xref: /openbsd-src/sys/dev/usb/if_uath.c (revision 850e275390052b330d93020bf619a739a3c277ac)
1 /*	$OpenBSD: if_uath.c,v 1.36 2008/09/23 10:47:14 canacar Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Driver for Atheros AR5005UG/AR5005UX chipsets.
22  * http://www.atheros.com/pt/bulletins/AR5005UGBulletin.pdf
23  * http://www.atheros.com/pt/bulletins/AR5005UXBulletin.pdf
24  *
25  * IMPORTANT NOTICE:
26  * This driver was written without any documentation or support from Atheros
27  * Communications. It is based on a black-box analysis of the Windows binary
28  * driver. It handles both pre and post-firmware devices.
29  */
30 
31 #include "bpfilter.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/timeout.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <machine/bus.h>
45 #include <machine/endian.h>
46 #include <machine/intr.h>
47 
48 #if NBPFILTER > 0
49 #include <net/bpf.h>
50 #endif
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/if_ether.h>
61 #include <netinet/ip.h>
62 
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/rndvar.h>
67 #include <crypto/arc4.h>
68 
69 #include <dev/usb/usb.h>
70 #include <dev/usb/usbdi.h>
71 #include <dev/usb/usbdivar.h>	/* needs_reattach() */
72 #include <dev/usb/usbdi_util.h>
73 #include <dev/usb/usbdevs.h>
74 
75 #include <dev/usb/if_uathreg.h>
76 #include <dev/usb/if_uathvar.h>
77 
78 #ifdef USB_DEBUG
79 #define UATH_DEBUG
80 #endif
81 
82 #ifdef UATH_DEBUG
83 #define DPRINTF(x)	do { if (uath_debug) printf x; } while (0)
84 #define DPRINTFN(n, x)	do { if (uath_debug >= (n)) printf x; } while (0)
85 int uath_debug = 1;
86 #else
87 #define DPRINTF(x)
88 #define DPRINTFN(n, x)
89 #endif
90 
91 /*-
92  * Various supported device vendors/products.
93  * UB51: AR5005UG 802.11b/g, UB52: AR5005UX 802.11a/b/g
94  */
95 #define UATH_DEV(v, p, f)						\
96 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, (f) },		\
97 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p##_NF },		\
98 	    (f) | UATH_FLAG_PRE_FIRMWARE }
99 #define UATH_DEV_UG(v, p)	UATH_DEV(v, p, 0)
100 #define UATH_DEV_UX(v, p)	UATH_DEV(v, p, UATH_FLAG_ABG)
101 static const struct uath_type {
102 	struct usb_devno	dev;
103 	unsigned int		flags;
104 #define UATH_FLAG_PRE_FIRMWARE	(1 << 0)
105 #define UATH_FLAG_ABG		(1 << 1)
106 } uath_devs[] = {
107 	UATH_DEV_UG(ACCTON,		SMCWUSBTG2),
108 	UATH_DEV_UG(ATHEROS,		AR5523),
109 	UATH_DEV_UG(ATHEROS2,		AR5523_1),
110 	UATH_DEV_UG(ATHEROS2,		AR5523_2),
111 	UATH_DEV_UX(ATHEROS2,		AR5523_3),
112 	UATH_DEV_UG(CONCEPTRONIC,	AR5523_1),
113 	UATH_DEV_UX(CONCEPTRONIC,	AR5523_2),
114 	UATH_DEV_UX(DLINK,		DWLAG122),
115 	UATH_DEV_UX(DLINK,		DWLAG132),
116 	UATH_DEV_UG(DLINK,		DWLG132),
117 	UATH_DEV_UG(GIGASET,		AR5523),
118 	UATH_DEV_UG(GIGASET,		SMCWUSBTG),
119 	UATH_DEV_UG(GLOBALSUN,		AR5523_1),
120 	UATH_DEV_UX(GLOBALSUN,		AR5523_2),
121 	UATH_DEV_UG(IODATA,		USBWNG54US),
122 	UATH_DEV_UG(MELCO,		WLIU2KAMG54),
123 	UATH_DEV_UX(NETGEAR,		WG111U),
124 	UATH_DEV_UG(NETGEAR3,		WG111T),
125 	UATH_DEV_UG(NETGEAR3,		WPN111),
126 	UATH_DEV_UG(PHILIPS,		SNU6500),
127 	UATH_DEV_UG(UMEDIA,		AR5523_1),
128 	UATH_DEV_UX(UMEDIA,		AR5523_2),
129 	UATH_DEV_UG(UMEDIA,		TEW444UBEU),
130 	UATH_DEV_UG(WISTRONNEWEB,	AR5523_1),
131 	UATH_DEV_UX(WISTRONNEWEB,	AR5523_2),
132 	UATH_DEV_UG(ZCOM,		AR5523)
133 };
134 #define uath_lookup(v, p)	\
135 	((const struct uath_type *)usb_lookup(uath_devs, v, p))
136 
137 void	uath_attachhook(void *);
138 int	uath_open_pipes(struct uath_softc *);
139 void	uath_close_pipes(struct uath_softc *);
140 int	uath_alloc_tx_data_list(struct uath_softc *);
141 void	uath_free_tx_data_list(struct uath_softc *);
142 int	uath_alloc_rx_data_list(struct uath_softc *);
143 void	uath_free_rx_data_list(struct uath_softc *);
144 int	uath_alloc_tx_cmd_list(struct uath_softc *);
145 void	uath_free_tx_cmd_list(struct uath_softc *);
146 int	uath_alloc_rx_cmd_list(struct uath_softc *);
147 void	uath_free_rx_cmd_list(struct uath_softc *);
148 int	uath_media_change(struct ifnet *);
149 void	uath_stat(void *);
150 void	uath_next_scan(void *);
151 void	uath_task(void *);
152 int	uath_newstate(struct ieee80211com *, enum ieee80211_state, int);
153 #ifdef UATH_DEBUG
154 void	uath_dump_cmd(const uint8_t *, int, char);
155 #endif
156 int	uath_cmd(struct uath_softc *, uint32_t, const void *, int, void *,
157 	    int);
158 int	uath_cmd_write(struct uath_softc *, uint32_t, const void *, int, int);
159 int	uath_cmd_read(struct uath_softc *, uint32_t, const void *, int, void *,
160 	    int);
161 int	uath_write_reg(struct uath_softc *, uint32_t, uint32_t);
162 int	uath_write_multi(struct uath_softc *, uint32_t, const void *, int);
163 int	uath_read_reg(struct uath_softc *, uint32_t, uint32_t *);
164 int	uath_read_eeprom(struct uath_softc *, uint32_t, void *);
165 void	uath_cmd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
166 void	uath_data_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
167 void	uath_data_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
168 int	uath_tx_null(struct uath_softc *);
169 int	uath_tx_data(struct uath_softc *, struct mbuf *,
170 	    struct ieee80211_node *);
171 void	uath_start(struct ifnet *);
172 void	uath_watchdog(struct ifnet *);
173 int	uath_ioctl(struct ifnet *, u_long, caddr_t);
174 int	uath_query_eeprom(struct uath_softc *);
175 int	uath_reset(struct uath_softc *);
176 int	uath_reset_tx_queues(struct uath_softc *);
177 int	uath_wme_init(struct uath_softc *);
178 int	uath_set_chan(struct uath_softc *, struct ieee80211_channel *);
179 int	uath_set_key(struct uath_softc *, const struct ieee80211_key *, int);
180 int	uath_set_keys(struct uath_softc *);
181 int	uath_set_rates(struct uath_softc *, const struct ieee80211_rateset *);
182 int	uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t);
183 int	uath_set_led(struct uath_softc *, int, int);
184 int	uath_switch_channel(struct uath_softc *, struct ieee80211_channel *);
185 int	uath_init(struct ifnet *);
186 void	uath_stop(struct ifnet *, int);
187 int	uath_loadfirmware(struct uath_softc *, const u_char *, int);
188 int	uath_activate(struct device *, enum devact);
189 
190 int uath_match(struct device *, void *, void *);
191 void uath_attach(struct device *, struct device *, void *);
192 int uath_detach(struct device *, int);
193 int uath_activate(struct device *, enum devact);
194 
195 struct cfdriver uath_cd = {
196 	NULL, "uath", DV_DULL
197 };
198 
199 const struct cfattach uath_ca = {
200 	sizeof(struct uath_softc),
201 	uath_match,
202 	uath_attach,
203 	uath_detach,
204 	uath_activate,
205 };
206 
207 int
208 uath_match(struct device *parent, void *match, void *aux)
209 {
210 	struct usb_attach_arg *uaa = aux;
211 
212 	if (uaa->iface != NULL)
213 		return UMATCH_NONE;
214 
215 	return (uath_lookup(uaa->vendor, uaa->product) != NULL) ?
216 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
217 }
218 
219 void
220 uath_attachhook(void *xsc)
221 {
222 	struct uath_softc *sc = xsc;
223 	u_char *fw;
224 	size_t size;
225 	int error;
226 
227 	if ((error = loadfirmware("uath-ar5523", &fw, &size)) != 0) {
228 		printf("%s: error %d, could not read firmware %s\n",
229 		    sc->sc_dev.dv_xname, error, "uath-ar5523");
230 		return;
231 	}
232 
233 	error = uath_loadfirmware(sc, fw, size);
234 	free(fw, M_DEVBUF);
235 
236 	if (error == 0) {
237 		usb_port_status_t status;
238 
239 		/*
240 		 * Hack alert: the device doesn't always gracefully detach
241 		 * from the bus after a firmware upload.  We need to force
242 		 * a port reset and a re-exploration on the parent hub.
