->sc_ic;
769 	struct ifnet *ifp = &ic->ic_if;
770 
771 	if (ic->ic_state == IEEE80211_S_SCAN)
772 		ieee80211_next_scan(ifp);
773 }
774 
775 void
776 uath_task(void *arg)
777 {
778 	struct uath_softc *sc = arg;
779 	struct ieee80211com *ic = &sc->sc_ic;
780 	enum ieee80211_state ostate;
781 
782 	ostate = ic->ic_state;
783 
784 	switch (sc->sc_state) {
785 	case IEEE80211_S_INIT:
786 		if (ostate == IEEE80211_S_RUN) {
787 			/* turn link and activity LEDs off */
788 			(void)uath_set_led(sc, UATH_LED_LINK, 0);
789 			(void)uath_set_led(sc, UATH_LED_ACTIVITY, 0);
790 		}
791 		break;
792 
793 	case IEEE80211_S_SCAN:
794 		if (uath_switch_channel(sc, ic->ic_bss->ni_chan) != 0) {
795 			printf("%s: could not switch channel\n",
796 			    sc->sc_dev.dv_xname);
797 			break;
798 		}
799 		timeout_add_msec(&sc->scan_to, 250);
800 		break;
801 
802 	case IEEE80211_S_AUTH:
803 	{
804 		struct ieee80211_node *ni = ic->ic_bss;
805 		struct uath_cmd_bssid bssid;
806 		struct uath_cmd_0b cmd0b;
807 		struct uath_cmd_0c cmd0c;
808 
809 		if (uath_switch_channel(sc, ni->ni_chan) != 0) {
810 			printf("%s: could not switch channel\n",
811 			    sc->sc_dev.dv_xname);
812 			break;
813 		}
814 
815 		(void)uath_cmd_write(sc, UATH_CMD_24, NULL, 0, 0);
816 
817 		bzero(&bssid, sizeof bssid);
818 		bssid.len = htobe32(IEEE80211_ADDR_LEN);
819 		IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
820 		(void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
821 		    sizeof bssid, 0);
822 
823 		bzero(&cmd0b, sizeof cmd0b);
824 		cmd0b.code = htobe32(2);
825 		cmd0b.size = htobe32(sizeof (cmd0b.data));
826 		(void)uath_cmd_write(sc, UATH_CMD_0B, &cmd0b, sizeof cmd0b, 0);
827 
828 		bzero(&cmd0c, sizeof cmd0c);
829 		cmd0c.magic1 = htobe32(2);
830 		cmd0c.magic2 = htobe32(7);
831 		cmd0c.magic3 = htobe32(1);
832 		(void)uath_cmd_write(sc, UATH_CMD_0C, &cmd0c, sizeof cmd0c, 0);
833 
834 		if (uath_set_rates(sc, &ni->ni_rates) != 0) {
835 			printf("%s: could not set negotiated rate set\n",
836 			    sc->sc_dev.dv_xname);
837 			break;
838 		}
839 		break;
840 	}
841 
842 	case IEEE80211_S_ASSOC:
843 		break;
844 
845 	case IEEE80211_S_RUN:
846 	{
847 		struct ieee80211_node *ni = ic->ic_bss;
848 		struct uath_cmd_bssid bssid;
849 		struct uath_cmd_xled xled;
850 		uint32_t val;
851 
852 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
853 			/* make both LEDs blink while monitoring */
854 			bzero(&xled, sizeof xled);
855 			xled.which = htobe32(0);
856 			xled.rate = htobe32(1);
857 			xled.mode = htobe32(2);
858 			(void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled,
859 			    sizeof xled, 0);
860 			break;
861 		}
862 
863 		/*
864 		 * Tx rate is controlled by firmware, report the maximum
865 		 * negotiated rate in ifconfig output.
866 		 */
867 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
868 
869 		val = htobe32(1);
870 		(void)uath_cmd_write(sc, UATH_CMD_2E, &val, sizeof val, 0);
871 
872 		bzero(&bssid, sizeof bssid);
873 		bssid.flags1 = htobe32(0xc004);
874 		bssid.flags2 = htobe32(0x003b);
875 		bssid.len = htobe32(IEEE80211_ADDR_LEN);
876 		IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
877 		(void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
878 		    sizeof bssid, 0);
879 
880 		/* turn link LED on */
881 		(void)uath_set_led(sc, UATH_LED_LINK, 1);
882 
883 		/* make activity LED blink */
884 		bzero(&xled, sizeof xled);
885 		xled.which = htobe32(1);
886 		xled.rate = htobe32(1);
887 		xled.mode = htobe32(2);
888 		(void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled, sizeof xled,
889 		    0);
890 
891 		/* set state to associated */
892 		val = htobe32(1);
893 		(void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val,
894 		    0);
895 
896 		/* start statistics timer */
897 		timeout_add_sec(&sc->stat_to, 1);
898 		break;
899 	}
900 	}
901 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
902 }
903 
904 int
905 uath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
906 {
907 	struct uath_softc *sc = ic->ic_softc;
908 
909 	usb_rem_task(sc->sc_udev, &sc->sc_task);
910 	timeout_del(&sc->scan_to);
911 	timeout_del(&sc->stat_to);
912 
913 	/* do it in a process context */
914 	sc->sc_state = nstate;
915 	sc->sc_arg = arg;
916 	usb_add_task(sc->sc_udev, &sc->sc_task);
917 	return 0;
918 }
919 
920 #ifdef UATH_DEBUG
921 void
922 uath_dump_cmd(const uint8_t *buf, int len, char prefix)
923 {
924 	int i;
925 
926 	for (i = 0; i < len; i++) {
927 		if ((i % 16) == 0)
928 			printf("\n%c ", prefix);
929 		else if ((i % 4) == 0)
930 			printf(" ");
931 		printf("%02x", buf[i]);
932 	}
933 	printf("\n");
934 }
935 #endif
936 
937 /*
938  * Low-level function to send read or write commands to the firmware.
