xref: /openbsd-src/sys/dev/usb/if_uath.c (revision cc500f3fffe7609d954f124fcbc1fe78f5ce398a)
1 /*	$OpenBSD: if_uath.c,v 1.74 2015/11/24 13:45:07 mpi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Driver for Atheros AR5005UG/AR5005UX chipsets.
22  *
23  * IMPORTANT NOTICE:
24  * This driver was written without any documentation or support from Atheros
25  * Communications. It is based on a black-box analysis of the Windows binary
26  * driver. It handles both pre and post-firmware devices.
27  */
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/timeout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/endian.h>
41 
42 #include <machine/bus.h>
43 #include <machine/intr.h>
44 
45 #if NBPFILTER > 0
46 #include <net/bpf.h>
47 #endif
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/if_ether.h>
54 
55 #include <net80211/ieee80211_var.h>
56 #include <net80211/ieee80211_radiotap.h>
57 
58 #include <dev/usb/usb.h>
59 #include <dev/usb/usbdi.h>
60 #include <dev/usb/usbdivar.h>	/* needs_reattach() */
61 #include <dev/usb/usbdi_util.h>
62 #include <dev/usb/usbdevs.h>
63 
64 #include <dev/usb/if_uathreg.h>
65 #include <dev/usb/if_uathvar.h>
66 
67 #ifdef UATH_DEBUG
68 #define DPRINTF(x)	do { if (uath_debug) printf x; } while (0)
69 #define DPRINTFN(n, x)	do { if (uath_debug >= (n)) printf x; } while (0)
70 int uath_debug = 1;
71 #else
72 #define DPRINTF(x)
73 #define DPRINTFN(n, x)
74 #endif
75 
76 /*-
77  * Various supported device vendors/products.
78  * UB51: AR5005UG 802.11b/g, UB52: AR5005UX 802.11a/b/g
79  */
80 #define UATH_DEV(v, p, f)						\
81 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, (f) },		\
82 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p##_NF },		\
83 	    (f) | UATH_FLAG_PRE_FIRMWARE }
84 #define UATH_DEV_UG(v, p)	UATH_DEV(v, p, 0)
85 #define UATH_DEV_UX(v, p)	UATH_DEV(v, p, UATH_FLAG_ABG)
86 static const struct uath_type {
87 	struct usb_devno	dev;
88 	unsigned int		flags;
89 #define UATH_FLAG_PRE_FIRMWARE	(1 << 0)
90 #define UATH_FLAG_ABG		(1 << 1)
91 } uath_devs[] = {
92 	UATH_DEV_UG(ACCTON,		SMCWUSBTG2),
93 	UATH_DEV_UG(ATHEROS,		AR5523),
94 	UATH_DEV_UG(ATHEROS2,		AR5523_1),
95 	UATH_DEV_UG(ATHEROS2,		AR5523_2),
96 	UATH_DEV_UX(ATHEROS2,		AR5523_3),
97 	UATH_DEV_UG(CONCEPTRONIC,	AR5523_1),
98 	UATH_DEV_UX(CONCEPTRONIC,	AR5523_2),
99 	UATH_DEV_UX(DLINK,		DWLAG122),
100 	UATH_DEV_UX(DLINK,		DWLAG132),
101 	UATH_DEV_UG(DLINK,		DWLG132),
102 	UATH_DEV_UG(DLINK2,		WUA2340),
103 	UATH_DEV_UG(GIGASET,		AR5523),
104 	UATH_DEV_UG(GIGASET,		SMCWUSBTG),
105 	UATH_DEV_UG(GLOBALSUN,		AR5523_1),
106 	UATH_DEV_UX(GLOBALSUN,		AR5523_2),
107 	UATH_DEV_UG(IODATA,		USBWNG54US),
108 	UATH_DEV_UG(MELCO,		WLIU2KAMG54),
109 	UATH_DEV_UX(NETGEAR,		WG111U),
110 	UATH_DEV_UG(NETGEAR3,		WG111T),
111 	UATH_DEV_UG(NETGEAR3,		WPN111),
112 	UATH_DEV_UG(PHILIPS,		SNU6500),
113 	UATH_DEV_UX(UMEDIA,		AR5523_2),
114 	UATH_DEV_UG(UMEDIA,		TEW444UBEU),
115 	UATH_DEV_UG(WISTRONNEWEB,	AR5523_1),
116 	UATH_DEV_UX(WISTRONNEWEB,	AR5523_2),
117 	UATH_DEV_UG(ZCOM,		AR5523),
118 
119 	/* Devices that share one of the IDs above. */
120 	{ { USB_VENDOR_NETGEAR3, USB_PRODUCT_NETGEAR3_WG111T_1 }, 0 }		\
121 };
122 #define uath_lookup(v, p)	\
123 	((const struct uath_type *)usb_lookup(uath_devs, v, p))
124 
125 void	uath_attachhook(void *);
126 int	uath_open_pipes(struct uath_softc *);
127 void	uath_close_pipes(struct uath_softc *);
128 int	uath_alloc_tx_data_list(struct uath_softc *);
129 void	uath_free_tx_data_list(struct uath_softc *);
130 int	uath_alloc_rx_data_list(struct uath_softc *);
131 void	uath_free_rx_data_list(struct uath_softc *);
132 int	uath_alloc_tx_cmd_list(struct uath_softc *);
133 void	uath_free_tx_cmd_list(struct uath_softc *);
134 int	uath_alloc_rx_cmd_list(struct uath_softc *);
135 void	uath_free_rx_cmd_list(struct uath_softc *);
136 int	uath_media_change(struct ifnet *);
137 void	uath_stat(void *);
138 void	uath_next_scan(void *);
139 void	uath_task(void *);
140 int	uath_newstate(struct ieee80211com *, enum ieee80211_state, int);
141 #ifdef UATH_DEBUG
142 void	uath_dump_cmd(const uint8_t *, int, char);
143 #endif
144 int	uath_cmd(struct uath_softc *, uint32_t, const void *, int, void *,
145 	    int);
146 int	uath_cmd_write(struct uath_softc *, uint32_t, const void *, int, int);
147 int	uath_cmd_read(struct uath_softc *, uint32_t, const void *, int, void *,
148 	    int);
149 int	uath_write_reg(struct uath_softc *, uint32_t, uint32_t);
150 int	uath_write_multi(struct uath_softc *, uint32_t, const void *, int);
151 int	uath_read_reg(struct uath_softc *, uint32_t, uint32_t *);
152 int	uath_read_eeprom(struct uath_softc *, uint32_t, void *);
153 void	uath_cmd_rxeof(struct usbd_xfer *, void *, usbd_status);
154 void	uath_data_rxeof(struct usbd_xfer *, void *, usbd_status);
155 void	uath_data_txeof(struct usbd_xfer *, void *, usbd_status);
156 int	uath_tx_null(struct uath_softc *);
157 int	uath_tx_data(struct uath_softc *, struct mbuf *,
158 	    struct ieee80211_node *);
159 void	uath_start(struct ifnet *);
160 void	uath_watchdog(struct ifnet *);
161 int	uath_ioctl(struct ifnet *, u_long, caddr_t);
162 int	uath_query_eeprom(struct uath_softc *);
163 int	uath_reset(struct uath_softc *);
164 int	uath_reset_tx_queues(struct uath_softc *);
165 int	uath_wme_init(struct uath_softc *);
166 int	uath_set_chan(struct uath_softc *, struct ieee80211_channel *);
167 int	uath_set_key(struct uath_softc *, const struct ieee80211_key *, int);
168 int	uath_set_keys(struct uath_softc *);
169 int	uath_set_rates(struct uath_softc *, const struct ieee80211_rateset *);
170 int	uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t);
171 int	uath_set_led(struct uath_softc *, int, int);
172 int	uath_switch_channel(struct uath_softc *, struct ieee80211_channel *);
173 int	uath_init(struct ifnet *);
174 void	uath_stop(struct ifnet *, int);
175 int	uath_loadfirmware(struct uath_softc *, const u_char *, int);
176 
177 int uath_match(struct device *, void *, void *);
178 void uath_attach(struct device *, struct device *, void *);
179 int uath_detach(struct device *, int);
180 
181 struct cfdriver uath_cd = {
182 	NULL, "uath", DV_IFNET
183 };
184 
185 const struct cfattach uath_ca = {
186 	sizeof(struct uath_softc), uath_match, uath_attach, uath_detach
187 };
188 
189 int
190 uath_match(struct device *parent, void *match, void *aux)
191 {
192 	struct usb_attach_arg *uaa = aux;
193 
194 	if (uaa->iface != NULL)
195 		return UMATCH_NONE;
196 
197 	return (uath_lookup(uaa->vendor, uaa->product) != NULL) ?
198 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
199 }
200 
201 void
202 uath_attachhook(void *xsc)
203 {
204 	struct uath_softc *sc = xsc;
205 	u_char *fw;
206 	size_t size;
207 	int error;
208 
209 	if ((error = loadfirmware("uath-ar5523", &fw, &size)) != 0) {
210 		printf("%s: error %d, could not read firmware %s\n",
211 		    sc->sc_dev.dv_xname, error, "uath-ar5523");
212 		return;
213 	}
214 
215 	error = uath_loadfirmware(sc, fw, size);
216 	free(fw, M_DEVBUF, 0);
217 
218 	if (error == 0) {
219 		/*
220 		 * Hack alert: the device doesn't always gracefully detach
221 		 * from the bus after a firmware upload.  We need to force
222 		 * a port reset and a re-exploration on the parent hub.
