xref: /openbsd-src/sys/dev/usb/if_rum.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: if_rum.c,v 1.98 2011/07/03 15:47:17 matthew Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Ralink Technology RT2501USB/RT2601USB chipset driver
22  * http://www.ralinktech.com.tw/
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/timeout.h>
34 #include <sys/conf.h>
35 #include <sys/device.h>
36 
37 #include <machine/bus.h>
38 #include <machine/endian.h>
39 #include <machine/intr.h>
40 
41 #if NBPFILTER > 0
42 #include <net/bpf.h>
43 #endif
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/if_ether.h>
54 #include <netinet/ip.h>
55 
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/usb/usb.h>
61 #include <dev/usb/usbdi.h>
62 #include <dev/usb/usbdi_util.h>
63 #include <dev/usb/usbdevs.h>
64 
65 #include <dev/usb/if_rumreg.h>
66 #include <dev/usb/if_rumvar.h>
67 
68 #ifdef USB_DEBUG
69 #define RUM_DEBUG
70 #endif
71 
72 #ifdef RUM_DEBUG
73 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
74 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
75 int rum_debug = 0;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80 
81 /* various supported device vendors/products */
82 static const struct usb_devno rum_devs[] = {
83 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
84 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
85 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
86 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
87 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
88 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
89 	{ USB_VENDOR_ASUS,		USB_PRODUCT_ASUS_RT2573_1 },
90 	{ USB_VENDOR_ASUS,		USB_PRODUCT_ASUS_RT2573_2 },
91 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
92 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
93 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
94 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
95 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
96 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
97 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_C54RU2 },
98 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_RT2573 },
99 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
100 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
101 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
102 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
103 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
104 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
105 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
106 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
107 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
108 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
109 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
110 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
111 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
112 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
113 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
114 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
115 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_WUB320G },
116 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
117 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
118 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
119 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_1 },
120 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
121 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
122 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
123 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
124 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
125 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
126 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
127 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
128 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
129 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
130 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
131 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573_2 },
132 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
133 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
134 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
135 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
136 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
137 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
138 };
139 
140 void		rum_attachhook(void *);
141 int		rum_alloc_tx_list(struct rum_softc *);
142 void		rum_free_tx_list(struct rum_softc *);
143 int		rum_alloc_rx_list(struct rum_softc *);
144 void		rum_free_rx_list(struct rum_softc *);
145 int		rum_media_change(struct ifnet *);
146 void		rum_next_scan(void *);
147 void		rum_task(void *);
148 int		rum_newstate(struct ieee80211com *, enum ieee80211_state, int);
149 void		rum_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
150 void		rum_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
151 #if NBPFILTER > 0
152 uint8_t		rum_rxrate(const struct rum_rx_desc *);
153 #endif
154 int		rum_ack_rate(struct ieee80211com *, int);
155 uint16_t	rum_txtime(int, int, uint32_t);
156 uint8_t		rum_plcp_signal(int);
157 void		rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *,
158 		    uint32_t, uint16_t, int, int);
159 int		rum_tx_data(struct rum_softc *, struct mbuf *,
160 		    struct ieee80211_node *);
161 void		rum_start(struct ifnet *);
162 void		rum_watchdog(struct ifnet *);
163 int		rum_ioctl(struct ifnet *, u_long, caddr_t);
164 void		rum_eeprom_read(struct rum_softc *, uint16_t, void *, int);
165 uint32_t	rum_read(struct rum_softc *, uint16_t);
166 void		rum_read_multi(struct rum_softc *, uint16_t, void *, int);
167 void		rum_write(struct rum_softc *, uint16_t, uint32_t);
168 void		rum_write_multi(struct rum_softc *, uint16_t, void *, size_t);
169 void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
170 uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
171 void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
172 void		rum_select_antenna(struct rum_softc *);
173 void		rum_enable_mrr(struct rum_softc *);
174 void		rum_set_txpreamble(struct rum_softc *);
175 void		rum_set_basicrates(struct rum_softc *);
176 void		rum_select_band(struct rum_softc *,
177 		    struct ieee80211_channel *);
178 void		rum_set_chan(struct rum_softc *, struct ieee80211_channel *);
179 void		rum_enable_tsf_sync(struct rum_softc *);
180 void		rum_update_slot(struct rum_softc *);
181 void		rum_set_bssid(struct rum_softc *, const uint8_t *);
182 void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
183 void		rum_update_promisc(struct rum_softc *);
184 const char	*rum_get_rf(int);
185 void		rum_read_eeprom(struct rum_softc *);
186 int		rum_bbp_init(struct rum_softc *);
187 int		rum_init(struct ifnet *);
188 void		rum_stop(struct ifnet *, int);
189 int		rum_load_microcode(struct rum_softc *, const u_char *, size_t);
190 #ifndef IEEE80211_STA_ONLY
191 int		rum_prepare_beacon(struct rum_softc *);
192 #endif
193 void		rum_newassoc(struct ieee80211com *, struct ieee80211_node *,
194 		    int);
195 void		rum_amrr_start(struct rum_softc *, struct ieee80211_node *);
196 void		rum_amrr_timeout(void *);
197 void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
198 		    usbd_status status);
199 
200 static const struct {
201 	uint32_t	reg;
202 	uint32_t	val;
203 } rum_def_mac[] = {
204 	RT2573_DEF_MAC
205 };
206 
207 static const struct {
208 	uint8_t	reg;
209 	uint8_t	val;
210 } rum_def_bbp[] = {
211 	RT2573_DEF_BBP
212 };
213 
214 static const struct rfprog {
215 	uint8_t		chan;
216 	uint32_t	r1, r2, r3, r4;
217 }  rum_rf5226[] = {
218 	RT2573_RF5226
219 }, rum_rf5225[] = {
220 	RT2573_RF5225
221 };
222 
223 int rum_match(struct device *, void *, void *);
224 void rum_attach(struct device *, struct device *, void *);
225 int rum_detach(struct device *, int);
226 int rum_activate(struct device *, int);
227 
228 struct cfdriver rum_cd = {
229 	NULL, "rum", DV_IFNET
230 };
231 
232 const struct cfattach rum_ca = {
233 	sizeof(struct rum_softc),
234 	rum_match,
235 	rum_attach,
236 	rum_detach,
237 	rum_activate,
238 };
239 
240 int
241 rum_match(struct device *parent, void *match, void *aux)
242 {
243 	struct usb_attach_arg *uaa = aux;
244 
245 	if (uaa->iface != NULL)
246 		return UMATCH_NONE;
247 
248 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
249 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
250 }
251 
252 void
253 rum_attachhook(void *xsc)
254 {
255 	struct rum_softc *sc = xsc;
256 	const char *name = "rum-rt2573";
257 	u_char *ucode;
258 	size_t size;
259 	int error;
260 
261 	if ((error = loadfirmware(name, &ucode, &size)) != 0) {
262 		printf("%s: failed loadfirmware of file %s (error %d)\n",
263 		    sc->sc_dev.dv_xname, name, error);
264 		return;
265 	}
266 
267 	if (rum_load_microcode(sc, ucode, size) != 0) {
268 		printf("%s: could not load 8051 microcode\n",
269 		    sc->sc_dev.dv_xname);
270 	}
271 
272 	free(ucode, M_DEVBUF);
273 }
274 
275 void
276 rum_attach(struct device *parent, struct device *self, void *aux)
277 {
278 	struct rum_softc *sc = (struct rum_softc *)self;
279 	struct usb_attach_arg *uaa = aux;
280 	struct ieee80211com *ic = &sc->sc_ic;
281 	struct ifnet *ifp = &ic->ic_if;
282 	usb_interface_descriptor_t *id;
283 	usb_endpoint_descriptor_t *ed;
284 	usbd_status error;
285 	int i, ntries;
286 	uint32_t tmp;
287 
288 	sc->sc_udev = uaa->device;
289 
290 	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
291 		printf("%s: could not set configuration no\n",
292 		    sc->sc_dev.dv_xname);
293 		return;
294 	}
295 
296 	/* get the first interface handle */
297 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
298 	    &sc->sc_iface);
299 	if (error != 0) {
300 		printf("%s: could not get interface handle\n",
301 		    sc->sc_dev.dv_xname);
302 		return;
303 	}
304 
305 	/*
306 	 * Find endpoints.
