1 /* $OpenBSD: if_rum.c,v 1.119 2016/04/13 11:03:37 mpi Exp $ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /*- 21 * Ralink Technology RT2501USB/RT2601USB chipset driver 22 * http://www.ralinktech.com.tw/ 23 */ 24 25 #include "bpfilter.h" 26 27 #include <sys/param.h> 28 #include <sys/sockio.h> 29 #include <sys/mbuf.h> 30 #include <sys/kernel.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/timeout.h> 34 #include <sys/conf.h> 35 #include <sys/device.h> 36 #include <sys/endian.h> 37 38 #include <machine/intr.h> 39 40 #if NBPFILTER > 0 41 #include <net/bpf.h> 42 #endif 43 #include <net/if.h> 44 #include <net/if_dl.h> 45 #include <net/if_media.h> 46 47 #include <netinet/in.h> 48 #include <netinet/if_ether.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_amrr.h> 52 #include <net80211/ieee80211_radiotap.h> 53 54 #include <dev/usb/usb.h> 55 #include <dev/usb/usbdi.h> 56 #include <dev/usb/usbdi_util.h> 57 #include <dev/usb/usbdevs.h> 58 59 #include <dev/usb/if_rumreg.h> 60 #include <dev/usb/if_rumvar.h> 61 62 #ifdef RUM_DEBUG 63 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 64 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 65 int rum_debug = 0; 66 #else 67 #define DPRINTF(x) 68 #define DPRINTFN(n, x) 69 #endif 70 71 /* various supported device vendors/products */ 72 static const struct usb_devno rum_devs[] = { 73 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 74 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 75 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 76 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 77 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 78 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 79 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_1 }, 80 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_2 }, 81 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 82 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 83 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, 84 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, 85 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 86 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 87 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU2 }, 88 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2573 }, 89 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 90 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 91 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 92 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 93 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 94 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 95 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 96 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 97 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, 98 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, 99 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 100 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 101 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 102 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 103 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 104 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 105 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_WUB320G }, 106 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 107 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 108 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, 109 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_1 }, 110 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 111 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 112 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 113 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 114 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 115 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 116 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 117 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 118 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 119 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 120 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 121 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573_2 }, 122 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 123 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 124 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 125 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, 126 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, 127 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } 128 }; 129 130 void rum_attachhook(struct device *); 131 int rum_alloc_tx_list(struct rum_softc *); 132 void rum_free_tx_list(struct rum_softc *); 133 int rum_alloc_rx_list(struct rum_softc *); 134 void rum_free_rx_list(struct rum_softc *); 135 int rum_media_change(struct ifnet *); 136 void rum_next_scan(void *); 137 void rum_task(void *); 138 int rum_newstate(struct ieee80211com *, enum ieee80211_state, int); 139 void rum_txeof(struct usbd_xfer *, void *, usbd_status); 140 void rum_rxeof(struct usbd_xfer *, void *, usbd_status); 141 #if NBPFILTER > 0 142 uint8_t rum_rxrate(const struct rum_rx_desc *); 143 #endif 144 int rum_ack_rate(struct ieee80211com *, int); 145 uint16_t rum_txtime(int, int, uint32_t); 146 uint8_t rum_plcp_signal(int); 147 void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *, 148 uint32_t, uint16_t, int, int); 149 int rum_tx_data(struct rum_softc *, struct mbuf *, 150 struct ieee80211_node *); 151 void rum_start(struct ifnet *); 152 void rum_watchdog(struct ifnet *); 153 int rum_ioctl(struct ifnet *, u_long, caddr_t); 154 void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int); 155 uint32_t rum_read(struct rum_softc *, uint16_t); 156 void rum_read_multi(struct rum_softc *, uint16_t, void *, int); 157 void rum_write(struct rum_softc *, uint16_t, uint32_t); 158 void rum_write_multi(struct rum_softc *, uint16_t, void *, size_t); 159 void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 160 uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 161 void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 162 void rum_select_antenna(struct rum_softc *); 163 void rum_enable_mrr(struct rum_softc *); 164 void rum_set_txpreamble(struct rum_softc *); 165 void rum_set_basicrates(struct rum_softc *); 166 void rum_select_band(struct rum_softc *, 167 struct ieee80211_channel *); 168 void rum_set_chan(struct rum_softc *, struct ieee80211_channel *); 169 void rum_enable_tsf_sync(struct rum_softc *); 170 void rum_update_slot(struct rum_softc *); 171 void rum_set_bssid(struct rum_softc *, const uint8_t *); 172 void rum_set_macaddr(struct rum_softc *, const uint8_t *); 173 void rum_update_promisc(struct rum_softc *); 174 const char *rum_get_rf(int); 175 void rum_read_eeprom(struct rum_softc *); 176 int rum_bbp_init(struct rum_softc *); 177 int rum_init(struct ifnet *); 178 void rum_stop(struct ifnet *, int); 179 int rum_load_microcode(struct rum_softc *, const u_char *, size_t); 180 #ifndef IEEE80211_STA_ONLY 181 int rum_prepare_beacon(struct rum_softc *); 182 #endif 183 void rum_newassoc(struct ieee80211com *, struct ieee80211_node *, 184 int); 185 void rum_amrr_start(struct rum_softc *, struct ieee80211_node *); 186 void rum_amrr_timeout(void *); 187 void rum_amrr_update(struct usbd_xfer *, void *, 188 usbd_status status); 189 190 static const struct { 191 uint32_t reg; 192 uint32_t val; 193 } rum_def_mac[] = { 194 RT2573_DEF_MAC 195 }; 196 197 static const struct { 198 uint8_t reg; 199 uint8_t val; 200 } rum_def_bbp[] = { 201 RT2573_DEF_BBP 202 }; 203 204 static const struct rfprog { 205 uint8_t chan; 206 uint32_t r1, r2, r3, r4; 207 } rum_rf5226[] = { 208 RT2573_RF5226 209 }, rum_rf5225[] = { 210 RT2573_RF5225 211 }; 212 213 int rum_match(struct device *, void *, void *); 214 void rum_attach(struct device *, struct device *, void *); 215 int rum_detach(struct device *, int); 216 217 struct cfdriver rum_cd = { 218 NULL, "rum", DV_IFNET 219 }; 220 221 const struct cfattach rum_ca = { 222 sizeof(struct rum_softc), rum_match, rum_attach, rum_detach 223 }; 224 225 int 226 rum_match(struct device *parent, void *match, void *aux) 227 { 228 struct usb_attach_arg *uaa = aux; 229 230 if (uaa->iface == NULL || uaa->configno != 1) 231 return UMATCH_NONE; 232 233 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? 