xref: /openbsd-src/sys/dev/usb/if_uath.c (revision ef89f9e63174a1a2a3a51b4fe036c160c283438f)
1 /*	$OpenBSD: if_uath.c,v 1.76 2015/12/11 16:07:02 mpi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Driver for Atheros AR5005UG/AR5005UX chipsets.
22  *
23  * IMPORTANT NOTICE:
24  * This driver was written without any documentation or support from Atheros
25  * Communications. It is based on a black-box analysis of the Windows binary
26  * driver. It handles both pre and post-firmware devices.
27  */
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/timeout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/endian.h>
41 
42 #include <machine/bus.h>
43 #include <machine/intr.h>
44 
45 #if NBPFILTER > 0
46 #include <net/bpf.h>
47 #endif
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/if_ether.h>
54 
55 #include <net80211/ieee80211_var.h>
56 #include <net80211/ieee80211_radiotap.h>
57 
58 #include <dev/usb/usb.h>
59 #include <dev/usb/usbdi.h>
60 #include <dev/usb/usbdivar.h>	/* needs_reattach() */
61 #include <dev/usb/usbdi_util.h>
62 #include <dev/usb/usbdevs.h>
63 
64 #include <dev/usb/if_uathreg.h>
65 #include <dev/usb/if_uathvar.h>
66 
67 #ifdef UATH_DEBUG
68 #define DPRINTF(x)	do { if (uath_debug) printf x; } while (0)
69 #define DPRINTFN(n, x)	do { if (uath_debug >= (n)) printf x; } while (0)
70 int uath_debug = 1;
71 #else
72 #define DPRINTF(x)
73 #define DPRINTFN(n, x)
74 #endif
75 
76 /*-
77  * Various supported device vendors/products.
78  * UB51: AR5005UG 802.11b/g, UB52: AR5005UX 802.11a/b/g
79  */
80 #define UATH_DEV(v, p, f)						\
81 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, (f) },		\
82 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p##_NF },		\
83 	    (f) | UATH_FLAG_PRE_FIRMWARE }
84 #define UATH_DEV_UG(v, p)	UATH_DEV(v, p, 0)
85 #define UATH_DEV_UX(v, p)	UATH_DEV(v, p, UATH_FLAG_ABG)
86 static const struct uath_type {
87 	struct usb_devno	dev;
88 	unsigned int		flags;
89 #define UATH_FLAG_PRE_FIRMWARE	(1 << 0)
90 #define UATH_FLAG_ABG		(1 << 1)
91 } uath_devs[] = {
92 	UATH_DEV_UG(ACCTON,		SMCWUSBTG2),
93 	UATH_DEV_UG(ATHEROS,		AR5523),
94 	UATH_DEV_UG(ATHEROS2,		AR5523_1),
95 	UATH_DEV_UG(ATHEROS2,		AR5523_2),
96 	UATH_DEV_UX(ATHEROS2,		AR5523_3),
97 	UATH_DEV_UG(CONCEPTRONIC,	AR5523_1),
98 	UATH_DEV_UX(CONCEPTRONIC,	AR5523_2),
99 	UATH_DEV_UX(DLINK,		DWLAG122),
100 	UATH_DEV_UX(DLINK,		DWLAG132),
101 	UATH_DEV_UG(DLINK,		DWLG132),
102 	UATH_DEV_UG(DLINK2,		WUA2340),
103 	UATH_DEV_UG(GIGASET,		AR5523),
104 	UATH_DEV_UG(GIGASET,		SMCWUSBTG),
105 	UATH_DEV_UG(GLOBALSUN,		AR5523_1),
106 	UATH_DEV_UX(GLOBALSUN,		AR5523_2),
107 	UATH_DEV_UG(IODATA,		USBWNG54US),
108 	UATH_DEV_UG(MELCO,		WLIU2KAMG54),
109 	UATH_DEV_UX(NETGEAR,		WG111U),
110 	UATH_DEV_UG(NETGEAR3,		WG111T),
111 	UATH_DEV_UG(NETGEAR3,		WPN111),
112 	UATH_DEV_UG(PHILIPS,		SNU6500),
113 	UATH_DEV_UX(UMEDIA,		AR5523_2),
114 	UATH_DEV_UG(UMEDIA,		TEW444UBEU),
115 	UATH_DEV_UG(WISTRONNEWEB,	AR5523_1),
116 	UATH_DEV_UX(WISTRONNEWEB,	AR5523_2),
117 	UATH_DEV_UG(ZCOM,		AR5523),
118 
119 	/* Devices that share one of the IDs above. */
120 	{ { USB_VENDOR_NETGEAR3, USB_PRODUCT_NETGEAR3_WG111T_1 }, 0 }		\
121 };
122 #define uath_lookup(v, p)	\
123 	((const struct uath_type *)usb_lookup(uath_devs, v, p))
124 
125 void	uath_attachhook(struct device *);
126 int	uath_open_pipes(struct uath_softc *);
127 void	uath_close_pipes(struct uath_softc *);
128 int	uath_alloc_tx_data_list(struct uath_softc *);
129 void	uath_free_tx_data_list(struct uath_softc *);
130 int	uath_alloc_rx_data_list(struct uath_softc *);
131 void	uath_free_rx_data_list(struct uath_softc *);
132 int	uath_alloc_tx_cmd_list(struct uath_softc *);
133 void	uath_free_tx_cmd_list(struct uath_softc *);
134 int	uath_alloc_rx_cmd_list(struct uath_softc *);
135 void	uath_free_rx_cmd_list(struct uath_softc *);
136 int	uath_media_change(struct ifnet *);
137 void	uath_stat(void *);
138 void	uath_next_scan(void *);
139 void	uath_task(void *);
140 int	uath_newstate(struct ieee80211com *, enum ieee80211_state, int);
141 #ifdef UATH_DEBUG
142 void	uath_dump_cmd(const uint8_t *, int, char);
143 #endif
144 int	uath_cmd(struct uath_softc *, uint32_t, const void *, int, void *,
145 	    int);
146 int	uath_cmd_write(struct uath_softc *, uint32_t, const void *, int, int);
147 int	uath_cmd_read(struct uath_softc *, uint32_t, const void *, int, void *,
148 	    int);
149 int	uath_write_reg(struct uath_softc *, uint32_t, uint32_t);
150 int	uath_write_multi(struct uath_softc *, uint32_t, const void *, int);
151 int	uath_read_reg(struct uath_softc *, uint32_t, uint32_t *);
152 int	uath_read_eeprom(struct uath_softc *, uint32_t, void *);
153 void	uath_cmd_rxeof(struct usbd_xfer *, void *, usbd_status);
154 void	uath_data_rxeof(struct usbd_xfer *, void *, usbd_status);
155 void	uath_data_txeof(struct usbd_xfer *, void *, usbd_status);
156 int	uath_tx_null(struct uath_softc *);
157 int	uath_tx_data(struct uath_softc *, struct mbuf *,
158 	    struct ieee80211_node *);
159 void	uath_start(struct ifnet *);
160 void	uath_watchdog(struct ifnet *);
161 int	uath_ioctl(struct ifnet *, u_long, caddr_t);
162 int	uath_query_eeprom(struct uath_softc *);
163 int	uath_reset(struct uath_softc *);
164 int	uath_reset_tx_queues(struct uath_softc *);
165 int	uath_wme_init(struct uath_softc *);
166 int	uath_set_chan(struct uath_softc *, struct ieee80211_channel *);
167 int	uath_set_key(struct uath_softc *, const struct ieee80211_key *, int);
168 int	uath_set_keys(struct uath_softc *);
169 int	uath_set_rates(struct uath_softc *, const struct ieee80211_rateset *);
170 int	uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t);
171 int	uath_set_led(struct uath_softc *, int, int);
172 int	uath_switch_channel(struct uath_softc *, struct ieee80211_channel *);
173 int	uath_init(struct ifnet *);
174 void	uath_stop(struct ifnet *, int);
175 int	uath_loadfirmware(struct uath_softc *, const u_char *, int);
176 
177 int uath_match(struct device *, void *, void *);
178 void uath_attach(struct device *, struct device *, void *);
179 int uath_detach(struct device *, int);
180 
181 struct cfdriver uath_cd = {
182 	NULL, "uath", DV_IFNET
183 };
184 
185 const struct cfattach uath_ca = {
186 	sizeof(struct uath_softc), uath_match, uath_attach, uath_detach
187 };
188 
189 int
190 uath_match(struct device *parent, void *match, void *aux)
191 {
192 	struct usb_attach_arg *uaa = aux;
193 
194 	if (uaa->iface != NULL)
195 		return UMATCH_NONE;
196 
197 	return (uath_lookup(uaa->vendor, uaa->product) != NULL) ?
198 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
199 }
200 
201 void
202 uath_attachhook(struct device *self)
203 {
204 	struct uath_softc *sc = (struct uath_softc *)self;
205 	u_char *fw;
206 	size_t size;
207 	int error;
208 
209 	if ((error = loadfirmware("uath-ar5523", &fw, &size)) != 0) {
210 		printf("%s: error %d, could not read firmware %s\n",
211 		    sc->sc_dev.dv_xname, error, "uath-ar5523");
212 		return;
213 	}
214 
215 	error = uath_loadfirmware(sc, fw, size);
216 	free(fw, M_DEVBUF, 0);
217 
218 	if (error == 0) {
219 		/*
220 		 * Hack alert: the device doesn't always gracefully detach
221 		 * from the bus after a firmware upload.  We need to force
222 		 * a port reset and a re-exploration on the parent hub.