939  */
940 int
941 uath_cmd(struct uath_softc *sc, uint32_t code, const void *idata, int ilen,
942     void *odata, int flags)
943 {
944 	struct uath_cmd_hdr *hdr;
945 	struct uath_tx_cmd *cmd;
946 	uint16_t xferflags;
947 	int s, xferlen, error;
948 
949 	/* grab a xfer */
950 	cmd = &sc->tx_cmd[sc->cmd_idx];
951 
952 	/* always bulk-out a multiple of 4 bytes */
953 	xferlen = (sizeof (struct uath_cmd_hdr) + ilen + 3) & ~3;
954 
955 	hdr = (struct uath_cmd_hdr *)cmd->buf;
956 	bzero(hdr, sizeof (struct uath_cmd_hdr));
957 	hdr->len   = htobe32(xferlen);
958 	hdr->code  = htobe32(code);
959 	hdr->priv  = sc->cmd_idx;	/* don't care about endianness */
960 	hdr->magic = htobe32((flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0);
961 	bcopy(idata, (uint8_t *)(hdr + 1), ilen);
962 
963 #ifdef UATH_DEBUG
964 	if (uath_debug >= 5) {
965 		printf("sending command code=0x%02x flags=0x%x index=%u",
966 		    code, flags, sc->cmd_idx);
967 		uath_dump_cmd(cmd->buf, xferlen, '+');
968 	}
969 #endif
970 	xferflags = USBD_FORCE_SHORT_XFER | USBD_NO_COPY;
971 	if (!(flags & UATH_CMD_FLAG_READ)) {
972 		if (!(flags & UATH_CMD_FLAG_ASYNC))
973 			xferflags |= USBD_SYNCHRONOUS;
974 	} else
975 		s = splusb();
976 
977 	cmd->odata = odata;
978 
979 	usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
980 	    xferflags, UATH_CMD_TIMEOUT, NULL);
981 	error = usbd_transfer(cmd->xfer);
982 	if (error != USBD_IN_PROGRESS && error != 0) {
983 		if (flags & UATH_CMD_FLAG_READ)
984 			splx(s);
985 		printf("%s: could not send command 0x%x (error=%s)\n",
986 		    sc->sc_dev.dv_xname, code, usbd_errstr(error));
987 		return error;
988 	}
989 	sc->cmd_idx = (sc->cmd_idx + 1) % UATH_TX_CMD_LIST_COUNT;
990 
991 	if (!(flags & UATH_CMD_FLAG_READ))
992 		return 0;	/* write: don't wait for reply */
993 
994 	/* wait at most two seconds for command reply */
995 	error = tsleep(cmd, PCATCH, "uathcmd", 2 * hz);
996 	cmd->odata = NULL;	/* in case answer is received too late */
997 	splx(s);
998 	if (error != 0) {
999 		printf("%s: timeout waiting for command reply\n",
1000 		    sc->sc_dev.dv_xname);
1001 	}
1002 	return error;
1003 }
1004 
1005 int
1006 uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len,
1007     int flags)
1008 {
1009 	flags &= ~UATH_CMD_FLAG_READ;
1010 	return uath_cmd(sc, code, data, len, NULL, flags);
1011 }
1012 
1013 int
1014 uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata,
1015     int ilen, void *odata, int flags)
1016 {
1017 	flags |= UATH_CMD_FLAG_READ;
1018 	return uath_cmd(sc, code, idata, ilen, odata, flags);
1019 }
1020 
1021 int
1022 uath_write_reg(struct uath_softc *sc, uint32_t reg, uint32_t val)
1023 {
1024 	struct uath_write_mac write;
1025 	int error;
1026 
1027 	write.reg = htobe32(reg);
1028 	write.len = htobe32(0);	/* 0 = single write */
1029 	*(uint32_t *)write.data = htobe32(val);
1030 
1031 	error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1032 	    3 * sizeof (uint32_t), 0);
1033 	if (error != 0) {
1034 		printf("%s: could not write register 0x%02x\n",
1035 		    sc->sc_dev.dv_xname, reg);
1036 	}
1037 	return error;
1038 }
1039 
1040 int
1041 uath_write_multi(struct uath_softc *sc, uint32_t reg, const void *data,
1042     int len)
1043 {
1044 	struct uath_write_mac write;
1045 	int error;
1046 
1047 	write.reg = htobe32(reg);
1048 	write.len = htobe32(len);
1049 	bcopy(data, write.data, len);
1050 
1051 	/* properly handle the case where len is zero (reset) */
1052 	error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1053 	    (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0);
1054 	if (error != 0) {
1055 		printf("%s: could not write %d bytes to register 0x%02x\n",
1056 		    sc->sc_dev.dv_xname, len, reg);
1057 	}
1058 	return error;
1059 }
1060 
1061 int
1062 uath_read_reg(struct uath_softc *sc, uint32_t reg, uint32_t *val)
1063 {
1064 	struct uath_read_mac read;
1065 	int error;
1066 
1067 	reg = htobe32(reg);
1068 	error = uath_cmd_read(sc, UATH_CMD_READ_MAC, &reg, sizeof reg, &read,
1069 	    0);
1070 	if (error != 0) {
1071 		printf("%s: could not read register 0x%02x\n",
1072 		    sc->sc_dev.dv_xname, betoh32(reg));
1073 		return error;
1074 	}
1075 	*val = betoh32(*(uint32_t *)read.data);
1076 	return error;
1077 }
1078 
1079 int
1080 uath_read_eeprom(struct uath_softc *sc, uint32_t reg, void *odata)
1081 {
1082 	struct uath_read_mac read;
1083 	int len, error;
1084 
1085 	reg = htobe32(reg);
1086 	error = uath_cmd_read(sc, UATH_CMD_READ_EEPROM, &reg, sizeof reg,
1087 	    &read, 0);
1088 	if (error != 0) {
1089 		printf("%s: could not read EEPROM offset 0x%02x\n",