307 	 */
308 	id = usbd_get_interface_descriptor(sc->sc_iface);
309 
310 	sc->sc_rx_no = sc->sc_tx_no = -1;
311 	for (i = 0; i < id->bNumEndpoints; i++) {
312 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
313 		if (ed == NULL) {
314 			printf("%s: no endpoint descriptor for iface %d\n",
315 			    sc->sc_dev.dv_xname, i);
316 			return;
317 		}
318 
319 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
320 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
321 			sc->sc_rx_no = ed->bEndpointAddress;
322 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
323 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
324 			sc->sc_tx_no = ed->bEndpointAddress;
325 	}
326 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
327 		printf("%s: missing endpoint\n", sc->sc_dev.dv_xname);
328 		return;
329 	}
330 
331 	usb_init_task(&sc->sc_task, rum_task, sc, USB_TASK_TYPE_GENERIC);
332 	timeout_set(&sc->scan_to, rum_next_scan, sc);
333 
334 	sc->amrr.amrr_min_success_threshold =  1;
335 	sc->amrr.amrr_max_success_threshold = 10;
336 	timeout_set(&sc->amrr_to, rum_amrr_timeout, sc);
337 
338 	/* retrieve RT2573 rev. no */
339 	for (ntries = 0; ntries < 1000; ntries++) {
340 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
341 			break;
342 		DELAY(1000);
343 	}
344 	if (ntries == 1000) {
345 		printf("%s: timeout waiting for chip to settle\n",
346 		    sc->sc_dev.dv_xname);
347 		return;
348 	}
349 
350 	/* retrieve MAC address and various other things from EEPROM */
351 	rum_read_eeprom(sc);
352 
353 	printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
354 	    sc->sc_dev.dv_xname, sc->macbbp_rev, tmp,
355 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
356 
357 	if (rootvp == NULL)
358 		mountroothook_establish(rum_attachhook, sc);
359 	else
360 		rum_attachhook(sc);
361 
362 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
363 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
364 	ic->ic_state = IEEE80211_S_INIT;
365 
366 	/* set device capabilities */
367 	ic->ic_caps =
368 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
369 #ifndef IEEE80211_STA_ONLY
370 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
371 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
372 #endif
373 	    IEEE80211_C_TXPMGT |	/* tx power management */
374 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
375 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
376 	    IEEE80211_C_WEP |		/* s/w WEP */
377 	    IEEE80211_C_RSN;		/* WPA/RSN */
378 
379 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
380 		/* set supported .11a rates */
381 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
382 		    ieee80211_std_rateset_11a;
383 
384 		/* set supported .11a channels */
385 		for (i = 34; i <= 46; i += 4) {
386 			ic->ic_channels[i].ic_freq =
387 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
388 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
389 		}
390 		for (i = 36; i <= 64; i += 4) {
391 			ic->ic_channels[i].ic_freq =
392 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
393 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
394 		}
395 		for (i = 100; i <= 140; i += 4) {
396 			ic->ic_channels[i].ic_freq =
397 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
398 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
399 		}
400 		for (i = 149; i <= 165; i += 4) {
401 			ic->ic_channels[i].ic_freq =
402 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
403 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
404 		}
405 	}
406 
407 	/* set supported .11b and .11g rates */
408 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
409 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
410 
411 	/* set supported .11b and .11g channels (1 through 14) */
412 	for (i = 1; i <= 14; i++) {
413 		ic->ic_channels[i].ic_freq =
414 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
415 		ic->ic_channels[i].ic_flags =
416 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
417 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
418 	}
419 
420 	ifp->if_softc = sc;
421 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
422 	ifp->if_ioctl = rum_ioctl;
423 	ifp->if_start = rum_start;
424 	ifp->if_watchdog = rum_watchdog;
425 	IFQ_SET_READY(&ifp->if_snd);
426 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
427 
428 	if_attach(ifp);
429 	ieee80211_ifattach(ifp);
430 	ic->ic_newassoc = rum_newassoc;
431 
432 	/* override state transition machine */
433 	sc->sc_newstate = ic->ic_newstate;
434 	ic->ic_newstate = rum_newstate;
435 	ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status);
436 
437 #if NBPFILTER > 0
438 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
439 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
440 
441 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
442 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
443 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
444 
445 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
446 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
447 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
448 #endif
449 }
450 
451 int
452 rum_detach(struct device *self, int flags)
453 {
454 	struct rum_softc *sc = (struct rum_softc *)self;
455 	struct ifnet *ifp = &sc->sc_ic.ic_if;
456 	int s;
457 
458 	s = splusb();
459 
460 	if (timeout_initialized(&sc->scan_to))
461 		timeout_del(&sc->scan_to);
462 	if (timeout_initialized(&sc->amrr_to))
463 		timeout_del(&sc->amrr_to);
464 
465 	usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
466 
467 	usbd_ref_wait(sc->sc_udev);
468 
469 	if (ifp->if_softc != NULL) {
470 		ieee80211_ifdetach(ifp);	/* free all nodes */
471 		if_detach(ifp);
472 	}
473 
474 	if (sc->amrr_xfer != NULL) {
475 		usbd_free_xfer(sc->amrr_xfer);
476 		sc->amrr_xfer = NULL;
477 	}
478 	if (sc->sc_rx_pipeh != NULL) {
479 		usbd_abort_pipe(sc->sc_rx_pipeh);
480 		usbd_close_pipe(sc->sc_rx_pipeh);
481 	}
482 	if (sc->sc_tx_pipeh != NULL) {
483 		usbd_abort_pipe(sc->sc_tx_pipeh);
484 		usbd_close_pipe(sc->sc_tx_pipeh);
485 	}
486 
487 	rum_free_rx_list(sc);
488 	rum_free_tx_list(sc);
489 
490 	splx(s);
491 
492 	return 0;
493 }
494 
495 int
496 rum_alloc_tx_list(struct rum_softc *sc)
497 {
498 	int i, error;
499 
500 	sc->tx_cur = sc->tx_queued = 0;
501 
502 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
503 		struct rum_tx_data *data = &sc->tx_data[i];
504 
505 		data->sc = sc;
506 
507 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
508 		if (data->xfer == NULL) {
509 			printf("%s: could not allocate tx xfer\n",
510 			    sc->sc_dev.dv_xname);
511 			error = ENOMEM;
512 			goto fail;
513 		}
514 		data->buf = usbd_alloc_buffer(data->xfer,
515 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
516 		if (data->buf == NULL) {
517 			printf("%s: could not allocate tx buffer\n",
518 			    sc->sc_dev.dv_xname);
519 			error = ENOMEM;
520 			goto fail;
521 		}
522 		/* clean Tx descriptor */
523 		bzero(data->buf, RT2573_TX_DESC_SIZE);
524 	}
525 
526 	return 0;
527 
528 fail:	rum_free_tx_list(sc);
529 	return error;
530 }
531 
532 void
533 rum_free_tx_list(struct rum_softc *sc)
534 {
535 	int i;
536 
537 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
538 		struct rum_tx_data *data = &sc->tx_data[i];
539 
540 		if (data->xfer != NULL) {
541 			usbd_free_xfer(data->xfer);
542 			data->xfer = NULL;
543 		}
544 		/*
545 		 * The node has already been freed at that point so don't call
546 		 * ieee80211_release_node() here.
547 		 */
548 		data->ni = NULL;
549 	}
550 }
551 
552 int
553 rum_alloc_rx_list(struct rum_softc *sc)
554 {
555 	int i, error;
556 
557 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
558 		struct rum_rx_data *data = &sc->rx_data[i];
559 
560 		data->sc = sc;
561 
562 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
563 		if (data->xfer == NULL) {
564 			printf("%s: could not allocate rx xfer\n",
565 			    sc->sc_dev.dv_xname);
566 			error = ENOMEM;
567 			goto fail;
568 		}
569 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
570 			printf("%s: could not allocate rx buffer\n",
571 			    sc->sc_dev.dv_xname);
572 			error = ENOMEM;
573 			goto fail;
574 		}
575 
576 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
577 		if (data->m == NULL) {
578 			printf("%s: could not allocate rx mbuf\n",
579 			    sc->sc_dev.dv_xname);
580 			error = ENOMEM;
581 			goto fail;
582 		}
583 		MCLGET(data->m, M_DONTWAIT);
584 		if (!(data->m->m_flags & M_EXT)) {
585 			printf("%s: could not allocate rx mbuf cluster\n",
586 			    sc->sc_dev.dv_xname);
587 			error = ENOMEM;
588 			goto fail;
589 		}
590 		data->buf = mtod(data->m, uint8_t *);
591 	}
592 
593 	return 0;
594 
595 fail:	rum_free_rx_list(sc);
596 	return error;
597 }
598 
599 void
600 rum_free_rx_list(struct rum_softc *sc)
601 {
602 	int i;
603 
604 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
605 		struct rum_rx_data *data = &sc->rx_data[i];
606 
607 		if (data->xfer != NULL) {
608 			usbd_free_xfer(data->xfer);
609 			data->xfer = NULL;
610 		}
611 		if (data->m != NULL) {
612 			m_freem(data->m);
613 			data->m = NULL;
614 		}
615 	}
616 }
617 
618 int
619 rum_media_change(struct ifnet *ifp)
620 {
621 	int error;
622 
623 	error = ieee80211_media_change(ifp);
624 	if (error != ENETRESET)
625 		return error;
626 
627 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
628 		rum_init(ifp);
629 
630 	return 0;
631 }
632 
633 /*
634  * This function is called periodically (every 200ms) during scanning to
635  * switch from one channel to another.