223 		 */
224 		usbd_reset_port(sc->sc_uhub, sc->sc_port);
225 		usb_needs_reattach(sc->sc_udev);
226 	} else {
227 		printf("%s: could not load firmware (error=%s)\n",
228 		    sc->sc_dev.dv_xname, usbd_errstr(error));
229 	}
230 }
231 
232 void
233 uath_attach(struct device *parent, struct device *self, void *aux)
234 {
235 	struct uath_softc *sc = (struct uath_softc *)self;
236 	struct usb_attach_arg *uaa = aux;
237 	struct ieee80211com *ic = &sc->sc_ic;
238 	struct ifnet *ifp = &ic->ic_if;
239 	usbd_status error;
240 	int i;
241 
242 	sc->sc_udev = uaa->device;
243 	sc->sc_uhub = uaa->device->myhub;
244 	sc->sc_port = uaa->port;
245 
246 	sc->sc_flags = uath_lookup(uaa->vendor, uaa->product)->flags;
247 
248 	if (usbd_set_config_no(sc->sc_udev, UATH_CONFIG_NO, 0) != 0) {
249 		printf("%s: could not set configuration no\n",
250 		    sc->sc_dev.dv_xname);
251 		return;
252 	}
253 
254 	/* get the first interface handle */
255 	error = usbd_device2interface_handle(sc->sc_udev, UATH_IFACE_INDEX,
256 	    &sc->sc_iface);
257 	if (error != 0) {
258 		printf("%s: could not get interface handle\n",
259 		    sc->sc_dev.dv_xname);
260 		return;
261 	}
262 
263 	/*
264 	 * We must open the pipes early because they're used to upload the
265 	 * firmware (pre-firmware devices) or to send firmware commands.
266 	 */
267 	if (uath_open_pipes(sc) != 0) {
268 		printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
269 		return;
270 	}
271 
272 	if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
273 		config_mountroot(self, uath_attachhook);
274 		return;
275 	}
276 
277 	/*
278 	 * Only post-firmware devices here.
279 	 */
280 	usb_init_task(&sc->sc_task, uath_task, sc, USB_TASK_TYPE_GENERIC);
281 	timeout_set(&sc->scan_to, uath_next_scan, sc);
282 	timeout_set(&sc->stat_to, uath_stat, sc);
283 
284 	/*
285 	 * Allocate xfers for firmware commands.
286 	 */
287 	if (uath_alloc_tx_cmd_list(sc) != 0) {
288 		printf("%s: could not allocate Tx command list\n",
289 		    sc->sc_dev.dv_xname);
290 		goto fail;
291 	}
292 	if (uath_alloc_rx_cmd_list(sc) != 0) {
293 		printf("%s: could not allocate Rx command list\n",
294 		    sc->sc_dev.dv_xname);
295 		goto fail;
296 	}
297 
298 	/*
299 	 * Queue Rx command xfers.
300 	 */
301 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
302 		struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
303 
304 		usbd_setup_xfer(cmd->xfer, sc->cmd_rx_pipe, cmd, cmd->buf,
305 		    UATH_MAX_RXCMDSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
306 		    USBD_NO_TIMEOUT, uath_cmd_rxeof);
307 		error = usbd_transfer(cmd->xfer);
308 		if (error != USBD_IN_PROGRESS && error != 0) {
309 			printf("%s: could not queue Rx command xfer\n",
310 			    sc->sc_dev.dv_xname);
311 			goto fail;
312 		}
313 	}
314 
315 	/*
316 	 * We're now ready to send/receive firmware commands.
317 	 */
318 	if (uath_reset(sc) != 0) {
319 		printf("%s: could not initialize adapter\n",
320 		    sc->sc_dev.dv_xname);
321 		goto fail;
322 	}
323 	if (uath_query_eeprom(sc) != 0) {
324 		printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
325 		goto fail;
326 	}
327 
328 	printf("%s: MAC/BBP AR5523, RF AR%c112, address %s\n",
329 	    sc->sc_dev.dv_xname, (sc->sc_flags & UATH_FLAG_ABG) ? '5': '2',
330 	    ether_sprintf(ic->ic_myaddr));
331 
332 	/*
333 	 * Allocate xfers for Tx/Rx data pipes.
334 	 */
335 	if (uath_alloc_tx_data_list(sc) != 0) {
336 		printf("%s: could not allocate Tx data list\n",
337 		    sc->sc_dev.dv_xname);
338 		goto fail;
339 	}
340 	if (uath_alloc_rx_data_list(sc) != 0) {
341 		printf("%s: could not allocate Rx data list\n",
342 		    sc->sc_dev.dv_xname);
343 		goto fail;
344 	}
345 
346 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
347 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
348 	ic->ic_state = IEEE80211_S_INIT;
349 
350 	/* set device capabilities */
351 	ic->ic_caps =
352 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
353 	    IEEE80211_C_TXPMGT |	/* tx power management */
354 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
355 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
356 	    IEEE80211_C_WEP;		/* h/w WEP */
357 
358 	/* set supported .11b and .11g rates */
359 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
360 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
361 
362 	/* set supported .11b and .11g channels (1 through 14) */
363 	for (i = 1; i <= 14; i++) {
364 		ic->ic_channels[i].ic_freq =
365 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
366 		ic->ic_channels[i].ic_flags =
367 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
368 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
369 	}
370 
371 	ifp->if_softc = sc;
372 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
373 	ifp->if_ioctl = uath_ioctl;
374 	ifp->if_start = uath_start;
375 	ifp->if_watchdog = uath_watchdog;
376 	IFQ_SET_READY(&ifp->if_snd);
377 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
378 
379 	if_attach(ifp);
380 	ieee80211_ifattach(ifp);
381 
382 	/* override state transition machine */
383 	sc->sc_newstate = ic->ic_newstate;
384 	ic->ic_newstate = uath_newstate;
385 	ieee80211_media_init(ifp, uath_media_change, ieee80211_media_status);
386 
387 #if NBPFILTER > 0
388 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
389 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
390 
391 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
392 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
393 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UATH_RX_RADIOTAP_PRESENT);
394 
395 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
396 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
397 	sc->sc_txtap.wt_ihdr.it_present = htole32(UATH_TX_RADIOTAP_PRESENT);
398 #endif
399 
400 	return;
401 
402 fail:	uath_close_pipes(sc);
403 	uath_free_tx_data_list(sc);
404 	uath_free_rx_cmd_list(sc);
405 	uath_free_tx_cmd_list(sc);
406 	usbd_deactivate(sc->sc_udev);
407 }
408 
409 int
410 uath_detach(struct device *self, int flags)
411 {
412 	struct uath_softc *sc = (struct uath_softc *)self;
413 	struct ifnet *ifp = &sc->sc_ic.ic_if;
414 	int s;
415 
416 	s = splnet();
417 
418 	if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
419 		uath_close_pipes(sc);
420 		splx(s);
421 		return 0;
422 	}
423 
424 	/* post-firmware device */
425 
426 	usb_rem_task(sc->sc_udev, &sc->sc_task);
427 	if (timeout_initialized(&sc->scan_to))
428 		timeout_del(&sc->scan_to);
429 	if (timeout_initialized(&sc->stat_to))
430 		timeout_del(&sc->stat_to);
431 
432 	/* close Tx/Rx pipes */
433 	uath_close_pipes(sc);
434 
435 	/* free xfers */
436 	uath_free_tx_data_list(sc);
437 	uath_free_rx_data_list(sc);
438 	uath_free_tx_cmd_list(sc);
439 	uath_free_rx_cmd_list(sc);
440 
441 	if (ifp->if_softc != NULL) {
442 		ieee80211_ifdetach(ifp);	/* free all nodes */
443 		if_detach(ifp);
444 	}
445 
446 	splx(s);
447 
448 	return 0;
449 }
450 
451 int
452 uath_open_pipes(struct uath_softc *sc)
453 {
454 	int error;
455 
456 	/*
457 	 * XXX pipes numbers are hardcoded because we don't have any way
458 	 * to distinguish the data pipes from the firmware command pipes
459 	 * (both are bulk pipes) using the endpoints descriptors.