1090 		    sc->sc_dev.dv_xname, betoh32(reg));
1091 		return error;
1092 	}
1093 	len = betoh32(read.len);
1094 	bcopy(read.data, odata, (len == 0) ? sizeof (uint32_t) : len);
1095 	return error;
1096 }
1097 
1098 void
1099 uath_cmd_rxeof(struct usbd_xfer *xfer, void *priv,
1100     usbd_status status)
1101 {
1102 	struct uath_rx_cmd *cmd = priv;
1103 	struct uath_softc *sc = cmd->sc;
1104 	struct uath_cmd_hdr *hdr;
1105 
1106 	if (status != USBD_NORMAL_COMPLETION) {
1107 		if (status == USBD_STALLED)
1108 			usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
1109 		return;
1110 	}
1111 
1112 	hdr = (struct uath_cmd_hdr *)cmd->buf;
1113 
1114 #ifdef UATH_DEBUG
1115 	if (uath_debug >= 5) {
1116 		printf("received command code=0x%x index=%u len=%u",
1117 		    betoh32(hdr->code), hdr->priv, betoh32(hdr->len));
1118 		uath_dump_cmd(cmd->buf, betoh32(hdr->len), '-');
1119 	}
1120 #endif
1121 
1122 	switch (betoh32(hdr->code) & 0xff) {
1123 	/* reply to a read command */
1124 	default:
1125 	{
1126 		struct uath_tx_cmd *txcmd = &sc->tx_cmd[hdr->priv];
1127 
1128 		if (txcmd->odata != NULL) {
1129 			/* copy answer into caller's supplied buffer */
1130 			bcopy((uint8_t *)(hdr + 1), txcmd->odata,
1131 			    betoh32(hdr->len) - sizeof (struct uath_cmd_hdr));
1132 		}
1133 		wakeup(txcmd);	/* wake up caller */
1134 		break;
1135 	}
1136 	/* spontaneous firmware notifications */
1137 	case UATH_NOTIF_READY:
1138 		DPRINTF(("received device ready notification\n"));
1139 		wakeup(UATH_COND_INIT(sc));
1140 		break;
1141 
1142 	case UATH_NOTIF_TX:
1143 		/* this notification is sent when UATH_TX_NOTIFY is set */
1144 		DPRINTF(("received Tx notification\n"));
1145 		break;
1146 
1147 	case UATH_NOTIF_STATS:
1148 		DPRINTFN(2, ("received device statistics\n"));
1149 		timeout_add_sec(&sc->stat_to, 1);
1150 		break;
1151 	}
1152 
1153 	/* setup a new transfer */
1154 	usbd_setup_xfer(xfer, sc->cmd_rx_pipe, cmd, cmd->buf, UATH_MAX_RXCMDSZ,
1155 	    USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT,
1156 	    uath_cmd_rxeof);
1157 	(void)usbd_transfer(xfer);
1158 }
1159 
1160 void
1161 uath_data_rxeof(struct usbd_xfer *xfer, void *priv,
1162     usbd_status status)
1163 {
1164 	struct uath_rx_data *data = priv;
1165 	struct uath_softc *sc = data->sc;
1166 	struct ieee80211com *ic = &sc->sc_ic;
1167 	struct ifnet *ifp = &ic->ic_if;
1168 	struct ieee80211_frame *wh;
1169 	struct ieee80211_rxinfo rxi;
1170 	struct ieee80211_node *ni;
1171 	struct uath_rx_desc *desc;
1172 	struct mbuf *mnew, *m;
1173 	uint32_t hdr;
1174 	int s, len;
1175 
1176 	if (status != USBD_NORMAL_COMPLETION) {
1177 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1178 			return;
1179 
1180 		if (status == USBD_STALLED)
1181 			usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1182 
1183 		ifp->if_ierrors++;
1184 		return;
1185 	}
1186 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1187 
1188 	if (len < UATH_MIN_RXBUFSZ) {
1189 		DPRINTF(("wrong xfer size (len=%d)\n", len));
1190 		ifp->if_ierrors++;
1191 		goto skip;
1192 	}
1193 
1194 	hdr = betoh32(*(uint32_t *)data->buf);
1195 
1196 	/* Rx descriptor is located at the end, 32-bit aligned */
1197 	desc = (struct uath_rx_desc *)
1198 	    (data->buf + len - sizeof (struct uath_rx_desc));
1199 
1200 	if (betoh32(desc->len) > sc->rxbufsz) {
1201 		DPRINTF(("bad descriptor (len=%d)\n", betoh32(desc->len)));
1202 		ifp->if_ierrors++;
1203 		goto skip;
1204 	}
1205 
1206 	/* there's probably a "bad CRC" flag somewhere in the descriptor.. */
1207 
1208 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1209 	if (mnew == NULL) {
1210 		printf("%s: could not allocate rx mbuf\n",
1211 		    sc->sc_dev.dv_xname);
1212 		ifp->if_ierrors++;
1213 		goto skip;
1214 	}
1215 	MCLGET(mnew, M_DONTWAIT);
1216 	if (!(mnew->m_flags & M_EXT)) {
1217 		printf("%s: could not allocate rx mbuf cluster\n",
1218 		    sc->sc_dev.dv_xname);
1219 		m_freem(mnew);
1220 		ifp->if_ierrors++;
1221 		goto skip;
1222 	}
1223 
1224 	m = data->m;
1225 	data->m = mnew;
1226 
1227 	/* finalize mbuf */
1228 	m->m_data = data->buf + sizeof (uint32_t);
1229 	m->m_pkthdr.len = m->m_len = betoh32(desc->len) -
1230 	    sizeof (struct uath_rx_desc) - IEEE80211_CRC_LEN;
1231 
1232 	data->buf = mtod(data->m, uint8_t *);
1233 
1234 	wh = mtod(m, struct ieee80211_frame *);
1235 	rxi.rxi_flags = 0;
1236 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) &&
1237 	    ic->ic_opmode != IEEE80211_M_MONITOR) {
1238 		/*
1239 		 * Hardware decrypts the frame itself but leaves the WEP bit
1240 		 * set in the 802.11 header and doesn't remove the IV and CRC
1241 		 * fields.