636  */
637 void
638 rum_next_scan(void *arg)
639 {
640 	struct rum_softc *sc = arg;
641 	struct ieee80211com *ic = &sc->sc_ic;
642 	struct ifnet *ifp = &ic->ic_if;
643 
644 	if (usbd_is_dying(sc->sc_udev))
645 		return;
646 
647 	usbd_ref_incr(sc->sc_udev);
648 
649 	if (ic->ic_state == IEEE80211_S_SCAN)
650 		ieee80211_next_scan(ifp);
651 
652 	usbd_ref_decr(sc->sc_udev);
653 }
654 
655 void
656 rum_task(void *arg)
657 {
658 	struct rum_softc *sc = arg;
659 	struct ieee80211com *ic = &sc->sc_ic;
660 	enum ieee80211_state ostate;
661 	struct ieee80211_node *ni;
662 	uint32_t tmp;
663 
664 	if (usbd_is_dying(sc->sc_udev))
665 		return;
666 
667 	ostate = ic->ic_state;
668 
669 	switch (sc->sc_state) {
670 	case IEEE80211_S_INIT:
671 		if (ostate == IEEE80211_S_RUN) {
672 			/* abort TSF synchronization */
673 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
674 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
675 		}
676 		break;
677 
678 	case IEEE80211_S_SCAN:
679 		rum_set_chan(sc, ic->ic_bss->ni_chan);
680 		if (!usbd_is_dying(sc->sc_udev))
681 			timeout_add_msec(&sc->scan_to, 200);
682 		break;
683 
684 	case IEEE80211_S_AUTH:
685 		rum_set_chan(sc, ic->ic_bss->ni_chan);
686 		break;
687 
688 	case IEEE80211_S_ASSOC:
689 		rum_set_chan(sc, ic->ic_bss->ni_chan);
690 		break;
691 
692 	case IEEE80211_S_RUN:
693 		rum_set_chan(sc, ic->ic_bss->ni_chan);
694 
695 		ni = ic->ic_bss;
696 
697 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
698 			rum_update_slot(sc);
699 			rum_enable_mrr(sc);
700 			rum_set_txpreamble(sc);
701 			rum_set_basicrates(sc);
702 			rum_set_bssid(sc, ni->ni_bssid);
703 		}
704 
705 #ifndef IEEE80211_STA_ONLY
706 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
707 		    ic->ic_opmode == IEEE80211_M_IBSS)
708 			rum_prepare_beacon(sc);
709 #endif
710 
711 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
712 			rum_enable_tsf_sync(sc);
713 
714 		if (ic->ic_opmode == IEEE80211_M_STA) {
715 			/* fake a join to init the tx rate */
716 			rum_newassoc(ic, ic->ic_bss, 1);
717 
718 			/* enable automatic rate control in STA mode */
719 			if (ic->ic_fixed_rate == -1)
720 				rum_amrr_start(sc, ni);
721 		}
722 		break;
723 	}
724 
725 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
726 }
727 
728 int
729 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
730 {
731 	struct rum_softc *sc = ic->ic_if.if_softc;
732 
733 	usb_rem_task(sc->sc_udev, &sc->sc_task);
734 	timeout_del(&sc->scan_to);
735 	timeout_del(&sc->amrr_to);
736 
737 	/* do it in a process context */
738 	sc->sc_state = nstate;
739 	sc->sc_arg = arg;
740 	usb_add_task(sc->sc_udev, &sc->sc_task);
741 	return 0;
742 }
743 
744 /* quickly determine if a given rate is CCK or OFDM */
745 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
746 
747 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
748 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
749 
750 void
751 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
752 {
753 	struct rum_tx_data *data = priv;
754 	struct rum_softc *sc = data->sc;
755 	struct ieee80211com *ic = &sc->sc_ic;
756 	struct ifnet *ifp = &ic->ic_if;
757 	int s;
758 
759 	if (status != USBD_NORMAL_COMPLETION) {
760 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
761 			return;
762 
763 		printf("%s: could not transmit buffer: %s\n",
764 		    sc->sc_dev.dv_xname, usbd_errstr(status));
765 
766 		if (status == USBD_STALLED)
767 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
768 
769 		ifp->if_oerrors++;
770 		return;
771 	}
772 
773 	s = splnet();
774 
775 	ieee80211_release_node(ic, data->ni);
776 	data->ni = NULL;
777 
778 	sc->tx_queued--;
779 	ifp->if_opackets++;
780 
781 	DPRINTFN(10, ("tx done\n"));
782 
783 	sc->sc_tx_timer = 0;
784 	ifp->if_flags &= ~IFF_OACTIVE;
785 	rum_start(ifp);
786 
787 	splx(s);
788 }
789 
790 void
791 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
792 {
793 	struct rum_rx_data *data = priv;
794 	struct rum_softc *sc = data->sc;
795 	struct ieee80211com *ic = &sc->sc_ic;
796 	struct ifnet *ifp = &ic->ic_if;
797 	const struct rum_rx_desc *desc;
798 	struct ieee80211_frame *wh;
799 	struct ieee80211_rxinfo rxi;
800 	struct ieee80211_node *ni;
801 	struct mbuf *mnew, *m;
802 	int s, len;
803 
804 	if (status != USBD_NORMAL_COMPLETION) {
805 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
806 			return;
807 
808 		if (status == USBD_STALLED)
809 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
810 		goto skip;
811 	}
812 
813 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
814 
815 	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
816 		DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname,
817 		    len));
818 		ifp->if_ierrors++;
819 		goto skip;
820 	}
821 
822 	desc = (const struct rum_rx_desc *)data->buf;
823 
824 	if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) {
825 		/*
826 		 * This should not happen since we did not request to receive
827 		 * those frames when we filled RT2573_TXRX_CSR0.
828 		 */
829 		DPRINTFN(5, ("CRC error\n"));
830 		ifp->if_ierrors++;
831 		goto skip;
832 	}
833 
834 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
835 	if (mnew == NULL) {
836 		printf("%s: could not allocate rx mbuf\n",
837 		    sc->sc_dev.dv_xname);
838 		ifp->if_ierrors++;
839 		goto skip;
840 	}
841 	MCLGET(mnew, M_DONTWAIT);
842 	if (!(mnew->m_flags & M_EXT)) {
843 		printf("%s: could not allocate rx mbuf cluster\n",
844 		    sc->sc_dev.dv_xname);
845 		m_freem(mnew);
846 		ifp->if_ierrors++;
847 		goto skip;
848 	}
849 	m = data->m;
850 	data->m = mnew;
851 	data->buf = mtod(data->m, uint8_t *);
852 
853 	/* finalize mbuf */
854 	m->m_pkthdr.rcvif = ifp;
855 	m->m_data = (caddr_t)(desc + 1);
856 	m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff;
857 
858 	s = splnet();
859 
860 #if NBPFILTER > 0
861 	if (sc->sc_drvbpf != NULL) {
862 		struct mbuf mb;
863 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
864 
865 		tap->wr_flags = 0;
866 		tap->wr_rate = rum_rxrate(desc);
867 		tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
868 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
869 		tap->wr_antenna = sc->rx_ant;
870 		tap->wr_antsignal = desc->rssi;
871 
872 		mb.m_data = (caddr_t)tap;
873 		mb.m_len = sc->sc_rxtap_len;
874 		mb.m_next = m;
875 		mb.m_nextpkt = NULL;
876 		mb.m_type = 0;
877 		mb.m_flags = 0;
878 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
879 	}
880 #endif
881 
882 	wh = mtod(m, struct ieee80211_frame *);
883 	ni = ieee80211_find_rxnode(ic, wh);
884 
885 	/* send the frame to the 802.11 layer */
886 	rxi.rxi_flags = 0;
887 	rxi.rxi_rssi = desc->rssi;
888 	rxi.rxi_tstamp = 0;	/* unused */
889 	ieee80211_input(ifp, m, ni, &rxi);
890 
891 	/* node is no longer needed */
892 	ieee80211_release_node(ic, ni);
893 
894 	splx(s);
895 
896 	DPRINTFN(15, ("rx done\n"));
897 
898 skip:	/* setup a new transfer */
899 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
900 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
901 	(void)usbd_transfer(xfer);
902 }
903 
904 /*
905  * This function is only used by the Rx radiotap code. It returns the rate at
906  * which a given frame was received.