234 UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE; 235 } 236 237 void 238 rum_attachhook(struct device *self) 239 { 240 struct rum_softc *sc = (struct rum_softc *)self; 241 const char *name = "rum-rt2573"; 242 u_char *ucode; 243 size_t size; 244 int error; 245 246 if ((error = loadfirmware(name, &ucode, &size)) != 0) { 247 printf("%s: failed loadfirmware of file %s (error %d)\n", 248 sc->sc_dev.dv_xname, name, error); 249 return; 250 } 251 252 if (rum_load_microcode(sc, ucode, size) != 0) { 253 printf("%s: could not load 8051 microcode\n", 254 sc->sc_dev.dv_xname); 255 } 256 257 free(ucode, M_DEVBUF, 0); 258 } 259 260 void 261 rum_attach(struct device *parent, struct device *self, void *aux) 262 { 263 struct rum_softc *sc = (struct rum_softc *)self; 264 struct usb_attach_arg *uaa = aux; 265 struct ieee80211com *ic = &sc->sc_ic; 266 struct ifnet *ifp = &ic->ic_if; 267 usb_interface_descriptor_t *id; 268 usb_endpoint_descriptor_t *ed; 269 int i, ntries; 270 uint32_t tmp; 271 272 sc->sc_udev = uaa->device; 273 sc->sc_iface = uaa->iface; 274 275 /* 276 * Find endpoints. 277 */ 278 id = usbd_get_interface_descriptor(sc->sc_iface); 279 280 sc->sc_rx_no = sc->sc_tx_no = -1; 281 for (i = 0; i < id->bNumEndpoints; i++) { 282 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 283 if (ed == NULL) { 284 printf("%s: no endpoint descriptor for iface %d\n", 285 sc->sc_dev.dv_xname, i); 286 return; 287 } 288 289 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 290 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 291 sc->sc_rx_no = ed->bEndpointAddress; 292 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 293 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 294 sc->sc_tx_no = ed->bEndpointAddress; 295 } 296 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 297 printf("%s: missing endpoint\n", sc->sc_dev.dv_xname); 298 return; 299 } 300 301 usb_init_task(&sc->sc_task, rum_task, sc, USB_TASK_TYPE_GENERIC); 302 timeout_set(&sc->scan_to, rum_next_scan, sc); 303 304 sc->amrr.amrr_min_success_threshold = 1; 305 sc->amrr.amrr_max_success_threshold = 10; 306 timeout_set(&sc->amrr_to, rum_amrr_timeout, sc); 307 308 /* retrieve RT2573 rev. no */ 309 for (ntries = 0; ntries < 1000; ntries++) { 310 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 311 break; 312 DELAY(1000); 313 } 314 if (ntries == 1000) { 315 printf("%s: timeout waiting for chip to settle\n", 316 sc->sc_dev.dv_xname); 317 return; 318 } 319 320 /* retrieve MAC address and various other things from EEPROM */ 321 rum_read_eeprom(sc); 322 323 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 324 sc->sc_dev.dv_xname, sc->macbbp_rev, tmp, 325 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 326 327 config_mountroot(self, rum_attachhook); 328 329 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 330 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 331 ic->ic_state = IEEE80211_S_INIT; 332 333 /* set device capabilities */ 334 ic->ic_caps = 335 IEEE80211_C_MONITOR | /* monitor mode supported */ 336 #ifndef IEEE80211_STA_ONLY 337 IEEE80211_C_IBSS | /* IBSS mode supported */ 338 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 339 #endif 340 IEEE80211_C_TXPMGT | /* tx power management */ 341 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 342 IEEE80211_C_SHSLOT | /* short slot time supported */ 343 IEEE80211_C_WEP | /* s/w WEP */ 344 IEEE80211_C_RSN; /* WPA/RSN */ 345 346 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 347 /* set supported .11a rates */ 348 ic->ic_sup_rates[IEEE80211_MODE_11A] = 349 ieee80211_std_rateset_11a; 350 351 /* set supported .11a channels */ 352 for (i = 34; i <= 46; i += 4) { 353 ic->ic_channels[i].ic_freq = 354 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 355 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 356 } 357 for (i = 36; i <= 64; i += 4) { 358 ic->ic_channels[i].ic_freq = 359 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 360 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 361 } 362 for (i = 100; i <= 140; i += 4) { 363 ic->ic_channels[i].ic_freq = 364 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 365 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 366 } 367 for (i = 149; i <= 165; i += 4) { 368 ic->ic_channels[i].ic_freq = 369 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 370 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 371 } 372 } 373 374 /* set supported .11b and .11g rates */ 375 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 376 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 377 378 /* set supported .11b and .11g channels (1 through 14) */ 379 for (i = 1; i <= 14; i++) { 380 ic->ic_channels[i].ic_freq = 381 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 382 ic->ic_channels[i].ic_flags = 383 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 384 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 385 } 386 387 ifp->if_softc = sc; 388 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 389 ifp->if_ioctl = rum_ioctl; 390 ifp->if_start = rum_start; 391 ifp->if_watchdog = rum_watchdog; 392 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 393 394 if_attach(ifp); 395 ieee80211_ifattach(ifp); 396 ic->ic_newassoc = rum_newassoc; 397 398 /* override state transition machine */ 399 sc->sc_newstate = ic->ic_newstate; 400 ic->ic_newstate = rum_newstate; 401 ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status); 402 403 #if NBPFILTER > 0 404 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 405 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 406 407 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 408 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 409 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 410 411 sc->sc_txtap_len = sizeof sc->sc_txtapu; 412 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 413 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 414 #endif 415 } 416 417 int 418 rum_detach(struct device *self, int flags) 419 { 420 struct rum_softc *sc = (struct rum_softc *)self; 421 struct ifnet *ifp = &sc->sc_ic.ic_if; 422 int s; 423 424 s = splusb(); 425 426 if (timeout_initialized(&sc->scan_to)) 427 timeout_del(&sc->scan_to); 428 if (timeout_initialized(&sc->amrr_to)) 429 timeout_del(&sc->amrr_to); 430 431 usb_rem_wait_task(sc->sc_udev, &sc->sc_task); 432 433 usbd_ref_wait(sc->sc_udev); 434 435 if (ifp->if_softc != NULL) { 436 ieee80211_ifdetach(ifp); /* free all nodes */ 437 if_detach(ifp); 438 } 439 440 if (sc->amrr_xfer != NULL) { 441 usbd_free_xfer(sc->amrr_xfer); 442 sc->amrr_xfer = NULL; 443 } 444 if (sc->sc_rx_pipeh != NULL) { 445 usbd_abort_pipe(sc->sc_rx_pipeh); 446 usbd_close_pipe(sc->sc_rx_pipeh); 447 } 448 if (sc->sc_tx_pipeh != NULL) { 449 usbd_abort_pipe(sc->sc_tx_pipeh); 450 usbd_close_pipe(sc->sc_tx_pipeh); 451 } 452 453 rum_free_rx_list(sc); 454 rum_free_tx_list(sc); 455 456 splx(s); 457 458 return 0; 459 } 460 461 int 462 rum_alloc_tx_list(struct rum_softc *sc) 463 { 464 int i, error; 465 466 sc->tx_cur = sc->tx_queued = 0; 467 468 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 469 struct rum_tx_data *data = &sc->tx_data[i]; 470 471 data->sc = sc; 472 473 data->xfer = usbd_alloc_xfer(sc->sc_udev); 474 if (data->xfer == NULL) { 475 printf("%s: could not allocate tx xfer\n", 476 sc->sc_dev.dv_xname); 477 error = ENOMEM; 478 goto fail; 479 } 480 data->buf = usbd_alloc_buffer(data->xfer, 481 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN); 482 if (data->buf == NULL) { 483 printf("%s: could not allocate tx buffer\n", 484 sc->sc_dev.dv_xname); 485 error = ENOMEM; 486 goto