1242 		 */
1243 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1244 		memmove((caddr_t)wh + IEEE80211_WEP_IVLEN +
1245 		    IEEE80211_WEP_KIDLEN, wh, sizeof (struct ieee80211_frame));
1246 		m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1247 		m_adj(m, -IEEE80211_WEP_CRCLEN);
1248 		wh = mtod(m, struct ieee80211_frame *);
1249 
1250 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1251 	}
1252 
1253 #if NBPFILTER > 0
1254 	/* there are a lot more fields in the Rx descriptor */
1255 	if (sc->sc_drvbpf != NULL) {
1256 		struct mbuf mb;
1257 		struct uath_rx_radiotap_header *tap = &sc->sc_rxtap;
1258 
1259 		tap->wr_flags = 0;
1260 		tap->wr_chan_freq = htole16(betoh32(desc->freq));
1261 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1262 		tap->wr_dbm_antsignal = (int8_t)betoh32(desc->rssi);
1263 
1264 		mb.m_data = (caddr_t)tap;
1265 		mb.m_len = sc->sc_rxtap_len;
1266 		mb.m_next = m;
1267 		mb.m_nextpkt = NULL;
1268 		mb.m_type = 0;
1269 		mb.m_flags = 0;
1270 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1271 	}
1272 #endif
1273 
1274 	s = splnet();
1275 	ni = ieee80211_find_rxnode(ic, wh);
1276 	rxi.rxi_rssi = (int)betoh32(desc->rssi);
1277 	rxi.rxi_tstamp = 0;	/* unused */
1278 	ieee80211_input(ifp, m, ni, &rxi);
1279 
1280 	/* node is no longer needed */
1281 	ieee80211_release_node(ic, ni);
1282 	splx(s);
1283 
1284 skip:	/* setup a new transfer */
1285 	usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, sc->rxbufsz,
1286 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, uath_data_rxeof);
1287 	(void)usbd_transfer(data->xfer);
1288 }
1289 
1290 int
1291 uath_tx_null(struct uath_softc *sc)
1292 {
1293 	struct uath_tx_data *data;
1294 	struct uath_tx_desc *desc;
1295 
1296 	data = &sc->tx_data[sc->data_idx];
1297 
1298 	data->ni = NULL;
1299 
1300 	*(uint32_t *)data->buf = UATH_MAKECTL(1, sizeof (struct uath_tx_desc));
1301 	desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1302 
1303 	bzero(desc, sizeof (struct uath_tx_desc));
1304 	desc->len  = htobe32(sizeof (struct uath_tx_desc));
1305 	desc->type = htobe32(UATH_TX_NULL);
1306 
1307 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf,
1308 	    sizeof (uint32_t) + sizeof (struct uath_tx_desc), USBD_NO_COPY |
1309 	    USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS, UATH_DATA_TIMEOUT, NULL);
1310 	if (usbd_transfer(data->xfer) != 0)
1311 		return EIO;
1312 
1313 	sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1314 
1315 	return uath_cmd_write(sc, UATH_CMD_0F, NULL, 0, UATH_CMD_FLAG_ASYNC);
1316 }
1317 
1318 void
1319 uath_data_txeof(struct usbd_xfer *xfer, void *priv,
1320     usbd_status status)
1321 {
1322 	struct uath_tx_data *data = priv;
1323 	struct uath_softc *sc = data->sc;
1324 	struct ieee80211com *ic = &sc->sc_ic;
1325 	struct ifnet *ifp = &ic->ic_if;
1326 	int s;
1327 
1328 	if (status != USBD_NORMAL_COMPLETION) {
1329 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1330 			return;
1331 
1332 		printf("%s: could not transmit buffer: %s\n",
1333 		    sc->sc_dev.dv_xname, usbd_errstr(status));
1334 
1335 		if (status == USBD_STALLED)
1336 			usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1337 
1338 		ifp->if_oerrors++;
1339 		return;
1340 	}
1341 
1342 	s = splnet();
1343 
1344 	ieee80211_release_node(ic, data->ni);
1345 	data->ni = NULL;
1346 
1347 	sc->tx_queued--;
1348 	ifp->if_opackets++;
1349 
1350 	sc->sc_tx_timer = 0;
1351 	ifp->if_flags &= ~IFF_OACTIVE;
1352 	uath_start(ifp);
1353 
1354 	splx(s);
1355 }
1356 
1357 int
1358 uath_tx_data(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1359 {
1360 	struct ieee80211com *ic = &sc->sc_ic;
1361 	struct uath_tx_data *data;
1362 	struct uath_tx_desc *desc;
1363 	const struct ieee80211_frame *wh;
1364 	int paylen, totlen, xferlen, error;
1365 
1366 	data = &sc->tx_data[sc->data_idx];
1367 	desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1368 
1369 	data->ni = ni;
1370 
1371 #if NBPFILTER > 0
1372 	if (sc->sc_drvbpf != NULL) {
1373 		struct mbuf mb;
1374 		struct uath_tx_radiotap_header *tap = &sc->sc_txtap;
1375 
1376 		tap->wt_flags = 0;
1377 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1378 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1379 
1380 		mb.m_data = (caddr_t)tap;
1381 		mb.m_len = sc->sc_txtap_len;
1382 		mb.m_next = m0;
1383 		mb.m_nextpkt = NULL;
1384 		mb.m_type = 0;
1385 		mb.m_flags = 0;
1386 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1387 	}
1388 #endif
1389 
1390 	paylen = m0->m_pkthdr.len;
1391 	xferlen = sizeof (uint32_t) + sizeof (struct uath_tx_desc) + paylen;
1392 
1393 	wh = mtod(m0, struct ieee80211_frame *);
1394 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1395 		uint8_t *frm = (uint8_t *)(desc + 1);
1396 		uint32_t iv;
1397 
1398 		/* h/w WEP: it's up to the host to fill the IV field */
1399 		bcopy(wh, frm, sizeof (struct ieee80211_frame));
1400 		frm += sizeof (struct ieee80211_frame);
1401 
1402 		/* insert IV: code copied from net80211 */
1403 		iv = (ic->ic_iv != 0) ? ic->ic_iv : arc4random();
1404 		if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1405 			iv += 0x000100;
1406 		ic->ic_iv = iv + 1;
1407 
1408 		*frm++ = iv & 0xff;
1409 		*frm++ = (iv >>  8) & 0xff;
1410 		*frm++ = (iv >> 16) & 0xff;
1411 		*frm++ = ic->ic_wep_txkey << 6;
1412 
1413 		m_copydata(m0, sizeof (struct ieee80211_frame),
1414 		    m0->m_pkthdr.len - sizeof (struct ieee80211_frame), frm);
1415 
1416 		paylen  += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1417 		xferlen += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1418 		totlen = xferlen + IEEE80211_WEP_CRCLEN;
1419 	} else {
1420 		m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1));
1421 		totlen = xferlen;
1422 	}
1423 
1424 	/* fill Tx descriptor */
1425 	*(uint32_t *)data->buf = UATH_MAKECTL(1, xferlen - sizeof (uint32_t));
1426 
1427 	desc->len    = htobe32(totlen);
1428 	desc->priv   = sc->data_idx;	/* don't care about endianness */
1429 	desc->paylen = htobe32(paylen);
1430 	desc->type   = htobe32(UATH_TX_DATA);
1431 	desc->flags  = htobe32(0);
1432 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1433 		desc->dest  = htobe32(UATH_ID_BROADCAST);
1434 		desc->magic = htobe32(3);
1435 	} else {
1436 		desc->dest  = htobe32(UATH_ID_BSS);
1437 		desc->magic = htobe32(1);
1438 	}
1439 
1440 	m_freem(m0);	/* mbuf is no longer needed */
1441 
1442 #ifdef UATH_DEBUG
1443 	if (uath_debug >= 6) {
1444 		printf("sending frame index=%u len=%d xferlen=%d",
1445 		    sc->data_idx, paylen, xferlen);
1446 		uath_dump_cmd(data->buf, xferlen, '+');
1447 	}
1448 #endif
1449 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1450 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, UATH_DATA_TIMEOUT,
1451 	    uath_data_txeof);
1452 	error = usbd_transfer(data->xfer);
1453 	if (error != USBD_IN_PROGRESS && error != 0) {
1454 		ic->ic_if.if_oerrors++;
1455 		return error;
1456 	}
1457 	sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1458 	sc->tx_queued++;
1459 
1460 	return 0;
1461 }
1462 
1463 void
1464 uath_start(struct ifnet *ifp)
1465 {
1466 	struct uath_softc *sc = ifp->if_softc;
1467 	struct ieee80211com *ic = &sc->sc_ic;
1468 	struct ieee80211_node *ni;
1469 	struct mbuf *m0;
1470 
1471 	/*
1472 	 * net80211 may still try to send management frames even if the
1473 	 * IFF_RUNNING flag is not set...