907  */
908 #if NBPFILTER > 0
909 uint8_t
910 rum_rxrate(const struct rum_rx_desc *desc)
911 {
912 	if (letoh32(desc->flags) & RT2573_RX_OFDM) {
913 		/* reverse function of rum_plcp_signal */
914 		switch (desc->rate) {
915 		case 0xb:	return 12;
916 		case 0xf:	return 18;
917 		case 0xa:	return 24;
918 		case 0xe:	return 36;
919 		case 0x9:	return 48;
920 		case 0xd:	return 72;
921 		case 0x8:	return 96;
922 		case 0xc:	return 108;
923 		}
924 	} else {
925 		if (desc->rate == 10)
926 			return 2;
927 		if (desc->rate == 20)
928 			return 4;
929 		if (desc->rate == 55)
930 			return 11;
931 		if (desc->rate == 110)
932 			return 22;
933 	}
934 	return 2;	/* should not get there */
935 }
936 #endif
937 
938 /*
939  * Return the expected ack rate for a frame transmitted at rate `rate'.
940  */
941 int
942 rum_ack_rate(struct ieee80211com *ic, int rate)
943 {
944 	switch (rate) {
945 	/* CCK rates */
946 	case 2:
947 		return 2;
948 	case 4:
949 	case 11:
950 	case 22:
951 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
952 
953 	/* OFDM rates */
954 	case 12:
955 	case 18:
956 		return 12;
957 	case 24:
958 	case 36:
959 		return 24;
960 	case 48:
961 	case 72:
962 	case 96:
963 	case 108:
964 		return 48;
965 	}
966 
967 	/* default to 1Mbps */
968 	return 2;
969 }
970 
971 /*
972  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
973  * The function automatically determines the operating mode depending on the
974  * given rate. `flags' indicates whether short preamble is in use or not.
975  */
976 uint16_t
977 rum_txtime(int len, int rate, uint32_t flags)
978 {
979 	uint16_t txtime;
980 
981 	if (RUM_RATE_IS_OFDM(rate)) {
982 		/* IEEE Std 802.11a-1999, pp. 37 */
983 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
984 		txtime = 16 + 4 + 4 * txtime + 6;
985 	} else {
986 		/* IEEE Std 802.11b-1999, pp. 28 */
987 		txtime = (16 * len + rate - 1) / rate;
988 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
989 			txtime +=  72 + 24;
990 		else
991 			txtime += 144 + 48;
992 	}
993 	return txtime;
994 }
995 
996 uint8_t
997 rum_plcp_signal(int rate)
998 {
999 	switch (rate) {
1000 	/* CCK rates (returned values are device-dependent) */
1001 	case 2:		return 0x0;
1002 	case 4:		return 0x1;
1003 	case 11:	return 0x2;
1004 	case 22:	return 0x3;
1005 
1006 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1007 	case 12:	return 0xb;
1008 	case 18:	return 0xf;
1009 	case 24:	return 0xa;
1010 	case 36:	return 0xe;
1011 	case 48:	return 0x9;
1012 	case 72:	return 0xd;
1013 	case 96:	return 0x8;
1014 	case 108:	return 0xc;
1015 
1016 	/* unsupported rates (should not get there) */
1017 	default:	return 0xff;
1018 	}
1019 }
1020 
1021 void
1022 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1023     uint32_t flags, uint16_t xflags, int len, int rate)
1024 {
1025 	struct ieee80211com *ic = &sc->sc_ic;
1026 	uint16_t plcp_length;
1027 	int remainder;
1028 
1029 	desc->flags = htole32(flags);
1030 	desc->flags |= htole32(RT2573_TX_VALID);
1031 	desc->flags |= htole32(len << 16);
1032 
1033 	desc->xflags = htole16(xflags);
1034 
1035 	desc->wme = htole16(
1036 	    RT2573_QID(0) |
1037 	    RT2573_AIFSN(2) |
1038 	    RT2573_LOGCWMIN(4) |
1039 	    RT2573_LOGCWMAX(10));
1040 
1041 	/* setup PLCP fields */
1042 	desc->plcp_signal  = rum_plcp_signal(rate);
1043 	desc->plcp_service = 4;
1044 
1045 	len += IEEE80211_CRC_LEN;
1046 	if (RUM_RATE_IS_OFDM(rate)) {
1047 		desc->flags |= htole32(RT2573_TX_OFDM);
1048 
1049 		plcp_length = len & 0xfff;
1050 		desc->plcp_length_hi = plcp_length >> 6;
1051 		desc->plcp_length_lo = plcp_length & 0x3f;
1052 	} else {
1053 		plcp_length = (16 * len + rate - 1) / rate;
1054 		if (rate == 22) {
1055 			remainder = (16 * len) % 22;
1056 			if (remainder != 0 && remainder < 7)
1057 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1058 		}
1059 		desc->plcp_length_hi = plcp_length >> 8;
1060 		desc->plcp_length_lo = plcp_length & 0xff;
1061 
1062 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1063 			desc->plcp_signal |= 0x08;
1064 	}
1065 }
1066 
1067 #define RUM_TX_TIMEOUT	5000
1068 
1069 int
1070 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1071 {
1072 	struct ieee80211com *ic = &sc->sc_ic;
1073 	struct rum_tx_desc *desc;
1074 	struct rum_tx_data *data;
1075 	struct ieee80211_frame *wh;
1076 	struct ieee80211_key *k;
1077 	uint32_t flags = 0;
1078 	uint16_t dur;
1079 	usbd_status error;
1080 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1081 
1082 	wh = mtod(m0, struct ieee80211_frame *);
1083 
1084 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1085 		k = ieee80211_get_txkey(ic, wh, ni);
1086 
1087 		if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1088 			return ENOBUFS;
1089 
1090 		/* packet header may have moved, reset our local pointer */
1091 		wh = mtod(m0, struct ieee80211_frame *);
1092 	}
1093 
1094 	/* compute actual packet length (including CRC and crypto overhead) */
1095 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1096 
1097 	/* pickup a rate */
1098 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1099 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1100 	     IEEE80211_FC0_TYPE_MGT)) {
1101 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1102 		rate = ni->ni_rates.rs_rates[0];
1103 	} else if (ic->ic_fixed_rate != -1) {
1104 		rate = ic->ic_sup_rates[ic->ic_curmode].