fail; 487 } 488 /* clean Tx descriptor */ 489 bzero(data->buf, RT2573_TX_DESC_SIZE); 490 } 491 492 return 0; 493 494 fail: rum_free_tx_list(sc); 495 return error; 496 } 497 498 void 499 rum_free_tx_list(struct rum_softc *sc) 500 { 501 int i; 502 503 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 504 struct rum_tx_data *data = &sc->tx_data[i]; 505 506 if (data->xfer != NULL) { 507 usbd_free_xfer(data->xfer); 508 data->xfer = NULL; 509 } 510 /* 511 * The node has already been freed at that point so don't call 512 * ieee80211_release_node() here. 513 */ 514 data->ni = NULL; 515 } 516 } 517 518 int 519 rum_alloc_rx_list(struct rum_softc *sc) 520 { 521 int i, error; 522 523 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 524 struct rum_rx_data *data = &sc->rx_data[i]; 525 526 data->sc = sc; 527 528 data->xfer = usbd_alloc_xfer(sc->sc_udev); 529 if (data->xfer == NULL) { 530 printf("%s: could not allocate rx xfer\n", 531 sc->sc_dev.dv_xname); 532 error = ENOMEM; 533 goto fail; 534 } 535 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 536 printf("%s: could not allocate rx buffer\n", 537 sc->sc_dev.dv_xname); 538 error = ENOMEM; 539 goto fail; 540 } 541 542 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 543 if (data->m == NULL) { 544 printf("%s: could not allocate rx mbuf\n", 545 sc->sc_dev.dv_xname); 546 error = ENOMEM; 547 goto fail; 548 } 549 MCLGET(data->m, M_DONTWAIT); 550 if (!(data->m->m_flags & M_EXT)) { 551 printf("%s: could not allocate rx mbuf cluster\n", 552 sc->sc_dev.dv_xname); 553 error = ENOMEM; 554 goto fail; 555 } 556 data->buf = mtod(data->m, uint8_t *); 557 } 558 559 return 0; 560 561 fail: rum_free_rx_list(sc); 562 return error; 563 } 564 565 void 566 rum_free_rx_list(struct rum_softc *sc) 567 { 568 int i; 569 570 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 571 struct rum_rx_data *data = &sc->rx_data[i]; 572 573 if (data->xfer != NULL) { 574 usbd_free_xfer(data->xfer); 575 data->xfer = NULL; 576 } 577 if (data->m != NULL) { 578 m_freem(data->m); 579 data->m = NULL; 580 } 581 } 582 } 583 584 int 585 rum_media_change(struct ifnet *ifp) 586 { 587 int error; 588 589 error = ieee80211_media_change(ifp); 590 if (error != ENETRESET) 591 return error; 592 593 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 594 rum_init(ifp); 595 596 return 0; 597 } 598 599 /* 600 * This function is called periodically (every 200ms) during scanning to 601 * switch from one channel to another. 602 */ 603 void 604 rum_next_scan(void *arg) 605 { 606 struct rum_softc *sc = arg; 607 struct ieee80211com *ic = &sc->sc_ic; 608 struct ifnet *ifp = &ic->ic_if; 609 610 if (usbd_is_dying(sc->sc_udev)) 611 return; 612 613 usbd_ref_incr(sc->sc_udev); 614 615 if (ic->ic_state == IEEE80211_S_SCAN) 616 ieee80211_next_scan(ifp); 617 618 usbd_ref_decr(sc->sc_udev); 619 } 620 621 void 622 rum_task(void *arg) 623 { 624 struct rum_softc *sc = arg; 625 struct ieee80211com *ic = &sc->sc_ic; 626 enum ieee80211_state ostate; 627 struct ieee80211_node *ni; 628 uint32_t tmp; 629 630 if (usbd_is_dying(sc->sc_udev)) 631 return; 632 633 ostate = ic->ic_state; 634 635 switch (sc->sc_state) { 636 case IEEE80211_S_INIT: 637 if (ostate == IEEE80211_S_RUN) { 638 /* abort TSF synchronization */ 639 tmp = rum_read(sc, RT2573_TXRX_CSR9); 640 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 641 } 642 break; 643 644 case IEEE80211_S_SCAN: 645 rum_set_chan(sc, ic->ic_bss->ni_chan); 646 if (!usbd_is_dying(sc->sc_udev)) 647 timeout_add_msec(&sc->scan_to, 200); 648 break; 649 650 case IEEE80211_S_AUTH: 651 rum_set_chan(sc, ic->ic_bss->ni_chan); 652 break; 653 654 case IEEE80211_S_ASSOC: 655 rum_set_chan(sc, ic->ic_bss->ni_chan); 656 break; 657 658 case IEEE80211_S_RUN: 659 rum_set_chan(sc, ic->ic_bss->ni_chan); 660 661 ni = ic->ic_bss; 662 663 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 664 rum_update_slot(sc); 665 rum_enable_mrr(sc); 666 rum_set_txpreamble(sc); 667 rum_set_basicrates(sc); 668 rum_set_bssid(sc, ni->ni_bssid); 669 } 670 671 #ifndef IEEE80211_STA_ONLY 672 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 673 ic->ic_opmode == IEEE80211_M_IBSS) 674 rum_prepare_beacon(sc); 675 #endif 676 677 if (ic->ic_opmode != IEEE80211_M_MONITOR) 678 rum_enable_tsf_sync(sc); 679 680 if (ic->ic_opmode == IEEE80211_M_STA) { 681 /* fake a join to init the tx rate */ 682 rum_newassoc(ic, ic->ic_bss, 1); 683 684 /* enable automatic rate control in STA mode */ 685 if (ic->ic_fixed_rate == -1) 686 rum_amrr_start(sc, ni); 687 } 688 break; 689 } 690 691 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 692 } 693 694 int 695 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 696 { 697 struct rum_softc *sc = ic->ic_if.if_softc; 698 699 usb_rem_task(sc->sc_udev, &sc->sc_task); 700 timeout_del(&sc->scan_to); 701 timeout_del(&sc->amrr_to); 702 703 /* do it in a process context */ 704 sc->sc_state = nstate; 705 sc->sc_arg = arg; 706 usb_add_task(sc->sc_udev, &sc->sc_task); 707 return 0; 708 } 709 710 /* quickly determine if a given rate is CCK or OFDM */ 711 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 712 713 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 714 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 715 716 void 717 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 718 { 719 struct rum_tx_data *data = priv; 720 struct rum_softc *sc = data->sc; 721 struct ieee80211com *ic = &sc->sc_ic; 722 struct ifnet *ifp = &ic->ic_if; 723 int s; 724 725 if (status != USBD_NORMAL_COMPLETION) { 726 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 727 return; 728 729 printf("%s: could not transmit buffer: %s\n", 730 sc->sc_dev.dv_xname, usbd_errstr(status)); 731 732 if (status == USBD_STALLED) 733 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 734 735 ifp->if_oerrors++; 736 return; 737 } 738 739 s = splnet(); 740 741 ieee80211_release_node(ic, data->ni); 742 data->ni = NULL; 743 744 sc->tx_queued--; 745 ifp->if_opackets++; 746 747 DPRINTFN(10, ("tx done\n")); 748 749 sc->sc_tx_timer = 0; 750 ifq_clr_oactive(&ifp->if_snd); 751 rum_start(ifp); 752 753 splx(s); 754 } 755 756 void 757 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 758 { 759 struct rum_rx_data *data = priv; 760 struct rum_softc *sc = data->sc; 761 struct ieee80211com *ic = &sc->sc_ic; 762 struct ifnet *ifp = &ic->ic_if; 763 const struct rum_rx_desc *desc; 764 struct ieee80211_frame *wh; 765 struct ieee80211_rxinfo rxi; 766 struct ieee80211_node *ni; 767 struct mbuf *mnew, *m; 768 int s, len; 769 770 if (status != USBD_NORMAL_COMPLETION) { 771 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 772 return; 773 774 if (status == USBD_STALLED) 775 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 776 goto skip; 777 } 778 779 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 780 781 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) { 782 DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname, 783 len)); 784 ifp->if_ierrors++; 785 goto skip; 786 } 787 788 desc = (const struct rum_rx_desc *)data->buf; 789 790 if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) { 791 /* 792 * This should not happen since we did not request to receive 793 * those frames when we filled RT2573_TXRX_CSR0. 794 */ 795 DPRINTFN(5, ("CRC error\n")); 796 ifp->if_ierrors++; 797 goto skip; 798 } 799 800 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 801 if (mnew == NULL) { 802 printf("%s: could not allocate rx mbuf\n", 803 sc->sc_dev.dv_xname); 804 ifp->if_ierrors++; 805 goto skip; 806 } 807 MCLGET(mnew, M_DONTWAIT); 808 if (!