243 		 */
244 		usbd_reset_port(sc->sc_uhub, sc->sc_port, &status);
245 		usb_needs_reattach(sc->sc_udev);
246 	} else {
247 		printf("%s: could not load firmware (error=%s)\n",
248 		    sc->sc_dev.dv_xname, usbd_errstr(error));
249 	}
250 }
251 
252 void
253 uath_attach(struct device *parent, struct device *self, void *aux)
254 {
255 	struct uath_softc *sc = (struct uath_softc *)self;
256 	struct usb_attach_arg *uaa = aux;
257 	struct ieee80211com *ic = &sc->sc_ic;
258 	struct ifnet *ifp = &ic->ic_if;
259 	usbd_status error;
260 	int i;
261 
262 	sc->sc_udev = uaa->device;
263 	sc->sc_uhub = uaa->device->myhub;
264 	sc->sc_port = uaa->port;
265 
266 	sc->sc_flags = uath_lookup(uaa->vendor, uaa->product)->flags;
267 
268 	if (usbd_set_config_no(sc->sc_udev, UATH_CONFIG_NO, 0) != 0) {
269 		printf("%s: could not set configuration no\n",
270 		    sc->sc_dev.dv_xname);
271 		return;
272 	}
273 
274 	/* get the first interface handle */
275 	error = usbd_device2interface_handle(sc->sc_udev, UATH_IFACE_INDEX,
276 	    &sc->sc_iface);
277 	if (error != 0) {
278 		printf("%s: could not get interface handle\n",
279 		    sc->sc_dev.dv_xname);
280 		return;
281 	}
282 
283 	/*
284 	 * We must open the pipes early because they're used to upload the
285 	 * firmware (pre-firmware devices) or to send firmware commands.
286 	 */
287 	if (uath_open_pipes(sc) != 0) {
288 		printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
289 		return;
290 	}
291 
292 	if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
293 		if (rootvp == NULL)
294 			mountroothook_establish(uath_attachhook, sc);
295 		else
296 			uath_attachhook(sc);
297 		return;
298 	}
299 
300 	/*
301 	 * Only post-firmware devices here.
302 	 */
303 	usb_init_task(&sc->sc_task, uath_task, sc);
304 	timeout_set(&sc->scan_to, uath_next_scan, sc);
305 	timeout_set(&sc->stat_to, uath_stat, sc);
306 
307 	/*
308 	 * Allocate xfers for firmware commands.
309 	 */
310 	if (uath_alloc_tx_cmd_list(sc) != 0) {
311 		printf("%s: could not allocate Tx command list\n",
312 		    sc->sc_dev.dv_xname);
313 		goto fail1;
314 	}
315 	if (uath_alloc_rx_cmd_list(sc) != 0) {
316 		printf("%s: could not allocate Rx command list\n",
317 		    sc->sc_dev.dv_xname);
318 		goto fail2;
319 	}
320 
321 	/*
322 	 * Queue Rx command xfers.
323 	 */
324 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
325 		struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
326 
327 		usbd_setup_xfer(cmd->xfer, sc->cmd_rx_pipe, cmd, cmd->buf,
328 		    UATH_MAX_RXCMDSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
329 		    USBD_NO_TIMEOUT, uath_cmd_rxeof);
330 		error = usbd_transfer(cmd->xfer);
331 		if (error != USBD_IN_PROGRESS && error != 0) {
332 			printf("%s: could not queue Rx command xfer\n",
333 			    sc->sc_dev.dv_xname);
334 			goto fail3;
335 		}
336 	}
337 
338 	/*
339 	 * We're now ready to send/receive firmware commands.
340 	 */
341 	if (uath_reset(sc) != 0) {
342 		printf("%s: could not initialize adapter\n",
343 		    sc->sc_dev.dv_xname);
344 		goto fail3;
345 	}
346 	if (uath_query_eeprom(sc) != 0) {
347 		printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
348 		goto fail3;
349 	}
350 
351 	printf("%s: MAC/BBP AR5523, RF AR%c112, address %s\n",
352 	    sc->sc_dev.dv_xname, (sc->sc_flags & UATH_FLAG_ABG) ? '5': '2',
353 	    ether_sprintf(ic->ic_myaddr));
354 
355 	/*
356 	 * Allocate xfers for Tx/Rx data pipes.
357 	 */
358 	if (uath_alloc_tx_data_list(sc) != 0) {
359 		printf("%s: could not allocate Tx data list\n",
360 		    sc->sc_dev.dv_xname);
361 		goto fail3;
362 	}
363 	if (uath_alloc_rx_data_list(sc) != 0) {
364 		printf("%s: could not allocate Rx data list\n",
365 		    sc->sc_dev.dv_xname);
366 		goto fail4;
367 	}
368 
369 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
370 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
371 	ic->ic_state = IEEE80211_S_INIT;
372 
373 	/* set device capabilities */
374 	ic->ic_caps =
375 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
376 	    IEEE80211_C_TXPMGT |	/* tx power management */
377 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
378 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
379 	    IEEE80211_C_WEP;		/* h/w WEP */
380 
381 	/* set supported .11b and .11g rates */
382 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
383 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
384 
385 	/* set supported .11b and .11g channels (1 through 14) */
386 	for (i = 1; i <= 14; i++) {
387 		ic->ic_channels[i].ic_freq =
388 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
389 		ic->ic_channels[i].ic_flags =
390 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
391 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
392 	}
393 
394 	ifp->if_softc = sc;
395 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
396 	ifp->if_init = uath_init;
397 	ifp->if_ioctl = uath_ioctl;
398 	ifp->if_start = uath_start;
399 	ifp->if_watchdog = uath_watchdog;
400 	IFQ_SET_READY(&ifp->if_snd);
401 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
402 
403 	if_attach(ifp);
404 	ieee80211_ifattach(ifp);
405 
406 	/* override state transition machine */
407 	sc->sc_newstate = ic->ic_newstate;
408 	ic->ic_newstate = uath_newstate;
409 	ieee80211_media_init(ifp, uath_media_change, ieee80211_media_status);
410 
411 #if NBPFILTER > 0
412 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
413 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
414 
415 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
416 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
417 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UATH_RX_RADIOTAP_PRESENT);
418 
419 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
420 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
421 	sc->sc_txtap.wt_ihdr.it_present = htole32(UATH_TX_RADIOTAP_PRESENT);
422 #endif
423 
424 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
425 	    &sc->sc_dev);
426 
427 	return;
428 
429 fail4:	uath_free_tx_data_list(sc);
430 fail3:	uath_free_rx_cmd_list(sc);
431 fail2:	uath_free_tx_cmd_list(sc);
432 fail1:	uath_close_pipes(sc);
433 }
434 
435 int
436 uath_detach(struct device *self, int flags)
437 {
438 	struct uath_softc *sc = (struct uath_softc *)self;
439 	struct ifnet *ifp = &sc->sc_ic.ic_if;
440 	int s;
441 
442 	s = splnet();
443 
444 	if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
445 		uath_close_pipes(sc);
446 		splx(s);
447 		return 0;
448 	}
449 
450 	/* post-firmware device */
451 
452 	usb_rem_task(sc->sc_udev, &sc->sc_task);
453 	timeout_del(&sc->scan_to);
454 	timeout_del(&sc->stat_to);
455 
456 	/* abort and free xfers */
457 	uath_free_tx_data_list(sc);
458 	uath_free_rx_data_list(sc);
459 	uath_free_tx_cmd_list(sc);
460 	uath_free_rx_cmd_list(sc);
461 
462 	/* close Tx/Rx pipes */
463 	uath_close_pipes(sc);
464 
465 	ieee80211_ifdetach(ifp);	/* free all nodes */
466 	if_detach(ifp);
467 
468 	splx(s);
469 
470 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
471 	    &sc->sc_dev);
472 
473 	return 0;
474 }
475 
476 int
477 uath_open_pipes(struct uath_softc *sc)
478 {
479 	int error;
480 
481 	/*
482 	 * XXX pipes numbers are hardcoded because we don't have any way
483 	 * to distinguish the data pipes from the firmware command pipes
484 	 * (both are bulk pipes) using the endpoints descriptors.