460 	 */
461 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
462 	    &sc->cmd_tx_pipe);
463 	if (error != 0) {
464 		printf("%s: could not open Tx command pipe: %s\n",
465 		    sc->sc_dev.dv_xname, usbd_errstr(error));
466 		goto fail;
467 	}
468 
469 	error = usbd_open_pipe(sc->sc_iface, 0x02, USBD_EXCLUSIVE_USE,
470 	    &sc->data_tx_pipe);
471 	if (error != 0) {
472 		printf("%s: could not open Tx data pipe: %s\n",
473 		    sc->sc_dev.dv_xname, usbd_errstr(error));
474 		goto fail;
475 	}
476 
477 	error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
478 	    &sc->cmd_rx_pipe);
479 	if (error != 0) {
480 		printf("%s: could not open Rx command pipe: %s\n",
481 		    sc->sc_dev.dv_xname, usbd_errstr(error));
482 		goto fail;
483 	}
484 
485 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
486 	    &sc->data_rx_pipe);
487 	if (error != 0) {
488 		printf("%s: could not open Rx data pipe: %s\n",
489 		    sc->sc_dev.dv_xname, usbd_errstr(error));
490 		goto fail;
491 	}
492 
493 	return 0;
494 
495 fail:	uath_close_pipes(sc);
496 	return error;
497 }
498 
499 void
500 uath_close_pipes(struct uath_softc *sc)
501 {
502 	if (sc->data_tx_pipe != NULL) {
503 		usbd_close_pipe(sc->data_tx_pipe);
504 		sc->data_tx_pipe = NULL;
505 	}
506 
507 	if (sc->data_rx_pipe != NULL) {
508 		usbd_close_pipe(sc->data_rx_pipe);
509 		sc->data_rx_pipe = NULL;
510 	}
511 
512 	if (sc->cmd_tx_pipe != NULL) {
513 		usbd_close_pipe(sc->cmd_tx_pipe);
514 		sc->cmd_tx_pipe = NULL;
515 	}
516 
517 	if (sc->cmd_rx_pipe != NULL) {
518 		usbd_close_pipe(sc->cmd_rx_pipe);
519 		sc->cmd_rx_pipe = NULL;
520 	}
521 }
522 
523 int
524 uath_alloc_tx_data_list(struct uath_softc *sc)
525 {
526 	int i, error;
527 
528 	for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) {
529 		struct uath_tx_data *data = &sc->tx_data[i];
530 
531 		data->sc = sc;	/* backpointer for callbacks */
532 
533 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
534 		if (data->xfer == NULL) {
535 			printf("%s: could not allocate xfer\n",
536 			    sc->sc_dev.dv_xname);
537 			error = ENOMEM;
538 			goto fail;
539 		}
540 		data->buf = usbd_alloc_buffer(data->xfer, UATH_MAX_TXBUFSZ);
541 		if (data->buf == NULL) {
542 			printf("%s: could not allocate xfer buffer\n",
543 			    sc->sc_dev.dv_xname);
544 			error = ENOMEM;
545 			goto fail;
546 		}
547 	}
548 	return 0;
549 
550 fail:	uath_free_tx_data_list(sc);
551 	return error;
552 }
553 
554 void
555 uath_free_tx_data_list(struct uath_softc *sc)
556 {
557 	int i;
558 
559 	for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++)
560 		if (sc->tx_data[i].xfer != NULL) {
561 			usbd_free_xfer(sc->tx_data[i].xfer);
562 			sc->tx_data[i].xfer = NULL;
563 		}
564 }
565 
566 int
567 uath_alloc_rx_data_list(struct uath_softc *sc)
568 {
569 	int i, error;
570 
571 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
572 		struct uath_rx_data *data = &sc->rx_data[i];
573 
574 		data->sc = sc;	/* backpointer for callbacks */
575 
576 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
577 		if (data->xfer == NULL) {
578 			printf("%s: could not allocate xfer\n",
579 			    sc->sc_dev.dv_xname);
580 			error = ENOMEM;
581 			goto fail;
582 		}
583 		if (usbd_alloc_buffer(data->xfer, sc->rxbufsz) == NULL) {
584 			printf("%s: could not allocate xfer buffer\n",
585 			    sc->sc_dev.dv_xname);
586 			error = ENOMEM;
587 			goto fail;
588 		}
589 
590 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
591 		if (data->m == NULL) {
592 			printf("%s: could not allocate rx mbuf\n",
593 			    sc->sc_dev.dv_xname);
594 			error = ENOMEM;
595 			goto fail;
596 		}
597 		MCLGET(data->m, M_DONTWAIT);
598 		if (!(data->m->m_flags & M_EXT)) {
599 			printf("%s: could not allocate rx mbuf cluster\n",
600 			    sc->sc_dev.dv_xname);
601 			error = ENOMEM;
602 			goto fail;
603 		}
604 
605 		data->buf = mtod(data->m, uint8_t *);
606 	}
607 	return 0;
608 
609 fail:	uath_free_rx_data_list(sc);
610 	return error;
611 }
612 
613 void
614 uath_free_rx_data_list(struct uath_softc *sc)
615 {
616 	int i;
617 
618 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
619 		struct uath_rx_data *data = &sc->rx_data[i];
620 
621 		if (data->xfer != NULL) {
622 			usbd_free_xfer(data->xfer);
623 			data->xfer = NULL;
624 		}
625 
626 		if (data->m != NULL) {
627 			m_freem(data->m);
628 			data->m = NULL;
629 		}
630 	}
631 }
632 
633 int
634 uath_alloc_tx_cmd_list(struct uath_softc *sc)
635 {
636 	int i, error;
637 
638 	for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++) {
639 		struct uath_tx_cmd *cmd = &sc->tx_cmd[i];
640 
641 		cmd->sc = sc;	/* backpointer for callbacks */
642 
643 		cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
644 		if (cmd->xfer == NULL) {
645 			printf("%s: could not allocate xfer\n",
646 			    sc->sc_dev.dv_xname);
647 			error = ENOMEM;
648 			goto fail;
649 		}
650 		cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_TXCMDSZ);
651 		if (cmd->buf == NULL) {
652 			printf("%s: could not allocate xfer buffer\n",
653 			    sc->sc_dev.dv_xname);
654 			error = ENOMEM;
655 			goto fail;
656 		}
657 	}
658 	return 0;
659 
660 fail:	uath_free_tx_cmd_list(sc);
661 	return error;
662 }
663 
664 void
665 uath_free_tx_cmd_list(struct uath_softc *sc)
666 {
667 	int i;
668 
669 	for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++)
670 		if (sc->tx_cmd[i].xfer != NULL) {
671 			usbd_free_xfer(sc->tx_cmd[i].xfer);
672 			sc->tx_cmd[i].xfer = NULL;
673 		}
674 }
675 
676 int
677 uath_alloc_rx_cmd_list(struct uath_softc *sc)
678 {
679 	int i, error;
680 
681 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
682 		struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
683 
684 		cmd->sc = sc;	/* backpointer for callbacks */
685 
686 		cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
687 		if (cmd->xfer == NULL) {
688 			printf("%s: could not allocate xfer\n",
689 			    sc->sc_dev.dv_xname);
690 			error = ENOMEM;
691 			goto fail;
692 		}
693 		cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_RXCMDSZ);
694 		if (cmd->buf == NULL) {
695 			printf("%s: could not allocate xfer buffer\n",
696 			    sc->sc_dev.dv_xname);
697 			error = ENOMEM;
698 			goto fail;
699 		}
700 	}
701 	return 0;
702 
703 fail:	uath_free_rx_cmd_list(sc);
704 	return error;
705 }
706 
707 void
708 uath_free_rx_cmd_list(struct uath_softc *sc)
709 {
710 	int i;
711 
712 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++)
713 		if (sc->rx_cmd[i].xfer != NULL) {
714 			usbd_free_xfer(sc->rx_cmd[i].xfer);
715 			sc->rx_cmd[i].xfer = NULL;
716 		}
717 }
718 
719 int
720 uath_media_change(struct ifnet *ifp)
721 {
722 	int error;
723 
724 	error = ieee80211_media_change(ifp);
725 	if (error != ENETRESET)
726 		return error;
727 
728 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
729 		uath_init(ifp);
730 
731 	return 0;
732 }
733 
734 /*
735  * This function is called periodically (every second) when associated to
736  * query device statistics.
737  */
738 void
739 uath_stat(void *arg)
740 {
741 	struct uath_softc *sc = arg;
742 	int error;
743 
744 	/*
745 	 * Send request for statistics asynchronously. The timer will be
746 	 * restarted when we'll get the stats notification.
747 	 */
748 	error = uath_cmd_write(sc, UATH_CMD_STATS, NULL, 0,
749 	    UATH_CMD_FLAG_ASYNC);
750 	if (error != 0) {
751 		printf("%s: could not query statistics (error=%d)\n",
752 		    sc->sc_dev.dv_xname, error);
753 	}
754 }
755 
756 /*
757  * This function is called periodically (every 250ms) during scanning to
758  * switch from one channel to another.
759  */
760 void
761 uath_next_scan(void *arg)
762 {
763 	struct uath_softc *sc = arg;
764 	struct ieee80211com *ic = &sc->sc_ic;
765 	struct ifnet *ifp = &ic->ic_if;
766 
767 	if (ic->ic_state == IEEE80211_S_SCAN)
768 		ieee80211_next_scan(ifp);
769 }
770 
771 void
772 uath_task(void *arg)
773 {
774 	struct uath_softc *sc = arg;
775 	struct ieee80211com *ic = &sc->sc_ic;
776 	enum ieee80211_state ostate;
777 
778 	ostate = ic->ic_state;
779 
780 	switch (sc->sc_state) {
781 	case IEEE80211_S_INIT:
782 		if (ostate == IEEE80211_S_RUN) {
783 			/* turn link and activity LEDs off */
784 			(void)uath_set_led(sc, UATH_LED_LINK, 0);
785 			(void)uath_set_led(sc, UATH_LED_ACTIVITY, 0);
786 		}
787 		break;
788 
789 	case IEEE80211_S_SCAN:
790 		if (uath_switch_channel(sc, ic->ic_bss->ni_chan) != 0) {
791 			printf("%s: could not switch channel\n",
792 			    sc->sc_dev.dv_xname);
793 			break;
794 		}
795 		timeout_add_msec(&sc->scan_to, 250);
796 		break;
797 
798 	case IEEE80211_S_AUTH:
799 	{
800 		struct ieee80211_node *ni = ic->ic_bss;
801 		struct uath_cmd_bssid bssid;
802 		struct uath_cmd_0b cmd0b;
803 		struct uath_cmd_0c cmd0c;
804 
805 		if (uath_switch_channel(sc, ni->ni_chan) != 0) {
806 			printf("%s: could not switch channel\n",
807 			    sc->sc_dev.dv_xname);
808 			break;
809 		}
810 
811 		(void)uath_cmd_write(sc, UATH_CMD_24, NULL, 0, 0);
812 
813 		bzero(&bssid, sizeof bssid);
814 		bssid.len = htobe32(IEEE80211_ADDR_LEN);
815 		IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
816 		(void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
817 		    sizeof bssid, 0);
818 
819 		bzero(&cmd0b, sizeof cmd0b);
820 		cmd0b.code = htobe32(2);
821 		cmd0b.size = htobe32(sizeof (cmd0b.data));
822 		(void)uath_cmd_write(sc, UATH_CMD_0B, &cmd0b, sizeof cmd0b, 0);
823 
824 		bzero(&cmd0c, sizeof cmd0c);
825 		cmd0c.magic1 = htobe32(2);
826 		cmd0c.magic2 = htobe32(7);
827 		cmd0c.magic3 = htobe32(1);
828 		(void)uath_cmd_write(sc, UATH_CMD_0C, &cmd0c, sizeof cmd0c, 0);
829 
830 		if (uath_set_rates(sc, &ni->ni_rates) != 0) {
831 			printf("%s: could not set negotiated rate set\n",
832 			    sc->sc_dev.dv_xname);
833 			break;
834 		}
835 		break;
836 	}
837 
838 	case IEEE80211_S_ASSOC:
839 		break;
840 
841 	case IEEE80211_S_RUN:
842 	{
843 		struct ieee80211_node *ni = ic->ic_bss;
844 		struct uath_cmd_bssid bssid;
845 		struct uath_cmd_xled xled;
846 		uint32_t val;
847 
848 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
849 			/* make both LEDs blink while monitoring */
850 			bzero(&xled, sizeof xled);
851 			xled.which = htobe32(0);
852 			xled.rate = htobe32(1);
853 			xled.mode = htobe32(2);
854 			(void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled,
855 			    sizeof xled, 0);
856 			break;
857 		}
858 
859 		/*
860 		 * Tx rate is controlled by firmware, report the maximum
861 		 * negotiated rate in ifconfig output.