223 		 */
224 		usbd_reset_port(sc->sc_uhub, sc->sc_port);
225 		usb_needs_reattach(sc->sc_udev);
226 	} else {
227 		printf("%s: could not load firmware (error=%s)\n",
228 		    sc->sc_dev.dv_xname, usbd_errstr(error));
229 	}
230 }
231 
232 void
233 uath_attach(struct device *parent, struct device *self, void *aux)
234 {
235 	struct uath_softc *sc = (struct uath_softc *)self;
236 	struct usb_attach_arg *uaa = aux;
237 	struct ieee80211com *ic = &sc->sc_ic;
238 	struct ifnet *ifp = &ic->ic_if;
239 	usbd_status error;
240 	int i;
241 
242 	sc->sc_udev = uaa->device;
243 	sc->sc_uhub = uaa->device->myhub;
244 	sc->sc_port = uaa->port;
245 
246 	sc->sc_flags = uath_lookup(uaa->vendor, uaa->product)->flags;
247 
248 	if (usbd_set_config_no(sc->sc_udev, UATH_CONFIG_NO, 0) != 0) {
249 		printf("%s: could not set configuration no\n",
250 		    sc->sc_dev.dv_xname);
251 		return;
252 	}
253 
254 	/* get the first interface handle */
255 	error = usbd_device2interface_handle(sc->sc_udev, UATH_IFACE_INDEX,
256 	    &sc->sc_iface);
257 	if (error != 0) {
258 		printf("%s: could not get interface handle\n",
259 		    sc->sc_dev.dv_xname);
260 		return;
261 	}
262 
263 	/*
264 	 * We must open the pipes early because they're used to upload the
265 	 * firmware (pre-firmware devices) or to send firmware commands.
266 	 */
267 	if (uath_open_pipes(sc) != 0) {
268 		printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
269 		return;
270 	}
271 
272 	if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
273 		if (rootvp == NULL)
274 			mountroothook_establish(uath_attachhook, sc);
275 		else
276 			uath_attachhook(sc);
277 		return;
278 	}
279 
280 	/*
281 	 * Only post-firmware devices here.
282 	 */
283 	usb_init_task(&sc->sc_task, uath_task, sc, USB_TASK_TYPE_GENERIC);
284 	timeout_set(&sc->scan_to, uath_next_scan, sc);
285 	timeout_set(&sc->stat_to, uath_stat, sc);
286 
287 	/*
288 	 * Allocate xfers for firmware commands.
289 	 */
290 	if (uath_alloc_tx_cmd_list(sc) != 0) {
291 		printf("%s: could not allocate Tx command list\n",
292 		    sc->sc_dev.dv_xname);
293 		goto fail;
294 	}
295 	if (uath_alloc_rx_cmd_list(sc) != 0) {
296 		printf("%s: could not allocate Rx command list\n",
297 		    sc->sc_dev.dv_xname);
298 		goto fail;
299 	}
300 
301 	/*
302 	 * Queue Rx command xfers.
303 	 */
304 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
305 		struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
306 
307 		usbd_setup_xfer(cmd->xfer, sc->cmd_rx_pipe, cmd, cmd->buf,
308 		    UATH_MAX_RXCMDSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
309 		    USBD_NO_TIMEOUT, uath_cmd_rxeof);
310 		error = usbd_transfer(cmd->xfer);
311 		if (error != USBD_IN_PROGRESS && error != 0) {
312 			printf("%s: could not queue Rx command xfer\n",
313 			    sc->sc_dev.dv_xname);
314 			goto fail;
315 		}
316 	}
317 
318 	/*
319 	 * We're now ready to send/receive firmware commands.
320 	 */
321 	if (uath_reset(sc) != 0) {
322 		printf("%s: could not initialize adapter\n",
323 		    sc->sc_dev.dv_xname);
324 		goto fail;
325 	}
326 	if (uath_query_eeprom(sc) != 0) {
327 		printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
328 		goto fail;
329 	}
330 
331 	printf("%s: MAC/BBP AR5523, RF AR%c112, address %s\n",
332 	    sc->sc_dev.dv_xname, (sc->sc_flags & UATH_FLAG_ABG) ? '5': '2',
333 	    ether_sprintf(ic->ic_myaddr));
334 
335 	/*
336 	 * Allocate xfers for Tx/Rx data pipes.
337 	 */
338 	if (uath_alloc_tx_data_list(sc) != 0) {
339 		printf("%s: could not allocate Tx data list\n",
340 		    sc->sc_dev.dv_xname);
341 		goto fail;
342 	}
343 	if (uath_alloc_rx_data_list(sc) != 0) {
344 		printf("%s: could not allocate Rx data list\n",
345 		    sc->sc_dev.dv_xname);
346 		goto fail;
347 	}
348 
349 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
350 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
351 	ic->ic_state = IEEE80211_S_INIT;
352 
353 	/* set device capabilities */
354 	ic->ic_caps =
355 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
356 	    IEEE80211_C_TXPMGT |	/* tx power management */
357 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
358 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
359 	    IEEE80211_C_WEP;		/* h/w WEP */
360 
361 	/* set supported .11b and .11g rates */
362 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
363 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
364 
365 	/* set supported .11b and .11g channels (1 through 14) */
366 	for (i = 1; i <= 14; i++) {
367 		ic->ic_channels[i].ic_freq =
368 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
369 		ic->ic_channels[i].ic_flags =
370 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
371 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
372 	}
373 
374 	ifp->if_softc = sc;
375 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
376 	ifp->if_ioctl = uath_ioctl;
377 	ifp->if_start = uath_start;
378 	ifp->if_watchdog = uath_watchdog;
379 	IFQ_SET_READY(&ifp->if_snd);
380 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
381 
382 	if_attach(ifp);
383 	ieee80211_ifattach(ifp);
384 
385 	/* override state transition machine */
386 	sc->sc_newstate = ic->ic_newstate;
387 	ic->ic_newstate = uath_newstate;
388 	ieee80211_media_init(ifp, uath_media_change, ieee80211_media_status);
389 
390 #if NBPFILTER > 0
391 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
392 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
393 
394 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
395 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
396 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UATH_RX_RADIOTAP_PRESENT);
397 
398 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
399 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
400 	sc->sc_txtap.wt_ihdr.it_present = htole32(UATH_TX_RADIOTAP_PRESENT);
401 #endif
402 
403 	return;
404 
405 fail:	uath_close_pipes(sc);
406 	uath_free_tx_data_list(sc);
407 	uath_free_rx_cmd_list(sc);
408 	uath_free_tx_cmd_list(sc);
409 	usbd_deactivate(sc->sc_udev);
410 }
411 
412 int
413 uath_detach(struct device *self, int flags)
414 {
415 	struct uath_softc *sc = (struct uath_softc *)self;
416 	struct ifnet *ifp = &sc->sc_ic.ic_if;
417 	int s;
418 
419 	s = splnet();
420 
421 	if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
422 		uath_close_pipes(sc);
423 		splx(s);
424 		return 0;
425 	}
426 
427 	/* post-firmware device */
428 
429 	usb_rem_task(sc->sc_udev, &sc->sc_task);
430 	if (timeout_initialized(&sc->scan_to))
431 		timeout_del(&sc->scan_to);
432 	if (timeout_initialized(&sc->stat_to))
433 		timeout_del(&sc->stat_to);
434 
435 	/* close Tx/Rx pipes */
436 	uath_close_pipes(sc);
437 
438 	/* free xfers */
439 	uath_free_tx_data_list(sc);
440 	uath_free_rx_data_list(sc);
441 	uath_free_tx_cmd_list(sc);
442 	uath_free_rx_cmd_list(sc);
443 
444 	if (ifp->if_softc != NULL) {
445 		ieee80211_ifdetach(ifp);	/* free all nodes */
446 		if_detach(ifp);
447 	}
448 
449 	splx(s);
450 
451 	return 0;
452 }
453 
454 int
455 uath_open_pipes(struct uath_softc *sc)
456 {
457 	int error;
458 
459 	/*
460 	 * XXX pipes numbers are hardcoded because we don't have any way
461 	 * to distinguish the data pipes from the firmware command pipes
462 	 * (both are bulk pipes) using the endpoints descriptors.
