1 /* $OpenBSD: if_rum.c,v 1.124 2019/04/25 01:52:14 kevlo Exp $ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /*- 21 * Ralink Technology RT2501USB/RT2601USB chipset driver 22 * http://www.ralinktech.com.tw/ 23 */ 24 25 #include "bpfilter.h" 26 27 #include <sys/param.h> 28 #include <sys/sockio.h> 29 #include <sys/mbuf.h> 30 #include <sys/kernel.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/timeout.h> 34 #include <sys/conf.h> 35 #include <sys/device.h> 36 #include <sys/endian.h> 37 38 #include <machine/intr.h> 39 40 #if NBPFILTER > 0 41 #include <net/bpf.h> 42 #endif 43 #include <net/if.h> 44 #include <net/if_dl.h> 45 #include <net/if_media.h> 46 47 #include <netinet/in.h> 48 #include <netinet/if_ether.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_amrr.h> 52 #include <net80211/ieee80211_radiotap.h> 53 54 #include <dev/usb/usb.h> 55 #include <dev/usb/usbdi.h> 56 #include <dev/usb/usbdi_util.h> 57 #include <dev/usb/usbdevs.h> 58 59 #include <dev/usb/if_rumreg.h> 60 #include <dev/usb/if_rumvar.h> 61 62 #ifdef RUM_DEBUG 63 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 64 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 65 int rum_debug = 0; 66 #else 67 #define DPRINTF(x) 68 #define DPRINTFN(n, x) 69 #endif 70 71 /* various supported device vendors/products */ 72 static const struct usb_devno rum_devs[] = { 73 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 74 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 75 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 76 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 77 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 78 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 79 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_1 }, 80 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_2 }, 81 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 82 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 83 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, 84 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, 85 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 86 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 87 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU2 }, 88 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2573 }, 89 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 90 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 91 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 92 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 93 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 94 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 95 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 96 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 97 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, 98 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, 99 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 100 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 101 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 102 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 103 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 104 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 105 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_WUB320G }, 106 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 107 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 108 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, 109 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_1 }, 110 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 111 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 112 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 113 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 114 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 115 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 116 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 117 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 118 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 119 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 120 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 121 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573_2 }, 122 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 123 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 124 