862 		 */
863 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
864 
865 		val = htobe32(1);
866 		(void)uath_cmd_write(sc, UATH_CMD_2E, &val, sizeof val, 0);
867 
868 		bzero(&bssid, sizeof bssid);
869 		bssid.flags1 = htobe32(0xc004);
870 		bssid.flags2 = htobe32(0x003b);
871 		bssid.len = htobe32(IEEE80211_ADDR_LEN);
872 		IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
873 		(void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
874 		    sizeof bssid, 0);
875 
876 		/* turn link LED on */
877 		(void)uath_set_led(sc, UATH_LED_LINK, 1);
878 
879 		/* make activity LED blink */
880 		bzero(&xled, sizeof xled);
881 		xled.which = htobe32(1);
882 		xled.rate = htobe32(1);
883 		xled.mode = htobe32(2);
884 		(void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled, sizeof xled,
885 		    0);
886 
887 		/* set state to associated */
888 		val = htobe32(1);
889 		(void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val,
890 		    0);
891 
892 		/* start statistics timer */
893 		timeout_add_sec(&sc->stat_to, 1);
894 		break;
895 	}
896 	}
897 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
898 }
899 
900 int
901 uath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
902 {
903 	struct uath_softc *sc = ic->ic_softc;
904 
905 	usb_rem_task(sc->sc_udev, &sc->sc_task);
906 	timeout_del(&sc->scan_to);
907 	timeout_del(&sc->stat_to);
908 
909 	/* do it in a process context */
910 	sc->sc_state = nstate;
911 	sc->sc_arg = arg;
912 	usb_add_task(sc->sc_udev, &sc->sc_task);
913 	return 0;
914 }
915 
916 #ifdef UATH_DEBUG
917 void
918 uath_dump_cmd(const uint8_t *buf, int len, char prefix)
919 {
920 	int i;
921 
922 	for (i = 0; i < len; i++) {
923 		if ((i % 16) == 0)
924 			printf("\n%c ", prefix);
925 		else if ((i % 4) == 0)
926 			printf(" ");
927 		printf("%02x", buf[i]);
928 	}
929 	printf("\n");
930 }
931 #endif
932 
933 /*
934  * Low-level function to send read or write commands to the firmware.
935  */
936 int
937 uath_cmd(struct uath_softc *sc, uint32_t code, const void *idata, int ilen,
938     void *odata, int flags)
939 {
940 	struct uath_cmd_hdr *hdr;
941 	struct uath_tx_cmd *cmd;
942 	uint16_t xferflags;
943 	int s, xferlen, error;
944 
945 	/* grab a xfer */
946 	cmd = &sc->tx_cmd[sc->cmd_idx];
947 
948 	/* always bulk-out a multiple of 4 bytes */
949 	xferlen = (sizeof (struct uath_cmd_hdr) + ilen + 3) & ~3;
950 
951 	hdr = (struct uath_cmd_hdr *)cmd->buf;
952 	bzero(hdr, sizeof (struct uath_cmd_hdr));
953 	hdr->len   = htobe32(xferlen);
954 	hdr->code  = htobe32(code);
955 	hdr->priv  = sc->cmd_idx;	/* don't care about endianness */
956 	hdr->magic = htobe32((flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0);
957 	bcopy(idata, (uint8_t *)(hdr + 1), ilen);
958 
959 #ifdef UATH_DEBUG
960 	if (uath_debug >= 5) {
961 		printf("sending command code=0x%02x flags=0x%x index=%u",
962 		    code, flags, sc->cmd_idx);
963 		uath_dump_cmd(cmd->buf, xferlen, '+');
964 	}
965 #endif
966 	xferflags = USBD_FORCE_SHORT_XFER | USBD_NO_COPY;
967 	if (!(flags & UATH_CMD_FLAG_READ)) {
968 		if (!(flags & UATH_CMD_FLAG_ASYNC))
969 			xferflags |= USBD_SYNCHRONOUS;
970 	} else
971 		s = splusb();
972 
973 	cmd->odata = odata;
974 
975 	usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
976 	    xferflags, UATH_CMD_TIMEOUT, NULL);
977 	error = usbd_transfer(cmd->xfer);
978 	if (error != USBD_IN_PROGRESS && error != 0) {
979 		if (flags & UATH_CMD_FLAG_READ)
980 			splx(s);
981 		printf("%s: could not send command 0x%x (error=%s)\n",
982 		    sc->sc_dev.dv_xname, code, usbd_errstr(error));
983 		return error;
984 	}
985 	sc->cmd_idx = (sc->cmd_idx + 1) % UATH_TX_CMD_LIST_COUNT;
986 
987 	if (!(flags & UATH_CMD_FLAG_READ))
988 		return 0;	/* write: don't wait for reply */
989 
990 	/* wait at most two seconds for command reply */
991 	error = tsleep(cmd, PCATCH, "uathcmd", 2 * hz);
992 	cmd->odata = NULL;	/* in case answer is received too late */
993 	splx(s);
994 	if (error != 0) {
995 		printf("%s: timeout waiting for command reply\n",
996 		    sc->sc_dev.dv_xname);
997 	}
998 	return error;
999 }
1000 
1001 int
1002 uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len,
1003     int flags)
1004 {
1005 	flags &= ~UATH_CMD_FLAG_READ;
1006 	return uath_cmd(sc, code, data, len, NULL, flags);
1007 }
1008 
1009 int
1010 uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata,
1011     int ilen, void *odata, int flags)
1012 {
1013 	flags |= UATH_CMD_FLAG_READ;
1014 	return uath_cmd(sc, code, idata, ilen, odata, flags);
1015 }
1016 
1017 int
1018 uath_write_reg(struct uath_softc *sc, uint32_t reg, uint32_t val)
1019 {
1020 	struct uath_write_mac write;
1021 	int error;
1022 
1023 	write.reg = htobe32(reg);
1024 	write.len = htobe32(0);	/* 0 = single write */
1025 	*(uint32_t *)write.data = htobe32(val);
1026 
1027 	error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1028 	    3 * sizeof (uint32_t), 0);
1029 	if (error != 0) {
1030 		printf("%s: could not write register 0x%02x\n",
1031 		    sc->sc_dev.dv_xname, reg);
1032 	}
1033 	return error;
1034 }
1035 
1036 int
1037 uath_write_multi(struct uath_softc *sc, uint32_t reg, const void *data,
1038     int len)
1039 {
1040 	struct uath_write_mac write;
1041 	int error;
1042 
1043 	write.reg = htobe32(reg);
1044 	write.len = htobe32(len);
1045 	bcopy(data, write.data, len);
1046 
1047 	/* properly handle the case where len is zero (reset) */
1048 	error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1049 	    (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0);
1050 	if (error != 0) {
1051 		printf("%s: could not write %d bytes to register 0x%02x\n",
1052 		    sc->sc_dev.dv_xname, len, reg);
1053 	}
1054 	return error;
1055 }
1056 
1057 int
1058 uath_read_reg(struct uath_softc *sc, uint32_t reg, uint32_t *val)
1059 {
1060 	struct uath_read_mac read;
1061 	int error;
1062 
1063 	reg = htobe32(reg);
1064 	error = uath_cmd_read(sc, UATH_CMD_READ_MAC, &reg, sizeof reg, &read,
1065 	    0);
1066 	if (error != 0) {
1067 		printf("%s: could not read register 0x%02x\n",
1068 		    sc->sc_dev.dv_xname, betoh32(reg));
1069 		return error;
1070 	}
1071 	*val = betoh32(*(uint32_t *)read.data);
1072 	return error;
1073 }
1074 
1075 int
1076 uath_read_eeprom(struct uath_softc *sc, uint32_t reg, void *odata)
1077 {
1078 	struct uath_read_mac read;
1079 	int len, error;
1080 
1081 	reg = htobe32(reg);
1082 	error = uath_cmd_read(sc, UATH_CMD_READ_EEPROM, &reg, sizeof reg,
1083 	    &read, 0);
1084 	if (error != 0) {
1085 		printf("%s: could not read EEPROM offset 0x%02x\n",
1086 		    sc->sc_dev.dv_xname, betoh32(reg));
1087 		return error;
1088 	}
1089 	len = betoh32(read.len);
1090 	bcopy(read.data, odata, (len == 0) ? sizeof (uint32_t) : len);
1091 	return error;
1092 }
1093 
1094 void
1095 uath_cmd_rxeof(struct usbd_xfer *xfer, void *priv,
1096     usbd_status status)
1097 {
1098 	struct uath_rx_cmd *cmd = priv;
1099 	struct uath_softc *sc = cmd->sc;
1100 	struct uath_cmd_hdr *hdr;
1101 
1102 	if (status != USBD_NORMAL_COMPLETION) {