1474 	 */
1475 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1476 		return;
1477 
1478 	for (;;) {
1479 		if (sc->tx_queued >= UATH_TX_DATA_LIST_COUNT) {
1480 			ifp->if_flags |= IFF_OACTIVE;
1481 			break;
1482 		}
1483 
1484 		m0 = mq_dequeue(&ic->ic_mgtq);
1485 		if (m0 != NULL) {
1486 			ni = m0->m_pkthdr.ph_cookie;
1487 #if NBPFILTER > 0
1488 			if (ic->ic_rawbpf != NULL)
1489 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1490 #endif
1491 			if (uath_tx_data(sc, m0, ni) != 0)
1492 				break;
1493 		} else {
1494 			if (ic->ic_state != IEEE80211_S_RUN)
1495 				break;
1496 
1497 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1498 			if (m0 == NULL)
1499 				break;
1500 #if NBPFILTER > 0
1501 			if (ifp->if_bpf != NULL)
1502 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1503 #endif
1504 			m0 = ieee80211_encap(ifp, m0, &ni);
1505 			if (m0 == NULL)
1506 				continue;
1507 #if NBPFILTER > 0
1508 			if (ic->ic_rawbpf != NULL)
1509 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1510 #endif
1511 			if (uath_tx_data(sc, m0, ni) != 0) {
1512 				if (ni != NULL)
1513 					ieee80211_release_node(ic, ni);
1514 				ifp->if_oerrors++;
1515 				break;
1516 			}
1517 		}
1518 
1519 		sc->sc_tx_timer = 5;
1520 		ifp->if_timer = 1;
1521 	}
1522 }
1523 
1524 void
1525 uath_watchdog(struct ifnet *ifp)
1526 {
1527 	struct uath_softc *sc = ifp->if_softc;
1528 
1529 	ifp->if_timer = 0;
1530 
1531 	if (sc->sc_tx_timer > 0) {
1532 		if (--sc->sc_tx_timer == 0) {
1533 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1534 			/*uath_init(ifp); XXX needs a process context! */
1535 			ifp->if_oerrors++;
1536 			return;
1537 		}
1538 		ifp->if_timer = 1;
1539 	}
1540 
1541 	ieee80211_watchdog(ifp);
1542 }
1543 
1544 int
1545 uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1546 {
1547 	struct uath_softc *sc = ifp->if_softc;
1548 	struct ieee80211com *ic = &sc->sc_ic;
1549 	struct ifreq *ifr;
1550 	int s, error = 0;
1551 
1552 	s = splnet();
1553 
1554 	switch (cmd) {
1555 	case SIOCSIFADDR:
1556 		ifp->if_flags |= IFF_UP;
1557 		/* FALLTHROUGH */
1558 	case SIOCSIFFLAGS:
1559 		if (ifp->if_flags & IFF_UP) {
1560 			if (!(ifp->if_flags & IFF_RUNNING))
1561 				uath_init(ifp);
1562 		} else {
1563 			if (ifp->if_flags & IFF_RUNNING)
1564 				uath_stop(ifp, 1);
1565 		}
1566 		break;
1567 
1568 	case SIOCADDMULTI:
1569 	case SIOCDELMULTI:
1570 		ifr = (struct ifreq *)data;
1571 		error = (cmd == SIOCADDMULTI) ?
1572 		    ether_addmulti(ifr, &ic->ic_ac) :
1573 		    ether_delmulti(ifr, &ic->ic_ac);
1574 		if (error == ENETRESET)
1575 			error = 0;
1576 		break;
1577 
1578 	default:
1579 		error = ieee80211_ioctl(ifp, cmd, data);
1580 	}
1581 
1582 	if (error == ENETRESET) {
1583 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1584 		    (IFF_UP | IFF_RUNNING))
1585 			uath_init(ifp);
1586 		error = 0;
1587 	}
1588 
1589 	splx(s);
1590 
1591 	return error;
1592 }
1593 
1594 int
1595 uath_query_eeprom(struct uath_softc *sc)
1596 {
1597 	uint32_t tmp;
1598 	int error;
1599 
1600 	/* retrieve MAC address */
1601 	error = uath_read_eeprom(sc, UATH_EEPROM_MACADDR, sc->sc_ic.ic_myaddr);
1602 	if (error != 0) {
1603 		printf("%s: could not read MAC address\n",
1604 		    sc->sc_dev.dv_xname);
1605 		return error;
1606 	}
1607 
1608 	/* retrieve the maximum frame size that the hardware can receive */
1609 	error = uath_read_eeprom(sc, UATH_EEPROM_RXBUFSZ, &tmp);
1610 	if (error != 0) {
1611 		printf("%s: could not read maximum Rx buffer size\n",
1612 		    sc->sc_dev.dv_xname);
1613 		return error;
1614 	}
1615 	sc->rxbufsz = betoh32(tmp) & 0xfff;
1616 	DPRINTF(("maximum Rx buffer size %d\n", sc->rxbufsz));
1617 	return 0;
1618 }
1619 
1620 int
1621 uath_reset(struct uath_softc *sc)