485 	 */
486 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
487 	    &sc->cmd_tx_pipe);
488 	if (error != 0) {
489 		printf("%s: could not open Tx command pipe: %s\n",
490 		    sc->sc_dev.dv_xname, usbd_errstr(error));
491 		goto fail;
492 	}
493 
494 	error = usbd_open_pipe(sc->sc_iface, 0x02, USBD_EXCLUSIVE_USE,
495 	    &sc->data_tx_pipe);
496 	if (error != 0) {
497 		printf("%s: could not open Tx data pipe: %s\n",
498 		    sc->sc_dev.dv_xname, usbd_errstr(error));
499 		goto fail;
500 	}
501 
502 	error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
503 	    &sc->cmd_rx_pipe);
504 	if (error != 0) {
505 		printf("%s: could not open Rx command pipe: %s\n",
506 		    sc->sc_dev.dv_xname, usbd_errstr(error));
507 		goto fail;
508 	}
509 
510 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
511 	    &sc->data_rx_pipe);
512 	if (error != 0) {
513 		printf("%s: could not open Rx data pipe: %s\n",
514 		    sc->sc_dev.dv_xname, usbd_errstr(error));
515 		goto fail;
516 	}
517 
518 	return 0;
519 
520 fail:	uath_close_pipes(sc);
521 	return error;
522 }
523 
524 void
525 uath_close_pipes(struct uath_softc *sc)
526 {
527 	/* assumes no transfers are pending on the pipes */
528 
529 	if (sc->data_tx_pipe != NULL)
530 		usbd_close_pipe(sc->data_tx_pipe);
531 
532 	if (sc->data_rx_pipe != NULL)
533 		usbd_close_pipe(sc->data_rx_pipe);
534 
535 	if (sc->cmd_tx_pipe != NULL)
536 		usbd_close_pipe(sc->cmd_tx_pipe);
537 
538 	if (sc->cmd_rx_pipe != NULL)
539 		usbd_close_pipe(sc->cmd_rx_pipe);
540 }
541 
542 int
543 uath_alloc_tx_data_list(struct uath_softc *sc)
544 {
545 	int i, error;
546 
547 	for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) {
548 		struct uath_tx_data *data = &sc->tx_data[i];
549 
550 		data->sc = sc;	/* backpointer for callbacks */
551 
552 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
553 		if (data->xfer == NULL) {
554 			printf("%s: could not allocate xfer\n",
555 			    sc->sc_dev.dv_xname);
556 			error = ENOMEM;
557 			goto fail;
558 		}
559 		data->buf = usbd_alloc_buffer(data->xfer, UATH_MAX_TXBUFSZ);
560 		if (data->buf == NULL) {
561 			printf("%s: could not allocate xfer buffer\n",
562 			    sc->sc_dev.dv_xname);
563 			error = ENOMEM;
564 			goto fail;
565 		}
566 	}
567 	return 0;
568 
569 fail:	uath_free_tx_data_list(sc);
570 	return error;
571 }
572 
573 void
574 uath_free_tx_data_list(struct uath_softc *sc)
575 {
576 	int i;
577 
578 	/* make sure no transfers are pending */
579 	usbd_abort_pipe(sc->data_tx_pipe);
580 
581 	for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++)
582 		if (sc->tx_data[i].xfer != NULL)
583 			usbd_free_xfer(sc->tx_data[i].xfer);
584 }
585 
586 int
587 uath_alloc_rx_data_list(struct uath_softc *sc)
588 {
589 	int i, error;
590 
591 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
592 		struct uath_rx_data *data = &sc->rx_data[i];
593 
594 		data->sc = sc;	/* backpointer for callbacks */
595 
596 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
597 		if (data->xfer == NULL) {
598 			printf("%s: could not allocate xfer\n",
599 			    sc->sc_dev.dv_xname);
600 			error = ENOMEM;
601 			goto fail;
602 		}
603 		if (usbd_alloc_buffer(data->xfer, sc->rxbufsz) == NULL) {
604 			printf("%s: could not allocate xfer buffer\n",
605 			    sc->sc_dev.dv_xname);
606 			error = ENOMEM;
607 			goto fail;
608 		}
609 
610 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
611 		if (data->m == NULL) {
612 			printf("%s: could not allocate rx mbuf\n",
613 			    sc->sc_dev.dv_xname);
614 			error = ENOMEM;
615 			goto fail;
616 		}
617 		MCLGET(data->m, M_DONTWAIT);
618 		if (!(data->m->m_flags & M_EXT)) {
619 			printf("%s: could not allocate rx mbuf cluster\n",
620 			    sc->sc_dev.dv_xname);
621 			error = ENOMEM;
622 			goto fail;
623 		}
624 
625 		data->buf = mtod(data->m, uint8_t *);
626 	}
627 	return 0;
628 
629 fail:	uath_free_rx_data_list(sc);
630 	return error;
631 }
632 
633 void
634 uath_free_rx_data_list(struct uath_softc *sc)
635 {
636 	int i;
637 
638 	/* make sure no transfers are pending */
639 	usbd_abort_pipe(sc->data_rx_pipe);
640 
641 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
642 		struct uath_rx_data *data = &sc->rx_data[i];
643 
644 		if (data->xfer != NULL)
645 			usbd_free_xfer(data->xfer);
646 
647 		if (data->m != NULL)
648 			m_freem(data->m);
649 	}
650 }
651 
652 int
653 uath_alloc_tx_cmd_list(struct uath_softc *sc)
654 {
655 	int i, error;
656 
657 	for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++) {
658 		struct uath_tx_cmd *cmd = &sc->tx_cmd[i];
659 
660 		cmd->sc = sc;	/* backpointer for callbacks */
661 
662 		cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
663 		if (cmd->xfer == NULL) {
664 			printf("%s: could not allocate xfer\n",
665 			    sc->sc_dev.dv_xname);
666 			error = ENOMEM;
667 			goto fail;
668 		}
669 		cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_TXCMDSZ);
670 		if (cmd->buf == NULL) {
671 			printf("%s: could not allocate xfer buffer\n",
672 			    sc->sc_dev.dv_xname);
673 			error = ENOMEM;
674 			goto fail;
675 		}
676 	}
677 	return 0;
678 
679 fail:	uath_free_tx_cmd_list(sc);
680 	return error;
681 }
682 
683 void
684 uath_free_tx_cmd_list(struct uath_softc *sc)
685 {
686 	int i;
687 
688 	/* make sure no transfers are pending */
689 	usbd_abort_pipe(sc->cmd_tx_pipe);
690 
691 	for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++)
692 		if (sc->tx_cmd[i].xfer != NULL)
693 			usbd_free_xfer(sc->tx_cmd[i].xfer);
694 }
695 
696 int
697 uath_alloc_rx_cmd_list(struct uath_softc *sc)
698 {
699 	int i, error;
700 
701 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
702 		struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
703 
704 		cmd->sc = sc;	/* backpointer for callbacks */
705 
706 		cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
707 		if (cmd->xfer == NULL) {
708 			printf("%s: could not allocate xfer\n",
709 			    sc->sc_dev.dv_xname);
710 			error = ENOMEM;
711 			goto fail;
712 		}
713 		cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_RXCMDSZ);
714 		if (cmd->buf == NULL) {
715 			printf("%s: could not allocate xfer buffer\n",
716 			    sc->sc_dev.dv_xname);
717 			error = ENOMEM;
718 			goto fail;
719 		}
720 	}
721 	return 0;
722 
723 fail:	uath_free_rx_cmd_list(sc);
724 	return error;
725 }
726 
727 void
728 uath_free_rx_cmd_list(struct uath_softc *sc)
729 {
730 	int i;
731 
732 	/* make sure no transfers are pending */
733 	usbd_abort_pipe(sc->cmd_rx_pipe);
734 
735 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++)
736 		if (sc->rx_cmd[i].xfer != NULL)
737 			usbd_free_xfer(sc->rx_cmd[i].xfer);
738 }
739 
740 int
741 uath_media_change(struct ifnet *ifp)
742 {
743 	int error;
744 
745 	error = ieee80211_media_change(ifp);
746 	if (error != ENETRESET)
747 		return error;
748 
749 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
750 		uath_init(ifp);
751 
752 	return 0;
753 }
754 
755 /*
756  * This function is called periodically (every second) when associated to
757  * query device statistics.
758  */
759 void
760 uath_stat(void *arg)
761 {
762 	struct uath_softc *sc = arg;
763 	int error;
764 
765 	/*
766 	 * Send request for statistics asynchronously. The timer will be
767 	 * restarted when we'll get the stats notification.
768 	 */
769 	error = uath_cmd_write(sc, UATH_CMD_STATS, NULL, 0,
770 	    UATH_CMD_FLAG_ASYNC);
771 	if (error != 0) {
772 		printf("%s: could not query statistics (error=%d)\n",
773 		    sc->sc_dev.dv_xname, error);
774 	}
775 }
776 
777 /*
778  * This function is called periodically (every 250ms) during scanning to
779  * switch from one channel to another.
780  */
781 void
782 uath_next_scan(void *arg)
783 {
784 	struct uath_softc *sc = arg;
785 	struct ieee80211com *ic = &sc->sc_ic;
786 	struct ifnet *ifp = &ic->ic_if;
787 
788 	if (ic->ic_state == IEEE80211_S_SCAN)
789 		ieee80211_next_scan(ifp);
790 }
791 
792 void
793 uath_task(void *arg)
794 {
795 	struct uath_softc *sc = arg;
796 	struct ieee80211com *ic = &sc->sc_ic;
797 	enum ieee80211_state ostate;
798 
799 	ostate = ic->ic_state;
800 
801 	switch (sc->sc_state) {
802 	case IEEE80211_S_INIT:
803 		if (ostate == IEEE80211_S_RUN) {
804 			/* turn link and activity LEDs off */
805 			(void)uath_set_led(sc, UATH_LED_LINK, 0);
806 			(void)uath_set_led(sc, UATH_LED_ACTIVITY, 0);
807 		}
808 		break;
809 
810 	case IEEE80211_S_SCAN:
811 		if (uath_switch_channel(sc, ic->ic_bss->ni_chan) != 0) {
812 			printf("%s: could not switch channel\n",
813 			    sc->sc_dev.dv_xname);
814 			break;
815 		}
816 		timeout_add(&sc->scan_to, hz / 4);
817 		break;
818 
819 	case IEEE80211_S_AUTH:
820 	{
821 		struct ieee80211_node *ni = ic->ic_bss;
822 		struct uath_cmd_bssid bssid;
823 		struct uath_cmd_0b cmd0b;
824 		struct uath_cmd_0c cmd0c;
825 
826 		if (uath_switch_channel(sc, ni->ni_chan) != 0) {
827 			printf("%s: could not switch channel\n",
828 			    sc->sc_dev.dv_xname);
829 			break;
830 		}
831 
832 		(void)uath_cmd_write(sc, UATH_CMD_24, NULL, 0, 0);
833 
834 		bzero(&bssid, sizeof bssid);
835 		bssid.len = htobe32(IEEE80211_ADDR_LEN);
836 		IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
837 		(void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
838 		    sizeof bssid, 0);
839 
840 		bzero(&cmd0b, sizeof cmd0b);
841 		cmd0b.code = htobe32(2);
842 		cmd0b.size = htobe32(sizeof (cmd0b.data));
843 		(void)uath_cmd_write(sc, UATH_CMD_0B, &cmd0b, sizeof cmd0b, 0);
844 
845 		bzero(&cmd0c, sizeof cmd0c);
846 		cmd0c.magic1 = htobe32(2);
847 		cmd0c.magic2 = htobe32(7);
848 		cmd0c.magic3 = htobe32(1);
849 		(void)uath_cmd_write(sc, UATH_CMD_0C, &cmd0c, sizeof cmd0c, 0);
850 
851 		if (uath_set_rates(sc, &ni->ni_rates) != 0) {
852 			printf("%s: could not set negotiated rate set\n",
853 			    sc->sc_dev.dv_xname);
854 			break;
855 		}
856 		break;
857 	}
858 
859 	case IEEE80211_S_ASSOC:
860 		break;
861 
862 	case IEEE80211_S_RUN:
863 	{
864 		struct ieee80211_node *ni = ic->ic_bss;
865 		struct uath_cmd_bssid bssid;
866 		struct uath_cmd_xled xled;
867 		uint32_t val;
868 
869 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
870 			/* make both LEDs blink while monitoring */
871 			bzero(&xled, sizeof xled);
872 			xled.which = htobe32(0);
873 			xled.rate = htobe32(1);
874 			xled.mode = htobe32(2);
875 			(void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled,
876 			    sizeof xled, 0);
877 			break;
878 		}
879 
880 		/*
881 		 * Tx rate is controlled by firmware, report the maximum
882 		 * negotiated rate in ifconfig output.