463 	 */
464 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
465 	    &sc->cmd_tx_pipe);
466 	if (error != 0) {
467 		printf("%s: could not open Tx command pipe: %s\n",
468 		    sc->sc_dev.dv_xname, usbd_errstr(error));
469 		goto fail;
470 	}
471 
472 	error = usbd_open_pipe(sc->sc_iface, 0x02, USBD_EXCLUSIVE_USE,
473 	    &sc->data_tx_pipe);
474 	if (error != 0) {
475 		printf("%s: could not open Tx data pipe: %s\n",
476 		    sc->sc_dev.dv_xname, usbd_errstr(error));
477 		goto fail;
478 	}
479 
480 	error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
481 	    &sc->cmd_rx_pipe);
482 	if (error != 0) {
483 		printf("%s: could not open Rx command pipe: %s\n",
484 		    sc->sc_dev.dv_xname, usbd_errstr(error));
485 		goto fail;
486 	}
487 
488 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
489 	    &sc->data_rx_pipe);
490 	if (error != 0) {
491 		printf("%s: could not open Rx data pipe: %s\n",
492 		    sc->sc_dev.dv_xname, usbd_errstr(error));
493 		goto fail;
494 	}
495 
496 	return 0;
497 
498 fail:	uath_close_pipes(sc);
499 	return error;
500 }
501 
502 void
503 uath_close_pipes(struct uath_softc *sc)
504 {
505 	if (sc->data_tx_pipe != NULL) {
506 		usbd_close_pipe(sc->data_tx_pipe);
507 		sc->data_tx_pipe = NULL;
508 	}
509 
510 	if (sc->data_rx_pipe != NULL) {
511 		usbd_close_pipe(sc->data_rx_pipe);
512 		sc->data_rx_pipe = NULL;
513 	}
514 
515 	if (sc->cmd_tx_pipe != NULL) {
516 		usbd_close_pipe(sc->cmd_tx_pipe);
517 		sc->cmd_tx_pipe = NULL;
518 	}
519 
520 	if (sc->cmd_rx_pipe != NULL) {
521 		usbd_close_pipe(sc->cmd_rx_pipe);
522 		sc->cmd_rx_pipe = NULL;
523 	}
524 }
525 
526 int
527 uath_alloc_tx_data_list(struct uath_softc *sc)
528 {
529 	int i, error;
530 
531 	for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) {
532 		struct uath_tx_data *data = &sc->tx_data[i];
533 
534 		data->sc = sc;	/* backpointer for callbacks */
535 
536 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
537 		if (data->xfer == NULL) {
538 			printf("%s: could not allocate xfer\n",
539 			    sc->sc_dev.dv_xname);
540 			error = ENOMEM;
541 			goto fail;
542 		}
543 		data->buf = usbd_alloc_buffer(data->xfer, UATH_MAX_TXBUFSZ);
544 		if (data->buf == NULL) {
545 			printf("%s: could not allocate xfer buffer\n",
546 			    sc->sc_dev.dv_xname);
547 			error = ENOMEM;
548 			goto fail;
549 		}
550 	}
551 	return 0;
552 
553 fail:	uath_free_tx_data_list(sc);
554 	return error;
555 }
556 
557 void
558 uath_free_tx_data_list(struct uath_softc *sc)
559 {
560 	int i;
561 
562 	for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++)
563 		if (sc->tx_data[i].xfer != NULL) {
564 			usbd_free_xfer(sc->tx_data[i].xfer);
565 			sc->tx_data[i].xfer = NULL;
566 		}
567 }
568 
569 int
570 uath_alloc_rx_data_list(struct uath_softc *sc)
571 {
572 	int i, error;
573 
574 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
575 		struct uath_rx_data *data = &sc->rx_data[i];
576 
577 		data->sc = sc;	/* backpointer for callbacks */
578 
579 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
580 		if (data->xfer == NULL) {
581 			printf("%s: could not allocate xfer\n",
582 			    sc->sc_dev.dv_xname);
583 			error = ENOMEM;
584 			goto fail;
585 		}
586 		if (usbd_alloc_buffer(data->xfer, sc->rxbufsz) == NULL) {
587 			printf("%s: could not allocate xfer buffer\n",
588 			    sc->sc_dev.dv_xname);
589 			error = ENOMEM;
590 			goto fail;
591 		}
592 
593 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
594 		if (data->m == NULL) {
595 			printf("%s: could not allocate rx mbuf\n",
596 			    sc->sc_dev.dv_xname);
597 			error = ENOMEM;
598 			goto fail;
599 		}
600 		MCLGET(data->m, M_DONTWAIT);
601 		if (!(data->m->m_flags & M_EXT)) {
602 			printf("%s: could not allocate rx mbuf cluster\n",
603 			    sc->sc_dev.dv_xname);
604 			error = ENOMEM;
605 			goto fail;
606 		}
607 
608 		data->buf = mtod(data->m, uint8_t *);
609 	}
610 	return 0;
611 
612 fail:	uath_free_rx_data_list(sc);
613 	return error;
614 }
615 
616 void
617 uath_free_rx_data_list(struct uath_softc *sc)
618 {
619 	int i;
620 
621 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
622 		struct uath_rx_data *data = &sc->rx_data[i];
623 
624 		if (data->xfer != NULL) {
625 			usbd_free_xfer(data->xfer);
626 			data->xfer = NULL;
627 		}
628 
629 		if (data->m != NULL) {
630 			m_freem(data->m);
631 			data->m = NULL;
632 		}
633 	}
634 }
635 
636 int
637 uath_alloc_tx_cmd_list(struct uath_softc *sc)
638 {
639 	int i, error;
640 
641 	for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++) {
642 		struct uath_tx_cmd *cmd = &sc->tx_cmd[i];
643 
644 		cmd->sc = sc;	/* backpointer for callbacks */
645 
646 		cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
647 		if (cmd->xfer == NULL) {
648 			printf("%s: could not allocate xfer\n",
649 			    sc->sc_dev.dv_xname);
650 			error = ENOMEM;
651 			goto fail;
652 		}
653 		cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_TXCMDSZ);
654 		if (cmd->buf == NULL) {
655 			printf("%s: could not allocate xfer buffer\n",
656 			    sc->sc_dev.dv_xname);
657 			error = ENOMEM;
658 			goto fail;
659 		}
660 	}
661 	return 0;
662 
663 fail:	uath_free_tx_cmd_list(sc);
664 	return error;
665 }
666 
667 void
668 uath_free_tx_cmd_list(struct uath_softc *sc)
669 {
670 	int i;
671 
672 	for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++)
673 		if (sc->tx_cmd[i].xfer != NULL) {
674 			usbd_free_xfer(sc->tx_cmd[i].xfer);
675 			sc->tx_cmd[i].xfer = NULL;
676 		}
677 }
678 
679 int
680 uath_alloc_rx_cmd_list(struct uath_softc *sc)
681 {
682 	int i, error;
683 
684 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
685 		struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
686 
687 		cmd->sc = sc;	/* backpointer for callbacks */
688 
689 		cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
690 		if (cmd->xfer == NULL) {
691 			printf("%s: could not allocate xfer\n",
692 			    sc->sc_dev.dv_xname);
693 			error = ENOMEM;
694 			goto fail;
695 		}
696 		cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_RXCMDSZ);
697 		if (cmd->buf == NULL) {
698 			printf("%s: could not allocate xfer buffer\n",
699 			    sc->sc_dev.dv_xname);
700 			error = ENOMEM;
701 			goto fail;
702 		}
703 	}
704 	return 0;
705 
706 fail:	uath_free_rx_cmd_list(sc);
707 	return error;
708 }
709 
710 void
711 uath_free_rx_cmd_list(struct uath_softc *sc)
712 {
713 	int i;
714 
715 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++)
716 		if (sc->rx_cmd[i].xfer != NULL) {
717 			usbd_free_xfer(sc->rx_cmd[i].xfer);
718 			sc->rx_cmd[i].xfer = NULL;
719 		}
720 }
721 
722 int
723 uath_media_change(struct ifnet *ifp)
724 {
725 	int error;
726 
727 	error = ieee80211_media_change(ifp);
728 	if (error != ENETRESET)
729 		return error;
730 
731 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
732 		uath_init(ifp);
733 
734 	return 0;
735 }
736 
737 /*
738  * This function is called periodically (every second) when associated to
739  * query device statistics.
740  */
741 void
742 uath_stat(void *arg)
743 {
744 	struct uath_softc *sc = arg;
745 	int error;
746 
747 	/*
748 	 * Send request for statistics asynchronously. The timer will be
749 	 * restarted when we'll get the stats notification.
750 	 */
751 	error = uath_cmd_write(sc, UATH_CMD_STATS, NULL, 0,
752 	    UATH_CMD_FLAG_ASYNC);
753 	if (error != 0) {
754 		printf("%s: could not query statistics (error=%d)\n",
755 		    sc->sc_dev.dv_xname, error);
756 	}
757 }
758 
759 /*
760  * This function is called periodically (every 250ms) during scanning to
761  * switch from one channel to another.
762  */
763 void
764 uath_next_scan(void *arg)
765 {
766 	struct uath_softc *sc = arg;
767 	struct ieee80211com *ic = &sc->sc_ic;
768 	struct ifnet *ifp = &ic->ic_if;
769 
770 	if (ic->ic_state == IEEE80211_S_SCAN)
771 		ieee80211_next_scan(ifp);
772 }
773 
774 void
775 uath_task(void *arg)
776 {
777 	struct uath_softc *sc = arg;
778 	struct ieee80211com *ic = &sc->sc_ic;
779 	enum ieee80211_state ostate;
780 
781 	ostate = ic->ic_state;
782 
783 	switch (sc->sc_state) {
784 	case IEEE80211_S_INIT:
785 		if (ostate == IEEE80211_S_RUN) {
786 			/* turn link and activity LEDs off */
787 			(void)uath_set_led(sc, UATH_LED_LINK, 0);
788 			(void)uath_set_led(sc, UATH_LED_ACTIVITY, 0);
789 		}
790 		break;
791 
792 	case IEEE80211_S_SCAN:
793 		if (uath_switch_channel(sc, ic->ic_bss->ni_chan) != 0) {
794 			printf("%s: could not switch channel\n",
795 			    sc->sc_dev.dv_xname);
796 			break;
797 		}
798 		timeout_add_msec(&sc->scan_to, 250);
799 		break;
800 
801 	case IEEE80211_S_AUTH:
802 	{
803 		struct ieee80211_node *ni = ic->ic_bss;
804 		struct uath_cmd_bssid bssid;
805 		struct uath_cmd_0b cmd0b;
806 		struct uath_cmd_0c cmd0c;
807 
808 		if (uath_switch_channel(sc, ni->ni_chan) != 0) {
809 			printf("%s: could not switch channel\n",
810 			    sc->sc_dev.dv_xname);
811 			break;
812 		}
813 
814 		(void)uath_cmd_write(sc, UATH_CMD_24, NULL, 0, 0);
815 
816 		bzero(&bssid, sizeof bssid);
817 		bssid.len = htobe32(IEEE80211_ADDR_LEN);
818 		IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
819 		(void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
820 		    sizeof bssid, 0);
821 
822 		bzero(&cmd0b, sizeof cmd0b);
823 		cmd0b.code = htobe32(2);
824 		cmd0b.size = htobe32(sizeof (cmd0b.data));
825 		(void)uath_cmd_write(sc, UATH_CMD_0B, &cmd0b, sizeof cmd0b, 0);
826 
827 		bzero(&cmd0c, sizeof cmd0c);
828 		cmd0c.magic1 = htobe32(2);
829 		cmd0c.magic2 = htobe32(7);
830 		cmd0c.magic3 = htobe32(1);
831 		(void)uath_cmd_write(sc, UATH_CMD_0C, &cmd0c, sizeof cmd0c, 0);
832 
833 		if (uath_set_rates(sc, &ni->ni_rates) != 0) {
834 			printf("%s: could not set negotiated rate set\n",
835 			    sc->sc_dev.dv_xname);
836 			break;
837 		}
838 		break;
839 	}
840 
841 	case IEEE80211_S_ASSOC:
842 		break;
843 
844 	case IEEE80211_S_RUN:
845 	{
846 		struct ieee80211_node *ni = ic->ic_bss;
847 		struct uath_cmd_bssid bssid;
848 		struct uath_cmd_xled xled;
849 		uint32_t val;
850 
851 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
852 			/* make both LEDs blink while monitoring */
853 			bzero(&xled, sizeof xled);
854 			xled.which = htobe32(0);
855 			xled.rate = htobe32(1);
856 			xled.mode = htobe32(2);
857 			(void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled,
858 			    sizeof xled, 0);
859 			break;
860 		}
861 
862 		/*
863 		 * Tx rate is controlled by firmware, report the maximum
864 		 * negotiated rate in ifconfig output.