1105 		    rs_rates[ic->ic_fixed_rate];
1106 	} else
1107 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1108 	if (rate == 0)
1109 		rate = 2;	/* XXX should not happen */
1110 	rate &= IEEE80211_RATE_VAL;
1111 
1112 	/* check if RTS/CTS or CTS-to-self protection must be used */
1113 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1114 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1115 		if (pktlen > ic->ic_rtsthreshold) {
1116 			needrts = 1;	/* RTS/CTS based on frame length */
1117 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1118 		    RUM_RATE_IS_OFDM(rate)) {
1119 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1120 				needcts = 1;	/* CTS-to-self */
1121 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1122 				needrts = 1;	/* RTS/CTS */
1123 		}
1124 	}
1125 	if (needrts || needcts) {
1126 		struct mbuf *mprot;
1127 		int protrate, ackrate;
1128 		uint16_t dur;
1129 
1130 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1131 		ackrate  = rum_ack_rate(ic, rate);
1132 
1133 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1134 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1135 		      2 * sc->sifs;
1136 		if (needrts) {
1137 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1138 			    protrate), ic->ic_flags) + sc->sifs;
1139 			mprot = ieee80211_get_rts(ic, wh, dur);
1140 		} else {
1141 			mprot = ieee80211_get_cts_to_self(ic, dur);
1142 		}
1143 		if (mprot == NULL) {
1144 			printf("%s: could not allocate protection frame\n",
1145 			    sc->sc_dev.dv_xname);
1146 			m_freem(m0);
1147 			return ENOBUFS;
1148 		}
1149 
1150 		data = &sc->tx_data[sc->tx_cur];
1151 		desc = (struct rum_tx_desc *)data->buf;
1152 
1153 		/* avoid multiple free() of the same node for each fragment */
1154 		data->ni = ieee80211_ref_node(ni);
1155 
1156 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1157 		    data->buf + RT2573_TX_DESC_SIZE);
1158 		rum_setup_tx_desc(sc, desc,
1159 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1160 		    0, mprot->m_pkthdr.len, protrate);
1161 
1162 		/* no roundup necessary here */
1163 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1164 
1165 		/* XXX may want to pass the protection frame to BPF */
1166 
1167 		/* mbuf is no longer needed */
1168 		m_freem(mprot);
1169 
1170 		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1171 		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1172 		    RUM_TX_TIMEOUT, rum_txeof);
1173 		error = usbd_transfer(data->xfer);
1174 		if (error != 0 && error != USBD_IN_PROGRESS) {
1175 			m_freem(m0);
1176 			return error;
1177 		}
1178 
1179 		sc->tx_queued++;
1180 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1181 
1182 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1183 	}
1184 
1185 	data = &sc->tx_data[sc->tx_cur];
1186 	desc = (struct rum_tx_desc *)data->buf;
1187 
1188 	data->ni = ni;
1189 
1190 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1191 		flags |= RT2573_TX_NEED_ACK;
1192 
1193 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1194 		    ic->ic_flags) + sc->sifs;
1195 		*(uint16_t *)wh->i_dur = htole16(dur);
1196 
1197 #ifndef IEEE80211_STA_ONLY
1198 		/* tell hardware to set timestamp in probe responses */
1199 		if ((wh->i_fc[0] &
1200 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1201 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1202 			flags |= RT2573_TX_TIMESTAMP;
1203 #endif
1204 	}
1205 
1206 #if NBPFILTER > 0
1207 	if (sc->sc_drvbpf != NULL) {
1208 		struct mbuf mb;
1209 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1210 
1211 		tap->wt_flags = 0;
1212 		tap->wt_rate = rate;
1213 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1214 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1215 		tap->wt_antenna = sc->tx_ant;
1216 
1217 		mb.m_data = (caddr_t)tap;
1218 		mb.m_len = sc->sc_txtap_len;
1219 		mb.m_next = m0;
1220 		mb.m_nextpkt = NULL;
1221 		mb.m_type = 0;
1222 		mb.m_flags = 0;
1223 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1224 	}
1225 #endif
1226 
1227 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1228 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1229 
1230 	/* align end on a 4-bytes boundary */
1231 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1232 
1233 	/*
1234 	 * No space left in the last URB to store the extra 4 bytes, force
1235 	 * sending of another URB.
1236 	 */
1237 	if ((xferlen % 64) == 0)
1238 		xferlen += 4;
1239 
1240 	DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
1241 	    m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1242 
1243 	/* mbuf is no longer needed */
1244 	m_freem(m0);
1245 
1246 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1247 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1248 	error = usbd_transfer(data->xfer);
1249 	if (error != 0 && error != USBD_IN_PROGRESS)
1250 		return error;
1251 
1252 	sc->tx_queued++;
1253 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1254 
1255 	return 0;
1256 }
1257 
1258 void
1259 rum_start(struct ifnet *ifp)
1260 {
1261 	struct rum_softc *sc = ifp->if_softc;
1262 	struct ieee80211com *ic = &sc->sc_ic;
1263 	struct ieee80211_node *ni;
1264 	struct mbuf *m0;
1265 
1266 	/*
1267 	 * net80211 may still try to send management frames even if the
1268 	 * IFF_RUNNING flag is not set...
1269 	 */
1270 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1271 		return;
1272 
1273 	for (;;) {
1274 		IF_POLL(&ic->ic_mgtq, m0);
1275 		if (m0 != NULL) {
1276 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1277 				ifp->if_flags |= IFF_OACTIVE;
1278 				break;
1279 			}
1280 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1281 
1282 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1283 			m0->m_pkthdr.rcvif = NULL;
1284 #if NBPFILTER > 0
1285 			if (ic->ic_rawbpf != NULL)
1286 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1287 #endif
1288 			if (rum_tx_data(sc, m0, ni) != 0)
1289 				break;
1290 
1291 		} else {
1292 			if (ic->ic_state != IEEE80211_S_RUN)
1293 				break;
1294 			IFQ_POLL(&ifp->if_snd, m0);
1295 			if (m0 == NULL)
1296 				break;
1297 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1298 				ifp->if_flags |= IFF_OACTIVE;
1299 				break;
1300 			}
1301 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1302 #if NBPFILTER > 0
1303 			if (ifp->if_bpf != NULL)
1304 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1305 #endif
1306 			m0 = ieee80211_encap(ifp, m0, &ni);
1307 			if (m0 == NULL)
1308 				continue;
1309 #if NBPFILTER > 0
1310 			if (ic->ic_rawbpf != NULL)
1311 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1312 #endif
1313 			if (rum_tx_data(sc, m0, ni) != 0) {
1314 				if (ni != NULL)
1315 					ieee80211_release_node(ic, ni);
1316 				ifp->if_oerrors++;
1317 				break;
1318 			}
1319 		}
1320 
1321 		sc->sc_tx_timer = 5;
1322 		ifp->if_timer = 1;
1323 	}
1324 }
1325 
1326 void
1327 rum_watchdog(struct ifnet *ifp)
1328 {
1329 	struct rum_softc *sc = ifp->if_softc;
1330 
1331 	ifp->if_timer = 0;
1332 
1333 	if (sc->sc_tx_timer > 0) {
1334 		if (--sc->sc_tx_timer == 0) {
1335 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1336 			/*rum_init(ifp); XXX needs a process context! */
1337 			ifp->if_oerrors++;
1338 			return;
1339 		}
1340 		ifp->if_timer = 1;
1341 	}
1342 
1343 	ieee80211_watchdog(ifp);
1344 }
1345 
1346 int
1347 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1348 {
1349 	struct rum_softc *sc = ifp->if_softc;
1350 	struct ieee80211com *ic = &sc->sc_ic;
1351 	struct ifaddr *ifa;
1352 	struct ifreq *ifr;
1353 	int s, error = 0;
1354 
1355 	if (usbd_is_dying(sc->sc_udev))
1356 		return ENXIO;
1357 
1358 	usbd_ref_incr(sc->sc_udev);
1359 
1360 	s = splnet();
1361 
1362 	switch (cmd) {
1363 	case SIOCSIFADDR:
1364 		ifa = (struct ifaddr *)data;
1365 		ifp->if_flags |= IFF_UP;
1366 #ifdef INET
1367 		if (ifa->ifa_addr->sa_family == AF_INET)
1368 			arp_ifinit(&ic->ic_ac, ifa);
1369 #endif
1370 		/* FALLTHROUGH */
1371 	case SIOCSIFFLAGS:
1372 		if (ifp->if_flags & IFF_UP) {
1373 			if (ifp->if_flags & IFF_RUNNING)
1374 				rum_update_promisc(sc);
1375 			else
1376 				rum_init(ifp);
1377 		} else {
1378 			if (ifp->if_flags & IFF_RUNNING)
1379 				rum_stop(ifp, 1);
1380 		}
1381 		break;
1382 
1383 	case SIOCADDMULTI:
1384 	case SIOCDELMULTI:
1385 		ifr = (struct ifreq *)data;
1386 		error = (cmd == SIOCADDMULTI) ?
1387 		    ether_addmulti(ifr, &ic->ic_ac) :
1388 		    ether_delmulti(ifr, &ic->ic_ac);
1389 
1390 		if (error == ENETRESET)
1391 			error = 0;
1392 		break;
1393 
1394 	case SIOCS80211CHANNEL:
1395 		/*
1396 		 * This allows for fast channel switching in monitor mode
1397 		 * (used by kismet). In IBSS mode, we must explicitly reset
1398 		 * the interface to generate a new beacon frame.