883 		 */
884 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
885 
886 		val = htobe32(1);
887 		(void)uath_cmd_write(sc, UATH_CMD_2E, &val, sizeof val, 0);
888 
889 		bzero(&bssid, sizeof bssid);
890 		bssid.flags1 = htobe32(0xc004);
891 		bssid.flags2 = htobe32(0x003b);
892 		bssid.len = htobe32(IEEE80211_ADDR_LEN);
893 		IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
894 		(void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
895 		    sizeof bssid, 0);
896 
897 		/* turn link LED on */
898 		(void)uath_set_led(sc, UATH_LED_LINK, 1);
899 
900 		/* make activity LED blink */
901 		bzero(&xled, sizeof xled);
902 		xled.which = htobe32(1);
903 		xled.rate = htobe32(1);
904 		xled.mode = htobe32(2);
905 		(void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled, sizeof xled,
906 		    0);
907 
908 		/* set state to associated */
909 		val = htobe32(1);
910 		(void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val,
911 		    0);
912 
913 		/* start statistics timer */
914 		timeout_add(&sc->stat_to, hz);
915 		break;
916 	}
917 	}
918 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
919 }
920 
921 int
922 uath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
923 {
924 	struct uath_softc *sc = ic->ic_softc;
925 
926 	usb_rem_task(sc->sc_udev, &sc->sc_task);
927 	timeout_del(&sc->scan_to);
928 	timeout_del(&sc->stat_to);
929 
930 	/* do it in a process context */
931 	sc->sc_state = nstate;
932 	sc->sc_arg = arg;
933 	usb_add_task(sc->sc_udev, &sc->sc_task);
934 	return 0;
935 }
936 
937 #ifdef UATH_DEBUG
938 void
939 uath_dump_cmd(const uint8_t *buf, int len, char prefix)
940 {
941 	int i;
942 
943 	for (i = 0; i < len; i++) {
944 		if ((i % 16) == 0)
945 			printf("\n%c ", prefix);
946 		else if ((i % 4) == 0)
947 			printf(" ");
948 		printf("%02x", buf[i]);
949 	}
950 	printf("\n");
951 }
952 #endif
953 
954 /*
955  * Low-level function to send read or write commands to the firmware.
956  */
957 int
958 uath_cmd(struct uath_softc *sc, uint32_t code, const void *idata, int ilen,
959     void *odata, int flags)
960 {
961 	struct uath_cmd_hdr *hdr;
962 	struct uath_tx_cmd *cmd;
963 	uint16_t xferflags;
964 	int s, xferlen, error;
965 
966 	/* grab a xfer */
967 	cmd = &sc->tx_cmd[sc->cmd_idx];
968 
969 	/* always bulk-out a multiple of 4 bytes */
970 	xferlen = (sizeof (struct uath_cmd_hdr) + ilen + 3) & ~3;
971 
972 	hdr = (struct uath_cmd_hdr *)cmd->buf;
973 	bzero(hdr, sizeof (struct uath_cmd_hdr));
974 	hdr->len   = htobe32(xferlen);
975 	hdr->code  = htobe32(code);
976 	hdr->priv  = sc->cmd_idx;	/* don't care about endianness */
977 	hdr->magic = htobe32((flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0);
978 	bcopy(idata, (uint8_t *)(hdr + 1), ilen);
979 
980 #ifdef UATH_DEBUG
981 	if (uath_debug >= 5) {
982 		printf("sending command code=0x%02x flags=0x%x index=%u",
983 		    code, flags, sc->cmd_idx);
984 		uath_dump_cmd(cmd->buf, xferlen, '+');
985 	}
986 #endif
987 	xferflags = USBD_FORCE_SHORT_XFER | USBD_NO_COPY;
988 	if (!(flags & UATH_CMD_FLAG_READ)) {
989 		if (!(flags & UATH_CMD_FLAG_ASYNC))
990 			xferflags |= USBD_SYNCHRONOUS;
991 	} else
992 		s = splusb();
993 
994 	cmd->odata = odata;
995 
996 	usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
997 	    xferflags, UATH_CMD_TIMEOUT, NULL);
998 	error = usbd_transfer(cmd->xfer);
999 	if (error != USBD_IN_PROGRESS && error != 0) {
1000 		if (flags & UATH_CMD_FLAG_READ)
1001 			splx(s);
1002 		printf("%s: could not send command 0x%x (error=%s)\n",
1003 		    sc->sc_dev.dv_xname, code, usbd_errstr(error));
1004 		return error;
1005 	}
1006 	sc->cmd_idx = (sc->cmd_idx + 1) % UATH_TX_CMD_LIST_COUNT;
1007 
1008 	if (!(flags & UATH_CMD_FLAG_READ))
1009 		return 0;	/* write: don't wait for reply */
1010 
1011 	/* wait at most two seconds for command reply */
1012 	error = tsleep(cmd, PCATCH, "uathcmd", 2 * hz);
1013 	cmd->odata = NULL;	/* in case answer is received too late */
1014 	splx(s);
1015 	if (error != 0) {
1016 		printf("%s: timeout waiting for command reply\n",
1017 		    sc->sc_dev.dv_xname);
1018 	}
1019 	return error;
1020 }
1021 
1022 int
1023 uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len,
1024     int flags)
1025 {
1026 	flags &= ~UATH_CMD_FLAG_READ;
1027 	return uath_cmd(sc, code, data, len, NULL, flags);
1028 }
1029 
1030 int
1031 uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata,
1032     int ilen, void *odata, int flags)
1033 {
1034 	flags |= UATH_CMD_FLAG_READ;
1035 	return uath_cmd(sc, code, idata, ilen, odata, flags);
1036 }
1037 
1038 int
1039 uath_write_reg(struct uath_softc *sc, uint32_t reg, uint32_t val)
1040 {
1041 	struct uath_write_mac write;
1042 	int error;
1043 
1044 	write.reg = htobe32(reg);
1045 	write.len = htobe32(0);	/* 0 = single write */
1046 	*(uint32_t *)write.data = htobe32(val);
1047 
1048 	error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1049 	    3 * sizeof (uint32_t), 0);
1050 	if (error != 0) {
1051 		printf("%s: could not write register 0x%02x\n",
1052 		    sc->sc_dev.dv_xname, reg);
1053 	}
1054 	return error;
1055 }
1056 
1057 int
1058 uath_write_multi(struct uath_softc *sc, uint32_t reg, const void *data,
1059     int len)
1060 {
1061 	struct uath_write_mac write;
1062 	int error;
1063 
1064 	write.reg = htobe32(reg);
1065 	write.len = htobe32(len);
1066 	bcopy(data, write.data, len);
1067 
1068 	/* properly handle the case where len is zero (reset) */
1069 	error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1070 	    (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0);
1071 	if (error != 0) {
1072 		printf("%s: could not write %d bytes to register 0x%02x\n",
1073 		    sc->sc_dev.dv_xname, len, reg);
1074 	}
1075 	return error;
1076 }
1077 
1078 int
1079 uath_read_reg(struct uath_softc *sc, uint32_t reg, uint32_t *val)
1080 {
1081 	struct uath_read_mac read;
1082 	int error;
1083 
1084 	reg = htobe32(reg);
1085 	error = uath_cmd_read(sc, UATH_CMD_READ_MAC, &reg, sizeof reg, &read,
1086 	    0);
1087 	if (error != 0) {
1088 		printf("%s: could not read register 0x%02x\n",
1089 		    sc->sc_dev.dv_xname, betoh32(reg));
1090 		return error;
1091 	}
1092 	*val = betoh32(*(uint32_t *)read.data);
1093 	return error;
1094 }
1095 
1096 int
1097 uath_read_eeprom(struct uath_softc *sc, uint32_t reg, void *odata)
1098 {
1099 	struct uath_read_mac read;
1100 	int len, error;
1101 
1102 	reg = htobe32(reg);
1103 	error = uath_cmd_read(sc, UATH_CMD_READ_EEPROM, &reg, sizeof reg,
1104 	    &read, 0);
1105 	if (error != 0) {
1106 		printf("%s: could not read EEPROM offset 0x%02x\n",
1107 		    sc->sc_dev.dv_xname, betoh32(reg));
1108 		return error;
1109 	}
1110 	len = betoh32(read.len);
1111 	bcopy(read.data, odata, (len == 0) ? sizeof (uint32_t) : len);
1112 	return error;
1113 }
1114 
1115 void
1116 uath_cmd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv,
1117     usbd_status status)
1118 {
1119 	struct uath_rx_cmd *cmd = priv;
1120 	struct uath_softc *sc = cmd->sc;
1121 	struct uath_cmd_hdr *hdr;
1122 
1123 	if (status != USBD_NORMAL_COMPLETION) {
1124 		if (status == USBD_STALLED)
1125 			usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
1126 		return;