865 		 */
866 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
867 
868 		val = htobe32(1);
869 		(void)uath_cmd_write(sc, UATH_CMD_2E, &val, sizeof val, 0);
870 
871 		bzero(&bssid, sizeof bssid);
872 		bssid.flags1 = htobe32(0xc004);
873 		bssid.flags2 = htobe32(0x003b);
874 		bssid.len = htobe32(IEEE80211_ADDR_LEN);
875 		IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
876 		(void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
877 		    sizeof bssid, 0);
878 
879 		/* turn link LED on */
880 		(void)uath_set_led(sc, UATH_LED_LINK, 1);
881 
882 		/* make activity LED blink */
883 		bzero(&xled, sizeof xled);
884 		xled.which = htobe32(1);
885 		xled.rate = htobe32(1);
886 		xled.mode = htobe32(2);
887 		(void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled, sizeof xled,
888 		    0);
889 
890 		/* set state to associated */
891 		val = htobe32(1);
892 		(void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val,
893 		    0);
894 
895 		/* start statistics timer */
896 		timeout_add_sec(&sc->stat_to, 1);
897 		break;
898 	}
899 	}
900 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
901 }
902 
903 int
904 uath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
905 {
906 	struct uath_softc *sc = ic->ic_softc;
907 
908 	usb_rem_task(sc->sc_udev, &sc->sc_task);
909 	timeout_del(&sc->scan_to);
910 	timeout_del(&sc->stat_to);
911 
912 	/* do it in a process context */
913 	sc->sc_state = nstate;
914 	sc->sc_arg = arg;
915 	usb_add_task(sc->sc_udev, &sc->sc_task);
916 	return 0;
917 }
918 
919 #ifdef UATH_DEBUG
920 void
921 uath_dump_cmd(const uint8_t *buf, int len, char prefix)
922 {
923 	int i;
924 
925 	for (i = 0; i < len; i++) {
926 		if ((i % 16) == 0)
927 			printf("\n%c ", prefix);
928 		else if ((i % 4) == 0)
929 			printf(" ");
930 		printf("%02x", buf[i]);
931 	}
932 	printf("\n");
933 }
934 #endif
935 
936 /*
937  * Low-level function to send read or write commands to the firmware.
938  */
939 int
940 uath_cmd(struct uath_softc *sc, uint32_t code, const void *idata, int ilen,
941     void *odata, int flags)
942 {
943 	struct uath_cmd_hdr *hdr;
944 	struct uath_tx_cmd *cmd;
945 	uint16_t xferflags;
946 	int s, xferlen, error;
947 
948 	/* grab a xfer */
949 	cmd = &sc->tx_cmd[sc->cmd_idx];
950 
951 	/* always bulk-out a multiple of 4 bytes */
952 	xferlen = (sizeof (struct uath_cmd_hdr) + ilen + 3) & ~3;
953 
954 	hdr = (struct uath_cmd_hdr *)cmd->buf;
955 	bzero(hdr, sizeof (struct uath_cmd_hdr));
956 	hdr->len   = htobe32(xferlen);
957 	hdr->code  = htobe32(code);
958 	hdr->priv  = sc->cmd_idx;	/* don't care about endianness */
959 	hdr->magic = htobe32((flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0);
960 	bcopy(idata, (uint8_t *)(hdr + 1), ilen);
961 
962 #ifdef UATH_DEBUG
963 	if (uath_debug >= 5) {
964 		printf("sending command code=0x%02x flags=0x%x index=%u",
965 		    code, flags, sc->cmd_idx);
966 		uath_dump_cmd(cmd->buf, xferlen, '+');
967 	}
968 #endif
969 	xferflags = USBD_FORCE_SHORT_XFER | USBD_NO_COPY;
970 	if (!(flags & UATH_CMD_FLAG_READ)) {
971 		if (!(flags & UATH_CMD_FLAG_ASYNC))
972 			xferflags |= USBD_SYNCHRONOUS;
973 	} else
974 		s = splusb();
975 
976 	cmd->odata = odata;
977 
978 	usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
979 	    xferflags, UATH_CMD_TIMEOUT, NULL);
980 	error = usbd_transfer(cmd->xfer);
981 	if (error != USBD_IN_PROGRESS && error != 0) {
982 		if (flags & UATH_CMD_FLAG_READ)
983 			splx(s);
984 		printf("%s: could not send command 0x%x (error=%s)\n",
985 		    sc->sc_dev.dv_xname, code, usbd_errstr(error));
986 		return error;
987 	}
988 	sc->cmd_idx = (sc->cmd_idx + 1) % UATH_TX_CMD_LIST_COUNT;
989 
990 	if (!(flags & UATH_CMD_FLAG_READ))
991 		return 0;	/* write: don't wait for reply */
992 
993 	/* wait at most two seconds for command reply */
994 	error = tsleep(cmd, PCATCH, "uathcmd", 2 * hz);
995 	cmd->odata = NULL;	/* in case answer is received too late */
996 	splx(s);
997 	if (error != 0) {
998 		printf("%s: timeout waiting for command reply\n",
999 		    sc->sc_dev.dv_xname);
1000 	}
1001 	return error;
1002 }
1003 
1004 int
1005 uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len,
1006     int flags)
1007 {
1008 	flags &= ~UATH_CMD_FLAG_READ;
1009 	return uath_cmd(sc, code, data, len, NULL, flags);
1010 }
1011 
1012 int
1013 uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata,
1014     int ilen, void *odata, int flags)
1015 {
1016 	flags |= UATH_CMD_FLAG_READ;
1017 	return uath_cmd(sc, code, idata, ilen, odata, flags);
1018 }
1019 
1020 int
1021 uath_write_reg(struct uath_softc *sc, uint32_t reg, uint32_t val)
1022 {
1023 	struct uath_write_mac write;
1024 	int error;
1025 
1026 	write.reg = htobe32(reg);
1027 	write.len = htobe32(0);	/* 0 = single write */
1028 	*(uint32_t *)write.data = htobe32(val);
1029 
1030 	error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1031 	    3 * sizeof (uint32_t), 0);
1032 	if (error != 0) {
1033 		printf("%s: could not write register 0x%02x\n",
1034 		    sc->sc_dev.dv_xname, reg);
1035 	}
1036 	return error;
1037 }
1038 
1039 int
1040 uath_write_multi(struct uath_softc *sc, uint32_t reg, const void *data,
1041     int len)
1042 {
1043 	struct uath_write_mac write;
1044 	int error;
1045 
1046 	write.reg = htobe32(reg);
1047 	write.len = htobe32(len);
1048 	bcopy(data, write.data, len);
1049 
1050 	/* properly handle the case where len is zero (reset) */
1051 	error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1052 	    (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0);
1053 	if (error != 0) {
1054 		printf("%s: could not write %d bytes to register 0x%02x\n",
1055 		    sc->sc_dev.dv_xname, len, reg);
1056 	}
1057 	return error;
1058 }
1059 
1060 int
1061 uath_read_reg(struct uath_softc *sc, uint32_t reg, uint32_t *val)
1062 {
1063 	struct uath_read_mac read;
1064 	int error;
1065 
1066 	reg = htobe32(reg);
1067 	error = uath_cmd_read(sc, UATH_CMD_READ_MAC, &reg, sizeof reg, &read,
1068 	    0);
1069 	if (error != 0) {
1070 		printf("%s: could not read register 0x%02x\n",
1071 		    sc->sc_dev.dv_xname, betoh32(reg));
1072 		return error;
1073 	}
1074 	*val = betoh32(*(uint32_t *)read.data);
1075 	return error;
1076 }
1077 
1078 int
1079 uath_read_eeprom(struct uath_softc *sc, uint32_t reg, void *odata)
1080 {
1081 	struct uath_read_mac read;
1082 	int len, error;
1083 
1084 	reg = htobe32(reg);
1085 	error = uath_cmd_read(sc, UATH_CMD_READ_EEPROM, &reg, sizeof reg,
1086 	    &read, 0);
1087 	if (error != 0) {
1088 		printf("%s: could not read EEPROM offset 0x%02x\n",
1089 		    sc->sc_dev.dv_xname, betoh32(reg));
1090 		return error;
1091 	}
1092 	len = betoh32(read.len);
1093 	bcopy(read.data, odata, (len == 0) ? sizeof (uint32_t) : len);
1094 	return error;
1095 }
1096 
1097 void
1098 uath_cmd_rxeof(struct usbd_xfer *xfer, void *priv,
1099     usbd_status status)
1100 {
1101 	struct uath_rx_cmd *cmd = priv;
1102 	struct uath_softc *sc = cmd->sc;
1103 	struct uath_cmd_hdr *hdr;
1104 