1399 		 */
1400 		error = ieee80211_ioctl(ifp, cmd, data);
1401 		if (error == ENETRESET &&
1402 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1403 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1404 			    (IFF_UP | IFF_RUNNING))
1405 				rum_set_chan(sc, ic->ic_ibss_chan);
1406 			error = 0;
1407 		}
1408 		break;
1409 
1410 	default:
1411 		error = ieee80211_ioctl(ifp, cmd, data);
1412 	}
1413 
1414 	if (error == ENETRESET) {
1415 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1416 		    (IFF_UP | IFF_RUNNING))
1417 			rum_init(ifp);
1418 		error = 0;
1419 	}
1420 
1421 	splx(s);
1422 
1423 	usbd_ref_decr(sc->sc_udev);
1424 
1425 	return error;
1426 }
1427 
1428 void
1429 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1430 {
1431 	usb_device_request_t req;
1432 	usbd_status error;
1433 
1434 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1435 	req.bRequest = RT2573_READ_EEPROM;
1436 	USETW(req.wValue, 0);
1437 	USETW(req.wIndex, addr);
1438 	USETW(req.wLength, len);
1439 
1440 	error = usbd_do_request(sc->sc_udev, &req, buf);
1441 	if (error != 0) {
1442 		printf("%s: could not read EEPROM: %s\n",
1443 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1444 	}
1445 }
1446 
1447 uint32_t
1448 rum_read(struct rum_softc *sc, uint16_t reg)
1449 {
1450 	uint32_t val;
1451 
1452 	rum_read_multi(sc, reg, &val, sizeof val);
1453 
1454 	return letoh32(val);
1455 }
1456 
1457 void
1458 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1459 {
1460 	usb_device_request_t req;
1461 	usbd_status error;
1462 
1463 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1464 	req.bRequest = RT2573_READ_MULTI_MAC;
1465 	USETW(req.wValue, 0);
1466 	USETW(req.wIndex, reg);
1467 	USETW(req.wLength, len);
1468 
1469 	error = usbd_do_request(sc->sc_udev, &req, buf);
1470 	if (error != 0) {
1471 		printf("%s: could not multi read MAC register: %s\n",
1472 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1473 	}
1474 }
1475 
1476 void
1477 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1478 {
1479 	uint32_t tmp = htole32(val);
1480 
1481 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1482 }
1483 
1484 void
1485 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1486 {
1487 	usb_device_request_t req;
1488 	usbd_status error;
1489 
1490 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1491 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1492 	USETW(req.wValue, 0);
1493 	USETW(req.wIndex, reg);
1494 	USETW(req.wLength, len);
1495 
1496 	error = usbd_do_request(sc->sc_udev, &req, buf);
1497 	if (error != 0) {
1498 		printf("%s: could not multi write MAC register: %s\n",
1499 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1500 	}
1501 }
1502 
1503 void
1504 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1505 {
1506 	uint32_t tmp;
1507 	int ntries;
1508 
1509 	for (ntries = 0; ntries < 5; ntries++) {
1510 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1511 			break;
1512 	}
1513 	if (ntries == 5) {
1514 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
1515 		return;
1516 	}
1517 
1518 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1519 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1520 }
1521 
1522 uint8_t
1523 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1524 {
1525 	uint32_t val;
1526 	int ntries;
1527 
1528 	for (ntries = 0; ntries < 5; ntries++) {
1529 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1530 			break;
1531 	}
1532 	if (ntries == 5) {
1533 		printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1534 		return 0;
1535 	}
1536 
1537 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1538 	rum_write(sc, RT2573_PHY_CSR3, val);
1539 
1540 	for (ntries = 0; ntries < 100; ntries++) {
1541 		val = rum_read(sc, RT2573_PHY_CSR3);
1542 		if (!(val & RT2573_BBP_BUSY))
1543 			return val & 0xff;
1544 		DELAY(1);
1545 	}
1546 
1547 	printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1548 	return 0;
1549 }
1550 
1551 void
1552 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1553 {
1554 	uint32_t tmp;
1555 	int ntries;
1556 
1557 	for (ntries = 0; ntries < 5; ntries++) {
1558 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1559 			break;
1560 	}
1561 	if (ntries == 5) {
1562 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
1563 		return;
1564 	}
1565 
1566 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1567 	    (reg & 3);
1568 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1569 
1570 	/* remember last written value in sc */
1571 	sc->rf_regs[reg] = val;
1572 
1573 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1574 }
1575 
1576 void
1577 rum_select_antenna(struct rum_softc *sc)
1578 {
1579 	uint8_t bbp4, bbp77;
1580 	uint32_t tmp;
1581 
1582 	bbp4  = rum_bbp_read(sc, 4);
1583 	bbp77 = rum_bbp_read(sc, 77);
1584 
1585 	/* TBD */
1586 
1587 	/* make sure Rx is disabled before switching antenna */
1588 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1589 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1590 
1591 	rum_bbp_write(sc,  4, bbp4);
1592 	rum_bbp_write(sc, 77, bbp77);
1593 
1594 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1595 }
1596 
1597 /*
1598  * Enable multi-rate retries for frames sent at OFDM rates.
1599  * In 802.11b/g mode, allow fallback to CCK rates.
1600  */
1601 void
1602 rum_enable_mrr(struct rum_softc *sc)
1603 {
1604 	struct ieee80211com *ic = &sc->sc_ic;
1605 	uint32_t tmp;
1606 
1607 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1608 
1609 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1610 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
1611 		tmp |= RT2573_MRR_CCK_FALLBACK;
1612 	tmp |= RT2573_MRR_ENABLED;
1613 
1614 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1615 }
1616 
1617 void
1618 rum_set_txpreamble(struct rum_softc *sc)
1619 {
1620 	uint32_t tmp;
1621 
1622 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1623 
1624 	tmp &= ~RT2573_SHORT_PREAMBLE;
1625 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1626 		tmp |= RT2573_SHORT_PREAMBLE;
1627 
1628 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1629 }
1630 
1631 void
1632 rum_set_basicrates(struct rum_softc *sc)
1633 {
1634 	struct ieee80211com *ic = &sc->sc_ic;
1635 
1636 	/* update basic rate set */
1637 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1638 		/* 11b basic rates: 1, 2Mbps */
1639 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1640 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1641 		/* 11a basic rates: 6, 12, 24Mbps */
1642 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1643 	} else {
1644 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1645 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1646 	}
1647 }
1648 
1649 /*
1650  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1651  * driver.
1652  */
1653 void
1654 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1655 {
1656 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1657 	uint32_t tmp;
1658 
1659 	/* update all BBP registers that depend on the band */
1660 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1661 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1662 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1663 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1664 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1665 	}
1666 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1667 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1668 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1669 	}
1670 
1671 	sc->bbp17 = bbp17;
1672 	rum_bbp_write(sc,  17, bbp17);
1673 	rum_bbp_write(sc,  96, bbp96);
1674 	rum_bbp_write(sc, 104, bbp104);
1675 
1676 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1677 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1678 		rum_bbp_write(sc, 75, 0x80);
1679 		rum_bbp_write(sc, 86, 0x80);
1680 		rum_bbp_write(sc, 88, 0x80);
1681 	}
1682 
1683 	rum_bbp_write(sc, 35, bbp35);
1684 	rum_bbp_write(sc, 97, bbp97);
1685 	rum_bbp_write(sc, 98, bbp98);
1686 
1687 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1688 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1689 	if (IEEE80211_IS_CHAN_2GHZ(c))
1690 		tmp |= RT2573_PA_PE_2GHZ;
1691 	else
1692 		tmp |= RT2573_PA_PE_5GHZ;
1693 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1694 
1695 	/* 802.11a uses a 16 microseconds short interframe space */
1696 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1697 }
1698 
1699 void
1700 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1701 {
1702 	struct ieee80211com *ic = &sc->sc_ic;
1703 	const struct rfprog *rfprog;
1704 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1705 	int8_t power;
1706 	u_int i, chan;
1707 
1708 	chan = ieee80211_chan2ieee(ic, c);
1709 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1710 		return;
1711 
1712 	/* select the appropriate RF settings based on what EEPROM says */
1713 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1714 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1715 
1716 	/* find the settings for this channel (we know it exists) */
1717 	for (i = 0; rfprog[i].chan != chan; i++);
1718 
1719 	power = sc->txpow[i];
1720 	if (power < 0) {
1721 		bbp94 += power;
1722 		power = 0;
1723 	} else if (power > 31) {
1724 		bbp94 += power - 31;
1725 		power = 31;
1726 	}
1727 
1728 	/*
1729 	 * If we are switching from the 2GHz band to the 5GHz band or
1730 	 * vice-versa, BBP registers need to be reprogrammed.