(mnew->m_flags & M_EXT)) { 809 printf("%s: could not allocate rx mbuf cluster\n", 810 sc->sc_dev.dv_xname); 811 m_freem(mnew); 812 ifp->if_ierrors++; 813 goto skip; 814 } 815 m = data->m; 816 data->m = mnew; 817 data->buf = mtod(data->m, uint8_t *); 818 819 /* finalize mbuf */ 820 m->m_data = (caddr_t)(desc + 1); 821 m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff; 822 823 s = splnet(); 824 825 #if NBPFILTER > 0 826 if (sc->sc_drvbpf != NULL) { 827 struct mbuf mb; 828 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 829 830 tap->wr_flags = 0; 831 tap->wr_rate = rum_rxrate(desc); 832 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 833 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 834 tap->wr_antenna = sc->rx_ant; 835 tap->wr_antsignal = desc->rssi; 836 837 mb.m_data = (caddr_t)tap; 838 mb.m_len = sc->sc_rxtap_len; 839 mb.m_next = m; 840 mb.m_nextpkt = NULL; 841 mb.m_type = 0; 842 mb.m_flags = 0; 843 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 844 } 845 #endif 846 847 wh = mtod(m, struct ieee80211_frame *); 848 ni = ieee80211_find_rxnode(ic, wh); 849 850 /* send the frame to the 802.11 layer */ 851 rxi.rxi_flags = 0; 852 rxi.rxi_rssi = desc->rssi; 853 rxi.rxi_tstamp = 0; /* unused */ 854 ieee80211_input(ifp, m, ni, &rxi); 855 856 /* node is no longer needed */ 857 ieee80211_release_node(ic, ni); 858 859 splx(s); 860 861 DPRINTFN(15, ("rx done\n")); 862 863 skip: /* setup a new transfer */ 864 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 865 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 866 (void)usbd_transfer(xfer); 867 } 868 869 /* 870 * This function is only used by the Rx radiotap code. It returns the rate at 871 * which a given frame was received. 872 */ 873 #if NBPFILTER > 0 874 uint8_t 875 rum_rxrate(const struct rum_rx_desc *desc) 876 { 877 if (letoh32(desc->flags) & RT2573_RX_OFDM) { 878 /* reverse function of rum_plcp_signal */ 879 switch (desc->rate) { 880 case 0xb: return 12; 881 case 0xf: return 18; 882 case 0xa: return 24; 883 case 0xe: return 36; 884 case 0x9: return 48; 885 case 0xd: return 72; 886 case 0x8: return 96; 887 case 0xc: return 108; 888 } 889 } else { 890 if (desc->rate == 10) 891 return 2; 892 if (desc->rate == 20) 893 return 4; 894 if (desc->rate == 55) 895 return 11; 896 if (desc->rate == 110) 897 return 22; 898 } 899 return 2; /* should not get there */ 900 } 901 #endif 902 903 /* 904 * Return the expected ack rate for a frame transmitted at rate `rate'. 905 */ 906 int 907 rum_ack_rate(struct ieee80211com *ic, int rate) 908 { 909 switch (rate) { 910 /* CCK rates */ 911 case 2: 912 return 2; 913 case 4: 914 case 11: 915 case 22: 916 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 917 918 /* OFDM rates */ 919 case 12: 920 case 18: 921 return 12; 922 case 24: 923 case 36: 924 return 24; 925 case 48: 926 case 72: 927 case 96: 928 case 108: 929 return 48; 930 } 931 932 /* default to 1Mbps */ 933 return 2; 934 } 935 936 /* 937 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 938 * The function automatically determines the operating mode depending on the 939 * given rate. `flags' indicates whether short preamble is in use or not. 940 */ 941 uint16_t 942 rum_txtime(int len, int rate, uint32_t flags) 943 { 944 uint16_t txtime; 945 946 if (RUM_RATE_IS_OFDM(rate)) { 947 /* IEEE Std 802.11a-1999, pp. 37 */ 948 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 949 txtime = 16 + 4 + 4 * txtime + 6; 950 } else { 951 /* IEEE Std 802.11b-1999, pp. 28 */ 952 txtime = (16 * len + rate - 1) / rate; 953 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 954 txtime += 72 + 24; 955 else 956 txtime += 144 + 48; 957 } 958 return txtime; 959 } 960 961 uint8_t 962 rum_plcp_signal(int rate) 963 { 964 switch (rate) { 965 /* CCK rates (returned values are device-dependent) */ 966 case 2: return 0x0; 967 case 4: return 0x1; 968 case 11: return 0x2; 969 case 22: return 0x3; 970 971 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 972 case 12: return 0xb; 973 case 18: return 0xf; 974 case 24: return 0xa; 975 case 36: return 0xe; 976 case 48: return 0x9; 977 case 72: return 0xd; 978 case 96: return 0x8; 979 case 108: return 0xc; 980 981 /* unsupported rates (should not get there) */ 982 default: return 0xff; 983 } 984 } 985 986 void 987 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 988 uint32_t flags, uint16_t xflags, int len, int rate) 989 { 990 struct ieee80211com *ic = &sc->sc_ic; 991 uint16_t plcp_length; 992 int remainder; 993 994 desc->flags = htole32(flags); 995 desc->flags |= htole32(RT2573_TX_VALID); 996 desc->flags |= htole32(len << 16); 997 998 desc->xflags = htole16(xflags); 999 1000 desc->wme = htole16( 1001 RT2573_QID(0) | 1002 RT2573_AIFSN(2) | 1003 RT2573_LOGCWMIN(4) | 1004 RT2573_LOGCWMAX(10)); 1005 1006 /* setup PLCP fields */ 1007 desc->plcp_signal = rum_plcp_signal(rate); 1008 desc->plcp_service = 4; 1009 1010 len += IEEE80211_CRC_LEN; 1011 if (RUM_RATE_IS_OFDM(rate)) { 1012 desc->flags |= htole32(RT2573_TX_OFDM); 1013 1014 plcp_length = len & 0xfff; 1015 desc->plcp_length_hi = plcp_length >> 6; 1016 desc->plcp_length_lo = plcp_length & 0x3f; 1017 } else { 1018 plcp_length = (16 * len + rate - 1) / rate; 1019 if (rate == 22) { 1020 remainder = (16 * len) % 22; 1021 if (remainder != 0 && remainder < 7) 1022 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1023 } 1024 desc->plcp_length_hi = plcp_length >> 8; 1025 desc->plcp_length_lo = plcp_length & 0xff; 1026 1027 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1028 desc->plcp_signal |= 0x08; 1029 } 1030 } 1031 1032 #define RUM_TX_TIMEOUT 5000 1033 1034 int 1035 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1036 { 1037 struct ieee80211com *ic = &sc->sc_ic; 1038 struct rum_tx_desc *desc; 1039 struct rum_tx_data *data; 1040 struct ieee80211_frame *wh; 1041 struct ieee80211_key *k; 1042 uint32_t flags = 0; 1043 uint16_t dur; 1044 usbd_status error; 1045 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1046 1047 wh = mtod(m0, struct ieee80211_frame *); 1048 1049 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1050 k = ieee80211_get_txkey(ic, wh, ni); 1051 1052 if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) 1053 return ENOBUFS; 1054 1055 /* packet header may have moved, reset our local pointer */ 1056 wh = mtod(m0, struct ieee80211_frame *); 1057 } 1058 1059 /* compute actual packet length (including CRC and crypto overhead) */ 1060 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1061 1062 /* pickup a rate */ 1063 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1064 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1065 IEEE80211_FC0_TYPE_MGT)) { 1066 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1067 rate = ni->ni_rates.rs_rates[0]; 1068 } else if (ic->ic_fixed_rate != -1) { 1069 rate = ic->ic_sup_rates[ic->ic_curmode]. 1070 rs_rates[ic->ic_fixed_rate]; 1071 } else 1072 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1073 if (rate == 0) 1074 rate = 2; /* XXX should not happen */ 1075 rate &= IEEE80211_RATE_VAL; 1076 1077 /* check if RTS/CTS or CTS-to-self protection must be used */ 1078 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1079 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1080 if (pktlen > ic->ic_rtsthreshold) { 1081 needrts = 1; /* RTS/CTS based on frame length */ 1082 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1083 RUM_RATE_IS_OFDM(rate)) { 1084 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1085 needcts = 1; /* CTS-to-self */ 1086 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1087 needrts = 1; /* RTS/CTS */ 1088 } 1089 } 1090 if (needrts || needcts) { 1091 struct mbuf *mprot; 1092 int protrate, ackrate; 1093 uint16_t dur; 1094 1095 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1096 ackrate = rum_ack_rate(ic, rate); 1097 1098 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1099 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1100 2 * sc->sifs; 1101 if (needrts) { 1102 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1103 protrate), ic->ic_flags) + sc->sifs; 1104 mprot = ieee80211_get_rts(ic, wh, dur); 1105 } else { 1106 mprot = ieee80211_get_cts_to_self(ic, dur); 1107 } 1108 if (mprot == NULL) { 1109 printf("%s: could not allocate protection frame\n", 1110 sc->sc_dev.dv_xname); 1111 m_freem(m0); 1112 return ENOBUFS; 1113 } 1114 1115 data = &sc->tx_data[sc->tx_cur]; 1116 desc = (struct rum_tx_desc *)data->buf; 1117 1118 /* avoid multiple free() of the same node for each fragment */ 1119 data->ni = ieee80211_ref_node(ni); 1120 1121 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1122 data->buf + RT2573_TX_DESC_SIZE); 1123 rum_setup_tx_desc(sc, desc, 1124 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1125 0, mprot->m_pkthdr.len, protrate); 1126 1127 /* no roundup necessary here */ 1128 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1129 1130 /* XXX may want to pass the protection frame to BPF */ 1131 1132 /* mbuf is no longer needed */ 1133 m_freem(mprot); 1134 1135 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1136 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1137 RUM_TX_TIMEOUT, rum_txeof); 1138 error = usbd_transfer(data->xfer); 1139 if (error != 0 && error != USBD_IN_PROGRESS) { 1140 m_freem(m0); 1141 return error; 1142 } 1143 1144 sc->tx_queued++; 1145 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1146 1147 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1148 } 1149 1150 data = &sc->tx_data[sc->tx_cur]; 1151 desc = (struct rum_tx_desc *)data->buf; 1152 1153 data->ni = ni; 1154 1155 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1156 flags |= RT2573_TX_NEED_ACK; 1157 1158 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1159 ic->ic_flags) + sc->sifs; 1160 *(uint16_t *)wh->i_dur = htole16(dur); 1161 1162 #ifndef IEEE80211_STA_ONLY 1163 /* tell hardware to set timestamp in probe responses */ 1164 if ((wh->i_fc[0] & 1165 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1166 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1167 flags |= RT2573_TX_TIMESTAMP; 1168 #endif 1169 } 1170 1171 #if NBPFILTER > 0 1172 if (sc->sc_drvbpf != NULL) { 1173 struct mbuf mb; 1174 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1175 1176 tap->wt_flags = 0; 1177 tap->wt_rate = rate; 1178 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1179 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1180 tap->wt_antenna = sc->tx_ant; 1181 1182 mb.m_data = (caddr_t)tap; 1183 mb.m_len = sc->sc_txtap_len; 1184 mb.m_next = m0; 1185 mb.m_nextpkt = NULL; 1186 mb.m_type = 0; 1187 mb.m_flags = 0; 1188 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 1189 } 1190 #endif 1191 1192 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1193 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1194 1195 /* align end on a 4-bytes boundary */ 1196 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1197 1198 /* 1199 * No space left in the last URB to store the extra 4 bytes, force 1200 * sending of another URB. 1201 */ 1202 if ((xferlen % 64) == 0) 1203 xferlen += 4; 1204 1205 DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n", 1206 m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen)); 1207 1208 /* mbuf is no longer needed */ 1209 m_freem(m0); 1210 1211 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1212 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1213 error = usbd_transfer(data->xfer); 1214 if (error != 0 && error != USBD_IN_PROGRESS) 1215 return error; 1216 1217 sc->tx_queued++; 1218 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1219 1220 return 0; 1221 } 1222 1223 void 1224 rum_start(struct ifnet *ifp) 1225 { 1226 struct rum_softc *sc = ifp->if_softc; 1227 struct ieee80211com *ic = &sc->sc_ic; 1228 struct ieee80211_node *ni; 1229 struct mbuf *m0; 1230 1231 /* 1232 * net80211 may still try to send management frames even if the 1233 * IFF_RUNNING flag is not set... 1234 */ 1235 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 1236 return; 1237 1238 for (;;) { 1239 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1240 ifq_set_oactive(&ifp->if_snd); 1241 break; 1242 } 1243 1244 m0 = mq_dequeue(&ic->ic_mgtq); 1245 if (m0 != NULL) { 1246 ni = m0->m_pkthdr.ph_cookie; 1247 #if NBPFILTER > 0 1248 if (ic->ic_rawbpf != NULL) 1249 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1250 #endif 1251 if (rum_tx_data(sc, m0, ni) != 0) 1252 break; 1253 1254 } else { 1255 if (ic->ic_state != IEEE80211_S_RUN) 1256 break; 1257 1258 IFQ_DEQUEUE(&ifp->if_snd, m0); 1259 if (m0 == NULL) 1260 break; 1261 #if NBPFILTER > 0 1262 if (ifp->if_bpf != NULL) 1263 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); 1264 #endif 1265 m0 = ieee80211_encap(ifp, m0, &ni); 1266 if (m0 == NULL) 1267 continue; 1268 #if NBPFILTER > 0 1269 if (ic->ic_rawbpf != NULL) 1270 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1271 #endif 1272 if (rum_tx_data(sc, m0, ni) != 0) { 1273 if (ni != NULL) 1274 ieee80211_release_node(ic, ni); 1275 ifp->if_oerrors++; 1276 break; 1277 } 1278 } 1279 1280 sc->sc_tx_timer = 5; 1281 ifp->if_timer = 1; 1282 } 1283 } 1284 1285 void 1286 rum_watchdog(struct ifnet *ifp) 1287 { 1288 struct rum_softc *sc = ifp->if_softc; 1289 1290 ifp->if_timer = 0; 1291 1292 if (sc->sc_tx_timer > 0) { 1293 if (--sc->sc_tx_timer == 0) { 1294 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1295 /*rum_init(ifp); XXX needs a process context! */ 1296 ifp->if_oerrors++; 1297 return; 1298 } 1299 ifp->if_timer = 1; 1300 } 1301 1302 ieee80211_watchdog(ifp); 1303 } 1304 1305 int 1306 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1307 { 1308 struct rum_softc *sc = ifp->if_softc; 1309 struct ieee80211com *ic = &sc->sc_ic; 1310 struct ifreq *ifr; 1311 int s, error = 0; 1312 1313 if (usbd_is_dying(sc->sc_udev)) 1314 return ENXIO; 1315 1316 usbd_ref_incr(sc->sc_udev); 1317 1318 s = splnet(); 1319 1320 switch (cmd) { 1321 case SIOCSIFADDR: 1322 ifp->if_flags |= IFF_UP; 1323 /* FALLTHROUGH */ 1324 case SIOCSIFFLAGS: 1325 if (ifp->if_flags & IFF_UP) { 1326 if (ifp->if_flags & IFF_RUNNING) 1327 rum_update_promisc(sc); 1328 else 1329 rum_init(ifp); 1330 } else { 1331 if (ifp->if_flags & IFF_RUNNING) 1332 rum_stop(ifp, 1); 1333 } 1334 break; 1335 1336 case SIOCADDMULTI: 1337 case SIOCDELMULTI: 1338 ifr = (struct ifreq *)data; 1339 error = (cmd == SIOCADDMULTI) ? 1340 ether_addmulti(ifr, &ic->ic_ac) : 1341 ether_delmulti(ifr, &ic->ic_ac); 1342 1343 if (error == ENETRESET) 1344 error = 0; 1345 break; 1346 1347 case SIOCS80211CHANNEL: 1348 /* 1349 * This allows for fast channel switching in monitor mode 1350 * (used by kismet). In IBSS mode, we must explicitly reset 1351 * the interface to generate a new beacon frame. 1352 */ 1353 error = ieee80211_ioctl(ifp, cmd, data); 1354 if (error == ENETRESET && 1355 ic->ic_opmode == IEEE80211_M_MONITOR) { 1356 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1357 (IFF_UP | IFF_RUNNING)) 1358 rum_set_chan(sc, ic->ic_ibss_chan); 1359 error = 0; 1360 } 1361 break; 1362 1363 default: 1364 error = ieee80211_ioctl(ifp, cmd, data); 1365 } 1366 1367 if (error == ENETRESET) { 1368 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1369 (IFF_UP | IFF_RUNNING)) 1370 rum_init(ifp); 1371 error = 0; 1372 } 1373 1374 splx(s); 1375 1376 usbd_ref_decr(sc->sc_udev); 1377 1378 return error; 1379 } 1380 1381 void 1382 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1383 { 1384 usb_device_request_t req; 1385 usbd_status error; 1386 1387 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1388 req.bRequest = RT2573_READ_EEPROM; 1389 USETW(req.wValue, 0); 1390 USETW(req.wIndex, addr); 1391 USETW(req.wLength, len); 1392 1393 error = usbd_do_request(sc->sc_udev, &req, buf); 1394 if (error != 0) { 1395 printf("%s: could not read EEPROM: %s\n", 1396 sc->sc_dev.dv_xname, usbd_errstr(error)); 1397 } 1398 } 1399 1400 uint32_t 1401 rum_read(struct rum_softc *sc, uint16_t reg) 1402 { 1403 uint32_t val; 1404 1405 rum_read_multi(sc, reg, &val, sizeof val); 1406 1407 return letoh32(val); 1408 } 1409 1410 void 1411 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1412 { 1413 usb_device_request_t req; 1414 usbd_status error; 1415 1416 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1417 req.bRequest = RT2573_READ_MULTI_MAC; 1418 USETW(req.wValue, 0); 1419 USETW(req.wIndex, reg); 1420 USETW(req.wLength, len); 1421 1422 error = usbd_do_request(sc->sc_udev, &req, buf); 1423 