1127 	}
1128 
1129 	hdr = (struct uath_cmd_hdr *)cmd->buf;
1130 
1131 #ifdef UATH_DEBUG
1132 	if (uath_debug >= 5) {
1133 		printf("received command code=0x%x index=%u len=%u",
1134 		    betoh32(hdr->code), hdr->priv, betoh32(hdr->len));
1135 		uath_dump_cmd(cmd->buf, betoh32(hdr->len), '-');
1136 	}
1137 #endif
1138 
1139 	switch (betoh32(hdr->code) & 0xff) {
1140 	/* reply to a read command */
1141 	default:
1142 	{
1143 		struct uath_tx_cmd *txcmd = &sc->tx_cmd[hdr->priv];
1144 
1145 		if (txcmd->odata != NULL) {
1146 			/* copy answer into caller's supplied buffer */
1147 			bcopy((uint8_t *)(hdr + 1), txcmd->odata,
1148 			    betoh32(hdr->len) - sizeof (struct uath_cmd_hdr));
1149 		}
1150 		wakeup(txcmd);	/* wake up caller */
1151 		break;
1152 	}
1153 	/* spontaneous firmware notifications */
1154 	case UATH_NOTIF_READY:
1155 		DPRINTF(("received device ready notification\n"));
1156 		wakeup(UATH_COND_INIT(sc));
1157 		break;
1158 
1159 	case UATH_NOTIF_TX:
1160 		/* this notification is sent when UATH_TX_NOTIFY is set */
1161 		DPRINTF(("received Tx notification\n"));
1162 		break;
1163 
1164 	case UATH_NOTIF_STATS:
1165 		DPRINTFN(2, ("received device statistics\n"));
1166 		timeout_add(&sc->stat_to, hz);
1167 		break;
1168 	}
1169 
1170 	/* setup a new transfer */
1171 	usbd_setup_xfer(xfer, sc->cmd_rx_pipe, cmd, cmd->buf, UATH_MAX_RXCMDSZ,
1172 	    USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT,
1173 	    uath_cmd_rxeof);
1174 	(void)usbd_transfer(xfer);
1175 }
1176 
1177 void
1178 uath_data_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv,
1179     usbd_status status)
1180 {
1181 	struct uath_rx_data *data = priv;
1182 	struct uath_softc *sc = data->sc;
1183 	struct ieee80211com *ic = &sc->sc_ic;
1184 	struct ifnet *ifp = &ic->ic_if;
1185 	struct ieee80211_frame *wh;
1186 	struct ieee80211_rxinfo rxi;
1187 	struct ieee80211_node *ni;
1188 	struct uath_rx_desc *desc;
1189 	struct mbuf *mnew, *m;
1190 	uint32_t hdr;
1191 	int s, len;
1192 
1193 	if (status != USBD_NORMAL_COMPLETION) {
1194 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1195 			return;
1196 
1197 		if (status == USBD_STALLED)
1198 			usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1199 
1200 		ifp->if_ierrors++;
1201 		return;
1202 	}
1203 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1204 
1205 	if (len < UATH_MIN_RXBUFSZ) {
1206 		DPRINTF(("wrong xfer size (len=%d)\n", len));
1207 		ifp->if_ierrors++;
1208 		goto skip;
1209 	}
1210 
1211 	hdr = betoh32(*(uint32_t *)data->buf);
1212 
1213 	/* Rx descriptor is located at the end, 32-bit aligned */
1214 	desc = (struct uath_rx_desc *)
1215 	    (data->buf + len - sizeof (struct uath_rx_desc));
1216 
1217 	if (betoh32(desc->len) > sc->rxbufsz) {
1218 		DPRINTF(("bad descriptor (len=%d)\n", betoh32(desc->len)));
1219 		ifp->if_ierrors++;
1220 		goto skip;
1221 	}
1222 
1223 	/* there's probably a "bad CRC" flag somewhere in the descriptor.. */
1224 
1225 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1226 	if (mnew == NULL) {
1227 		printf("%s: could not allocate rx mbuf\n",
1228 		    sc->sc_dev.dv_xname);
1229 		ifp->if_ierrors++;
1230 		goto skip;
1231 	}
1232 	MCLGET(mnew, M_DONTWAIT);
1233 	if (!(mnew->m_flags & M_EXT)) {
1234 		printf("%s: could not allocate rx mbuf cluster\n",
1235 		    sc->sc_dev.dv_xname);
1236 		m_freem(mnew);
1237 		ifp->if_ierrors++;
1238 		goto skip;
1239 	}
1240 
1241 	m = data->m;
1242 	data->m = mnew;
1243 
1244 	/* finalize mbuf */
1245 	m->m_pkthdr.rcvif = ifp;
1246 	m->m_data = data->buf + sizeof (uint32_t);
1247 	m->m_pkthdr.len = m->m_len = betoh32(desc->len) -
1248 	    sizeof (struct uath_rx_desc) - IEEE80211_CRC_LEN;
1249 
1250 	data->buf = mtod(data->m, uint8_t *);
1251 
1252 	wh = mtod(m, struct ieee80211_frame *);
1253 	rxi.rxi_flags = 0;
1254 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) &&
1255 	    ic->ic_opmode != IEEE80211_M_MONITOR) {
1256 		/*
1257 		 * Hardware decrypts the frame itself but leaves the WEP bit
1258 		 * set in the 802.11 header and doesn't remove the IV and CRC
1259 		 * fields.
1260 		 */
1261 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1262 		ovbcopy(wh, (caddr_t)wh + IEEE80211_WEP_IVLEN +
1263 		    IEEE80211_WEP_KIDLEN, sizeof (struct ieee80211_frame));
1264 		m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1265 		m_adj(m, -IEEE80211_WEP_CRCLEN);
1266 		wh = mtod(m, struct ieee80211_frame *);
1267 
1268 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1269 	}
1270 
1271 #if NBPFILTER > 0
1272 	/* there are a lot more fields in the Rx descriptor */
1273 	if (sc->sc_drvbpf != NULL) {
1274 		struct mbuf mb;
1275 		struct uath_rx_radiotap_header *tap = &sc->sc_rxtap;
1276 
1277 		tap->wr_flags = 0;
1278 		tap->wr_chan_freq = htole16(betoh32(desc->freq));
1279 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1280 		tap->wr_dbm_antsignal = (int8_t)betoh32(desc->rssi);
1281 
1282 		mb.m_data = (caddr_t)tap;
1283 		mb.m_len = sc->sc_rxtap_len;
1284 		mb.m_next = m;
1285 		mb.m_nextpkt = NULL;
1286 		mb.m_type = 0;
1287 		mb.m_flags = 0;
1288 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1289 	}
1290 #endif
1291 
1292 	s = splnet();
1293 	ni = ieee80211_find_rxnode(ic, wh);
1294 	rxi.rxi_rssi = (int)betoh32(desc->rssi);
1295 	rxi.rxi_tstamp = 0;	/* unused */
1296 	ieee80211_input(ifp, m, ni, &rxi);
1297 
1298 	/* node is no longer needed */
1299 	ieee80211_release_node(ic, ni);
1300 	splx(s);
1301 
1302 skip:	/* setup a new transfer */
1303 	usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, sc->rxbufsz,
1304 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, uath_data_rxeof);
1305 	(void)usbd_transfer(data->xfer);
1306 }
1307 
1308 int
1309 uath_tx_null(struct uath_softc *sc)
1310 {
1311 	struct uath_tx_data *data;
1312 	struct uath_tx_desc *desc;
1313 
1314 	data = &sc->tx_data[sc->data_idx];
1315 
1316 	data->ni = NULL;
1317 
1318 	*(uint32_t *)data->buf = UATH_MAKECTL(1, sizeof (struct uath_tx_desc));
1319 	desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1320 
1321 	bzero(desc, sizeof (struct uath_tx_desc));
1322 	desc->len  = htobe32(sizeof (struct uath_tx_desc));
1323 	desc->type = htobe32(UATH_TX_NULL);
1324 
1325 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf,
1326 	    sizeof (uint32_t) + sizeof (struct uath_tx_desc), USBD_NO_COPY |
1327 	    USBD_FORCE_SHORT_XFER, UATH_DATA_TIMEOUT, NULL);
1328 	if (usbd_sync_transfer(data->xfer) != 0)
1329 		return EIO;
1330 
1331 	sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1332 
1333 	return uath_cmd_write(sc, UATH_CMD_0F, NULL, 0, UATH_CMD_FLAG_ASYNC);
1334 }
1335 
1336 void
1337 uath_data_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
1338     usbd_status status)
1339 {
1340 	struct uath_tx_data *data = priv;
1341 	struct uath_softc *sc = data->sc;
1342 	struct ieee80211com *ic = &sc->sc_ic;
1343 	struct ifnet *ifp = &ic->ic_if;
1344 	int s;
1345 
1346 	if (status != USBD_NORMAL_COMPLETION) {
1347 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1348 			return;
1349 
1350 		printf("%s: could not transmit buffer: %s\n",
1351 		    sc->sc_dev.dv_xname, usbd_errstr(status));
1352 