1103 		if (status == USBD_STALLED)
1104 			usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
1105 		return;
1106 	}
1107 
1108 	hdr = (struct uath_cmd_hdr *)cmd->buf;
1109 
1110 #ifdef UATH_DEBUG
1111 	if (uath_debug >= 5) {
1112 		printf("received command code=0x%x index=%u len=%u",
1113 		    betoh32(hdr->code), hdr->priv, betoh32(hdr->len));
1114 		uath_dump_cmd(cmd->buf, betoh32(hdr->len), '-');
1115 	}
1116 #endif
1117 
1118 	switch (betoh32(hdr->code) & 0xff) {
1119 	/* reply to a read command */
1120 	default:
1121 	{
1122 		struct uath_tx_cmd *txcmd = &sc->tx_cmd[hdr->priv];
1123 
1124 		if (txcmd->odata != NULL) {
1125 			/* copy answer into caller's supplied buffer */
1126 			bcopy((uint8_t *)(hdr + 1), txcmd->odata,
1127 			    betoh32(hdr->len) - sizeof (struct uath_cmd_hdr));
1128 		}
1129 		wakeup(txcmd);	/* wake up caller */
1130 		break;
1131 	}
1132 	/* spontaneous firmware notifications */
1133 	case UATH_NOTIF_READY:
1134 		DPRINTF(("received device ready notification\n"));
1135 		wakeup(UATH_COND_INIT(sc));
1136 		break;
1137 
1138 	case UATH_NOTIF_TX:
1139 		/* this notification is sent when UATH_TX_NOTIFY is set */
1140 		DPRINTF(("received Tx notification\n"));
1141 		break;
1142 
1143 	case UATH_NOTIF_STATS:
1144 		DPRINTFN(2, ("received device statistics\n"));
1145 		timeout_add_sec(&sc->stat_to, 1);
1146 		break;
1147 	}
1148 
1149 	/* setup a new transfer */
1150 	usbd_setup_xfer(xfer, sc->cmd_rx_pipe, cmd, cmd->buf, UATH_MAX_RXCMDSZ,
1151 	    USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT,
1152 	    uath_cmd_rxeof);
1153 	(void)usbd_transfer(xfer);
1154 }
1155 
1156 void
1157 uath_data_rxeof(struct usbd_xfer *xfer, void *priv,
1158     usbd_status status)
1159 {
1160 	struct uath_rx_data *data = priv;
1161 	struct uath_softc *sc = data->sc;
1162 	struct ieee80211com *ic = &sc->sc_ic;
1163 	struct ifnet *ifp = &ic->ic_if;
1164 	struct ieee80211_frame *wh;
1165 	struct ieee80211_rxinfo rxi;
1166 	struct ieee80211_node *ni;
1167 	struct uath_rx_desc *desc;
1168 	struct mbuf *mnew, *m;
1169 	uint32_t hdr;
1170 	int s, len;
1171 
1172 	if (status != USBD_NORMAL_COMPLETION) {
1173 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1174 			return;
1175 
1176 		if (status == USBD_STALLED)
1177 			usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1178 
1179 		ifp->if_ierrors++;
1180 		return;
1181 	}
1182 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1183 
1184 	if (len < UATH_MIN_RXBUFSZ) {
1185 		DPRINTF(("wrong xfer size (len=%d)\n", len));
1186 		ifp->if_ierrors++;
1187 		goto skip;
1188 	}
1189 
1190 	hdr = betoh32(*(uint32_t *)data->buf);
1191 
1192 	/* Rx descriptor is located at the end, 32-bit aligned */
1193 	desc = (struct uath_rx_desc *)
1194 	    (data->buf + len - sizeof (struct uath_rx_desc));
1195 
1196 	if (betoh32(desc->len) > sc->rxbufsz) {
1197 		DPRINTF(("bad descriptor (len=%d)\n", betoh32(desc->len)));
1198 		ifp->if_ierrors++;
1199 		goto skip;
1200 	}
1201 
1202 	/* there's probably a "bad CRC" flag somewhere in the descriptor.. */
1203 
1204 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1205 	if (mnew == NULL) {
1206 		printf("%s: could not allocate rx mbuf\n",
1207 		    sc->sc_dev.dv_xname);
1208 		ifp->if_ierrors++;
1209 		goto skip;
1210 	}
1211 	MCLGET(mnew, M_DONTWAIT);
1212 	if (!(mnew->m_flags & M_EXT)) {
1213 		printf("%s: could not allocate rx mbuf cluster\n",
1214 		    sc->sc_dev.dv_xname);
1215 		m_freem(mnew);
1216 		ifp->if_ierrors++;
1217 		goto skip;
1218 	}
1219 
1220 	m = data->m;
1221 	data->m = mnew;
1222 
1223 	/* finalize mbuf */
1224 	m->m_data = data->buf + sizeof (uint32_t);
1225 	m->m_pkthdr.len = m->m_len = betoh32(desc->len) -
1226 	    sizeof (struct uath_rx_desc) - IEEE80211_CRC_LEN;
1227 
1228 	data->buf = mtod(data->m, uint8_t *);
1229 
1230 	wh = mtod(m, struct ieee80211_frame *);
1231 	rxi.rxi_flags = 0;
1232 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) &&
1233 	    ic->ic_opmode != IEEE80211_M_MONITOR) {
1234 		/*
1235 		 * Hardware decrypts the frame itself but leaves the WEP bit
1236 		 * set in the 802.11 header and doesn't remove the IV and CRC
1237 		 * fields.
1238 		 */
1239 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1240 		memmove((caddr_t)wh + IEEE80211_WEP_IVLEN +
1241 		    IEEE80211_WEP_KIDLEN, wh, sizeof (struct ieee80211_frame));
1242 		m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1243 		m_adj(m, -IEEE80211_WEP_CRCLEN);
1244 		wh = mtod(m, struct ieee80211_frame *);
1245 
1246 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1247 	}
1248 
1249 #if NBPFILTER > 0
1250 	/* there are a lot more fields in the Rx descriptor */
1251 	if (sc->sc_drvbpf != NULL) {
1252 		struct mbuf mb;
1253 		struct uath_rx_radiotap_header *tap = &sc->sc_rxtap;
1254 
1255 		tap->wr_flags = 0;
1256 		tap->wr_chan_freq = htole16(betoh32(desc->freq));
1257 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1258 		tap->wr_dbm_antsignal = (int8_t)betoh32(desc->rssi);
1259 
1260 		mb.m_data = (caddr_t)tap;
1261 		mb.m_len = sc->sc_rxtap_len;
1262 		mb.m_next = m;
1263 		mb.m_nextpkt = NULL;
1264 		mb.m_type = 0;
1265 		mb.m_flags = 0;
1266 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1267 	}
1268 #endif
1269 
1270 	s = splnet();
1271 	ni = ieee80211_find_rxnode(ic, wh);
1272 	rxi.rxi_rssi = (int)betoh32(desc->rssi);
1273 	rxi.rxi_tstamp = 0;	/* unused */
1274 	ieee80211_input(ifp, m, ni, &rxi);
1275 
1276 	/* node is no longer needed */
1277 	ieee80211_release_node(ic, ni);
1278 	splx(s);
1279 
1280 skip:	/* setup a new transfer */
1281 	usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, sc->rxbufsz,
1282 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, uath_data_rxeof);
1283 	(void)usbd_transfer(data->xfer);
1284 }
1285 
1286 int
1287 uath_tx_null(struct uath_softc *sc)
1288 {
1289 	struct uath_tx_data *data;
1290 	struct uath_tx_desc *desc;
1291 
1292 	data = &sc->tx_data[sc->data_idx];
1293 
1294 	data->ni = NULL;
1295 
1296 	*(uint32_t *)data->buf = UATH_MAKECTL(1, sizeof (struct uath_tx_desc));
1297 	desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1298 
1299 	bzero(desc, sizeof (struct uath_tx_desc));
1300 	desc->len  = htobe32(sizeof (struct uath_tx_desc));
1301 	desc->type = htobe32(UATH_TX_NULL);
1302 
1303 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf,
1304 	    sizeof (uint32_t) + sizeof (struct uath_tx_desc), USBD_NO_COPY |
1305 	    USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS, UATH_DATA_TIMEOUT, NULL);
1306 	if (usbd_transfer(data->xfer) != 0)
1307 		return EIO;
1308 
1309 	sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1310 
1311 	return uath_cmd_write(sc, UATH_CMD_0F, NULL, 0, UATH_CMD_FLAG_ASYNC);
1312 }
1313 
1314 void
1315 uath_data_txeof(struct usbd_xfer *xfer, void *priv,
1316     usbd_status status)
1317 {
1318 	struct uath_tx_data *data = priv;
1319 	struct uath_softc *sc = data->sc;
1320 	struct ieee80211com *ic = &sc->sc_ic;
1321 	struct ifnet *ifp = &ic->ic_if;