if (error != 0) { 1424 printf("%s: could not multi read MAC register: %s\n", 1425 sc->sc_dev.dv_xname, usbd_errstr(error)); 1426 } 1427 } 1428 1429 void 1430 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1431 { 1432 uint32_t tmp = htole32(val); 1433 1434 rum_write_multi(sc, reg, &tmp, sizeof tmp); 1435 } 1436 1437 void 1438 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1439 { 1440 usb_device_request_t req; 1441 usbd_status error; 1442 int offset; 1443 1444 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1445 req.bRequest = RT2573_WRITE_MULTI_MAC; 1446 USETW(req.wValue, 0); 1447 1448 /* write at most 64 bytes at a time */ 1449 for (offset = 0; offset < len; offset += 64) { 1450 USETW(req.wIndex, reg + offset); 1451 USETW(req.wLength, MIN(len - offset, 64)); 1452 1453 error = usbd_do_request(sc->sc_udev, &req, buf + offset); 1454 if (error != 0) { 1455 printf("%s: could not multi write MAC register: %s\n", 1456 sc->sc_dev.dv_xname, usbd_errstr(error)); 1457 } 1458 } 1459 } 1460 1461 void 1462 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1463 { 1464 uint32_t tmp; 1465 int ntries; 1466 1467 for (ntries = 0; ntries < 5; ntries++) { 1468 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1469 break; 1470 } 1471 if (ntries == 5) { 1472 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname); 1473 return; 1474 } 1475 1476 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1477 rum_write(sc, RT2573_PHY_CSR3, tmp); 1478 } 1479 1480 uint8_t 1481 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1482 { 1483 uint32_t val; 1484 int ntries; 1485 1486 for (ntries = 0; ntries < 5; ntries++) { 1487 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1488 break; 1489 } 1490 if (ntries == 5) { 1491 printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); 1492 return 0; 1493 } 1494 1495 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1496 rum_write(sc, RT2573_PHY_CSR3, val); 1497 1498 for (ntries = 0; ntries < 100; ntries++) { 1499 val = rum_read(sc, RT2573_PHY_CSR3); 1500 if (!(val & RT2573_BBP_BUSY)) 1501 return val & 0xff; 1502 DELAY(1); 1503 } 1504 1505 printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); 1506 return 0; 1507 } 1508 1509 void 1510 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1511 { 1512 uint32_t tmp; 1513 int ntries; 1514 1515 for (ntries = 0; ntries < 5; ntries++) { 1516 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1517 break; 1518 } 1519 if (ntries == 5) { 1520 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname); 1521 return; 1522 } 1523 1524 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1525 (reg & 3); 1526 rum_write(sc, RT2573_PHY_CSR4, tmp); 1527 1528 /* remember last written value in sc */ 1529 sc->rf_regs[reg] = val; 1530 1531 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1532 } 1533 1534 void 1535 rum_select_antenna(struct rum_softc *sc) 1536 { 1537 uint8_t bbp4, bbp77; 1538 uint32_t tmp; 1539 1540 bbp4 = rum_bbp_read(sc, 4); 1541 bbp77 = rum_bbp_read(sc, 77); 1542 1543 /* TBD */ 1544 1545 /* make sure Rx is disabled before switching antenna */ 1546 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1547 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1548 1549 rum_bbp_write(sc, 4, bbp4); 1550 rum_bbp_write(sc, 77, bbp77); 1551 1552 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1553 } 1554 1555 /* 1556 * Enable multi-rate retries for frames sent at OFDM rates. 1557 * In 802.11b/g mode, allow fallback to CCK rates. 1558 */ 1559 void 1560 rum_enable_mrr(struct rum_softc *sc) 1561 { 1562 struct ieee80211com *ic = &sc->sc_ic; 1563 uint32_t tmp; 1564 1565 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1566 1567 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1568 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) 1569 tmp |= RT2573_MRR_CCK_FALLBACK; 1570 tmp |= RT2573_MRR_ENABLED; 1571 1572 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1573 } 1574 1575 void 1576 rum_set_txpreamble(struct rum_softc *sc) 1577 { 1578 uint32_t tmp; 1579 1580 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1581 1582 tmp &= ~RT2573_SHORT_PREAMBLE; 1583 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1584 tmp |= RT2573_SHORT_PREAMBLE; 1585 1586 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1587 } 1588 1589 void 1590 rum_set_basicrates(struct rum_softc *sc) 1591 { 1592 struct ieee80211com *ic = &sc->sc_ic; 1593 1594 /* update basic rate set */ 1595 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1596 /* 11b basic rates: 1, 2Mbps */ 1597 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1598 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1599 /* 11a basic rates: 6, 12, 24Mbps */ 1600 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1601 } else { 1602 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1603 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1604 } 1605 } 1606 1607 /* 1608 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1609 * driver. 1610 */ 1611 void 1612 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1613 { 1614 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1615 uint32_t tmp; 1616 1617 /* update all BBP registers that depend on the band */ 1618 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1619 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1620 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1621 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1622 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1623 } 1624 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1625 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1626 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1627 } 1628 1629 sc->bbp17 = bbp17; 1630 rum_bbp_write(sc, 17, bbp17); 1631 rum_bbp_write(sc, 96, bbp96); 1632 rum_bbp_write(sc, 104, bbp104); 1633 1634 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1635 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1636 rum_bbp_write(sc, 75, 0x80); 1637 rum_bbp_write(sc, 86, 0x80); 1638 rum_bbp_write(sc, 88, 0x80); 1639 } 1640 1641 rum_bbp_write(sc, 35, bbp35); 1642 rum_bbp_write(sc, 97, bbp97); 1643 rum_bbp_write(sc, 98, bbp98); 1644 1645 tmp = rum_read(sc, RT2573_PHY_CSR0); 1646 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1647 if (IEEE80211_IS_CHAN_2GHZ(c)) 1648 tmp |= RT2573_PA_PE_2GHZ; 1649 else 1650 tmp |= RT2573_PA_PE_5GHZ; 1651 rum_write(sc, RT2573_PHY_CSR0, tmp); 1652 1653 /* 802.11a uses a 16 microseconds short interframe space */ 1654 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1655 } 1656 1657 void 1658 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1659 { 1660 struct ieee80211com *ic = &sc->sc_ic; 1661 const struct rfprog *rfprog; 1662 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1663 int8_t power; 1664 u_int i, chan; 1665 1666 chan = ieee80211_chan2ieee(ic, c); 1667 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1668 return; 1669 1670 /* select the appropriate RF settings based on what EEPROM says */ 1671 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1672 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1673 1674 /* find the settings for this channel (we know it exists) */ 1675 for (i = 0; rfprog[i].chan != chan; i++); 1676 1677 power = sc->txpow[i]; 1678 if (power < 0) { 1679 bbp94 += power; 1680 power = 0; 1681 } else if (power > 31) { 1682 bbp94 += power - 31; 1683 power = 31; 1684 } 1685 1686 /* 1687 * If we are switching from the 2GHz band to the 5GHz band or 1688 * vice-versa, BBP registers need to be reprogrammed. 