1353 		if (status == USBD_STALLED)
1354 			usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1355 
1356 		ifp->if_oerrors++;
1357 		return;
1358 	}
1359 
1360 	s = splnet();
1361 
1362 	ieee80211_release_node(ic, data->ni);
1363 	data->ni = NULL;
1364 
1365 	sc->tx_queued--;
1366 	ifp->if_opackets++;
1367 
1368 	sc->sc_tx_timer = 0;
1369 	ifp->if_flags &= ~IFF_OACTIVE;
1370 	uath_start(ifp);
1371 
1372 	splx(s);
1373 }
1374 
1375 int
1376 uath_tx_data(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1377 {
1378 	struct ieee80211com *ic = &sc->sc_ic;
1379 	struct uath_tx_data *data;
1380 	struct uath_tx_desc *desc;
1381 	const struct ieee80211_frame *wh;
1382 	int paylen, totlen, xferlen, error;
1383 
1384 	data = &sc->tx_data[sc->data_idx];
1385 	desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1386 
1387 	data->ni = ni;
1388 
1389 #if NBPFILTER > 0
1390 	if (sc->sc_drvbpf != NULL) {
1391 		struct mbuf mb;
1392 		struct uath_tx_radiotap_header *tap = &sc->sc_txtap;
1393 
1394 		tap->wt_flags = 0;
1395 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1396 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1397 
1398 		mb.m_data = (caddr_t)tap;
1399 		mb.m_len = sc->sc_txtap_len;
1400 		mb.m_next = m0;
1401 		mb.m_nextpkt = NULL;
1402 		mb.m_type = 0;
1403 		mb.m_flags = 0;
1404 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1405 	}
1406 #endif
1407 
1408 	paylen = m0->m_pkthdr.len;
1409 	xferlen = sizeof (uint32_t) + sizeof (struct uath_tx_desc) + paylen;
1410 
1411 	wh = mtod(m0, struct ieee80211_frame *);
1412 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1413 		uint8_t *frm = (uint8_t *)(desc + 1);
1414 		uint32_t iv;
1415 
1416 		/* h/w WEP: it's up to the host to fill the IV field */
1417 		bcopy(wh, frm, sizeof (struct ieee80211_frame));
1418 		frm += sizeof (struct ieee80211_frame);
1419 
1420 		/* insert IV: code copied from net80211 */
1421 		iv = (ic->ic_iv != 0) ? ic->ic_iv : arc4random();
1422 		if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1423 			iv += 0x000100;
1424 		ic->ic_iv = iv + 1;
1425 
1426 		*frm++ = iv & 0xff;
1427 		*frm++ = (iv >>  8) & 0xff;
1428 		*frm++ = (iv >> 16) & 0xff;
1429 		*frm++ = ic->ic_wep_txkey << 6;
1430 
1431 		m_copydata(m0, sizeof (struct ieee80211_frame),
1432 		    m0->m_pkthdr.len - sizeof (struct ieee80211_frame), frm);
1433 
1434 		paylen  += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1435 		xferlen += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1436 		totlen = xferlen + IEEE80211_WEP_CRCLEN;
1437 	} else {
1438 		m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1));
1439 		totlen = xferlen;
1440 	}
1441 
1442 	/* fill Tx descriptor */
1443 	*(uint32_t *)data->buf = UATH_MAKECTL(1, xferlen - sizeof (uint32_t));
1444 
1445 	desc->len    = htobe32(totlen);
1446 	desc->priv   = sc->data_idx;	/* don't care about endianness */
1447 	desc->paylen = htobe32(paylen);
1448 	desc->type   = htobe32(UATH_TX_DATA);
1449 	desc->flags  = htobe32(0);
1450 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1451 		desc->dest  = htobe32(UATH_ID_BROADCAST);
1452 		desc->magic = htobe32(3);
1453 	} else {
1454 		desc->dest  = htobe32(UATH_ID_BSS);
1455 		desc->magic = htobe32(1);
1456 	}
1457 
1458 	m_freem(m0);	/* mbuf is no longer needed */
1459 
1460 #ifdef UATH_DEBUG
1461 	if (uath_debug >= 6) {
1462 		printf("sending frame index=%u len=%d xferlen=%d",
1463 		    sc->data_idx, paylen, xferlen);
1464 		uath_dump_cmd(data->buf, xferlen, '+');
1465 	}
1466 #endif
1467 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1468 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, UATH_DATA_TIMEOUT,
1469 	    uath_data_txeof);
1470 	error = usbd_transfer(data->xfer);
1471 	if (error != USBD_IN_PROGRESS && error != 0) {
1472 		ic->ic_if.if_oerrors++;
1473 		return error;
1474 	}
1475 	sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1476 	sc->tx_queued++;
1477 
1478 	return 0;
1479 }
1480 
1481 void
1482 uath_start(struct ifnet *ifp)
1483 {
1484 	struct uath_softc *sc = ifp->if_softc;
1485 	struct ieee80211com *ic = &sc->sc_ic;
1486 	struct ieee80211_node *ni;
1487 	struct mbuf *m0;
1488 
1489 	/*
1490 	 * net80211 may still try to send management frames even if the
1491 	 * IFF_RUNNING flag is not set...
1492 	 */
1493 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1494 		return;
1495 
1496 	for (;;) {
1497 		IF_POLL(&ic->ic_mgtq, m0);
1498 		if (m0 != NULL) {
1499 			if (sc->tx_queued >= UATH_TX_DATA_LIST_COUNT) {
1500 				ifp->if_flags |= IFF_OACTIVE;
1501 				break;
1502 			}
1503 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1504 
1505 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1506 			m0->m_pkthdr.rcvif = NULL;
1507 #if NBPFILTER > 0
1508 			if (ic->ic_rawbpf != NULL)
1509 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1510 #endif
1511 			if (uath_tx_data(sc, m0, ni) != 0)
1512 				break;
1513 		} else {
1514 			if (ic->ic_state != IEEE80211_S_RUN)
1515 				break;
1516 			IFQ_POLL(&ifp->if_snd, m0);
1517 			if (m0 == NULL)
1518 				break;
1519 			if (sc->tx_queued >= UATH_TX_DATA_LIST_COUNT) {
1520 				ifp->if_flags |= IFF_OACTIVE;
1521 				break;
1522 			}
1523 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1524 #if NBPFILTER > 0
1525 			if (ifp->if_bpf != NULL)
1526 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1527 #endif
1528 			m0 = ieee80211_encap(ifp, m0, &ni);
1529 			if (m0 == NULL)
1530 				continue;
1531 #if NBPFILTER > 0
1532 			if (ic->ic_rawbpf != NULL)
1533 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1534 #endif
1535 			if (uath_tx_data(sc, m0, ni) != 0) {
1536 				if (ni != NULL)
1537 					ieee80211_release_node(ic, ni);
1538 				ifp->if_oerrors++;
1539 				break;
1540 			}
1541 		}
1542 
1543 		sc->sc_tx_timer = 5;
1544 		ifp->if_timer = 1;
1545 	}
1546 }
1547 
1548 void
1549 uath_watchdog(struct ifnet *ifp)
1550 {
1551 	struct uath_softc *sc = ifp->if_softc;
1552 
1553 	ifp->if_timer = 0;
1554 
1555 	if (sc->sc_tx_timer > 0) {
1556 		if (--sc->sc_tx_timer == 0) {
1557 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1558 			/*uath_init(ifp); XXX needs a process context! */
1559 			ifp->if_oerrors++;
1560 			return;
1561 		}
1562 		ifp->if_timer = 1;
1563 	}
1564 
1565 	ieee80211_watchdog(ifp);
1566 }
1567 
1568 int
1569 uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1570 {
1571 	struct uath_softc *sc = ifp->if_softc;
1572 	struct ieee80211com *ic = &sc->sc_ic;
1573 	struct ifaddr *ifa;
1574 	struct ifreq *ifr;
1575 	int s, error = 0;
1576 
1577 	s = splnet();
1578 
1579 	switch (cmd) {
1580 	case SIOCSIFADDR:
1581 		ifa = (struct ifaddr *)data;
1582 		ifp->if_flags |= IFF_UP;
1583 #ifdef INET
1584 		if (ifa->ifa_addr->sa_family == AF_INET)
1585 			arp_ifinit(&ic->ic_ac, ifa);
1586 #endif
1587 		/* FALLTHROUGH */
1588 	case SIOCSIFFLAGS:
1589 		if (ifp->if_flags & IFF_UP) {
1590 			if (!(ifp->if_flags & IFF_RUNNING))
1591 				uath_init(ifp);
1592 		} else {
1593 			if (ifp->if_flags & IFF_RUNNING)
1594 				uath_stop(ifp, 1);
1595 		}
1596 		break;
1597 
1598 	case SIOCADDMULTI:
1599 	case SIOCDELMULTI:
1600 		ifr = (struct ifreq *)data;
1601 		error = (cmd == SIOCADDMULTI) ?