1622 {
1623 	struct uath_cmd_setup setup;
1624 	uint32_t reg, val;
1625 	int s, error;
1626 
1627 	/* init device with some voodoo incantations.. */
1628 	setup.magic1 = htobe32(1);
1629 	setup.magic2 = htobe32(5);
1630 	setup.magic3 = htobe32(200);
1631 	setup.magic4 = htobe32(27);
1632 	s = splusb();
1633 	error = uath_cmd_write(sc, UATH_CMD_SETUP, &setup, sizeof setup,
1634 	    UATH_CMD_FLAG_ASYNC);
1635 	/* ..and wait until firmware notifies us that it is ready */
1636 	if (error == 0)
1637 		error = tsleep(UATH_COND_INIT(sc), PCATCH, "uathinit", 5 * hz);
1638 	splx(s);
1639 	if (error != 0)
1640 		return error;
1641 
1642 	/* read PHY registers */
1643 	for (reg = 0x09; reg <= 0x24; reg++) {
1644 		if (reg == 0x0b || reg == 0x0c)
1645 			continue;
1646 		DELAY(100);
1647 		if ((error = uath_read_reg(sc, reg, &val)) != 0)
1648 			return error;
1649 		DPRINTFN(2, ("reg 0x%02x=0x%08x\n", reg, val));
1650 	}
1651 	return error;
1652 }
1653 
1654 int
1655 uath_reset_tx_queues(struct uath_softc *sc)
1656 {
1657 	int ac, error;
1658 
1659 	for (ac = 0; ac < 4; ac++) {
1660 		const uint32_t qid = htobe32(UATH_AC_TO_QID(ac));
1661 
1662 		DPRINTF(("resetting Tx queue %d\n", UATH_AC_TO_QID(ac)));
1663 		error = uath_cmd_write(sc, UATH_CMD_RESET_QUEUE, &qid,
1664 		    sizeof qid, 0);
1665 		if (error != 0)
1666 			break;
1667 	}
1668 	return error;
1669 }
1670 
1671 int
1672 uath_wme_init(struct uath_softc *sc)
1673 {
1674 	struct uath_qinfo qinfo;
1675 	int ac, error;
1676 	static const struct uath_wme_settings uath_wme_11g[4] = {
1677 		{ 7, 4, 10,  0, 0 },	/* Background */
1678 		{ 3, 4, 10,  0, 0 },	/* Best-Effort */
1679 		{ 3, 3,  4, 26, 0 },	/* Video */
1680 		{ 2, 2,  3, 47, 0 }	/* Voice */
1681 	};
1682 
1683 	bzero(&qinfo, sizeof qinfo);
1684 	qinfo.size   = htobe32(32);
1685 	qinfo.magic1 = htobe32(1);	/* XXX ack policy? */
1686 	qinfo.magic2 = htobe32(1);
1687 	for (ac = 0; ac < 4; ac++) {
1688 		qinfo.qid      = htobe32(UATH_AC_TO_QID(ac));
1689 		qinfo.ac       = htobe32(ac);
1690 		qinfo.aifsn    = htobe32(uath_wme_11g[ac].aifsn);
1691 		qinfo.logcwmin = htobe32(uath_wme_11g[ac].logcwmin);
1692 		qinfo.logcwmax = htobe32(uath_wme_11g[ac].logcwmax);
1693 		qinfo.txop     = htobe32(UATH_TXOP_TO_US(
1694 				     uath_wme_11g[ac].txop));
1695 		qinfo.acm      = htobe32(uath_wme_11g[ac].acm);
1696 
1697 		DPRINTF(("setting up Tx queue %d\n", UATH_AC_TO_QID(ac)));
1698 		error = uath_cmd_write(sc, UATH_CMD_SET_QUEUE, &qinfo,
1699 		    sizeof qinfo, 0);
1700 		if (error != 0)
1701 			break;
1702 	}
1703 	return error;
1704 }
1705 
1706 int
1707 uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c)
1708 {
1709 	struct uath_set_chan chan;
1710 
1711 	bzero(&chan, sizeof chan);
1712 	chan.flags  = htobe32(0x1400);
1713 	chan.freq   = htobe32(c->ic_freq);
1714 	chan.magic1 = htobe32(20);
1715 	chan.magic2 = htobe32(50);
1716 	chan.magic3 = htobe32(1);
1717 
1718 	DPRINTF(("switching to channel %d\n",
1719 	    ieee80211_chan2ieee(&sc->sc_ic, c)));
1720 	return uath_cmd_write(sc, UATH_CMD_SET_CHAN, &chan, sizeof chan, 0);
1721 }
1722 
1723 int
1724 uath_set_key(struct uath_softc *sc, const struct ieee80211_key *k, int index)
1725 {
1726 	struct uath_cmd_crypto crypto;
1727 	int i;
1728 
1729 	bzero(&crypto, sizeof crypto);
1730 	crypto.keyidx = htobe32(index);
1731 	crypto.magic1 = htobe32(1);
1732 	crypto.size   = htobe32(368);
1733 	crypto.mask   = htobe32(0xffff);
1734 	crypto.flags  = htobe32(0x80000068);
1735 	if (index != UATH_DEFAULT_KEY)
1736 		crypto.flags |= htobe32(index << 16);
1737 	memset(crypto.magic2, 0xff, sizeof crypto.magic2);
1738 
1739 	/*
1740 	 * Each byte of the key must be XOR'ed with 10101010 before being
1741 	 * transmitted to the firmware.