1731 	 */
1732 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
1733 		rum_select_band(sc, c);
1734 		rum_select_antenna(sc);
1735 	}
1736 	sc->sc_curchan = c;
1737 
1738 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1739 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1740 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1741 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1742 
1743 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1744 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1745 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1746 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1747 
1748 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1749 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1750 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1751 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1752 
1753 	DELAY(10);
1754 
1755 	/* enable smart mode for MIMO-capable RFs */
1756 	bbp3 = rum_bbp_read(sc, 3);
1757 
1758 	bbp3 &= ~RT2573_SMART_MODE;
1759 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1760 		bbp3 |= RT2573_SMART_MODE;
1761 
1762 	rum_bbp_write(sc, 3, bbp3);
1763 
1764 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1765 		rum_bbp_write(sc, 94, bbp94);
1766 }
1767 
1768 /*
1769  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1770  * and HostAP operating modes.
1771  */
1772 void
1773 rum_enable_tsf_sync(struct rum_softc *sc)
1774 {
1775 	struct ieee80211com *ic = &sc->sc_ic;
1776 	uint32_t tmp;
1777 
1778 #ifndef IEEE80211_STA_ONLY
1779 	if (ic->ic_opmode != IEEE80211_M_STA) {
1780 		/*
1781 		 * Change default 16ms TBTT adjustment to 8ms.
1782 		 * Must be done before enabling beacon generation.
1783 		 */
1784 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1785 	}
1786 #endif
1787 
1788 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1789 
1790 	/* set beacon interval (in 1/16ms unit) */
1791 	tmp |= ic->ic_bss->ni_intval * 16;
1792 
1793 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1794 	if (ic->ic_opmode == IEEE80211_M_STA)
1795 		tmp |= RT2573_TSF_MODE(1);
1796 #ifndef IEEE80211_STA_ONLY
1797 	else
1798 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1799 #endif
1800 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1801 }
1802 
1803 void
1804 rum_update_slot(struct rum_softc *sc)
1805 {
1806 	struct ieee80211com *ic = &sc->sc_ic;
1807 	uint8_t slottime;
1808 	uint32_t tmp;
1809 
1810 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1811 
1812 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1813 	tmp = (tmp & ~0xff) | slottime;
1814 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1815 
1816 	DPRINTF(("setting slot time to %uus\n", slottime));
1817 }
1818 
1819 void
1820 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1821 {
1822 	uint32_t tmp;
1823 
1824 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1825 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1826 
1827 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1828 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1829 }
1830 
1831 void
1832 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1833 {
1834 	uint32_t tmp;
1835 
1836 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1837 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1838 
1839 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1840 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1841 }
1842 
1843 void
1844 rum_update_promisc(struct rum_softc *sc)
1845 {
1846 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1847 	uint32_t tmp;
1848 
1849 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1850 
1851 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1852 	if (!(ifp->if_flags & IFF_PROMISC))
1853 		tmp |= RT2573_DROP_NOT_TO_ME;
1854 
1855 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1856 
1857 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1858 	    "entering" : "leaving"));
1859 }
1860 
1861 const char *
1862 rum_get_rf(int rev)
1863 {
1864 	switch (rev) {
1865 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1866 	case RT2573_RF_2528:	return "RT2528";
1867 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1868 	case RT2573_RF_5226:	return "RT5226";
1869 	default:		return "unknown";
1870 	}
1871 }
1872 
1873 void
1874 rum_read_eeprom(struct rum_softc *sc)
1875 {
1876 	struct ieee80211com *ic = &sc->sc_ic;
1877 	uint16_t val;
1878 #ifdef RUM_DEBUG
1879 	int i;
1880 #endif
1881 
1882 	/* read MAC/BBP type */
1883 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1884 	sc->macbbp_rev = letoh16(val);
1885 
1886 	/* read MAC address */
1887 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1888 
1889 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1890 	val = letoh16(val);
1891 	sc->rf_rev =   (val >> 11) & 0x1f;
1892 	sc->hw_radio = (val >> 10) & 0x1;
1893 	sc->rx_ant =   (val >> 4)  & 0x3;
1894 	sc->tx_ant =   (val >> 2)  & 0x3;
1895 	sc->nb_ant =   val & 0x3;
1896 
1897 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1898 
1899 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1900 	val = letoh16(val);
1901 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1902 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1903 
1904 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1905 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1906 
1907 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1908 	val = letoh16(val);
1909 	if ((val & 0xff) != 0xff)
1910 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1911 
1912 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1913 	val = letoh16(val);
1914 	if ((val & 0xff) != 0xff)
1915 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1916 
1917 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1918 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1919 
1920 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1921 	val = letoh16(val);
1922 	if ((val & 0xff) != 0xff)
1923 		sc->rffreq = val & 0xff;
1924 
1925 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1926 
1927 	/* read Tx power for all a/b/g channels */
1928 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1929 	/* XXX default Tx power for 802.11a channels */
1930 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1931 #ifdef RUM_DEBUG
1932 	for (i = 0; i < 14; i++)
1933 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1934 #endif
1935 
1936 	/* read default values for BBP registers */
1937 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1938 #ifdef RUM_DEBUG
1939 	for (i = 0; i < 14; i++) {
1940 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1941 			continue;
1942 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1943 		    sc->bbp_prom[i].val));
1944 	}
1945 #endif
1946 }
1947 
1948 int
1949 rum_bbp_init(struct rum_softc *sc)
1950 {
1951 	int i, ntries;
1952 
1953 	/* wait for BBP to be ready */
1954 	for (ntries = 0; ntries < 100; ntries++) {
1955 		const uint8_t val = rum_bbp_read(sc, 0);
1956 		if (val != 0 && val != 0xff)
1957 			break;
1958 		DELAY(1000);
1959 	}
1960 	if (ntries == 100) {
1961 		printf("%s: timeout waiting for BBP\n",
1962 		    sc->sc_dev.dv_xname);
1963 		return EIO;
1964 	}
1965 
1966 	/* initialize BBP registers to default values */
1967 	for (i = 0; i < nitems(rum_def_bbp); i++)
1968 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1969 
1970 	/* write vendor-specific BBP values (from EEPROM) */
1971 	for (i = 0; i < 16; i++) {
1972 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1973 			continue;
1974 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 int
1981 rum_init(struct ifnet *ifp)
1982 {
1983 	struct rum_softc *sc = ifp->if_softc;
1984 	struct ieee80211com *ic = &sc->sc_ic;
1985 	uint32_t tmp;
1986 	usbd_status error;
1987 	int i, ntries;
1988 
1989 	rum_stop(ifp, 0);
1990 
1991 	/* initialize MAC registers to default values */
1992 	for (i = 0; i < nitems(rum_def_mac); i++)
1993 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1994 
1995 	/* set host ready */
1996 	rum_write(sc, RT2573_MAC_CSR1, 3);
1997 	rum_write(sc, RT2573_MAC_CSR1, 0);
1998 
1999 	/* wait for BBP/RF to wakeup */
2000 	for (ntries = 0; ntries < 1000; ntries++) {
2001 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2002 			break;
2003 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
2004 		DELAY(1000);
2005 	}
2006 	if (ntries == 1000) {
2007 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2008 		    sc->sc_dev.dv_xname);
2009 		error = ENODEV;
2010 		goto fail;
2011 	}
2012 
2013 	if ((error = rum_bbp_init(sc)) != 0)
2014 		goto fail;
2015 
2016 	/* select default channel */
2017 	sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2018 	rum_select_band(sc, sc->sc_curchan);
2019 	rum_select_antenna(sc);
2020 	rum_set_chan(sc, sc->sc_curchan);
2021 
2022 	/* clear STA registers */
2023 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2024 
2025 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2026 	rum_set_macaddr(sc, ic->ic_myaddr);
2027 
2028 	/* initialize ASIC */
2029 	rum_write(sc, RT2573_MAC_CSR1, 4);
2030 
2031 	/*
2032 	 * Allocate xfer for AMRR statistics requests.
2033 	 */
2034 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2035 	if (sc->amrr_xfer == NULL) {
2036 		printf("%s: could not allocate AMRR xfer\n",
2037 		    sc->sc_dev.dv_xname);
2038 		goto fail;
2039 	}
2040 
2041 	/*
2042 	 * Open Tx and Rx USB bulk pipes.