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 125 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, 126 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, 127 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } 128 }; 129 130 void rum_attachhook(struct device *); 131 int rum_alloc_tx_list(struct rum_softc *); 132 void rum_free_tx_list(struct rum_softc *); 133 int rum_alloc_rx_list(struct rum_softc *); 134 void rum_free_rx_list(struct rum_softc *); 135 int rum_media_change(struct ifnet *); 136 void rum_next_scan(void *); 137 void rum_task(void *); 138 int rum_newstate(struct ieee80211com *, enum ieee80211_state, int); 139 void rum_txeof(struct usbd_xfer *, void *, usbd_status); 140 void rum_rxeof(struct usbd_xfer *, void *, usbd_status); 141 #if NBPFILTER > 0 142 uint8_t rum_rxrate(const struct rum_rx_desc *); 143 #endif 144 int rum_ack_rate(struct ieee80211com *, int); 145 uint16_t rum_txtime(int, int, uint32_t); 146 uint8_t rum_plcp_signal(int); 147 void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *, 148 uint32_t, uint16_t, int, int); 149 int rum_tx_data(struct rum_softc *, struct mbuf *, 150 struct ieee80211_node *); 151 void rum_start(struct ifnet *); 152 void rum_watchdog(struct ifnet *); 153 int rum_ioctl(struct ifnet *, u_long, caddr_t); 154 void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int); 155 uint32_t rum_read(struct rum_softc *, uint16_t); 156 void rum_read_multi(struct rum_softc *, uint16_t, void *, int); 157 void rum_write(struct rum_softc *, uint16_t, uint32_t); 158 void rum_write_multi(struct rum_softc *, uint16_t, void *, size_t); 159 void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 160 uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 161 void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 162 void rum_select_antenna(struct rum_softc *); 163 void rum_enable_mrr(struct rum_softc *); 164 void rum_set_txpreamble(struct rum_softc *); 165 void rum_set_basicrates(struct rum_softc *); 166 void rum_select_band(struct rum_softc *, 167 struct ieee80211_channel *); 168 void rum_set_chan(struct rum_softc *, struct ieee80211_channel *); 169 void rum_enable_tsf_sync(struct rum_softc *); 170 void rum_update_slot(struct rum_softc *); 171 void rum_set_bssid(struct rum_softc *, const uint8_t *); 172 void rum_set_macaddr(struct rum_softc *, const uint8_t *); 173 void rum_update_promisc(struct rum_softc *); 174 const char *rum_get_rf(int); 175 void rum_read_eeprom(struct rum_softc *); 176 int rum_bbp_init(struct rum_softc *); 177 int rum_init(struct ifnet *); 178 void rum_stop(struct ifnet *, int); 179 int rum_load_microcode(struct rum_softc *, const u_char *, size_t); 180 #ifndef IEEE80211_STA_ONLY 181 int rum_prepare_beacon(struct rum_softc *); 182 #endif 183 void rum_newassoc(struct ieee80211com *, struct ieee80211_node *, 184 int); 185 void rum_amrr_start(struct rum_softc *, struct ieee80211_node *); 186 void rum_amrr_timeout(void *); 187 void rum_amrr_update(struct usbd_xfer *, void *, 188 usbd_status status); 189 190 static const struct { 191 uint32_t reg; 192 uint32_t val; 193 } rum_def_mac[] = { 194 RT2573_DEF_MAC 195 }; 196 197 static const struct { 198 uint8_t reg; 199 uint8_t val; 200 } rum_def_bbp[] = { 201 RT2573_DEF_BBP 202 }; 203 204 static const struct rfprog { 205 uint8_t chan; 206 uint32_t r1, r2, r3, r4; 207 } rum_rf5226[] = { 208 RT2573_RF5226 209 }, rum_rf5225[] = { 210 RT2573_RF5225 211 }; 212 213 int rum_match(struct device *, void *, void *); 214 void rum_attach(struct device *, struct device *, void *); 215 int rum_detach(struct device *, int); 216 217 struct cfdriver rum_cd = { 218 NULL, "rum", DV_IFNET 219 }; 220 221 const struct cfattach rum_ca = { 222 sizeof(struct rum_softc), rum_match, rum_attach, rum_detach 223 }; 224 225 int 226 rum_match(struct device *parent, void *match, void *aux) 227 { 228 struct usb_attach_arg *uaa = aux; 229 230 if (uaa->iface == NULL || uaa->configno != 1) 231 return UMATCH_NONE; 232 233 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? 