1689 */ 1690 if (c->ic_flags != sc->sc_curchan->ic_flags) { 1691 rum_select_band(sc, c); 1692 rum_select_antenna(sc); 1693 } 1694 sc->sc_curchan = c; 1695 1696 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1697 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1698 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1699 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1700 1701 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1702 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1703 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1704 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1705 1706 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1707 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1708 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1709 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1710 1711 DELAY(10); 1712 1713 /* enable smart mode for MIMO-capable RFs */ 1714 bbp3 = rum_bbp_read(sc, 3); 1715 1716 bbp3 &= ~RT2573_SMART_MODE; 1717 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1718 bbp3 |= RT2573_SMART_MODE; 1719 1720 rum_bbp_write(sc, 3, bbp3); 1721 1722 if (bbp94 != RT2573_BBPR94_DEFAULT) 1723 rum_bbp_write(sc, 94, bbp94); 1724 } 1725 1726 /* 1727 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1728 * and HostAP operating modes. 1729 */ 1730 void 1731 rum_enable_tsf_sync(struct rum_softc *sc) 1732 { 1733 struct ieee80211com *ic = &sc->sc_ic; 1734 uint32_t tmp; 1735 1736 #ifndef IEEE80211_STA_ONLY 1737 if (ic->ic_opmode != IEEE80211_M_STA) { 1738 /* 1739 * Change default 16ms TBTT adjustment to 8ms. 1740 * Must be done before enabling beacon generation. 1741 */ 1742 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1743 } 1744 #endif 1745 1746 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1747 1748 /* set beacon interval (in 1/16ms unit) */ 1749 tmp |= ic->ic_bss->ni_intval * 16; 1750 1751 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1752 if (ic->ic_opmode == IEEE80211_M_STA) 1753 tmp |= RT2573_TSF_MODE(1); 1754 #ifndef IEEE80211_STA_ONLY 1755 else 1756 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1757 #endif 1758 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1759 } 1760 1761 void 1762 rum_update_slot(struct rum_softc *sc) 1763 { 1764 struct ieee80211com *ic = &sc->sc_ic; 1765 uint8_t slottime; 1766 uint32_t tmp; 1767 1768 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1769 1770 tmp = rum_read(sc, RT2573_MAC_CSR9); 1771 tmp = (tmp & ~0xff) | slottime; 1772 rum_write(sc, RT2573_MAC_CSR9, tmp); 1773 1774 DPRINTF(("setting slot time to %uus\n", slottime)); 1775 } 1776 1777 void 1778 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1779 { 1780 uint32_t tmp; 1781 1782 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1783 rum_write(sc, RT2573_MAC_CSR4, tmp); 1784 1785 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1786 rum_write(sc, RT2573_MAC_CSR5, tmp); 1787 } 1788 1789 void 1790 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1791 { 1792 uint32_t tmp; 1793 1794 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1795 rum_write(sc, RT2573_MAC_CSR2, tmp); 1796 1797 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1798 rum_write(sc, RT2573_MAC_CSR3, tmp); 1799 } 1800 1801 void 1802 rum_update_promisc(struct rum_softc *sc) 1803 { 1804 struct ifnet *ifp = &sc->sc_ic.ic_if; 1805 uint32_t tmp; 1806 1807 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1808 1809 tmp &= ~RT2573_DROP_NOT_TO_ME; 1810 if (!(ifp->if_flags & IFF_PROMISC)) 1811 tmp |= RT2573_DROP_NOT_TO_ME; 1812 1813 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1814 1815 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1816 "entering" : "leaving")); 1817 } 1818 1819 const char * 1820 rum_get_rf(int rev) 1821 { 1822 switch (rev) { 1823 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1824 case RT2573_RF_2528: return "RT2528"; 1825 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1826 case RT2573_RF_5226: return "RT5226"; 1827 default: return "unknown"; 1828 } 1829 } 1830 1831 void 1832 rum_read_eeprom(struct rum_softc *sc) 1833 { 1834 struct ieee80211com *ic = &sc->sc_ic; 1835 uint16_t val; 1836 #ifdef RUM_DEBUG 1837 int i; 1838 #endif 1839 1840 /* read MAC/BBP type */ 1841 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1842 sc->macbbp_rev = letoh16(val); 1843 1844 /* read MAC address */ 1845 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1846 1847 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1848 val = letoh16(val); 1849 sc->rf_rev = (val >> 11) & 0x1f; 1850 sc->hw_radio = (val >> 10) & 0x1; 1851 sc->rx_ant = (val >> 4) & 0x3; 1852 sc->tx_ant = (val >> 2) & 0x3; 1853 sc->nb_ant = val & 0x3; 1854 1855 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1856 1857 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1858 val = letoh16(val); 1859 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1860 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1861 1862 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1863 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1864 1865 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1866 val = letoh16(val); 1867 if ((val & 0xff) != 0xff) 1868 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1869 1870 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1871 val = letoh16(val); 1872 if ((val & 0xff) != 0xff) 1873 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1874 1875 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1876 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1877 1878 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1879 val = letoh16(val); 1880 if ((val & 0xff) != 0xff) 1881 sc->rffreq = val & 0xff; 1882 1883 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1884 1885 /* read Tx power for all a/b/g channels */ 1886 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1887 /* XXX default Tx power for 802.11a channels */ 1888 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1889 #ifdef RUM_DEBUG 1890 for (i = 0; i < 14; i++) 1891 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1892 #endif 1893 1894 /* read default values for BBP registers */ 1895 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1896 #ifdef RUM_DEBUG 1897 for (i = 0; i < 14; i++) { 1898 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1899 continue; 1900 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1901 sc->bbp_prom[i].val)); 1902 } 1903 #endif 1904 } 1905 1906 int 1907 rum_bbp_init(struct rum_softc *sc) 1908 { 1909 int i, ntries; 1910 1911 /* wait for BBP to be ready */ 1912 for (ntries = 0; ntries < 100; ntries++) { 1913 const uint8_t val = rum_bbp_read(sc, 0); 1914 if (val != 0 && val != 0xff) 1915 break; 1916 DELAY(1000); 1917 } 1918 if (ntries == 100) { 1919 printf("%s: timeout waiting for BBP\n", 1920 sc->sc_dev.dv_xname); 1921 return EIO; 1922 } 1923 1924 /* initialize BBP registers to default values */ 1925 for (i = 0; i < nitems(rum_def_bbp); i++) 1926 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1927 1928 /* write vendor-specific BBP values (from EEPROM) */ 1929 for (i = 0; i < 16; i++) { 1930 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1931 continue; 1932 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1933 } 1934 1935 return 0; 1936 } 1937 1938 int 1939 rum_init(struct ifnet *ifp) 1940 { 1941 struct rum_softc *sc = ifp->if_softc; 1942 struct ieee80211com *ic = &sc->sc_ic; 1943 uint32_t tmp; 1944 usbd_status error; 1945 int i, ntries; 1946 1947 rum_stop(ifp, 0); 1948 1949 /* initialize MAC registers to default values */ 1950 for (i = 0; i < nitems(rum_def_mac); i++) 1951 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1952 1953 /* set host ready */ 1954 rum_write(sc, RT2573_MAC_CSR1, 3); 1955 rum_write(sc, RT2573_MAC_CSR1, 0); 1956 1957 /* wait for BBP/RF to wakeup */ 1958 for (ntries = 0; ntries < 1000; ntries++) { 1959 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1960 break; 1961 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1962 DELAY(1000); 1963 } 1964 if (ntries == 1000) { 1965 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1966 sc->sc_dev.dv_xname); 1967 error = ENODEV; 1968 goto fail; 1969 } 1970 1971 if ((error = rum_bbp_init(sc)) != 0) 1972 goto fail; 1973 1974 /* select default channel */ 1975 sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1976 rum_select_band(sc, sc->sc_curchan); 1977 rum_select_antenna(sc); 1978 rum_set_chan(sc, sc->sc_curchan); 1979 1980 /* clear STA registers */ 1981 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 1982 1983 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 1984 rum_set_macaddr(sc, ic->ic_myaddr); 1985 1986 /* initialize ASIC */ 1987 rum_write(sc, RT2573_MAC_CSR1, 4); 1988 1989 /* 1990 * Allocate xfer for AMRR statistics requests. 