1742 	 */
1743 	for (i = 0; i < k->k_len; i++)
1744 		crypto.key[i] = k->k_key[i] ^ 0xaa;
1745 
1746 	DPRINTF(("setting crypto key index=%d len=%d\n", index, k->k_len));
1747 	return uath_cmd_write(sc, UATH_CMD_CRYPTO, &crypto, sizeof crypto, 0);
1748 }
1749 
1750 int
1751 uath_set_keys(struct uath_softc *sc)
1752 {
1753 	const struct ieee80211com *ic = &sc->sc_ic;
1754 	int i, error;
1755 
1756 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1757 		const struct ieee80211_key *k = &ic->ic_nw_keys[i];
1758 
1759 		if (k->k_len > 0 && (error = uath_set_key(sc, k, i)) != 0)
1760 			return error;
1761 	}
1762 	return uath_set_key(sc, &ic->ic_nw_keys[ic->ic_wep_txkey],
1763 	    UATH_DEFAULT_KEY);
1764 }
1765 
1766 int
1767 uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs)
1768 {
1769 	struct uath_cmd_rates rates;
1770 
1771 	bzero(&rates, sizeof rates);
1772 	rates.magic1 = htobe32(0x02);
1773 	rates.size   = htobe32(1 + sizeof rates.rates);
1774 	rates.nrates = rs->rs_nrates;
1775 	bcopy(rs->rs_rates, rates.rates, rs->rs_nrates);
1776 
1777 	DPRINTF(("setting supported rates nrates=%d\n", rs->rs_nrates));
1778 	return uath_cmd_write(sc, UATH_CMD_SET_RATES, &rates, sizeof rates, 0);
1779 }
1780 
1781 int
1782 uath_set_rxfilter(struct uath_softc *sc, uint32_t filter, uint32_t flags)
1783 {
1784 	struct uath_cmd_filter rxfilter;
1785 
1786 	rxfilter.filter = htobe32(filter);
1787 	rxfilter.flags  = htobe32(flags);
1788 
1789 	DPRINTF(("setting Rx filter=0x%x flags=0x%x\n", filter, flags));
1790 	return uath_cmd_write(sc, UATH_CMD_SET_FILTER, &rxfilter,
1791 	    sizeof rxfilter, 0);
1792 }
1793 
1794 int
1795 uath_set_led(struct uath_softc *sc, int which, int on)
1796 {
1797 	struct uath_cmd_led led;
1798 
1799 	led.which = htobe32(which);
1800 	led.state = htobe32(on ? UATH_LED_ON : UATH_LED_OFF);
1801 
1802 	DPRINTFN(2, ("switching %s led %s\n",
1803 	    (which == UATH_LED_LINK) ? "link" : "activity",
1804 	    on ? "on" : "off"));
1805 	return uath_cmd_write(sc, UATH_CMD_SET_LED, &led, sizeof led, 0);
1806 }
1807 
1808 int
1809 uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c)
1810 {
1811 	uint32_t val;
1812 	int error;
1813 
1814 	/* set radio frequency */
1815 	if ((error = uath_set_chan(sc, c)) != 0) {
1816 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1817 		return error;
1818 	}
1819 
1820 	/* reset Tx rings */
1821 	if ((error = uath_reset_tx_queues(sc)) != 0) {
1822 		printf("%s: could not reset Tx queues\n",
1823 		    sc->sc_dev.dv_xname);
1824 		return error;
1825 	}
1826 
1827 	/* set Tx rings WME properties */
1828 	if ((error = uath_wme_init(sc)) != 0) {
1829 		printf("%s: could not init Tx queues\n",
1830 		    sc->sc_dev.dv_xname);
1831 		return error;
1832 	}
1833 
1834 	val = htobe32(0);
1835 	error = uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
1836 	if (error != 0) {
1837 		printf("%s: could not set state\n", sc->sc_dev.dv_xname);
1838 		return error;
1839 	}
1840 
1841 	return uath_tx_null(sc);
1842 }
1843 
1844 int
1845 uath_init(struct ifnet *ifp)
1846 {
1847 	struct uath_softc *sc = ifp->if_softc;
1848 	struct ieee80211com *ic = &sc->sc_ic;
1849 	struct uath_cmd_31 cmd31;
1850 	uint32_t val;
1851 	int i, error;
1852 
1853 	/* reset data and command rings */
1854 	sc->tx_queued = sc->data_idx = sc->cmd_idx = 0;
1855 
1856 	val = htobe32(0);
1857 	(void)uath_cmd_write(sc, UATH_CMD_02, &val, sizeof val, 0);
1858 
1859 	/* set MAC address */
1860 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1861 	(void)uath_write_multi(sc, 0x13, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1862 
1863 	(void)uath_write_reg(sc, 0x02, 0x00000001);
1864 	(void)uath_write_reg(sc, 0x0e, 0x0000003f);
1865 	(void)uath_write_reg(sc, 0x10, 0x00000001);
1866 	(void)uath_write_reg(sc, 0x06, 0x0000001e);
1867 
1868 	/*
1869 	 * Queue Rx data xfers.
1870 	 */
1871 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
1872 		struct uath_rx_data *data = &sc->rx_data[i];
1873 
1874 		usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
1875 		    sc->rxbufsz, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT,
1876 		    uath_data_rxeof);
1877 		error = usbd_transfer(data->xfer);
1878 		if (error != USBD_IN_PROGRESS && error != 0) {
1879 			printf("%s: could not queue Rx transfer\n",
1880 			    sc->sc_dev.dv_xname);
1881 			goto fail;
1882 		}
1883 	}
1884 
1885 	error = uath_cmd_read(sc, UATH_CMD_07, NULL, 0, &val,
1886 	    UATH_CMD_FLAG_MAGIC);
1887 	if (error != 0) {
1888 		printf("%s: could not send read command 07h\n",
1889 		    sc->sc_dev.dv_xname);
1890 		goto fail;
1891 	}
1892 	DPRINTF(("command 07h return code: %x\n", betoh32(val)));
1893 
1894 	/* set default channel */
1895 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1896 	if ((error = uath_set_chan(sc, ic->ic_bss->ni_chan)) != 0) {
1897 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1898 		goto fail;
1899 	}
1900 
1901 	if ((error = uath_wme_init(sc)) != 0) {
1902 		printf("%s: could not setup WME parameters\n",
1903 		    sc->sc_dev.dv_xname);
1904 		goto fail;
1905 	}
1906 
1907 	/* init MAC registers */
1908 	(void)uath_write_reg(sc, 0x19, 0x00000000);
1909 	(void)uath_write_reg(sc, 0x1a, 0x0000003c);
1910 	(void)uath_write_reg(sc, 0x1b, 0x0000003c);
1911 	(void)uath_write_reg(sc, 0x1c, 0x00000000);
1912 	(void)uath_write_reg(sc, 0x1e, 0x00000000);
1913 	(void)uath_write_reg(sc, 0x1f, 0x00000003);
1914 	(void)uath_write_reg(sc, 0x0c, 0x00000000);
1915 	(void)uath_write_reg(sc, 0x0f, 0x00000002);
1916 	(void)uath_write_reg(sc, 0x0a, 0x00000007);	/* XXX retry? */
1917 	(void)uath_write_reg(sc, 0x09, ic->ic_rtsthreshold);
1918 
1919 	val = htobe32(4);
1920 	(void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1921 	(void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1922 	(void)uath_cmd_write(sc, UATH_CMD_1B, NULL, 0, 0);
1923 
1924 	if ((error = uath_set_keys(sc)) != 0) {
1925 		printf("%s: could not set crypto keys\n",
1926 		    sc->sc_dev.dv_xname);
1927 		goto fail;
1928 	}
1929 
1930 	/* enable Rx */
1931 	(void)uath_set_rxfilter(sc, 0x0000, 4);
1932 	(void)uath_set_rxfilter(sc, 0x0817, 1);
1933 
1934 	cmd31.magic1 = htobe32(0xffffffff);
1935 	cmd31.magic2 = htobe32(0xffffffff);
1936 	(void)uath_cmd_write(sc, UATH_CMD_31, &cmd31, sizeof cmd31, 0);
1937 
1938 	ifp->if_flags &= ~IFF_OACTIVE;
1939 	ifp->if_flags |= IFF_RUNNING;
1940 
1941 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1942 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1943 	else
1944 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1945 
1946 	return 0;
1947 
1948 fail:	uath_stop(ifp, 1);
1949 	return error;
1950 }
1951 
1952 void
1953 uath_stop(struct ifnet *ifp, int disable)
1954 {
1955 	struct uath_softc *sc = ifp->if_softc;
1956 	struct ieee80211com *ic = &sc->sc_ic;
1957 	uint32_t val;
1958 	int s;
1959 
1960 	s = splusb();
1961 
1962 	sc->sc_tx_timer = 0;
1963 	ifp->if_timer = 0;
1964 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1965 
1966 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
1967 
1968 	val = htobe32(0);
1969 	(void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
1970 	(void)uath_cmd_write(sc, UATH_CMD_RESET, NULL, 0, 0);
1971 
1972 	val = htobe32(0);
1973 	(void)uath_cmd_write(sc, UATH_CMD_15, &val, sizeof val, 0);
1974 
1975 #if 0
1976 	(void)uath_cmd_read(sc, UATH_CMD_SHUTDOWN, NULL, 0, NULL,
1977 	    UATH_CMD_FLAG_MAGIC);
1978 #endif
1979 
1980 	/* abort any pending transfers */
1981 	usbd_abort_pipe(sc->data_tx_pipe);
1982 	usbd_abort_pipe(sc->data_rx_pipe);
1983 	usbd_abort_pipe(sc->cmd_tx_pipe);
1984 
1985 	splx(s);
1986 }
1987 
1988 /*
1989  * Load the MIPS R4000 microcode into the device.  Once the image is loaded,
1990  * the device will detach itself from the bus and reattach later with a new
1991  * product Id (a la ezusb).  XXX this could also be implemented in userland
1992  * through /dev/ugen.