1602 		    ether_addmulti(ifr, &ic->ic_ac) :
1603 		    ether_delmulti(ifr, &ic->ic_ac);
1604 		if (error == ENETRESET)
1605 			error = 0;
1606 		break;
1607 
1608 	default:
1609 		error = ieee80211_ioctl(ifp, cmd, data);
1610 	}
1611 
1612 	if (error == ENETRESET) {
1613 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1614 		    (IFF_UP | IFF_RUNNING))
1615 			uath_init(ifp);
1616 		error = 0;
1617 	}
1618 
1619 	splx(s);
1620 
1621 	return error;
1622 }
1623 
1624 int
1625 uath_query_eeprom(struct uath_softc *sc)
1626 {
1627 	uint32_t tmp;
1628 	int error;
1629 
1630 	/* retrieve MAC address */
1631 	error = uath_read_eeprom(sc, UATH_EEPROM_MACADDR, sc->sc_ic.ic_myaddr);
1632 	if (error != 0) {
1633 		printf("%s: could not read MAC address\n",
1634 		    sc->sc_dev.dv_xname);
1635 		return error;
1636 	}
1637 
1638 	/* retrieve the maximum frame size that the hardware can receive */
1639 	error = uath_read_eeprom(sc, UATH_EEPROM_RXBUFSZ, &tmp);
1640 	if (error != 0) {
1641 		printf("%s: could not read maximum Rx buffer size\n",
1642 		    sc->sc_dev.dv_xname);
1643 		return error;
1644 	}
1645 	sc->rxbufsz = betoh32(tmp) & 0xfff;
1646 	DPRINTF(("maximum Rx buffer size %d\n", sc->rxbufsz));
1647 	return 0;
1648 }
1649 
1650 int
1651 uath_reset(struct uath_softc *sc)
1652 {
1653 	struct uath_cmd_setup setup;
1654 	uint32_t reg, val;
1655 	int s, error;
1656 
1657 	/* init device with some voodoo incantations.. */
1658 	setup.magic1 = htobe32(1);
1659 	setup.magic2 = htobe32(5);
1660 	setup.magic3 = htobe32(200);
1661 	setup.magic4 = htobe32(27);
1662 	s = splusb();
1663 	error = uath_cmd_write(sc, UATH_CMD_SETUP, &setup, sizeof setup,
1664 	    UATH_CMD_FLAG_ASYNC);
1665 	/* ..and wait until firmware notifies us that it is ready */
1666 	if (error == 0)
1667 		error = tsleep(UATH_COND_INIT(sc), PCATCH, "uathinit", 5 * hz);
1668 	splx(s);
1669 	if (error != 0)
1670 		return error;
1671 
1672 	/* read PHY registers */
1673 	for (reg = 0x09; reg <= 0x24; reg++) {
1674 		if (reg == 0x0b || reg == 0x0c)
1675 			continue;
1676 		DELAY(100);
1677 		if ((error = uath_read_reg(sc, reg, &val)) != 0)
1678 			return error;
1679 		DPRINTFN(2, ("reg 0x%02x=0x%08x\n", reg, val));
1680 	}
1681 	return error;
1682 }
1683 
1684 int
1685 uath_reset_tx_queues(struct uath_softc *sc)
1686 {
1687 	int ac, error;
1688 
1689 	for (ac = 0; ac < 4; ac++) {
1690 		const uint32_t qid = htobe32(UATH_AC_TO_QID(ac));
1691 
1692 		DPRINTF(("resetting Tx queue %d\n", UATH_AC_TO_QID(ac)));
1693 		error = uath_cmd_write(sc, UATH_CMD_RESET_QUEUE, &qid,
1694 		    sizeof qid, 0);
1695 		if (error != 0)
1696 			break;
1697 	}
1698 	return error;
1699 }
1700 
1701 int
1702 uath_wme_init(struct uath_softc *sc)
1703 {
1704 	struct uath_qinfo qinfo;
1705 	int ac, error;
1706 	static const struct uath_wme_settings uath_wme_11g[4] = {
1707 		{ 7, 4, 10,  0, 0 },	/* Background */
1708 		{ 3, 4, 10,  0, 0 },	/* Best-Effort */
1709 		{ 3, 3,  4, 26, 0 },	/* Video */
1710 		{ 2, 2,  3, 47, 0 }	/* Voice */
1711 	};
1712 
1713 	bzero(&qinfo, sizeof qinfo);
1714 	qinfo.size   = htobe32(32);
1715 	qinfo.magic1 = htobe32(1);	/* XXX ack policy? */
1716 	qinfo.magic2 = htobe32(1);
1717 	for (ac = 0; ac < 4; ac++) {
1718 		qinfo.qid      = htobe32(UATH_AC_TO_QID(ac));
1719 		qinfo.ac       = htobe32(ac);
1720 		qinfo.aifsn    = htobe32(uath_wme_11g[ac].aifsn);
1721 		qinfo.logcwmin = htobe32(uath_wme_11g[ac].logcwmin);
1722 		qinfo.logcwmax = htobe32(uath_wme_11g[ac].logcwmax);
1723 		qinfo.txop     = htobe32(UATH_TXOP_TO_US(
1724 				     uath_wme_11g[ac].txop));
1725 		qinfo.acm      = htobe32(uath_wme_11g[ac].acm);
1726 
1727 		DPRINTF(("setting up Tx queue %d\n", UATH_AC_TO_QID(ac)));
1728 		error = uath_cmd_write(sc, UATH_CMD_SET_QUEUE, &qinfo,
1729 		    sizeof qinfo, 0);
1730 		if (error != 0)
1731 			break;
1732 	}
1733 	return error;
1734 }
1735 
1736 int
1737 uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c)
1738 {
1739 	struct uath_set_chan chan;
1740 
1741 	bzero(&chan, sizeof chan);
1742 	chan.flags  = htobe32(0x1400);
1743 	chan.freq   = htobe32(c->ic_freq);
1744 	chan.magic1 = htobe32(20);
1745 	chan.magic2 = htobe32(50);
1746 	chan.magic3 = htobe32(1);
1747 
1748 	DPRINTF(("switching to channel %d\n",
1749 	    ieee80211_chan2ieee(&sc->sc_ic, c)));
1750 	return uath_cmd_write(sc, UATH_CMD_SET_CHAN, &chan, sizeof chan, 0);
1751 }
1752 
1753 int
1754 uath_set_key(struct uath_softc *sc, const struct ieee80211_key *k, int index)
1755 {
1756 	struct uath_cmd_crypto crypto;
1757 	int i;
1758 
1759 	bzero(&crypto, sizeof crypto);
1760 	crypto.keyidx = htobe32(index);
1761 	crypto.magic1 = htobe32(1);
1762 	crypto.size   = htobe32(368);
1763 	crypto.mask   = htobe32(0xffff);
1764 	crypto.flags  = htobe32(0x80000068);
1765 	if (index != UATH_DEFAULT_KEY)
1766 		crypto.flags |= htobe32(index << 16);
1767 	memset(crypto.magic2, 0xff, sizeof crypto.magic2);
1768 
1769 	/*
1770 	 * Each byte of the key must be XOR'ed with 10101010 before being
1771 	 * transmitted to the firmware.
1772 	 */
1773 	for (i = 0; i < k->k_len; i++)
1774 		crypto.key[i] = k->k_key[i] ^ 0xaa;
1775 
1776 	DPRINTF(("setting crypto key index=%d len=%d\n", index, k->k_len));
1777 	return uath_cmd_write(sc, UATH_CMD_CRYPTO, &crypto, sizeof crypto, 0);
1778 }
1779 
1780 int
1781 uath_set_keys(struct uath_softc *sc)
1782 {
1783 	const struct ieee80211com *ic = &sc->sc_ic;
1784 	int i, error;
1785 
1786 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1787 		const struct ieee80211_key *k = &ic->ic_nw_keys[i];
1788 
1789 		if (k->k_len > 0 && (error = uath_set_key(sc, k, i)) != 0)
1790 			return error;
1791 	}
1792 	return uath_set_key(sc, &ic->ic_nw_keys[ic->ic_wep_txkey],
1793 	    UATH_DEFAULT_KEY);
1794 }
1795 
1796 int
1797 uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs)
1798 {
1799 	struct uath_cmd_rates rates;
1800 
1801 	bzero(&rates, sizeof rates);
1802 	rates.magic1 = htobe32(0x02);
1803 	rates.size   = htobe32(1 + sizeof rates.rates);
1804 	rates.nrates = rs->rs_nrates;
1805 	bcopy(rs->rs_rates, rates.rates, rs->rs_nrates);
1806 
1807 	DPRINTF(("setting supported rates nrates=%d\n", rs->rs_nrates));
1808 	return uath_cmd_write(sc, UATH_CMD_SET_RATES, &rates, sizeof rates, 0);
1809 }
1810 
1811 int
1812 uath_set_rxfilter(struct uath_softc *sc, uint32_t filter, uint32_t flags)
1813 {
1814 	struct uath_cmd_filter rxfilter;
1815 
1816 	rxfilter.filter = htobe32(filter);
1817 	rxfilter.flags  = htobe32(flags);
1818 
1819 	DPRINTF(("setting Rx filter=0x%x flags=0x%x\n", filter, flags));
1820 	return uath_cmd_write(sc, UATH_CMD_SET_FILTER, &rxfilter,
1821 	    sizeof rxfilter, 0);
1822 }
1823 
1824 int
1825 uath_set_led(struct uath_softc *sc, int which, int on)
1826 {
1827 	struct uath_cmd_led led;
1828 
1829 	led.which = htobe32(which);
1830 	led.state = htobe32(on ? UATH_LED_ON : UATH_LED_OFF);
1831 
1832 	DPRINTFN(2, ("switching %s led %s\n",
1833 	    (which == UATH_LED_LINK) ? "link" : "activity",
1834 	    on ? "on" : "off"));
1835 	return uath_cmd_write(sc, UATH_CMD_SET_LED, &led, sizeof led, 0);
1836 }
1837 
1838 int
1839 uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c)
1840 {
1841 	uint32_t val;
1842 	int error;
1843 
1844 	/* set radio frequency */
1845 	if ((error = uath_set_chan(sc, c)) != 0) {
1846 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1847 		return error;
1848 	}
1849 
1850 	/* reset Tx rings */
1851 	if ((error = uath_reset_tx_queues(sc)) != 0) {
1852 		printf("%s: could not reset Tx queues\n",
1853 		    sc->sc_dev.dv_xname);
1854 		return error;
1855 	}
1856 
1857 	/* set Tx rings WME properties */
1858 	if ((error = uath_wme_init(sc)) != 0) {
1859 		printf("%s: could not init Tx queues\n",
1860 		    sc->sc_dev.dv_xname);
1861 		return error;
1862 	}
1863 
1864 	val = htobe32(0);
1865 	error = uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
1866 	if (error != 0) {
1867 		printf("%s: could not set state\n", sc->sc_dev.dv_xname);
1868 		return error;
1869 	}
1870 
1871 	return uath_tx_null(sc);
1872 }
1873 
1874 int
1875 uath_init(struct ifnet *ifp)
1876 {
1877 	struct uath_softc *sc = ifp->if_softc;
1878 	struct ieee80211com *ic = &sc->sc_ic;
1879 	struct uath_cmd_31 cmd31;
1880 	uint32_t val;
1881 	int i, error;
1882 
1883 	/* reset data and command rings */
1884 	sc->tx_queued = sc->data_idx = sc->cmd_idx = 0;
1885 
1886 	val = htobe32(0);
1887 	(void)uath_cmd_write(sc, UATH_CMD_02, &val, sizeof val, 0);
1888 
1889 	/* set MAC address */
1890 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1891 	(void)uath_write_multi(sc, 0x13, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1892 
1893 	(void)uath_write_reg(sc, 0x02, 0x00000001);
1894 	(void)uath_write_reg(sc, 0x0e, 0x0000003f);
1895 	(void)uath_write_reg(sc, 0x10, 0x00000001);
1896 	(void)uath_write_reg(sc, 0x06, 0x0000001e);
1897 
1898 	/*
1899 	 * Queue Rx data xfers.