234 UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE; 235 } 236 237 void 238 rum_attachhook(struct device *self) 239 { 240 struct rum_softc *sc = (struct rum_softc *)self; 241 const char *name = "rum-rt2573"; 242 u_char *ucode; 243 size_t size; 244 int error; 245 246 if ((error = loadfirmware(name, &ucode, &size)) != 0) { 247 printf("%s: failed loadfirmware of file %s (error %d)\n", 248 sc->sc_dev.dv_xname, name, error); 249 return; 250 } 251 252 if (rum_load_microcode(sc, ucode, size) != 0) { 253 printf("%s: could not load 8051 microcode\n", 254 sc->sc_dev.dv_xname); 255 } 256 257 free(ucode, M_DEVBUF, size); 258 } 259 260 void 261 rum_attach(struct device *parent, struct device *self, void *aux) 262 { 263 struct rum_softc *sc = (struct rum_softc *)self; 264 struct usb_attach_arg *uaa = aux; 265 struct ieee80211com *ic = &sc->sc_ic; 266 struct ifnet *ifp = &ic->ic_if; 267 usb_interface_descriptor_t *id; 268 usb_endpoint_descriptor_t *ed; 269 int i, ntries; 270 uint32_t tmp; 271 272 sc->sc_udev = uaa->device; 273 sc->sc_iface = uaa->iface; 274 275 /* 276 * Find endpoints. 277 */ 278 id = usbd_get_interface_descriptor(sc->sc_iface); 279 280 sc->sc_rx_no = sc->sc_tx_no = -1; 281 for (i = 0; i < id->bNumEndpoints; i++) { 282 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 283 if (ed == NULL) { 284 printf("%s: no endpoint descriptor for iface %d\n", 285 sc->sc_dev.dv_xname, i); 286 return; 287 } 288 289 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 290 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 291 sc->sc_rx_no = ed->bEndpointAddress; 292 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 293 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 294 sc->sc_tx_no = ed->bEndpointAddress; 295 } 296 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 297 printf("%s: missing endpoint\n", sc->sc_dev.dv_xname); 298 return; 299 } 300 301 usb_init_task(&sc->sc_task, rum_task, sc, USB_TASK_TYPE_GENERIC); 302 timeout_set(&sc->scan_to, rum_next_scan, sc); 303 304 sc->amrr.amrr_min_success_threshold = 1; 305 sc->amrr.amrr_max_success_threshold = 10; 306 timeout_set(&sc->amrr_to, rum_amrr_timeout, sc); 307 308 /* retrieve RT2573 rev. no */ 309 for (ntries = 0; ntries < 1000; ntries++) { 310 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 311 break; 312 DELAY(1000); 313 } 314 if (ntries == 1000) { 315 printf("%s: timeout waiting for chip to settle\n", 316 sc->sc_dev.dv_xname); 317 return; 318 } 319 320 /* retrieve MAC address and various other things from EEPROM */ 321 rum_read_eeprom(sc); 322 323 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 324 sc->sc_dev.dv_xname, sc->macbbp_rev, tmp, 325 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 326 327 config_mountroot(self, rum_attachhook); 328 329 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 330 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 331 ic->ic_state = IEEE80211_S_INIT; 332 333 /* set device capabilities */ 334 ic->ic_caps = 335 IEEE80211_C_MONITOR | /* monitor mode supported */ 336 #ifndef IEEE80211_STA_ONLY 337 IEEE80211_C_IBSS | /* IBSS mode supported */ 338 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 339 #endif 340 IEEE80211_C_TXPMGT | /* tx power management */ 341 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 342 IEEE80211_C_SHSLOT | /* short slot time supported */ 343 IEEE80211_C_WEP | /* s/w WEP */ 344 IEEE80211_C_RSN; /* WPA/RSN */ 345 346 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 347 /* set supported .11a rates */ 348 ic->ic_sup_rates[IEEE80211_MODE_11A] = 349 ieee80211_std_rateset_11a; 350 351 /* set supported .11a channels */ 352 for (i = 34; i <= 46; i += 4) { 353 ic->ic_channels[i].ic_freq = 354 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 355 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 356 } 357 for (i = 36; i <= 64; i += 4) { 358 ic->ic_channels[i].ic_freq = 359 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 360 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 361 } 362 for (i = 100; i <= 140; i += 4) { 363 ic->ic_channels[i].ic_freq = 364 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 365 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 366 } 367 for (i = 149; i <= 165; i += 4) { 368 ic->ic_channels[i].ic_freq = 369 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 370 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 371 } 372 } 373 374 /* set supported .11b and .11g rates */ 375 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 376 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 377 378 /* set supported .11b and .11g channels (1 through 14) */ 379 for (i = 