1105 	if (status != USBD_NORMAL_COMPLETION) {
1106 		if (status == USBD_STALLED)
1107 			usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
1108 		return;
1109 	}
1110 
1111 	hdr = (struct uath_cmd_hdr *)cmd->buf;
1112 
1113 #ifdef UATH_DEBUG
1114 	if (uath_debug >= 5) {
1115 		printf("received command code=0x%x index=%u len=%u",
1116 		    betoh32(hdr->code), hdr->priv, betoh32(hdr->len));
1117 		uath_dump_cmd(cmd->buf, betoh32(hdr->len), '-');
1118 	}
1119 #endif
1120 
1121 	switch (betoh32(hdr->code) & 0xff) {
1122 	/* reply to a read command */
1123 	default:
1124 	{
1125 		struct uath_tx_cmd *txcmd = &sc->tx_cmd[hdr->priv];
1126 
1127 		if (txcmd->odata != NULL) {
1128 			/* copy answer into caller's supplied buffer */
1129 			bcopy((uint8_t *)(hdr + 1), txcmd->odata,
1130 			    betoh32(hdr->len) - sizeof (struct uath_cmd_hdr));
1131 		}
1132 		wakeup(txcmd);	/* wake up caller */
1133 		break;
1134 	}
1135 	/* spontaneous firmware notifications */
1136 	case UATH_NOTIF_READY:
1137 		DPRINTF(("received device ready notification\n"));
1138 		wakeup(UATH_COND_INIT(sc));
1139 		break;
1140 
1141 	case UATH_NOTIF_TX:
1142 		/* this notification is sent when UATH_TX_NOTIFY is set */
1143 		DPRINTF(("received Tx notification\n"));
1144 		break;
1145 
1146 	case UATH_NOTIF_STATS:
1147 		DPRINTFN(2, ("received device statistics\n"));
1148 		timeout_add_sec(&sc->stat_to, 1);
1149 		break;
1150 	}
1151 
1152 	/* setup a new transfer */
1153 	usbd_setup_xfer(xfer, sc->cmd_rx_pipe, cmd, cmd->buf, UATH_MAX_RXCMDSZ,
1154 	    USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT,
1155 	    uath_cmd_rxeof);
1156 	(void)usbd_transfer(xfer);
1157 }
1158 
1159 void
1160 uath_data_rxeof(struct usbd_xfer *xfer, void *priv,
1161     usbd_status status)
1162 {
1163 	struct uath_rx_data *data = priv;
1164 	struct uath_softc *sc = data->sc;
1165 	struct ieee80211com *ic = &sc->sc_ic;
1166 	struct ifnet *ifp = &ic->ic_if;
1167 	struct ieee80211_frame *wh;
1168 	struct ieee80211_rxinfo rxi;
1169 	struct ieee80211_node *ni;
1170 	struct uath_rx_desc *desc;
1171 	struct mbuf *mnew, *m;
1172 	uint32_t hdr;
1173 	int s, len;
1174 
1175 	if (status != USBD_NORMAL_COMPLETION) {
1176 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1177 			return;
1178 
1179 		if (status == USBD_STALLED)
1180 			usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1181 
1182 		ifp->if_ierrors++;
1183 		return;
1184 	}
1185 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1186 
1187 	if (len < UATH_MIN_RXBUFSZ) {
1188 		DPRINTF(("wrong xfer size (len=%d)\n", len));
1189 		ifp->if_ierrors++;
1190 		goto skip;
1191 	}
1192 
1193 	hdr = betoh32(*(uint32_t *)data->buf);
1194 
1195 	/* Rx descriptor is located at the end, 32-bit aligned */
1196 	desc = (struct uath_rx_desc *)
1197 	    (data->buf + len - sizeof (struct uath_rx_desc));
1198 
1199 	if (betoh32(desc->len) > sc->rxbufsz) {
1200 		DPRINTF(("bad descriptor (len=%d)\n", betoh32(desc->len)));
1201 		ifp->if_ierrors++;
1202 		goto skip;
1203 	}
1204 
1205 	/* there's probably a "bad CRC" flag somewhere in the descriptor.. */
1206 
1207 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1208 	if (mnew == NULL) {
1209 		printf("%s: could not allocate rx mbuf\n",
1210 		    sc->sc_dev.dv_xname);
1211 		ifp->if_ierrors++;
1212 		goto skip;
1213 	}
1214 	MCLGET(mnew, M_DONTWAIT);
1215 	if (!(mnew->m_flags & M_EXT)) {
1216 		printf("%s: could not allocate rx mbuf cluster\n",
1217 		    sc->sc_dev.dv_xname);
1218 		m_freem(mnew);
1219 		ifp->if_ierrors++;
1220 		goto skip;
1221 	}
1222 
1223 	m = data->m;
1224 	data->m = mnew;
1225 
1226 	/* finalize mbuf */
1227 	m->m_data = data->buf + sizeof (uint32_t);
1228 	m->m_pkthdr.len = m->m_len = betoh32(desc->len) -
1229 	    sizeof (struct uath_rx_desc) - IEEE80211_CRC_LEN;
1230 
1231 	data->buf = mtod(data->m, uint8_t *);
1232 
1233 	wh = mtod(m, struct ieee80211_frame *);
1234 	rxi.rxi_flags = 0;
1235 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) &&
1236 	    ic->ic_opmode != IEEE80211_M_MONITOR) {
1237 		/*
1238 		 * Hardware decrypts the frame itself but leaves the WEP bit
1239 		 * set in the 802.11 header and doesn't remove the IV and CRC
1240 		 * fields.
1241 		 */
1242 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1243 		memmove((caddr_t)wh + IEEE80211_WEP_IVLEN +
1244 		    IEEE80211_WEP_KIDLEN, wh, sizeof (struct ieee80211_frame));
1245 		m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1246 		m_adj(m, -IEEE80211_WEP_CRCLEN);
1247 		wh = mtod(m, struct ieee80211_frame *);
1248 
1249 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1250 	}
1251 
1252 #if NBPFILTER > 0
1253 	/* there are a lot more fields in the Rx descriptor */
1254 	if (sc->sc_drvbpf != NULL) {
1255 		struct mbuf mb;
1256 		struct uath_rx_radiotap_header *tap = &sc->sc_rxtap;
1257 
1258 		tap->wr_flags = 0;
1259 		tap->wr_chan_freq = htole16(betoh32(desc->freq));
1260 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1261 		tap->wr_dbm_antsignal = (int8_t)betoh32(desc->rssi);
1262 
1263 		mb.m_data = (caddr_t)tap;
1264 		mb.m_len = sc->sc_rxtap_len;
1265 		mb.m_next = m;
1266 		mb.m_nextpkt = NULL;
1267 		mb.m_type = 0;
1268 		mb.m_flags = 0;
1269 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1270 	}
1271 #endif
1272 
1273 	s = splnet();
1274 	ni = ieee80211_find_rxnode(ic, wh);
1275 	rxi.rxi_rssi = (int)betoh32(desc->rssi);
1276 	rxi.rxi_tstamp = 0;	/* unused */
1277 	ieee80211_input(ifp, m, ni, &rxi);
1278 
1279 	/* node is no longer needed */
1280 	ieee80211_release_node(ic, ni);
1281 	splx(s);
1282 
1283 skip:	/* setup a new transfer */
1284 	usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, sc->rxbufsz,
1285 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, uath_data_rxeof);
1286 	(void)usbd_transfer(data->xfer);
1287 }
1288 
1289 int
1290 uath_tx_null(struct uath_softc *sc)
1291 {
1292 	struct uath_tx_data *data;
1293 	struct uath_tx_desc *desc;
1294 
1295 	data = &sc->tx_data[sc->data_idx];
1296 
1297 	data->ni = NULL;
1298 
1299 	*(uint32_t *)data->buf = UATH_MAKECTL(1, sizeof (struct uath_tx_desc));
1300 	desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1301 
1302 	bzero(desc, sizeof (struct uath_tx_desc));
1303 	desc->len  = htobe32(sizeof (struct uath_tx_desc));
1304 	desc->type = htobe32(UATH_TX_NULL);
1305 
1306 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf,
1307 	    sizeof (uint32_t) + sizeof (struct uath_tx_desc), USBD_NO_COPY |
1308 	    USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS, UATH_DATA_TIMEOUT, NULL);
1309 	if (usbd_transfer(data->xfer) != 0)
1310 		return EIO;
1311 
1312 	sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1313 
1314 	return uath_cmd_write(sc, UATH_CMD_0F, NULL, 0, UATH_CMD_FLAG_ASYNC);
1315 }
1316 
1317 void
1318 uath_data_txeof(struct usbd_xfer *xfer, void *priv,
1319     usbd_status status)
1320 {
1321 	struct uath_tx_data *data = priv;
1322 	struct uath_softc *sc = data->sc;
1323 	struct ieee80211com *ic = &sc->sc_ic;
1324 	struct ifnet *ifp = &ic->ic_if;