1993  */
1994 int
1995 uath_loadfirmware(struct uath_softc *sc, const u_char *fw, int len)
1996 {
1997 	struct usbd_xfer *ctlxfer, *txxfer, *rxxfer;
1998 	struct uath_fwblock *txblock, *rxblock;
1999 	uint8_t *txdata;
2000 	int error = 0;
2001 
2002 	if ((ctlxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2003 		printf("%s: could not allocate Tx control xfer\n",
2004 		    sc->sc_dev.dv_xname);
2005 		error = USBD_NOMEM;
2006 		goto fail1;
2007 	}
2008 	txblock = usbd_alloc_buffer(ctlxfer, sizeof (struct uath_fwblock));
2009 	if (txblock == NULL) {
2010 		printf("%s: could not allocate Tx control block\n",
2011 		    sc->sc_dev.dv_xname);
2012 		error = USBD_NOMEM;
2013 		goto fail2;
2014 	}
2015 
2016 	if ((txxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2017 		printf("%s: could not allocate Tx xfer\n",
2018 		    sc->sc_dev.dv_xname);
2019 		error = USBD_NOMEM;
2020 		goto fail2;
2021 	}
2022 	txdata = usbd_alloc_buffer(txxfer, UATH_MAX_FWBLOCK_SIZE);
2023 	if (txdata == NULL) {
2024 		printf("%s: could not allocate Tx buffer\n",
2025 		    sc->sc_dev.dv_xname);
2026 		error = USBD_NOMEM;
2027 		goto fail3;
2028 	}
2029 
2030 	if ((rxxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2031 		printf("%s: could not allocate Rx control xfer\n",
2032 		    sc->sc_dev.dv_xname);
2033 		error = USBD_NOMEM;
2034 		goto fail3;
2035 	}
2036 	rxblock = usbd_alloc_buffer(rxxfer, sizeof (struct uath_fwblock));
2037 	if (rxblock == NULL) {
2038 		printf("%s: could not allocate Rx control block\n",
2039 		    sc->sc_dev.dv_xname);
2040 		error = USBD_NOMEM;
2041 		goto fail4;
2042 	}
2043 
2044 	bzero(txblock, sizeof (struct uath_fwblock));
2045 	txblock->flags = htobe32(UATH_WRITE_BLOCK);
2046 	txblock->total = htobe32(len);
2047 
2048 	while (len > 0) {
2049 		int mlen = min(len, UATH_MAX_FWBLOCK_SIZE);
2050 
2051 		txblock->remain = htobe32(len - mlen);
2052 		txblock->len = htobe32(mlen);
2053 
2054 		DPRINTF(("sending firmware block: %d bytes remaining\n",
2055 		    len - mlen));
2056 
2057 		/* send firmware block meta-data */
2058 		usbd_setup_xfer(ctlxfer, sc->cmd_tx_pipe, sc, txblock,
2059 		    sizeof (struct uath_fwblock),
2060 		    USBD_NO_COPY | USBD_SYNCHRONOUS,
2061 		    UATH_CMD_TIMEOUT, NULL);
2062 		if ((error = usbd_transfer(ctlxfer)) != 0) {
2063 			printf("%s: could not send firmware block info\n",
2064 			    sc->sc_dev.dv_xname);
2065 			break;
2066 		}
2067 
2068 		/* send firmware block data */
2069 		bcopy(fw, txdata, mlen);
2070 		usbd_setup_xfer(txxfer, sc->data_tx_pipe, sc, txdata, mlen,
2071 		    USBD_NO_COPY | USBD_SYNCHRONOUS, UATH_DATA_TIMEOUT, NULL);
2072 		if ((error = usbd_transfer(txxfer)) != 0) {
2073 			printf("%s: could not send firmware block data\n",
2074 			    sc->sc_dev.dv_xname);
2075 			break;
2076 		}
2077 
2078 		/* wait for ack from firmware */
2079 		usbd_setup_xfer(rxxfer, sc->cmd_rx_pipe, sc, rxblock,
2080 		    sizeof (struct uath_fwblock), USBD_SHORT_XFER_OK |
2081 		    USBD_NO_COPY | USBD_SYNCHRONOUS, UATH_CMD_TIMEOUT, NULL);
2082 		if ((error = usbd_transfer(rxxfer)) != 0) {
2083 			printf("%s: could not read firmware answer\n",
2084 			    sc->sc_dev.dv_xname);
2085 			break;
2086 		}
2087 
2088 		DPRINTFN(2, ("rxblock flags=0x%x total=%d\n",
2089 		    betoh32(rxblock->flags), betoh32(rxblock->rxtotal)));
2090 		fw += mlen;
2091 		len -= mlen;
2092 	}
2093 
2094 fail4:	usbd_free_xfer(rxxfer);
2095 fail3:	usbd_free_xfer(txxfer);
2096 fail2:	usbd_free_xfer(ctlxfer);
2097 fail1:	return error;
2098 }
2099