1; i <= 14; i++) { 380 ic->ic_channels[i].ic_freq = 381 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 382 ic->ic_channels[i].ic_flags = 383 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 384 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 385 } 386 387 ifp->if_softc = sc; 388 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 389 ifp->if_ioctl = rum_ioctl; 390 ifp->if_start = rum_start; 391 ifp->if_watchdog = rum_watchdog; 392 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 393 394 if_attach(ifp); 395 ieee80211_ifattach(ifp); 396 ic->ic_newassoc = rum_newassoc; 397 398 /* override state transition machine */ 399 sc->sc_newstate = ic->ic_newstate; 400 ic->ic_newstate = rum_newstate; 401 ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status); 402 403 #if NBPFILTER > 0 404 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 405 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 406 407 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 408 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 409 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 410 411 sc->sc_txtap_len = sizeof sc->sc_txtapu; 412 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 413 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 414 #endif 415 } 416 417 int 418 rum_detach(struct device *self, int flags) 419 { 420 struct rum_softc *sc = (struct rum_softc *)self; 421 struct ifnet *ifp = &sc->sc_ic.ic_if; 422 int s; 423 424 s = splusb(); 425 426 if (timeout_initialized(&sc->scan_to)) 427 timeout_del(&sc->scan_to); 428 if (timeout_initialized(&sc->amrr_to)) 429 timeout_del(&sc->amrr_to); 430 431 usb_rem_wait_task(sc->sc_udev, &sc->sc_task); 432 433 usbd_ref_wait(sc->sc_udev); 434 435 if (ifp->if_softc != NULL) { 436 ieee80211_ifdetach(ifp); /* free all nodes */ 437 if_detach(ifp); 438 } 439 440 if (sc->amrr_xfer != NULL) { 441 usbd_free_xfer(sc->amrr_xfer); 442 sc->amrr_xfer = NULL; 443 } 444 if (sc->sc_rx_pipeh != NULL) { 445 usbd_abort_pipe(sc->sc_rx_pipeh); 446 usbd_close_pipe(sc->sc_rx_pipeh); 447 } 448 if (sc->sc_tx_pipeh != NULL) { 449 usbd_abort_pipe(sc->sc_tx_pipeh); 450 usbd_close_pipe(sc->sc_tx_pipeh); 451 } 452 453 rum_free_rx_list(sc); 454 rum_free_tx_list(sc); 455 456 splx(s); 457 458 return 0; 459 } 460 461 int 462 rum_alloc_tx_list(struct rum_softc *sc) 463 { 464 int i, error; 465 466 sc->tx_cur = sc->tx_queued = 0; 467 468 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 469 struct rum_tx_data *data = &sc->tx_data[i]; 470 471 data->sc = sc; 472 473 data->xfer = usbd_alloc_xfer(sc->sc_udev); 474 if (data->xfer == NULL) { 475 printf("%s: could not allocate tx xfer\n", 476 sc->sc_dev.dv_xname); 477 error = ENOMEM; 478 goto fail; 479 } 480 data->buf = usbd_alloc_buffer(data->xfer, 481 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN); 482 if (data->buf == NULL) { 483 printf("%s: could not allocate tx buffer\n", 484 sc->sc_dev.dv_xname); 485 error = ENOMEM; 486 goto fail; 487 } 488 /* clean Tx descriptor */ 489 bzero(data->buf, RT2573_TX_DESC_SIZE); 490 } 491 492 return 0; 493 494 fail: rum_free_tx_list(sc); 495 return error; 496 } 497 498 void 499 rum_free_tx_list(struct rum_softc *sc) 500 { 501 int i; 502 503 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 504 struct rum_tx_data *data = &sc->tx_data[i]; 505 506 if (data->xfer != NULL) { 507 usbd_free_xfer(data->xfer); 508 data->xfer = NULL; 509 } 510 /* 511 * The node has already been freed at that point so don't call 512 * ieee80211_release_node() here. 513 */ 514 data->ni = NULL; 515 } 516 } 517 518 int 519 rum_alloc_rx_list(struct rum_softc *sc) 520 { 521 int i, error; 522 523 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 524 struct rum_rx_data *data = &sc->rx_data[i]; 525 526 data->sc = sc; 527 528 data->xfer = usbd_alloc_xfer(sc->sc_udev); 529 if (data->xfer == NULL) { 530 printf("%s: could not allocate rx xfer\n", 531 sc->sc_dev.dv_xname); 532 error = ENOMEM; 533 goto fail; 534 } 535 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 536 printf("%s: could not allocate rx buffer\n", 537 sc->sc_dev.dv_xname); 538 error = ENOMEM; 539 goto fail; 540 } 541 542 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 543 if (data->m == NULL) { 544 printf("%s: could not allocate rx mbuf\n", 545 sc->sc_dev.dv_xname); 546 error = ENOMEM; 547 goto fail; 548 } 549 MCLGET(data->m, M_DONTWAIT); 550 if (!