1325 	int s;
1326 
1327 	if (status != USBD_NORMAL_COMPLETION) {
1328 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1329 			return;
1330 
1331 		printf("%s: could not transmit buffer: %s\n",
1332 		    sc->sc_dev.dv_xname, usbd_errstr(status));
1333 
1334 		if (status == USBD_STALLED)
1335 			usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1336 
1337 		ifp->if_oerrors++;
1338 		return;
1339 	}
1340 
1341 	s = splnet();
1342 
1343 	ieee80211_release_node(ic, data->ni);
1344 	data->ni = NULL;
1345 
1346 	sc->tx_queued--;
1347 	ifp->if_opackets++;
1348 
1349 	sc->sc_tx_timer = 0;
1350 	ifp->if_flags &= ~IFF_OACTIVE;
1351 	uath_start(ifp);
1352 
1353 	splx(s);
1354 }
1355 
1356 int
1357 uath_tx_data(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1358 {
1359 	struct ieee80211com *ic = &sc->sc_ic;
1360 	struct uath_tx_data *data;
1361 	struct uath_tx_desc *desc;
1362 	const struct ieee80211_frame *wh;
1363 	int paylen, totlen, xferlen, error;
1364 
1365 	data = &sc->tx_data[sc->data_idx];
1366 	desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1367 
1368 	data->ni = ni;
1369 
1370 #if NBPFILTER > 0
1371 	if (sc->sc_drvbpf != NULL) {
1372 		struct mbuf mb;
1373 		struct uath_tx_radiotap_header *tap = &sc->sc_txtap;
1374 
1375 		tap->wt_flags = 0;
1376 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1377 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1378 
1379 		mb.m_data = (caddr_t)tap;
1380 		mb.m_len = sc->sc_txtap_len;
1381 		mb.m_next = m0;
1382 		mb.m_nextpkt = NULL;
1383 		mb.m_type = 0;
1384 		mb.m_flags = 0;
1385 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1386 	}
1387 #endif
1388 
1389 	paylen = m0->m_pkthdr.len;
1390 	xferlen = sizeof (uint32_t) + sizeof (struct uath_tx_desc) + paylen;
1391 
1392 	wh = mtod(m0, struct ieee80211_frame *);
1393 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1394 		uint8_t *frm = (uint8_t *)(desc + 1);
1395 		uint32_t iv;
1396 
1397 		/* h/w WEP: it's up to the host to fill the IV field */
1398 		bcopy(wh, frm, sizeof (struct ieee80211_frame));
1399 		frm += sizeof (struct ieee80211_frame);
1400 
1401 		/* insert IV: code copied from net80211 */
1402 		iv = (ic->ic_iv != 0) ? ic->ic_iv : arc4random();
1403 		if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1404 			iv += 0x000100;
1405 		ic->ic_iv = iv + 1;
1406 
1407 		*frm++ = iv & 0xff;
1408 		*frm++ = (iv >>  8) & 0xff;
1409 		*frm++ = (iv >> 16) & 0xff;
1410 		*frm++ = ic->ic_wep_txkey << 6;
1411 
1412 		m_copydata(m0, sizeof (struct ieee80211_frame),
1413 		    m0->m_pkthdr.len - sizeof (struct ieee80211_frame), frm);
1414 
1415 		paylen  += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1416 		xferlen += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1417 		totlen = xferlen + IEEE80211_WEP_CRCLEN;
1418 	} else {
1419 		m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1));
1420 		totlen = xferlen;
1421 	}
1422 
1423 	/* fill Tx descriptor */
1424 	*(uint32_t *)data->buf = UATH_MAKECTL(1, xferlen - sizeof (uint32_t));
1425 
1426 	desc->len    = htobe32(totlen);
1427 	desc->priv   = sc->data_idx;	/* don't care about endianness */
1428 	desc->paylen = htobe32(paylen);
1429 	desc->type   = htobe32(UATH_TX_DATA);
1430 	desc->flags  = htobe32(0);
1431 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1432 		desc->dest  = htobe32(UATH_ID_BROADCAST);
1433 		desc->magic = htobe32(3);
1434 	} else {
1435 		desc->dest  = htobe32(UATH_ID_BSS);
1436 		desc->magic = htobe32(1);
1437 	}
1438 
1439 	m_freem(m0);	/* mbuf is no longer needed */
1440 
1441 #ifdef UATH_DEBUG
1442 	if (uath_debug >= 6) {
1443 		printf("sending frame index=%u len=%d xferlen=%d",
1444 		    sc->data_idx, paylen, xferlen);
1445 		uath_dump_cmd(data->buf, xferlen, '+');
1446 	}
1447 #endif
1448 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1449 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, UATH_DATA_TIMEOUT,
1450 	    uath_data_txeof);
1451 	error = usbd_transfer(data->xfer);
1452 	if (error != USBD_IN_PROGRESS && error != 0) {
1453 		ic->ic_if.if_oerrors++;
1454 		return error;
1455 	}
1456 	sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1457 	sc->tx_queued++;
1458 
1459 	return 0;
1460 }
1461 
1462 void
1463 uath_start(struct ifnet *ifp)
1464 {
1465 	struct uath_softc *sc = ifp->if_softc;
1466 	struct ieee80211com *ic = &sc->sc_ic;
1467 	struct ieee80211_node *ni;
1468 	struct mbuf *m0;
1469 
1470 	/*
1471 	 * net80211 may still try to send management frames even if the
1472 	 * IFF_RUNNING flag is not set...
1473 	 */
1474 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1475 		return;
1476 
1477 	for (;;) {
1478 		if (sc->tx_queued >= UATH_TX_DATA_LIST_COUNT) {
1479 			ifp->if_flags |= IFF_OACTIVE;
1480 			break;
1481 		}
1482 
1483 		m0 = mq_dequeue(&ic->ic_mgtq);
1484 		if (m0 != NULL) {
1485 			ni = m0->m_pkthdr.ph_cookie;
1486 #if NBPFILTER > 0
1487 			if (ic->ic_rawbpf != NULL)
1488 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1489 #endif
1490 			if (uath_tx_data(sc, m0, ni) != 0)
1491 				break;
1492 		} else {
1493 			if (ic->ic_state != IEEE80211_S_RUN)
1494 				break;
1495 
1496 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1497 			if (m0 == NULL)
1498 				break;
1499 #if NBPFILTER > 0
1500 			if (ifp->if_bpf != NULL)
1501 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1502 #endif
1503 			m0 = ieee80211_encap(ifp, m0, &ni);
1504 			if (m0 == NULL)
1505 				continue;
1506 #if NBPFILTER > 0
1507 			if (ic->ic_rawbpf != NULL)
1508 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1509 #endif
1510 			if (uath_tx_data(sc, m0, ni) != 0) {
1511 				if (ni != NULL)
1512 					ieee80211_release_node(ic, ni);
1513 				ifp->if_oerrors++;
1514 				break;
1515 			}
1516 		}
1517 
1518 		sc->sc_tx_timer = 5;
1519 		ifp->if_timer = 1;
1520 	}
1521 }
1522 
1523 void
1524 uath_watchdog(struct ifnet *ifp)
1525 {
1526 	struct uath_softc *sc = ifp->if_softc;
1527 
1528 	ifp->if_timer = 0;
1529 
1530 	if (sc->sc_tx_timer > 0) {
1531 		if (--sc->sc_tx_timer == 0) {
1532 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1533 			/*uath_init(ifp); XXX needs a process context! */
1534 			ifp->if_oerrors++;
1535 			return;
1536 		}
1537 		ifp->if_timer = 1;
1538 	}
1539 
1540 	ieee80211_watchdog(ifp);
1541 }
1542 
1543 int
1544 uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1545 {
1546 	struct uath_softc *sc = ifp->if_softc;
1547 	struct ieee80211com *ic = &sc->sc_ic;
1548 	struct ifreq *ifr;
1549 	int s, error = 0;
1550 
1551 	s = splnet();
1552 
1553 	switch (cmd) {
1554 	case SIOCSIFADDR:
1555 		ifp->if_flags |= IFF_UP;
1556 		/* FALLTHROUGH */
1557 	case SIOCSIFFLAGS:
1558 		if (ifp->if_flags & IFF_UP) {
1559 			if (!(ifp->if_flags & IFF_RUNNING))
1560 				uath_init(ifp);
1561 		} else {
1562 			if (ifp->if_flags & IFF_RUNNING)
1563 				uath_stop(ifp, 1);
1564 		}
1565 		break;
1566 
1567 	case SIOCADDMULTI:
1568 	case SIOCDELMULTI:
1569 		ifr = (struct ifreq *)data;
1570 		error = (cmd == SIOCADDMULTI) ?