1991 */ 1992 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 1993 if (sc->amrr_xfer == NULL) { 1994 printf("%s: could not allocate AMRR xfer\n", 1995 sc->sc_dev.dv_xname); 1996 goto fail; 1997 } 1998 1999 /* 2000 * Open Tx and Rx USB bulk pipes. 2001 */ 2002 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2003 &sc->sc_tx_pipeh); 2004 if (error != 0) { 2005 printf("%s: could not open Tx pipe: %s\n", 2006 sc->sc_dev.dv_xname, usbd_errstr(error)); 2007 goto fail; 2008 } 2009 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2010 &sc->sc_rx_pipeh); 2011 if (error != 0) { 2012 printf("%s: could not open Rx pipe: %s\n", 2013 sc->sc_dev.dv_xname, usbd_errstr(error)); 2014 goto fail; 2015 } 2016 2017 /* 2018 * Allocate Tx and Rx xfer queues. 2019 */ 2020 error = rum_alloc_tx_list(sc); 2021 if (error != 0) { 2022 printf("%s: could not allocate Tx list\n", 2023 sc->sc_dev.dv_xname); 2024 goto fail; 2025 } 2026 error = rum_alloc_rx_list(sc); 2027 if (error != 0) { 2028 printf("%s: could not allocate Rx list\n", 2029 sc->sc_dev.dv_xname); 2030 goto fail; 2031 } 2032 2033 /* 2034 * Start up the receive pipe. 2035 */ 2036 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2037 struct rum_rx_data *data = &sc->rx_data[i]; 2038 2039 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2040 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2041 error = usbd_transfer(data->xfer); 2042 if (error != 0 && error != USBD_IN_PROGRESS) { 2043 printf("%s: could not queue Rx transfer\n", 2044 sc->sc_dev.dv_xname); 2045 goto fail; 2046 } 2047 } 2048 2049 /* update Rx filter */ 2050 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2051 2052 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2053 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2054 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2055 RT2573_DROP_ACKCTS; 2056 #ifndef IEEE80211_STA_ONLY 2057 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2058 #endif 2059 tmp |= RT2573_DROP_TODS; 2060 if (!(ifp->if_flags & IFF_PROMISC)) 2061 tmp |= RT2573_DROP_NOT_TO_ME; 2062 } 2063 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2064 2065 ifq_clr_oactive(&ifp->if_snd); 2066 ifp->if_flags |= IFF_RUNNING; 2067 2068 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2069 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2070 else 2071 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2072 2073 return 0; 2074 2075 fail: rum_stop(ifp, 1); 2076 return error; 2077 } 2078 2079 void 2080 rum_stop(struct ifnet *ifp, int disable) 2081 { 2082 struct rum_softc *sc = ifp->if_softc; 2083 struct ieee80211com *ic = &sc->sc_ic; 2084 uint32_t tmp; 2085 2086 sc->sc_tx_timer = 0; 2087 ifp->if_timer = 0; 2088 ifp->if_flags &= ~IFF_RUNNING; 2089 ifq_clr_oactive(&ifp->if_snd); 2090 2091 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2092 2093 /* disable Rx */ 2094 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2095 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2096 2097 /* reset ASIC */ 2098 rum_write(sc, RT2573_MAC_CSR1, 3); 2099 rum_write(sc, RT2573_MAC_CSR1, 0); 2100 2101 if (sc->amrr_xfer != NULL) { 2102 usbd_free_xfer(sc->amrr_xfer); 2103 sc->amrr_xfer = NULL; 2104 } 2105 if (sc->sc_rx_pipeh != NULL) { 2106 usbd_abort_pipe(sc->sc_rx_pipeh); 2107 usbd_close_pipe(sc->sc_rx_pipeh); 2108 sc->sc_rx_pipeh = NULL; 2109 } 2110 if (sc->sc_tx_pipeh != NULL) { 2111 usbd_abort_pipe(sc->sc_tx_pipeh); 2112 usbd_close_pipe(sc->sc_tx_pipeh); 2113 sc->sc_tx_pipeh = NULL; 2114 } 2115 2116 rum_free_rx_list(sc); 2117 rum_free_tx_list(sc); 2118 } 2119 2120 int 2121 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2122 { 2123 usb_device_request_t req; 2124 uint16_t reg = RT2573_MCU_CODE_BASE; 2125 usbd_status error; 2126 2127 /* copy firmware image into NIC */ 2128 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2129 rum_write(sc, reg, UGETDW(ucode)); 2130 2131 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2132 req.bRequest = RT2573_MCU_CNTL; 2133 USETW(req.wValue, RT2573_MCU_RUN); 2134 USETW(req.wIndex, 0); 2135 USETW(req.wLength, 0); 2136 2137 error = usbd_do_request(sc->sc_udev, &req, NULL); 2138 if (error != 0) { 2139 printf("%s: could not run firmware: %s\n", 2140 sc->sc_dev.dv_xname, usbd_errstr(error)); 2141 } 2142 return error; 2143 } 2144 2145 #ifndef IEEE80211_STA_ONLY 2146 int 2147 rum_prepare_beacon(struct rum_softc *sc) 2148 { 2149 struct ieee80211com *ic = &sc->sc_ic; 2150 struct rum_tx_desc desc; 2151 struct mbuf *m0; 2152 int rate; 2153 2154 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss); 2155 if (m0 == NULL) { 2156 printf("%s: could not allocate beacon frame\n", 2157 sc->sc_dev.dv_xname); 2158 return ENOBUFS; 2159 } 2160 2161 /* send beacons at the lowest available rate */ 2162 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2; 2163 2164 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2165 m0->m_pkthdr.len, rate); 2166 2167 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2168 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2169 2170 /* copy beacon header and payload into NIC memory */ 2171 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2172 m0->m_pkthdr.len); 2173 2174 m_freem(m0); 2175 2176 return 0; 2177 } 2178 #endif 2179 2180 void 2181 rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 2182 { 2183 /* start with lowest Tx rate */ 2184 ni->ni_txrate = 0; 2185 } 2186 2187 void 2188 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2189 { 2190 int i; 2191 2192 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2193 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2194 2195 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2196 2197 /* set rate to some reasonable initial value */ 2198 for (i = ni->ni_rates.rs_nrates - 1; 2199 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2200 i--); 2201 ni->ni_txrate = i; 2202 2203 if (!usbd_is_dying(sc->sc_udev)) 2204 timeout_add_sec(&sc->amrr_to, 1); 2205 } 2206 2207 void 2208 rum_amrr_timeout(void *arg) 2209 { 2210 struct rum_softc *sc = arg; 2211 usb_device_request_t req; 2212 2213 if (usbd_is_dying(sc->sc_udev)) 2214 return; 2215 2216 /* 2217 * Asynchronously read statistic registers (cleared by read). 2218 */ 2219 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2220 req.bRequest = RT2573_READ_MULTI_MAC; 2221 USETW(req.wValue, 0); 2222 USETW(req.wIndex, RT2573_STA_CSR0); 2223 USETW(req.wLength, sizeof sc->sta); 2224 2225 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2226 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2227 rum_amrr_update); 2228 (void)usbd_transfer(sc->amrr_xfer); 2229 } 2230 2231 void 2232 rum_amrr_update(struct usbd_xfer *xfer, void *priv, 2233 usbd_status status) 2234 { 2235 struct rum_softc *sc = (struct rum_softc *)priv; 2236 struct ifnet *ifp = &sc->sc_ic.ic_if; 2237 2238 if (status != USBD_NORMAL_COMPLETION) { 2239 printf("%s: could not retrieve Tx statistics - cancelling " 2240 "automatic rate control\n", sc->sc_dev.dv_xname); 2241 return; 2242 } 2243 2244 /* count TX retry-fail as Tx errors */ 2245 ifp->if_oerrors += letoh32(sc->sta[5]) >> 16; 2246 2247 sc->amn.amn_retrycnt = 2248 (letoh32(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2249 (letoh32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2250 (letoh32(sc->sta[5]) >> 16); /* TX retry-fail count */ 2251 2252 sc->amn.amn_txcnt = 2253 sc->amn.amn_retrycnt + 2254 (letoh32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2255 2256 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2257 2258 if (!usbd_is_dying(sc->sc_udev)) 2259 timeout_add_sec(&sc->amrr_to, 1); 2260 } 2261