(data->m->m_flags & M_EXT)) { 551 printf("%s: could not allocate rx mbuf cluster\n", 552 sc->sc_dev.dv_xname); 553 error = ENOMEM; 554 goto fail; 555 } 556 data->buf = mtod(data->m, uint8_t *); 557 } 558 559 return 0; 560 561 fail: rum_free_rx_list(sc); 562 return error; 563 } 564 565 void 566 rum_free_rx_list(struct rum_softc *sc) 567 { 568 int i; 569 570 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 571 struct rum_rx_data *data = &sc->rx_data[i]; 572 573 if (data->xfer != NULL) { 574 usbd_free_xfer(data->xfer); 575 data->xfer = NULL; 576 } 577 if (data->m != NULL) { 578 m_freem(data->m); 579 data->m = NULL; 580 } 581 } 582 } 583 584 int 585 rum_media_change(struct ifnet *ifp) 586 { 587 int error; 588 589 error = ieee80211_media_change(ifp); 590 if (error != ENETRESET) 591 return error; 592 593 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 594 error = rum_init(ifp); 595 596 return error; 597 } 598 599 /* 600 * This function is called periodically (every 200ms) during scanning to 601 * switch from one channel to another. 602 */ 603 void 604 rum_next_scan(void *arg) 605 { 606 struct rum_softc *sc = arg; 607 struct ieee80211com *ic = &sc->sc_ic; 608 struct ifnet *ifp = &ic->ic_if; 609 610 if (usbd_is_dying(sc->sc_udev)) 611 return; 612 613 usbd_ref_incr(sc->sc_udev); 614 615 if (ic->ic_state == IEEE80211_S_SCAN) 616 ieee80211_next_scan(ifp); 617 618 usbd_ref_decr(sc->sc_udev); 619 } 620 621 void 622 rum_task(void *arg) 623 { 624 struct rum_softc *sc = arg; 625 struct ieee80211com *ic = &sc->sc_ic; 626 enum ieee80211_state ostate; 627 struct ieee80211_node *ni; 628 uint32_t tmp; 629 630 if (usbd_is_dying(sc->sc_udev)) 631 return; 632 633 ostate = ic->ic_state; 634 635 switch (sc->sc_state) { 636 case IEEE80211_S_INIT: 637 if (ostate == IEEE80211_S_RUN) { 638 /* abort TSF synchronization */ 639 tmp = rum_read(sc, RT2573_TXRX_CSR9); 640 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 641 } 642 break; 643 644 case IEEE80211_S_SCAN: 645 rum_set_chan(sc, ic->ic_bss->ni_chan); 646 if (!usbd_is_dying(sc->sc_udev)) 647 timeout_add_msec(&sc->scan_to, 200); 648 break; 649 650 case IEEE80211_S_AUTH: 651 rum_set_chan(sc, ic->ic_bss->ni_chan); 652 break; 653 654 case IEEE80211_S_ASSOC: 655 rum_set_chan(sc, ic->ic_bss->ni_chan); 656 break; 657 658 case IEEE80211_S_RUN: 659 rum_set_chan(sc, ic->ic_bss->ni_chan); 660 661 ni = ic->ic_bss; 662 663 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 664 rum_update_slot(sc); 665 rum_enable_mrr(sc); 666 rum_set_txpreamble(sc); 667 rum_set_basicrates(sc); 668 rum_set_bssid(sc, ni->ni_bssid); 669 } 670 671 #ifndef IEEE80211_STA_ONLY 672 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 673 ic->ic_opmode == IEEE80211_M_IBSS) 674 rum_prepare_beacon(sc); 675 #endif 676 677 if (ic->ic_opmode != IEEE80211_M_MONITOR) 678 rum_enable_tsf_sync(sc); 679 680 if (ic->ic_opmode == IEEE80211_M_STA) { 681 /* fake a join to init the tx rate */ 682 rum_newassoc(ic, ic->ic_bss, 1); 683 684 /* enable automatic rate control in STA mode */ 685 if (ic->ic_fixed_rate == -1) 686 rum_amrr_start(sc, ni); 687 } 688 break; 689 } 690 691 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 692 } 693 694 int 695 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 696 { 697 struct rum_softc *sc = ic->ic_if.if_softc; 698 699 usb_rem_task(sc->sc_udev, &sc->sc_task); 700 timeout_del(&sc->scan_to); 701 timeout_del(&sc->amrr_to); 702 703 /* do it in a process context */ 704 sc->sc_state = nstate; 705 sc->sc_arg = arg; 706 usb_add_task(sc->sc_udev, &sc->sc_task); 707 return 0; 708 } 709 710 /* quickly determine if a given rate is CCK or OFDM */ 711 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 712 713 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 714 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 715 716 void 717 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 718 { 719 struct rum_tx_data *data = priv; 720 struct rum_softc *sc = data->sc; 721 struct ieee80211com *ic = &sc->sc_ic; 722 struct ifnet *ifp = &ic->ic_if; 723 int s; 724 725 if (status != USBD_NORMAL_COMPLETION) { 726 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 727 return; 728 729 printf("%s: could not transmit buffer: %s\n", 730 sc->sc_dev.dv_xname, usbd_errstr(status)); 731 732 if (status == USBD_STALLED) 