1571 		    ether_addmulti(ifr, &ic->ic_ac) :
1572 		    ether_delmulti(ifr, &ic->ic_ac);
1573 		if (error == ENETRESET)
1574 			error = 0;
1575 		break;
1576 
1577 	default:
1578 		error = ieee80211_ioctl(ifp, cmd, data);
1579 	}
1580 
1581 	if (error == ENETRESET) {
1582 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1583 		    (IFF_UP | IFF_RUNNING))
1584 			uath_init(ifp);
1585 		error = 0;
1586 	}
1587 
1588 	splx(s);
1589 
1590 	return error;
1591 }
1592 
1593 int
1594 uath_query_eeprom(struct uath_softc *sc)
1595 {
1596 	uint32_t tmp;
1597 	int error;
1598 
1599 	/* retrieve MAC address */
1600 	error = uath_read_eeprom(sc, UATH_EEPROM_MACADDR, sc->sc_ic.ic_myaddr);
1601 	if (error != 0) {
1602 		printf("%s: could not read MAC address\n",
1603 		    sc->sc_dev.dv_xname);
1604 		return error;
1605 	}
1606 
1607 	/* retrieve the maximum frame size that the hardware can receive */
1608 	error = uath_read_eeprom(sc, UATH_EEPROM_RXBUFSZ, &tmp);
1609 	if (error != 0) {
1610 		printf("%s: could not read maximum Rx buffer size\n",
1611 		    sc->sc_dev.dv_xname);
1612 		return error;
1613 	}
1614 	sc->rxbufsz = betoh32(tmp) & 0xfff;
1615 	DPRINTF(("maximum Rx buffer size %d\n", sc->rxbufsz));
1616 	return 0;
1617 }
1618 
1619 int
1620 uath_reset(struct uath_softc *sc)
1621 {
1622 	struct uath_cmd_setup setup;
1623 	uint32_t reg, val;
1624 	int s, error;
1625 
1626 	/* init device with some voodoo incantations.. */
1627 	setup.magic1 = htobe32(1);
1628 	setup.magic2 = htobe32(5);
1629 	setup.magic3 = htobe32(200);
1630 	setup.magic4 = htobe32(27);
1631 	s = splusb();
1632 	error = uath_cmd_write(sc, UATH_CMD_SETUP, &setup, sizeof setup,
1633 	    UATH_CMD_FLAG_ASYNC);
1634 	/* ..and wait until firmware notifies us that it is ready */
1635 	if (error == 0)
1636 		error = tsleep(UATH_COND_INIT(sc), PCATCH, "uathinit", 5 * hz);
1637 	splx(s);
1638 	if (error != 0)
1639 		return error;
1640 
1641 	/* read PHY registers */
1642 	for (reg = 0x09; reg <= 0x24; reg++) {
1643 		if (reg == 0x0b || reg == 0x0c)
1644 			continue;
1645 		DELAY(100);
1646 		if ((error = uath_read_reg(sc, reg, &val)) != 0)
1647 			return error;
1648 		DPRINTFN(2, ("reg 0x%02x=0x%08x\n", reg, val));
1649 	}
1650 	return error;
1651 }
1652 
1653 int
1654 uath_reset_tx_queues(struct uath_softc *sc)
1655 {
1656 	int ac, error;
1657 
1658 	for (ac = 0; ac < 4; ac++) {
1659 		const uint32_t qid = htobe32(UATH_AC_TO_QID(ac));
1660 
1661 		DPRINTF(("resetting Tx queue %d\n", UATH_AC_TO_QID(ac)));
1662 		error = uath_cmd_write(sc, UATH_CMD_RESET_QUEUE, &qid,
1663 		    sizeof qid, 0);
1664 		if (error != 0)
1665 			break;
1666 	}
1667 	return error;
1668 }
1669 
1670 int
1671 uath_wme_init(struct uath_softc *sc)
1672 {
1673 	struct uath_qinfo qinfo;
1674 	int ac, error;
1675 	static const struct uath_wme_settings uath_wme_11g[4] = {
1676 		{ 7, 4, 10,  0, 0 },	/* Background */
1677 		{ 3, 4, 10,  0, 0 },	/* Best-Effort */
1678 		{ 3, 3,  4, 26, 0 },	/* Video */
1679 		{ 2, 2,  3, 47, 0 }	/* Voice */
1680 	};
1681 
1682 	bzero(&qinfo, sizeof qinfo);
1683 	qinfo.size   = htobe32(32);
1684 	qinfo.magic1 = htobe32(1);	/* XXX ack policy? */
1685 	qinfo.magic2 = htobe32(1);
1686 	for (ac = 0; ac < 4; ac++) {
1687 		qinfo.qid      = htobe32(UATH_AC_TO_QID(ac));
1688 		qinfo.ac       = htobe32(ac);
1689 		qinfo.aifsn    = htobe32(uath_wme_11g[ac].aifsn);
1690 		qinfo.logcwmin = htobe32(uath_wme_11g[ac].logcwmin);
1691 		qinfo.logcwmax = htobe32(uath_wme_11g[ac].logcwmax);
1692 		qinfo.txop     = htobe32(UATH_TXOP_TO_US(
1693 				     uath_wme_11g[ac].txop));
1694 		qinfo.acm      = htobe32(uath_wme_11g[ac].acm);
1695 
1696 		DPRINTF(("setting up Tx queue %d\n", UATH_AC_TO_QID(ac)));
1697 		error = uath_cmd_write(sc, UATH_CMD_SET_QUEUE, &qinfo,
1698 		    sizeof qinfo, 0);
1699 		if (error != 0)
1700 			break;
1701 	}
1702 	return error;
1703 }
1704 
1705 int
1706 uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c)
1707 {
1708 	struct uath_set_chan chan;
1709 
1710 	bzero(&chan, sizeof chan);
1711 	chan.flags  = htobe32(0x1400);
1712 	chan.freq   = htobe32(c->ic_freq);
1713 	chan.magic1 = htobe32(20);
1714 	chan.magic2 = htobe32(50);
1715 	chan.magic3 = htobe32(1);
1716 
1717 	DPRINTF(("switching to channel %d\n",
1718 	    ieee80211_chan2ieee(&sc->sc_ic, c)));
1719 	return uath_cmd_write(sc, UATH_CMD_SET_CHAN, &chan, sizeof chan, 0);
1720 }
1721 
1722 int
1723 uath_set_key(struct uath_softc *sc, const struct ieee80211_key *k, int index)
1724 {
1725 	struct uath_cmd_crypto crypto;
1726 	int i;
1727 
1728 	bzero(&crypto, sizeof crypto);
1729 	crypto.keyidx = htobe32(index);
1730 	crypto.magic1 = htobe32(1);
1731 	crypto.size   = htobe32(368);
1732 	crypto.mask   = htobe32(0xffff);
1733 	crypto.flags  = htobe32(0x80000068);
1734 	if (index != UATH_DEFAULT_KEY)
1735 		crypto.flags |= htobe32(index << 16);
1736 	memset(crypto.magic2, 0xff, sizeof crypto.magic2);
1737 
1738 	/*
1739 	 * Each byte of the key must be XOR'ed with 10101010 before being
1740 	 * transmitted to the firmware.
1741 	 */
1742 	for (i = 0; i < k->k_len; i++)
1743 		crypto.key[i] = k->k_key[i] ^ 0xaa;
1744 
1745 	DPRINTF(("setting crypto key index=%d len=%d\n", index, k->k_len));
1746 	return uath_cmd_write(sc, UATH_CMD_CRYPTO, &crypto, sizeof crypto, 0);
1747 }
1748 
1749 int
1750 uath_set_keys(struct uath_softc *sc)
1751 {
1752 	const struct ieee80211com *ic = &sc->sc_ic;
1753 	int i, error;
1754 
1755 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1756 		const struct ieee80211_key *k = &ic->ic_nw_keys[i];
1757 
1758 		if (k->k_len > 0 && (error = uath_set_key(sc, k, i)) != 0)
1759 			return error;
1760 	}
1761 	return uath_set_key(sc, &ic->ic_nw_keys[ic->ic_wep_txkey],
1762 	    UATH_DEFAULT_KEY);
1763 }
1764 
1765 int
1766 uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs)
1767 {
1768 	struct uath_cmd_rates rates;
1769 
1770 	bzero(&rates, sizeof rates);
1771 	rates.magic1 = htobe32(0x02);
1772 	rates.size   = htobe32(1 + sizeof rates.rates);
1773 	rates.nrates = rs->rs_nrates;
1774 	bcopy(rs->rs_rates, rates.rates, rs->rs_nrates);
1775 
1776 	DPRINTF(("setting supported rates nrates=%d\n", rs->rs_nrates));
1777 	return uath_cmd_write(sc, UATH_CMD_SET_RATES, &rates, sizeof rates, 0);
1778 }
1779 
1780 int
1781 uath_set_rxfilter(struct uath_softc *sc, uint32_t filter, uint32_t flags)
1782 {
1783 	struct uath_cmd_filter rxfilter;
1784 
1785 	rxfilter.filter = htobe32(filter);
1786 	rxfilter.flags  = htobe32(flags);
1787 
1788 	DPRINTF(("setting Rx filter=0x%x flags=0x%x\n", filter, flags));
1789 	return uath_cmd_write(sc, UATH_CMD_SET_FILTER, &rxfilter,
1790 	    sizeof rxfilter, 0);
1791 }
1792 
1793 int
1794 uath_set_led(struct uath_softc *sc, int which, int on)
1795 {
1796 	struct uath_cmd_led led;
1797 
1798 	led.which = htobe32(which);
1799 	led.state = htobe32(on ? UATH_LED_ON : UATH_LED_OFF);
1800 
1801 	DPRINTFN(2, ("switching %s led %s\n",
1802 	    (which == UATH_LED_LINK) ? "link" : "activity",
1803 	    on ? "on" : "off"));
1804 	return uath_cmd_write(sc, UATH_CMD_SET_LED, &led, sizeof led, 0);
1805 }
1806 
1807 int
1808 uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c)
1809 {
1810 	uint32_t val;
1811 	int error;
1812 
1813 	/* set radio frequency */
1814 	if ((error = uath_set_chan(sc, c)) != 0) {
1815 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1816 		return error;
1817 	}
1818 
1819 	/* reset Tx rings */
1820 	if ((error = uath_reset_tx_queues(sc)) != 0) {
1821 		printf("%s: could not reset Tx queues\n",
1822 		    sc->sc_dev.dv_xname);
1823 		return error;
1824 	}
1825 
1826 	/* set Tx rings WME properties */
1827 	if ((error = uath_wme_init(sc)) != 0) {
1828 		printf("%s: could not init Tx queues\n",
1829 		    sc->sc_dev.dv_xname);
1830 		return error;
1831 	}
1832 
1833 	val = htobe32(0);
1834 	error = uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
1835 	if (error != 0) {
1836 		printf("%s: could not set state\n", sc->sc_dev.dv_xname);
1837 		return error;
1838 	}
1839 
1840 	return uath_tx_null(sc);
1841 }
1842 
1843 int
1844 uath_init(struct ifnet *ifp)
1845 {
1846 	struct uath_softc *sc = ifp->if_softc;
1847 	struct ieee80211com *ic = &sc->sc_ic;
1848 	struct uath_cmd_31 cmd31;
1849 	uint32_t val;
1850 	int i, error;
1851 
1852 	/* reset data and command rings */
1853 	sc->tx_queued = sc->data_idx = sc->cmd_idx = 0;
1854 
1855 	val = htobe32(0);
1856 	(void)uath_cmd_write(sc, UATH_CMD_02, &val, sizeof val, 0);
1857 
1858 	/* set MAC address */
1859 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1860 	(void)uath_write_multi(sc, 0x13, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1861 
1862 	(void)uath_write_reg(sc, 0x02, 0x00000001);
1863 	(void)uath_write_reg(sc, 0x0e, 0x0000003f);
1864 	(void)uath_write_reg(sc, 0x10, 0x00000001);
1865 	(void)uath_write_reg(sc, 0x06, 0x0000001e);
1866 
1867 	/*
1868 	 * Queue Rx data xfers.