1322 	int s;
1323 
1324 	if (status != USBD_NORMAL_COMPLETION) {
1325 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1326 			return;
1327 
1328 		printf("%s: could not transmit buffer: %s\n",
1329 		    sc->sc_dev.dv_xname, usbd_errstr(status));
1330 
1331 		if (status == USBD_STALLED)
1332 			usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1333 
1334 		ifp->if_oerrors++;
1335 		return;
1336 	}
1337 
1338 	s = splnet();
1339 
1340 	ieee80211_release_node(ic, data->ni);
1341 	data->ni = NULL;
1342 
1343 	sc->tx_queued--;
1344 	ifp->if_opackets++;
1345 
1346 	sc->sc_tx_timer = 0;
1347 	ifq_clr_oactive(&ifp->if_snd);
1348 	uath_start(ifp);
1349 
1350 	splx(s);
1351 }
1352 
1353 int
1354 uath_tx_data(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1355 {
1356 	struct ieee80211com *ic = &sc->sc_ic;
1357 	struct uath_tx_data *data;
1358 	struct uath_tx_desc *desc;
1359 	const struct ieee80211_frame *wh;
1360 	int paylen, totlen, xferlen, error;
1361 
1362 	data = &sc->tx_data[sc->data_idx];
1363 	desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1364 
1365 	data->ni = ni;
1366 
1367 #if NBPFILTER > 0
1368 	if (sc->sc_drvbpf != NULL) {
1369 		struct mbuf mb;
1370 		struct uath_tx_radiotap_header *tap = &sc->sc_txtap;
1371 
1372 		tap->wt_flags = 0;
1373 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1374 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1375 
1376 		mb.m_data = (caddr_t)tap;
1377 		mb.m_len = sc->sc_txtap_len;
1378 		mb.m_next = m0;
1379 		mb.m_nextpkt = NULL;
1380 		mb.m_type = 0;
1381 		mb.m_flags = 0;
1382 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1383 	}
1384 #endif
1385 
1386 	paylen = m0->m_pkthdr.len;
1387 	xferlen = sizeof (uint32_t) + sizeof (struct uath_tx_desc) + paylen;
1388 
1389 	wh = mtod(m0, struct ieee80211_frame *);
1390 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1391 		uint8_t *frm = (uint8_t *)(desc + 1);
1392 		uint32_t iv;
1393 
1394 		/* h/w WEP: it's up to the host to fill the IV field */
1395 		bcopy(wh, frm, sizeof (struct ieee80211_frame));
1396 		frm += sizeof (struct ieee80211_frame);
1397 
1398 		/* insert IV: code copied from net80211 */
1399 		iv = (ic->ic_iv != 0) ? ic->ic_iv : arc4random();
1400 		if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1401 			iv += 0x000100;
1402 		ic->ic_iv = iv + 1;
1403 
1404 		*frm++ = iv & 0xff;
1405 		*frm++ = (iv >>  8) & 0xff;
1406 		*frm++ = (iv >> 16) & 0xff;
1407 		*frm++ = ic->ic_wep_txkey << 6;
1408 
1409 		m_copydata(m0, sizeof (struct ieee80211_frame),
1410 		    m0->m_pkthdr.len - sizeof (struct ieee80211_frame), frm);
1411 
1412 		paylen  += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1413 		xferlen += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1414 		totlen = xferlen + IEEE80211_WEP_CRCLEN;
1415 	} else {
1416 		m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1));
1417 		totlen = xferlen;
1418 	}
1419 
1420 	/* fill Tx descriptor */
1421 	*(uint32_t *)data->buf = UATH_MAKECTL(1, xferlen - sizeof (uint32_t));
1422 
1423 	desc->len    = htobe32(totlen);
1424 	desc->priv   = sc->data_idx;	/* don't care about endianness */
1425 	desc->paylen = htobe32(paylen);
1426 	desc->type   = htobe32(UATH_TX_DATA);
1427 	desc->flags  = htobe32(0);
1428 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1429 		desc->dest  = htobe32(UATH_ID_BROADCAST);
1430 		desc->magic = htobe32(3);
1431 	} else {
1432 		desc->dest  = htobe32(UATH_ID_BSS);
1433 		desc->magic = htobe32(1);
1434 	}
1435 
1436 	m_freem(m0);	/* mbuf is no longer needed */
1437 
1438 #ifdef UATH_DEBUG
1439 	if (uath_debug >= 6) {
1440 		printf("sending frame index=%u len=%d xferlen=%d",
1441 		    sc->data_idx, paylen, xferlen);
1442 		uath_dump_cmd(data->buf, xferlen, '+');
1443 	}
1444 #endif
1445 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1446 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, UATH_DATA_TIMEOUT,
1447 	    uath_data_txeof);
1448 	error = usbd_transfer(data->xfer);
1449 	if (error != USBD_IN_PROGRESS && error != 0) {
1450 		ic->ic_if.if_oerrors++;
1451 		return error;
1452 	}
1453 	sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1454 	sc->tx_queued++;
1455 
1456 	return 0;
1457 }
1458 
1459 void
1460 uath_start(struct ifnet *ifp)
1461 {
1462 	struct uath_softc *sc = ifp->if_softc;
1463 	struct ieee80211com *ic = &sc->sc_ic;
1464 	struct ieee80211_node *ni;
1465 	struct mbuf *m0;
1466 
1467 	/*
1468 	 * net80211 may still try to send management frames even if the
1469 	 * IFF_RUNNING flag is not set...
1470 	 */
1471 	if (!(ifp->if_flags & IFF_RUNNING) && ifq_is_oactive(&ifp->if_snd))
1472 		return;
1473 
1474 	for (;;) {
1475 		if (sc->tx_queued >= UATH_TX_DATA_LIST_COUNT) {
1476 			ifq_set_oactive(&ifp->if_snd);
1477 			break;
1478 		}
1479 
1480 		m0 = mq_dequeue(&ic->ic_mgtq);
1481 		if (m0 != NULL) {
1482 			ni = m0->m_pkthdr.ph_cookie;
1483 #if NBPFILTER > 0
1484 			if (ic->ic_rawbpf != NULL)
1485 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1486 #endif
1487 			if (uath_tx_data(sc, m0, ni) != 0)
1488 				break;
1489 		} else {
1490 			if (ic->ic_state != IEEE80211_S_RUN)
1491 				break;
1492 
1493 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1494 			if (m0 == NULL)
1495 				break;
1496 #if NBPFILTER > 0
1497 			if (ifp->if_bpf != NULL)
1498 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1499 #endif
1500 			m0 = ieee80211_encap(ifp, m0, &ni);
1501 			if (m0 == NULL)
1502 				continue;
1503 #if NBPFILTER > 0
1504 			if (ic->ic_rawbpf != NULL)
1505 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1506 #endif
1507 			if (uath_tx_data(sc, m0, ni) != 0) {
1508 				if (ni != NULL)
1509 					ieee80211_release_node(ic, ni);
1510 				ifp->if_oerrors++;
1511 				break;
1512 			}
1513 		}
1514 
1515 		sc->sc_tx_timer = 5;
1516 		ifp->if_timer = 1;
1517 	}
1518 }
1519 
1520 void
1521 uath_watchdog(struct ifnet *ifp)
1522 {
1523 	struct uath_softc *sc = ifp->if_softc;
1524 
1525 	ifp->if_timer = 0;
1526 
1527 	if (sc->sc_tx_timer > 0) {
1528 		if (--sc->sc_tx_timer == 0) {
1529 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1530 			/*uath_init(ifp); XXX needs a process context! */
1531 			ifp->if_oerrors++;
1532 			return;
1533 		}
1534 		ifp->if_timer = 1;
1535 	}
1536 
1537 	ieee80211_watchdog(ifp);
1538 }
1539 
1540 int
1541 uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1542 {
1543 	struct uath_softc *sc = ifp->if_softc;
1544 	struct ieee80211com *ic = &sc->sc_ic;
1545 	struct ifreq *ifr;
1546 	int s, error = 0;
1547 
1548 	s = splnet();
1549 
1550 	switch (cmd) {
1551 	case SIOCSIFADDR:
1552 		ifp->if_flags |= IFF_UP;
1553 		/* FALLTHROUGH */
1554 	case SIOCSIFFLAGS:
1555 		if (ifp->if_flags & IFF_UP) {
1556 			if (!(ifp->if_flags & IFF_RUNNING))
1557 				uath_init(ifp);
1558 		} else {
1559 			if (ifp->if_flags & IFF_RUNNING)
1560 				uath_stop(ifp, 1);
1561 		}
1562 		break;
1563 
1564 	case SIOCADDMULTI:
1565 	case SIOCDELMULTI:
1566 		ifr = (struct ifreq *)data;
1567 		error = (cmd == SIOCADDMULTI) ?