2043 	 */
2044 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2045 	    &sc->sc_tx_pipeh);
2046 	if (error != 0) {
2047 		printf("%s: could not open Tx pipe: %s\n",
2048 		    sc->sc_dev.dv_xname, usbd_errstr(error));
2049 		goto fail;
2050 	}
2051 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2052 	    &sc->sc_rx_pipeh);
2053 	if (error != 0) {
2054 		printf("%s: could not open Rx pipe: %s\n",
2055 		    sc->sc_dev.dv_xname, usbd_errstr(error));
2056 		goto fail;
2057 	}
2058 
2059 	/*
2060 	 * Allocate Tx and Rx xfer queues.
2061 	 */
2062 	error = rum_alloc_tx_list(sc);
2063 	if (error != 0) {
2064 		printf("%s: could not allocate Tx list\n",
2065 		    sc->sc_dev.dv_xname);
2066 		goto fail;
2067 	}
2068 	error = rum_alloc_rx_list(sc);
2069 	if (error != 0) {
2070 		printf("%s: could not allocate Rx list\n",
2071 		    sc->sc_dev.dv_xname);
2072 		goto fail;
2073 	}
2074 
2075 	/*
2076 	 * Start up the receive pipe.
2077 	 */
2078 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2079 		struct rum_rx_data *data = &sc->rx_data[i];
2080 
2081 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2082 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2083 		error = usbd_transfer(data->xfer);
2084 		if (error != 0 && error != USBD_IN_PROGRESS) {
2085 			printf("%s: could not queue Rx transfer\n",
2086 			    sc->sc_dev.dv_xname);
2087 			goto fail;
2088 		}
2089 	}
2090 
2091 	/* update Rx filter */
2092 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2093 
2094 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2095 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2096 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2097 		       RT2573_DROP_ACKCTS;
2098 #ifndef IEEE80211_STA_ONLY
2099 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2100 #endif
2101 			tmp |= RT2573_DROP_TODS;
2102 		if (!(ifp->if_flags & IFF_PROMISC))
2103 			tmp |= RT2573_DROP_NOT_TO_ME;
2104 	}
2105 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2106 
2107 	ifp->if_flags &= ~IFF_OACTIVE;
2108 	ifp->if_flags |= IFF_RUNNING;
2109 
2110 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2111 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2112 	else
2113 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2114 
2115 	return 0;
2116 
2117 fail:	rum_stop(ifp, 1);
2118 	return error;
2119 }
2120 
2121 void
2122 rum_stop(struct ifnet *ifp, int disable)
2123 {
2124 	struct rum_softc *sc = ifp->if_softc;
2125 	struct ieee80211com *ic = &sc->sc_ic;
2126 	uint32_t tmp;
2127 
2128 	sc->sc_tx_timer = 0;
2129 	ifp->if_timer = 0;
2130 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2131 
2132 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2133 
2134 	/* disable Rx */
2135 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2136 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2137 
2138 	/* reset ASIC */
2139 	rum_write(sc, RT2573_MAC_CSR1, 3);
2140 	rum_write(sc, RT2573_MAC_CSR1, 0);
2141 
2142 	if (sc->amrr_xfer != NULL) {
2143 		usbd_free_xfer(sc->amrr_xfer);
2144 		sc->amrr_xfer = NULL;
2145 	}
2146 	if (sc->sc_rx_pipeh != NULL) {
2147 		usbd_abort_pipe(sc->sc_rx_pipeh);
2148 		usbd_close_pipe(sc->sc_rx_pipeh);
2149 		sc->sc_rx_pipeh = NULL;
2150 	}
2151 	if (sc->sc_tx_pipeh != NULL) {
2152 		usbd_abort_pipe(sc->sc_tx_pipeh);
2153 		usbd_close_pipe(sc->sc_tx_pipeh);
2154 		sc->sc_tx_pipeh = NULL;
2155 	}
2156 
2157 	rum_free_rx_list(sc);
2158 	rum_free_tx_list(sc);
2159 }
2160 
2161 int
2162 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2163 {
2164 	usb_device_request_t req;
2165 	uint16_t reg = RT2573_MCU_CODE_BASE;
2166 	usbd_status error;
2167 
2168 	/* copy firmware image into NIC */
2169 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2170 		rum_write(sc, reg, UGETDW(ucode));
2171 
2172 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2173 	req.bRequest = RT2573_MCU_CNTL;
2174 	USETW(req.wValue, RT2573_MCU_RUN);
2175 	USETW(req.wIndex, 0);
2176 	USETW(req.wLength, 0);
2177 
2178 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2179 	if (error != 0) {
2180 		printf("%s: could not run firmware: %s\n",
2181 		    sc->sc_dev.dv_xname, usbd_errstr(error));
2182 	}
2183 	return error;
2184 }
2185 
2186 #ifndef IEEE80211_STA_ONLY
2187 int
2188 rum_prepare_beacon(struct rum_softc *sc)
2189 {
2190 	struct ieee80211com *ic = &sc->sc_ic;
2191 	struct rum_tx_desc desc;
2192 	struct mbuf *m0;
2193 	int rate;
2194 
2195 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss);
2196 	if (m0 == NULL) {
2197 		printf("%s: could not allocate beacon frame\n",
2198 		    sc->sc_dev.dv_xname);
2199 		return ENOBUFS;
2200 	}
2201 
2202 	/* send beacons at the lowest available rate */
2203 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2204 
2205 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2206 	    m0->m_pkthdr.len, rate);
2207 
2208 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2209 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2210 
2211 	/* copy beacon header and payload into NIC memory */
2212 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2213 	    m0->m_pkthdr.len);
2214 
2215 	m_freem(m0);
2216 
2217 	return 0;
2218 }
2219 #endif
2220 
2221 void
2222 rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2223 {
2224 	/* start with lowest Tx rate */
2225 	ni->ni_txrate = 0;
2226 }
2227 
2228 void
2229 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2230 {
2231 	int i;
2232 
2233 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2234 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2235 
2236 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2237 
2238 	/* set rate to some reasonable initial value */
2239 	for (i = ni->ni_rates.rs_nrates - 1;
2240 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2241 	     i--);
2242 	ni->ni_txrate = i;
2243 
2244 	if (!usbd_is_dying(sc->sc_udev))
2245 		timeout_add_sec(&sc->amrr_to, 1);
2246 }
2247 
2248 void
2249 rum_amrr_timeout(void *arg)
2250 {
2251 	struct rum_softc *sc = arg;
2252 	usb_device_request_t req;
2253 
2254 	if (usbd_is_dying(sc->sc_udev))
2255 		return;
2256 
2257 	/*
2258 	 * Asynchronously read statistic registers (cleared by read).
2259 	 */
2260 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2261 	req.bRequest = RT2573_READ_MULTI_MAC;
2262 	USETW(req.wValue, 0);
2263 	USETW(req.wIndex, RT2573_STA_CSR0);
2264 	USETW(req.wLength, sizeof sc->sta);
2265 
2266 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2267 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2268 	    rum_amrr_update);
2269 	(void)usbd_transfer(sc->amrr_xfer);
2270 }
2271 
2272 void
2273 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2274     usbd_status status)
2275 {
2276 	struct rum_softc *sc = (struct rum_softc *)priv;
2277 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2278 
2279 	if (status != USBD_NORMAL_COMPLETION) {
2280 		printf("%s: could not retrieve Tx statistics - cancelling "
2281 		    "automatic rate control\n", sc->sc_dev.dv_xname);
2282 		return;
2283 	}
2284 
2285 	/* count TX retry-fail as Tx errors */
2286 	ifp->if_oerrors += letoh32(sc->sta[5]) >> 16;
2287 
2288 	sc->amn.amn_retrycnt =
2289 	    (letoh32(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2290 	    (letoh32(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2291 	    (letoh32(sc->sta[5]) >> 16);	/* TX retry-fail count */
2292 
2293 	sc->amn.amn_txcnt =
2294 	    sc->amn.amn_retrycnt +
2295 	    (letoh32(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2296 
2297 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2298 
2299 	if (!usbd_is_dying(sc->sc_udev))
2300 		timeout_add_sec(&sc->amrr_to, 1);
2301 }
2302 
2303 int
2304 rum_activate(struct device *self, int act)
2305 {
2306 	struct rum_softc *sc = (struct rum_softc *)self;
2307 
2308 	switch (act) {
2309 	case DVACT_DEACTIVATE:
2310 		usbd_deactivate(sc->sc_udev);
2311 		break;
2312 	}
2313 
2314 	return 0;
2315 }
2316