1869 	 */
1870 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
1871 		struct uath_rx_data *data = &sc->rx_data[i];
1872 
1873 		usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
1874 		    sc->rxbufsz, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT,
1875 		    uath_data_rxeof);
1876 		error = usbd_transfer(data->xfer);
1877 		if (error != USBD_IN_PROGRESS && error != 0) {
1878 			printf("%s: could not queue Rx transfer\n",
1879 			    sc->sc_dev.dv_xname);
1880 			goto fail;
1881 		}
1882 	}
1883 
1884 	error = uath_cmd_read(sc, UATH_CMD_07, NULL, 0, &val,
1885 	    UATH_CMD_FLAG_MAGIC);
1886 	if (error != 0) {
1887 		printf("%s: could not send read command 07h\n",
1888 		    sc->sc_dev.dv_xname);
1889 		goto fail;
1890 	}
1891 	DPRINTF(("command 07h return code: %x\n", betoh32(val)));
1892 
1893 	/* set default channel */
1894 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1895 	if ((error = uath_set_chan(sc, ic->ic_bss->ni_chan)) != 0) {
1896 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1897 		goto fail;
1898 	}
1899 
1900 	if ((error = uath_wme_init(sc)) != 0) {
1901 		printf("%s: could not setup WME parameters\n",
1902 		    sc->sc_dev.dv_xname);
1903 		goto fail;
1904 	}
1905 
1906 	/* init MAC registers */
1907 	(void)uath_write_reg(sc, 0x19, 0x00000000);
1908 	(void)uath_write_reg(sc, 0x1a, 0x0000003c);
1909 	(void)uath_write_reg(sc, 0x1b, 0x0000003c);
1910 	(void)uath_write_reg(sc, 0x1c, 0x00000000);
1911 	(void)uath_write_reg(sc, 0x1e, 0x00000000);
1912 	(void)uath_write_reg(sc, 0x1f, 0x00000003);
1913 	(void)uath_write_reg(sc, 0x0c, 0x00000000);
1914 	(void)uath_write_reg(sc, 0x0f, 0x00000002);
1915 	(void)uath_write_reg(sc, 0x0a, 0x00000007);	/* XXX retry? */
1916 	(void)uath_write_reg(sc, 0x09, ic->ic_rtsthreshold);
1917 
1918 	val = htobe32(4);
1919 	(void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1920 	(void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1921 	(void)uath_cmd_write(sc, UATH_CMD_1B, NULL, 0, 0);
1922 
1923 	if ((error = uath_set_keys(sc)) != 0) {
1924 		printf("%s: could not set crypto keys\n",
1925 		    sc->sc_dev.dv_xname);
1926 		goto fail;
1927 	}
1928 
1929 	/* enable Rx */
1930 	(void)uath_set_rxfilter(sc, 0x0000, 4);
1931 	(void)uath_set_rxfilter(sc, 0x0817, 1);
1932 
1933 	cmd31.magic1 = htobe32(0xffffffff);
1934 	cmd31.magic2 = htobe32(0xffffffff);
1935 	(void)uath_cmd_write(sc, UATH_CMD_31, &cmd31, sizeof cmd31, 0);
1936 
1937 	ifp->if_flags &= ~IFF_OACTIVE;
1938 	ifp->if_flags |= IFF_RUNNING;
1939 
1940 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1941 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1942 	else
1943 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1944 
1945 	return 0;
1946 
1947 fail:	uath_stop(ifp, 1);
1948 	return error;
1949 }
1950 
1951 void
1952 uath_stop(struct ifnet *ifp, int disable)
1953 {
1954 	struct uath_softc *sc = ifp->if_softc;
1955 	struct ieee80211com *ic = &sc->sc_ic;
1956 	uint32_t val;
1957 	int s;
1958 
1959 	s = splusb();
1960 
1961 	sc->sc_tx_timer = 0;
1962 	ifp->if_timer = 0;
1963 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1964 
1965 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
1966 
1967 	val = htobe32(0);
1968 	(void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
1969 	(void)uath_cmd_write(sc, UATH_CMD_RESET, NULL, 0, 0);
1970 
1971 	val = htobe32(0);
1972 	(void)uath_cmd_write(sc, UATH_CMD_15, &val, sizeof val, 0);
1973 
1974 #if 0
1975 	(void)uath_cmd_read(sc, UATH_CMD_SHUTDOWN, NULL, 0, NULL,
1976 	    UATH_CMD_FLAG_MAGIC);
1977 #endif
1978 
1979 	/* abort any pending transfers */
1980 	usbd_abort_pipe(sc->data_tx_pipe);
1981 	usbd_abort_pipe(sc->data_rx_pipe);
1982 	usbd_abort_pipe(sc->cmd_tx_pipe);
1983 
1984 	splx(s);
1985 }
1986 
1987 /*
1988  * Load the MIPS R4000 microcode into the device.  Once the image is loaded,
1989  * the device will detach itself from the bus and reattach later with a new
1990  * product Id (a la ezusb).  XXX this could also be implemented in userland
1991  * through /dev/ugen.
1992  */
1993 int
1994 uath_loadfirmware(struct uath_softc *sc, const u_char *fw, int len)
1995 {
1996 	struct usbd_xfer *ctlxfer, *txxfer, *rxxfer;
1997 	struct uath_fwblock *txblock, *rxblock;
1998 	uint8_t *txdata;
1999 	int error = 0;
2000 
2001 	if ((ctlxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2002 		printf("%s: could not allocate Tx control xfer\n",
2003 		    sc->sc_dev.dv_xname);
2004 		error = USBD_NOMEM;
2005 		goto fail1;
2006 	}
2007 	txblock = usbd_alloc_buffer(ctlxfer, sizeof (struct uath_fwblock));
2008 	if (txblock == NULL) {
2009 		printf("%s: could not allocate Tx control block\n",
2010 		    sc->sc_dev.dv_xname);
2011 		error = USBD_NOMEM;
2012 		goto fail2;
2013 	}
2014 
2015 	if ((txxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2016 		printf("%s: could not allocate Tx xfer\n",
2017 		    sc->sc_dev.dv_xname);
2018 		error = USBD_NOMEM;
2019 		goto fail2;
2020 	}
2021 	txdata = usbd_alloc_buffer(txxfer, UATH_MAX_FWBLOCK_SIZE);
2022 	if (txdata == NULL) {
2023 		printf("%s: could not allocate Tx buffer\n",
2024 		    sc->sc_dev.dv_xname);
2025 		error = USBD_NOMEM;
2026 		goto fail3;
2027 	}
2028 
2029 	if ((rxxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2030 		printf("%s: could not allocate Rx control xfer\n",
2031 		    sc->sc_dev.dv_xname);
2032 		error = USBD_NOMEM;
2033 		goto fail3;
2034 	}
2035 	rxblock = usbd_alloc_buffer(rxxfer, sizeof (struct uath_fwblock));
2036 	if (rxblock == NULL) {
2037 		printf("%s: could not allocate Rx control block\n",
2038 		    sc->sc_dev.dv_xname);
2039 		error = USBD_NOMEM;
2040 		goto fail4;
2041 	}
2042 
2043 	bzero(txblock, sizeof (struct uath_fwblock));
2044 	txblock->flags = htobe32(UATH_WRITE_BLOCK);
2045 	txblock->total = htobe32(len);
2046 
2047 	while (len > 0) {
2048 		int mlen = min(len, UATH_MAX_FWBLOCK_SIZE);
2049 
2050 		txblock->remain = htobe32(len - mlen);
2051 		txblock->len = htobe32(mlen);
2052 
2053 		DPRINTF(("sending firmware block: %d bytes remaining\n",
2054 		    len - mlen));
2055 
2056 		/* send firmware block meta-data */
2057 		usbd_setup_xfer(ctlxfer, sc->cmd_tx_pipe, sc, txblock,
2058 		    sizeof (struct uath_fwblock),
2059 		    USBD_NO_COPY | USBD_SYNCHRONOUS,
2060 		    UATH_CMD_TIMEOUT, NULL);
2061 		if ((error = usbd_transfer(ctlxfer)) != 0) {
2062 			printf("%s: could not send firmware block info\n",
2063 			    sc->sc_dev.dv_xname);
2064 			break;
2065 		}
2066 
2067 		/* send firmware block data */
2068 		bcopy(fw, txdata, mlen);
2069 		usbd_setup_xfer(txxfer, sc->data_tx_pipe, sc, txdata, mlen,
2070 		    USBD_NO_COPY | USBD_SYNCHRONOUS, UATH_DATA_TIMEOUT, NULL);
2071 		if ((error = usbd_transfer(txxfer)) != 0) {
2072 			printf("%s: could not send firmware block data\n",
2073 			    sc->sc_dev.dv_xname);
2074 			break;
2075 		}
2076 
2077 		/* wait for ack from firmware */
2078 		usbd_setup_xfer(rxxfer, sc->cmd_rx_pipe, sc, rxblock,
2079 		    sizeof (struct uath_fwblock), USBD_SHORT_XFER_OK |
2080 		    USBD_NO_COPY | USBD_SYNCHRONOUS, UATH_CMD_TIMEOUT, NULL);
2081 		if ((error = usbd_transfer(rxxfer)) != 0) {
2082 			printf("%s: could not read firmware answer\n",
2083 			    sc->sc_dev.dv_xname);
2084 			break;
2085 		}
2086 
2087 		DPRINTFN(2, ("rxblock flags=0x%x total=%d\n",
2088 		    betoh32(rxblock->flags), betoh32(rxblock->rxtotal)));
2089 		fw += mlen;
2090 		len -= mlen;
2091 	}
2092 
2093 fail4:	usbd_free_xfer(rxxfer);
2094 fail3:	usbd_free_xfer(txxfer);
2095 fail2:	usbd_free_xfer(ctlxfer);
2096 fail1:	return error;
2097 }
2098