1568 		    ether_addmulti(ifr, &ic->ic_ac) :
1569 		    ether_delmulti(ifr, &ic->ic_ac);
1570 		if (error == ENETRESET)
1571 			error = 0;
1572 		break;
1573 
1574 	default:
1575 		error = ieee80211_ioctl(ifp, cmd, data);
1576 	}
1577 
1578 	if (error == ENETRESET) {
1579 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1580 		    (IFF_UP | IFF_RUNNING))
1581 			uath_init(ifp);
1582 		error = 0;
1583 	}
1584 
1585 	splx(s);
1586 
1587 	return error;
1588 }
1589 
1590 int
1591 uath_query_eeprom(struct uath_softc *sc)
1592 {
1593 	uint32_t tmp;
1594 	int error;
1595 
1596 	/* retrieve MAC address */
1597 	error = uath_read_eeprom(sc, UATH_EEPROM_MACADDR, sc->sc_ic.ic_myaddr);
1598 	if (error != 0) {
1599 		printf("%s: could not read MAC address\n",
1600 		    sc->sc_dev.dv_xname);
1601 		return error;
1602 	}
1603 
1604 	/* retrieve the maximum frame size that the hardware can receive */
1605 	error = uath_read_eeprom(sc, UATH_EEPROM_RXBUFSZ, &tmp);
1606 	if (error != 0) {
1607 		printf("%s: could not read maximum Rx buffer size\n",
1608 		    sc->sc_dev.dv_xname);
1609 		return error;
1610 	}
1611 	sc->rxbufsz = betoh32(tmp) & 0xfff;
1612 	DPRINTF(("maximum Rx buffer size %d\n", sc->rxbufsz));
1613 	return 0;
1614 }
1615 
1616 int
1617 uath_reset(struct uath_softc *sc)
1618 {
1619 	struct uath_cmd_setup setup;
1620 	uint32_t reg, val;
1621 	int s, error;
1622 
1623 	/* init device with some voodoo incantations.. */
1624 	setup.magic1 = htobe32(1);
1625 	setup.magic2 = htobe32(5);
1626 	setup.magic3 = htobe32(200);
1627 	setup.magic4 = htobe32(27);
1628 	s = splusb();
1629 	error = uath_cmd_write(sc, UATH_CMD_SETUP, &setup, sizeof setup,
1630 	    UATH_CMD_FLAG_ASYNC);
1631 	/* ..and wait until firmware notifies us that it is ready */
1632 	if (error == 0)
1633 		error = tsleep(UATH_COND_INIT(sc), PCATCH, "uathinit", 5 * hz);
1634 	splx(s);
1635 	if (error != 0)
1636 		return error;
1637 
1638 	/* read PHY registers */
1639 	for (reg = 0x09; reg <= 0x24; reg++) {
1640 		if (reg == 0x0b || reg == 0x0c)
1641 			continue;
1642 		DELAY(100);
1643 		if ((error = uath_read_reg(sc, reg, &val)) != 0)
1644 			return error;
1645 		DPRINTFN(2, ("reg 0x%02x=0x%08x\n", reg, val));
1646 	}
1647 	return error;
1648 }
1649 
1650 int
1651 uath_reset_tx_queues(struct uath_softc *sc)
1652 {
1653 	int ac, error;
1654 
1655 	for (ac = 0; ac < 4; ac++) {
1656 		const uint32_t qid = htobe32(UATH_AC_TO_QID(ac));
1657 
1658 		DPRINTF(("resetting Tx queue %d\n", UATH_AC_TO_QID(ac)));
1659 		error = uath_cmd_write(sc, UATH_CMD_RESET_QUEUE, &qid,
1660 		    sizeof qid, 0);
1661 		if (error != 0)
1662 			break;
1663 	}
1664 	return error;
1665 }
1666 
1667 int
1668 uath_wme_init(struct uath_softc *sc)
1669 {
1670 	struct uath_qinfo qinfo;
1671 	int ac, error;
1672 	static const struct uath_wme_settings uath_wme_11g[4] = {
1673 		{ 7, 4, 10,  0, 0 },	/* Background */
1674 		{ 3, 4, 10,  0, 0 },	/* Best-Effort */
1675 		{ 3, 3,  4, 26, 0 },	/* Video */
1676 		{ 2, 2,  3, 47, 0 }	/* Voice */
1677 	};
1678 
1679 	bzero(&qinfo, sizeof qinfo);
1680 	qinfo.size   = htobe32(32);
1681 	qinfo.magic1 = htobe32(1);	/* XXX ack policy? */
1682 	qinfo.magic2 = htobe32(1);
1683 	for (ac = 0; ac < 4; ac++) {
1684 		qinfo.qid      = htobe32(UATH_AC_TO_QID(ac));
1685 		qinfo.ac       = htobe32(ac);
1686 		qinfo.aifsn    = htobe32(uath_wme_11g[ac].aifsn);
1687 		qinfo.logcwmin = htobe32(uath_wme_11g[ac].logcwmin);
1688 		qinfo.logcwmax = htobe32(uath_wme_11g[ac].logcwmax);
1689 		qinfo.txop     = htobe32(UATH_TXOP_TO_US(
1690 				     uath_wme_11g[ac].txop));
1691 		qinfo.acm      = htobe32(uath_wme_11g[ac].acm);
1692 
1693 		DPRINTF(("setting up Tx queue %d\n", UATH_AC_TO_QID(ac)));
1694 		error = uath_cmd_write(sc, UATH_CMD_SET_QUEUE, &qinfo,
1695 		    sizeof qinfo, 0);
1696 		if (error != 0)
1697 			break;
1698 	}
1699 	return error;
1700 }
1701 
1702 int
1703 uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c)
1704 {
1705 	struct uath_set_chan chan;
1706 
1707 	bzero(&chan, sizeof chan);
1708 	chan.flags  = htobe32(0x1400);
1709 	chan.freq   = htobe32(c->ic_freq);
1710 	chan.magic1 = htobe32(20);
1711 	chan.magic2 = htobe32(50);
1712 	chan.magic3 = htobe32(1);
1713 
1714 	DPRINTF(("switching to channel %d\n",
1715 	    ieee80211_chan2ieee(&sc->sc_ic, c)));
1716 	return uath_cmd_write(sc, UATH_CMD_SET_CHAN, &chan, sizeof chan, 0);
1717 }
1718 
1719 int
1720 uath_set_key(struct uath_softc *sc, const struct ieee80211_key *k, int index)
1721 {
1722 	struct uath_cmd_crypto crypto;
1723 	int i;
1724 
1725 	bzero(&crypto, sizeof crypto);
1726 	crypto.keyidx = htobe32(index);
1727 	crypto.magic1 = htobe32(1);
1728 	crypto.size   = htobe32(368);
1729 	crypto.mask   = htobe32(0xffff);
1730 	crypto.flags  = htobe32(0x80000068);
1731 	if (index != UATH_DEFAULT_KEY)
1732 		crypto.flags |= htobe32(index << 16);
1733 	memset(crypto.magic2, 0xff, sizeof crypto.magic2);
1734 
1735 	/*
1736 	 * Each byte of the key must be XOR'ed with 10101010 before being
1737 	 * transmitted to the firmware.
1738 	 */
1739 	for (i = 0; i < k->k_len; i++)
1740 		crypto.key[i] = k->k_key[i] ^ 0xaa;
1741 
1742 	DPRINTF(("setting crypto key index=%d len=%d\n", index, k->k_len));
1743 	return uath_cmd_write(sc, UATH_CMD_CRYPTO, &crypto, sizeof crypto, 0);
1744 }
1745 
1746 int
1747 uath_set_keys(struct uath_softc *sc)
1748 {
1749 	const struct ieee80211com *ic = &sc->sc_ic;
1750 	int i, error;
1751 
1752 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1753 		const struct ieee80211_key *k = &ic->ic_nw_keys[i];
1754 
1755 		if (k->k_len > 0 && (error = uath_set_key(sc, k, i)) != 0)
1756 			return error;
1757 	}
1758 	return uath_set_key(sc, &ic->ic_nw_keys[ic->ic_wep_txkey],
1759 	    UATH_DEFAULT_KEY);
1760 }
1761 
1762 int
1763 uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs)
1764 {
1765 	struct uath_cmd_rates rates;
1766 
1767 	bzero(&rates, sizeof rates);
1768 	rates.magic1 = htobe32(0x02);
1769 	rates.size   = htobe32(1 + sizeof rates.rates);
1770 	rates.nrates = rs->rs_nrates;
1771 	bcopy(rs->rs_rates, rates.rates, rs->rs_nrates);
1772 
1773 	DPRINTF(("setting supported rates nrates=%d\n", rs->rs_nrates));
1774 	return uath_cmd_write(sc, UATH_CMD_SET_RATES, &rates, sizeof rates, 0);
1775 }
1776 
1777 int
1778 uath_set_rxfilter(struct uath_softc *sc, uint32_t filter, uint32_t flags)
1779 {
1780 	struct uath_cmd_filter rxfilter;
1781 
1782 	rxfilter.filter = htobe32(filter);
1783 	rxfilter.flags  = htobe32(flags);
1784 
1785 	DPRINTF(("setting Rx filter=0x%x flags=0x%x\n", filter, flags));
1786 	return uath_cmd_write(sc, UATH_CMD_SET_FILTER, &rxfilter,
1787 	    sizeof rxfilter, 0);
1788 }
1789 
1790 int
1791 uath_set_led(struct uath_softc *sc, int which, int on)
1792 {
1793 	struct uath_cmd_led led;
1794 
1795 	led.which = htobe32(which);
1796 	led.state = htobe32(on ? UATH_LED_ON : UATH_LED_OFF);
1797 
1798 	DPRINTFN(2, ("switching %s led %s\n",
1799 	    (which == UATH_LED_LINK) ? "link" : "activity",
1800 	    on ? "on" : "off"));
1801 	return uath_cmd_write(sc, UATH_CMD_SET_LED, &led, sizeof led, 0);
1802 }
1803 
1804 int
1805 uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c)
1806 {
1807 	uint32_t val;
1808 	int error;
1809 
1810 	/* set radio frequency */
1811 	if ((error = uath_set_chan(sc, c)) != 0) {
1812 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1813 		return error;
1814 	}
1815 
1816 	/* reset Tx rings */
1817 	if ((error = uath_reset_tx_queues(sc)) != 0) {
1818 		printf("%s: could not reset Tx queues\n",
1819 		    sc->sc_dev.dv_xname);
1820 		return error;
1821 	}
1822 
1823 	/* set Tx rings WME properties */
1824 	if ((error = uath_wme_init(sc)) != 0) {
1825 		printf("%s: could not init Tx queues\n",
1826 		    sc->sc_dev.dv_xname);
1827 		return error;
1828 	}
1829 
1830 	val = htobe32(0);
1831 	error = uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
1832 	if (error != 0) {
1833 		printf("%s: could not set state\n", sc->sc_dev.dv_xname);
1834 		return error;
1835 	}
1836 
1837 	return uath_tx_null(sc);
1838 }
1839 
1840 int
1841 uath_init(struct ifnet *ifp)
1842 {
1843 	struct uath_softc *sc = ifp->if_softc;
1844 	struct ieee80211com *ic = &sc->sc_ic;
1845 	struct uath_cmd_31 cmd31;
1846 	uint32_t val;
1847 	int i, error;
1848 
1849 	/* reset data and command rings */
1850 	sc->tx_queued = sc->data_idx = sc->cmd_idx = 0;
1851 
1852 	val = htobe32(0);
1853 	(void)uath_cmd_write(sc, UATH_CMD_02, &val, sizeof val, 0);
1854 
1855 	/* set MAC address */
1856 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1857 	(void)uath_write_multi(sc, 0x13, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1858 
1859 	(void)uath_write_reg(sc, 0x02, 0x00000001);
1860 	(void)uath_write_reg(sc, 0x0e, 0x0000003f);
1861 	(void)uath_write_reg(sc, 0x10, 0x00000001);
1862 	(void)uath_write_reg(sc, 0x06, 0x0000001e);
1863 
1864 	/*
1865 	 * Queue Rx data xfers.