1900 	 */
1901 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
1902 		struct uath_rx_data *data = &sc->rx_data[i];
1903 
1904 		usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
1905 		    sc->rxbufsz, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT,
1906 		    uath_data_rxeof);
1907 		error = usbd_transfer(data->xfer);
1908 		if (error != USBD_IN_PROGRESS && error != 0) {
1909 			printf("%s: could not queue Rx transfer\n",
1910 			    sc->sc_dev.dv_xname);
1911 			goto fail;
1912 		}
1913 	}
1914 
1915 	error = uath_cmd_read(sc, UATH_CMD_07, 0, NULL, &val,
1916 	    UATH_CMD_FLAG_MAGIC);
1917 	if (error != 0) {
1918 		printf("%s: could not send read command 07h\n",
1919 		    sc->sc_dev.dv_xname);
1920 		goto fail;
1921 	}
1922 	DPRINTF(("command 07h return code: %x\n", betoh32(val)));
1923 
1924 	/* set default channel */
1925 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1926 	if ((error = uath_set_chan(sc, ic->ic_bss->ni_chan)) != 0) {
1927 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1928 		goto fail;
1929 	}
1930 
1931 	if ((error = uath_wme_init(sc)) != 0) {
1932 		printf("%s: could not setup WME parameters\n",
1933 		    sc->sc_dev.dv_xname);
1934 		goto fail;
1935 	}
1936 
1937 	/* init MAC registers */
1938 	(void)uath_write_reg(sc, 0x19, 0x00000000);
1939 	(void)uath_write_reg(sc, 0x1a, 0x0000003c);
1940 	(void)uath_write_reg(sc, 0x1b, 0x0000003c);
1941 	(void)uath_write_reg(sc, 0x1c, 0x00000000);
1942 	(void)uath_write_reg(sc, 0x1e, 0x00000000);
1943 	(void)uath_write_reg(sc, 0x1f, 0x00000003);
1944 	(void)uath_write_reg(sc, 0x0c, 0x00000000);
1945 	(void)uath_write_reg(sc, 0x0f, 0x00000002);
1946 	(void)uath_write_reg(sc, 0x0a, 0x00000007);	/* XXX retry? */
1947 	(void)uath_write_reg(sc, 0x09, ic->ic_rtsthreshold);
1948 
1949 	val = htobe32(4);
1950 	(void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1951 	(void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1952 	(void)uath_cmd_write(sc, UATH_CMD_1B, NULL, 0, 0);
1953 
1954 	if ((error = uath_set_keys(sc)) != 0) {
1955 		printf("%s: could not set crypto keys\n",
1956 		    sc->sc_dev.dv_xname);
1957 		goto fail;
1958 	}
1959 
1960 	/* enable Rx */
1961 	(void)uath_set_rxfilter(sc, 0x0000, 4);
1962 	(void)uath_set_rxfilter(sc, 0x0817, 1);
1963 
1964 	cmd31.magic1 = htobe32(0xffffffff);
1965 	cmd31.magic2 = htobe32(0xffffffff);
1966 	(void)uath_cmd_write(sc, UATH_CMD_31, &cmd31, sizeof cmd31, 0);
1967 
1968 	ifp->if_flags &= ~IFF_OACTIVE;
1969 	ifp->if_flags |= IFF_RUNNING;
1970 
1971 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1972 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1973 	else
1974 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1975 
1976 	return 0;
1977 
1978 fail:	uath_stop(ifp, 1);
1979 	return error;
1980 }
1981 
1982 void
1983 uath_stop(struct ifnet *ifp, int disable)
1984 {
1985 	struct uath_softc *sc = ifp->if_softc;
1986 	struct ieee80211com *ic = &sc->sc_ic;
1987 	uint32_t val;
1988 	int s;
1989 
1990 	s = splusb();
1991 
1992 	sc->sc_tx_timer = 0;
1993 	ifp->if_timer = 0;
1994 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1995 
1996 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
1997 
1998 	val = htobe32(0);
1999 	(void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
2000 	(void)uath_cmd_write(sc, UATH_CMD_RESET, NULL, 0, 0);
2001 
2002 	val = htobe32(0);
2003 	(void)uath_cmd_write(sc, UATH_CMD_15, &val, sizeof val, 0);
2004 
2005 #if 0
2006 	(void)uath_cmd_read(sc, UATH_CMD_SHUTDOWN, NULL, 0, NULL,
2007 	    UATH_CMD_FLAG_MAGIC);
2008 #endif
2009 
2010 	/* abort any pending transfers */
2011 	usbd_abort_pipe(sc->data_tx_pipe);
2012 	usbd_abort_pipe(sc->data_rx_pipe);
2013 	usbd_abort_pipe(sc->cmd_tx_pipe);
2014 
2015 	splx(s);
2016 }
2017 
2018 /*
2019  * Load the MIPS R4000 microcode into the device.  Once the image is loaded,
2020  * the device will detach itself from the bus and reattach later with a new
2021  * product Id (a la ezusb).  XXX this could also be implemented in userland
2022  * through /dev/ugen.
2023  */
2024 int
2025 uath_loadfirmware(struct uath_softc *sc, const u_char *fw, int len)
2026 {
2027 	usbd_xfer_handle ctlxfer, txxfer, rxxfer;
2028 	struct uath_fwblock *txblock, *rxblock;
2029 	uint8_t *txdata;
2030 	int error = 0;
2031 
2032 	if ((ctlxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2033 		printf("%s: could not allocate Tx control xfer\n",
2034 		    sc->sc_dev.dv_xname);
2035 		error = USBD_NOMEM;
2036 		goto fail1;
2037 	}
2038 	txblock = usbd_alloc_buffer(ctlxfer, sizeof (struct uath_fwblock));
2039 	if (txblock == NULL) {
2040 		printf("%s: could not allocate Tx control block\n",
2041 		    sc->sc_dev.dv_xname);
2042 		error = USBD_NOMEM;
2043 		goto fail2;
2044 	}
2045 
2046 	if ((txxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2047 		printf("%s: could not allocate Tx xfer\n",
2048 		    sc->sc_dev.dv_xname);
2049 		error = USBD_NOMEM;
2050 		goto fail2;
2051 	}
2052 	txdata = usbd_alloc_buffer(txxfer, UATH_MAX_FWBLOCK_SIZE);
2053 	if (txdata == NULL) {
2054 		printf("%s: could not allocate Tx buffer\n",
2055 		    sc->sc_dev.dv_xname);
2056 		error = USBD_NOMEM;
2057 		goto fail3;
2058 	}
2059 
2060 	if ((rxxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2061 		printf("%s: could not allocate Rx control xfer\n",
2062 		    sc->sc_dev.dv_xname);
2063 		error = USBD_NOMEM;
2064 		goto fail3;
2065 	}
2066 	rxblock = usbd_alloc_buffer(rxxfer, sizeof (struct uath_fwblock));
2067 	if (rxblock == NULL) {
2068 		printf("%s: could not allocate Rx control block\n",
2069 		    sc->sc_dev.dv_xname);
2070 		error = USBD_NOMEM;
2071 		goto fail4;
2072 	}
2073 
2074 	bzero(txblock, sizeof (struct uath_fwblock));
2075 	txblock->flags = htobe32(UATH_WRITE_BLOCK);
2076 	txblock->total = htobe32(len);
2077 
2078 	while (len > 0) {
2079 		int mlen = min(len, UATH_MAX_FWBLOCK_SIZE);
2080 
2081 		txblock->remain = htobe32(len - mlen);
2082 		txblock->len = htobe32(mlen);
2083 
2084 		DPRINTF(("sending firmware block: %d bytes remaining\n",
2085 		    len - mlen));
2086 
2087 		/* send firmware block meta-data */
2088 		usbd_setup_xfer(ctlxfer, sc->cmd_tx_pipe, sc, txblock,
2089 		    sizeof (struct uath_fwblock), USBD_NO_COPY,
2090 		    UATH_CMD_TIMEOUT, NULL);
2091 		if ((error = usbd_sync_transfer(ctlxfer)) != 0) {
2092 			printf("%s: could not send firmware block info\n",
2093 			    sc->sc_dev.dv_xname);
2094 			break;
2095 		}
2096 
2097 		/* send firmware block data */
2098 		bcopy(fw, txdata, mlen);
2099 		usbd_setup_xfer(txxfer, sc->data_tx_pipe, sc, txdata, mlen,
2100 		    USBD_NO_COPY, UATH_DATA_TIMEOUT, NULL);
2101 		if ((error = usbd_sync_transfer(txxfer)) != 0) {
2102 			printf("%s: could not send firmware block data\n",
2103 			    sc->sc_dev.dv_xname);
2104 			break;
2105 		}
2106 
2107 		/* wait for ack from firmware */
2108 		usbd_setup_xfer(rxxfer, sc->cmd_rx_pipe, sc, rxblock,
2109 		    sizeof (struct uath_fwblock), USBD_SHORT_XFER_OK |
2110 		    USBD_NO_COPY, UATH_CMD_TIMEOUT, NULL);
2111 		if ((error = usbd_sync_transfer(rxxfer)) != 0) {
2112 			printf("%s: could not read firmware answer\n",
2113 			    sc->sc_dev.dv_xname);
2114 			break;
2115 		}
2116 
2117 		DPRINTFN(2, ("rxblock flags=0x%x total=%d\n",
2118 		    betoh32(rxblock->flags), betoh32(rxblock->rxtotal)));
2119 		fw += mlen;
2120 		len -= mlen;
2121 	}
2122 
2123 fail4:	usbd_free_xfer(rxxfer);
2124 fail3:	usbd_free_xfer(txxfer);
2125 fail2:	usbd_free_xfer(ctlxfer);
2126 fail1:	return error;
2127 }
2128 
2129 int
2130 uath_activate(struct device *self, enum devact act)
2131 {
2132 	switch (act) {
2133 	case DVACT_ACTIVATE:
2134 		break;
2135 
2136 	case DVACT_DEACTIVATE:
2137 		break;
2138 	}
2139 	return 0;
2140 }
2141