1866 	 */
1867 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
1868 		struct uath_rx_data *data = &sc->rx_data[i];
1869 
1870 		usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
1871 		    sc->rxbufsz, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT,
1872 		    uath_data_rxeof);
1873 		error = usbd_transfer(data->xfer);
1874 		if (error != USBD_IN_PROGRESS && error != 0) {
1875 			printf("%s: could not queue Rx transfer\n",
1876 			    sc->sc_dev.dv_xname);
1877 			goto fail;
1878 		}
1879 	}
1880 
1881 	error = uath_cmd_read(sc, UATH_CMD_07, NULL, 0, &val,
1882 	    UATH_CMD_FLAG_MAGIC);
1883 	if (error != 0) {
1884 		printf("%s: could not send read command 07h\n",
1885 		    sc->sc_dev.dv_xname);
1886 		goto fail;
1887 	}
1888 	DPRINTF(("command 07h return code: %x\n", betoh32(val)));
1889 
1890 	/* set default channel */
1891 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1892 	if ((error = uath_set_chan(sc, ic->ic_bss->ni_chan)) != 0) {
1893 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1894 		goto fail;
1895 	}
1896 
1897 	if ((error = uath_wme_init(sc)) != 0) {
1898 		printf("%s: could not setup WME parameters\n",
1899 		    sc->sc_dev.dv_xname);
1900 		goto fail;
1901 	}
1902 
1903 	/* init MAC registers */
1904 	(void)uath_write_reg(sc, 0x19, 0x00000000);
1905 	(void)uath_write_reg(sc, 0x1a, 0x0000003c);
1906 	(void)uath_write_reg(sc, 0x1b, 0x0000003c);
1907 	(void)uath_write_reg(sc, 0x1c, 0x00000000);
1908 	(void)uath_write_reg(sc, 0x1e, 0x00000000);
1909 	(void)uath_write_reg(sc, 0x1f, 0x00000003);
1910 	(void)uath_write_reg(sc, 0x0c, 0x00000000);
1911 	(void)uath_write_reg(sc, 0x0f, 0x00000002);
1912 	(void)uath_write_reg(sc, 0x0a, 0x00000007);	/* XXX retry? */
1913 	(void)uath_write_reg(sc, 0x09, ic->ic_rtsthreshold);
1914 
1915 	val = htobe32(4);
1916 	(void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1917 	(void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1918 	(void)uath_cmd_write(sc, UATH_CMD_1B, NULL, 0, 0);
1919 
1920 	if ((error = uath_set_keys(sc)) != 0) {
1921 		printf("%s: could not set crypto keys\n",
1922 		    sc->sc_dev.dv_xname);
1923 		goto fail;
1924 	}
1925 
1926 	/* enable Rx */
1927 	(void)uath_set_rxfilter(sc, 0x0000, 4);
1928 	(void)uath_set_rxfilter(sc, 0x0817, 1);
1929 
1930 	cmd31.magic1 = htobe32(0xffffffff);
1931 	cmd31.magic2 = htobe32(0xffffffff);
1932 	(void)uath_cmd_write(sc, UATH_CMD_31, &cmd31, sizeof cmd31, 0);
1933 
1934 	ifp->if_flags |= IFF_RUNNING;
1935 	ifq_clr_oactive(&ifp->if_snd);
1936 
1937 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1938 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1939 	else
1940 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1941 
1942 	return 0;
1943 
1944 fail:	uath_stop(ifp, 1);
1945 	return error;
1946 }
1947 
1948 void
1949 uath_stop(struct ifnet *ifp, int disable)
1950 {
1951 	struct uath_softc *sc = ifp->if_softc;
1952 	struct ieee80211com *ic = &sc->sc_ic;
1953 	uint32_t val;
1954 	int s;
1955 
1956 	s = splusb();
1957 
1958 	sc->sc_tx_timer = 0;
1959 	ifp->if_timer = 0;
1960 	ifp->if_flags &= ~IFF_RUNNING;
1961 	ifq_clr_oactive(&ifp->if_snd);
1962 
1963 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
1964 
1965 	val = htobe32(0);
1966 	(void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
1967 	(void)uath_cmd_write(sc, UATH_CMD_RESET, NULL, 0, 0);
1968 
1969 	val = htobe32(0);
1970 	(void)uath_cmd_write(sc, UATH_CMD_15, &val, sizeof val, 0);
1971 
1972 #if 0
1973 	(void)uath_cmd_read(sc, UATH_CMD_SHUTDOWN, NULL, 0, NULL,
1974 	    UATH_CMD_FLAG_MAGIC);
1975 #endif
1976 
1977 	/* abort any pending transfers */
1978 	usbd_abort_pipe(sc->data_tx_pipe);
1979 	usbd_abort_pipe(sc->data_rx_pipe);
1980 	usbd_abort_pipe(sc->cmd_tx_pipe);
1981 
1982 	splx(s);
1983 }
1984 
1985 /*
1986  * Load the MIPS R4000 microcode into the device.  Once the image is loaded,
1987  * the device will detach itself from the bus and reattach later with a new
1988  * product Id (a la ezusb).  XXX this could also be implemented in userland
1989  * through /dev/ugen.
1990  */
1991 int
1992 uath_loadfirmware(struct uath_softc *sc, const u_char *fw, int len)
1993 {
1994 	struct usbd_xfer *ctlxfer, *txxfer, *rxxfer;
1995 	struct uath_fwblock *txblock, *rxblock;
1996 	uint8_t *txdata;
1997 	int error = 0;
1998 
1999 	if ((ctlxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2000 		printf("%s: could not allocate Tx control xfer\n",
2001 		    sc->sc_dev.dv_xname);
2002 		error = USBD_NOMEM;
2003 		goto fail1;
2004 	}
2005 	txblock = usbd_alloc_buffer(ctlxfer, sizeof (struct uath_fwblock));
2006 	if (txblock == NULL) {
2007 		printf("%s: could not allocate Tx control block\n",
2008 		    sc->sc_dev.dv_xname);
2009 		error = USBD_NOMEM;
2010 		goto fail2;
2011 	}
2012 
2013 	if ((txxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2014 		printf("%s: could not allocate Tx xfer\n",
2015 		    sc->sc_dev.dv_xname);
2016 		error = USBD_NOMEM;
2017 		goto fail2;
2018 	}
2019 	txdata = usbd_alloc_buffer(txxfer, UATH_MAX_FWBLOCK_SIZE);
2020 	if (txdata == NULL) {
2021 		printf("%s: could not allocate Tx buffer\n",
2022 		    sc->sc_dev.dv_xname);
2023 		error = USBD_NOMEM;
2024 		goto fail3;
2025 	}
2026 
2027 	if ((rxxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2028 		printf("%s: could not allocate Rx control xfer\n",
2029 		    sc->sc_dev.dv_xname);
2030 		error = USBD_NOMEM;
2031 		goto fail3;
2032 	}
2033 	rxblock = usbd_alloc_buffer(rxxfer, sizeof (struct uath_fwblock));
2034 	if (rxblock == NULL) {
2035 		printf("%s: could not allocate Rx control block\n",
2036 		    sc->sc_dev.dv_xname);
2037 		error = USBD_NOMEM;
2038 		goto fail4;
2039 	}
2040 
2041 	bzero(txblock, sizeof (struct uath_fwblock));
2042 	txblock->flags = htobe32(UATH_WRITE_BLOCK);
2043 	txblock->total = htobe32(len);
2044 
2045 	while (len > 0) {
2046 		int mlen = min(len, UATH_MAX_FWBLOCK_SIZE);
2047 
2048 		txblock->remain = htobe32(len - mlen);
2049 		txblock->len = htobe32(mlen);
2050 
2051 		DPRINTF(("sending firmware block: %d bytes remaining\n",
2052 		    len - mlen));
2053 
2054 		/* send firmware block meta-data */
2055 		usbd_setup_xfer(ctlxfer, sc->cmd_tx_pipe, sc, txblock,
2056 		    sizeof (struct uath_fwblock),
2057 		    USBD_NO_COPY | USBD_SYNCHRONOUS,
2058 		    UATH_CMD_TIMEOUT, NULL);
2059 		if ((error = usbd_transfer(ctlxfer)) != 0) {
2060 			printf("%s: could not send firmware block info\n",
2061 			    sc->sc_dev.dv_xname);
2062 			break;
2063 		}
2064 
2065 		/* send firmware block data */
2066 		bcopy(fw, txdata, mlen);
2067 		usbd_setup_xfer(txxfer, sc->data_tx_pipe, sc, txdata, mlen,
2068 		    USBD_NO_COPY | USBD_SYNCHRONOUS, UATH_DATA_TIMEOUT, NULL);
2069 		if ((error = usbd_transfer(txxfer)) != 0) {
2070 			printf("%s: could not send firmware block data\n",
2071 			    sc->sc_dev.dv_xname);
2072 			break;
2073 		}
2074 
2075 		/* wait for ack from firmware */
2076 		usbd_setup_xfer(rxxfer, sc->cmd_rx_pipe, sc, rxblock,
2077 		    sizeof (struct uath_fwblock), USBD_SHORT_XFER_OK |
2078 		    USBD_NO_COPY | USBD_SYNCHRONOUS, UATH_CMD_TIMEOUT, NULL);
2079 		if ((error = usbd_transfer(rxxfer)) != 0) {
2080 			printf("%s: could not read firmware answer\n",
2081 			    sc->sc_dev.dv_xname);
2082 			break;
2083 		}
2084 
2085 		DPRINTFN(2, ("rxblock flags=0x%x total=%d\n",
2086 		    betoh32(rxblock->flags), betoh32(rxblock->rxtotal)));
2087 		fw += mlen;
2088 		len -= mlen;
2089 	}
2090 
2091 fail4:	usbd_free_xfer(rxxfer);
2092 fail3:	usbd_free_xfer(txxfer);
2093 fail2:	usbd_free_xfer(ctlxfer);
2094 fail1:	return error;
2095 }
2096