733 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 734 735 ifp->if_oerrors++; 736 return; 737 } 738 739 s = splnet(); 740 741 ieee80211_release_node(ic, data->ni); 742 data->ni = NULL; 743 744 sc->tx_queued--; 745 746 DPRINTFN(10, ("tx done\n")); 747 748 sc->sc_tx_timer = 0; 749 ifq_clr_oactive(&ifp->if_snd); 750 rum_start(ifp); 751 752 splx(s); 753 } 754 755 void 756 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 757 { 758 struct rum_rx_data *data = priv; 759 struct rum_softc *sc = data->sc; 760 struct ieee80211com *ic = &sc->sc_ic; 761 struct ifnet *ifp = &ic->ic_if; 762 const struct rum_rx_desc *desc; 763 struct ieee80211_frame *wh; 764 struct ieee80211_rxinfo rxi; 765 struct ieee80211_node *ni; 766 struct mbuf *mnew, *m; 767 int s, len; 768 769 if (status != USBD_NORMAL_COMPLETION) { 770 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 771 return; 772 773 if (status == USBD_STALLED) 774 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 775 goto skip; 776 } 777 778 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 779 780 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) { 781 DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname, 782 len)); 783 ifp->if_ierrors++; 784 goto skip; 785 } 786 787 desc = (const struct rum_rx_desc *)data->buf; 788 789 if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) { 790 /* 791 * This should not happen since we did not request to receive 792 * those frames when we filled RT2573_TXRX_CSR0. 793 */ 794 DPRINTFN(5, ("CRC error\n")); 795 ifp->if_ierrors++; 796 goto skip; 797 } 798 799 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 800 if (mnew == NULL) { 801 printf("%s: could not allocate rx mbuf\n", 802 sc->sc_dev.dv_xname); 803 ifp->if_ierrors++; 804 goto skip; 805 } 806 MCLGET(mnew, M_DONTWAIT); 807 if (!(mnew->m_flags & M_EXT)) { 808 printf("%s: could not allocate rx mbuf cluster\n", 809 sc->sc_dev.dv_xname); 810 m_freem(mnew); 811 ifp->if_ierrors++; 812 goto skip; 813 } 814 m = data->m; 815 data->m = mnew; 816 data->buf = mtod(data->m, uint8_t *); 817 818 /* finalize mbuf */ 819 m->m_data = (caddr_t)(desc + 1); 820 m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff; 821 822 s = splnet(); 823 824 #if NBPFILTER > 0 825 if (sc->sc_drvbpf != NULL) { 826 struct mbuf mb; 827 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 828 829 tap->wr_flags = 0; 830 tap->wr_rate = rum_rxrate(desc); 831 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 832 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 833 tap->wr_antenna = sc->rx_ant; 834 tap->wr_antsignal = desc->rssi; 835 836 mb.m_data = (caddr_t)tap; 837 mb.m_len = sc->sc_rxtap_len; 838 mb.m_next = m; 839 mb.m_nextpkt = NULL; 840 mb.m_type = 0; 841 mb.m_flags = 0; 842 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 843 } 844 #endif 845 846 wh = mtod(m, struct ieee80211_frame *); 847 ni = ieee80211_find_rxnode(ic, wh); 848 849 /* send the frame to the 802.11 layer */ 850 rxi.rxi_flags = 0; 851 rxi.rxi_rssi = desc->rssi; 852 rxi.rxi_tstamp = 0; /* unused */ 853 ieee80211_input(ifp, m, ni, &rxi); 854 855 /* node is no longer needed */ 856 ieee80211_release_node(ic, ni); 857 858 splx(s); 859 860 DPRINTFN(15, ("rx done\n")); 861 862 skip: /* setup a new transfer */ 863 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 864 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 865 (void)usbd_transfer(xfer); 866 } 867 868 /* 869 * This function is only used by the Rx radiotap code. It returns the rate at 870 * which a given frame was received. 871 */ 872 #if NBPFILTER > 0 873 uint8_t 874 rum_rxrate(const struct rum_rx_desc *desc) 875 { 876 if (letoh32(desc->flags) & RT2573_RX_OFDM) { 877 /* reverse function of rum_plcp_signal */ 878 switch (desc->rate) { 879 case 0xb: return 12; 880 case 0xf: return 18; 881 case 0xa: return 24; 882 case 0xe: return 36; 883 case 0x9: return 48; 884 case 0xd: return 72; 885 case 0x8: return 96; 886 case 0xc: return 108; 887 } 888 } else { 889 if (desc->rate == 10) 890 return 2; 891 if (desc->rate == 20) 892 return 4; 893 if (desc->rate == 55) 894 return 11; 895 if (desc->rate == 110) 896 return 22; 897 } 898 return 2; /* should not get there */ 899 } 900 #endif 901 902 /* 903 * Return the expected ack rate for a frame transmitted at rate `rate'. 904 */ 905 int 906 rum_ack_rate(struct ieee80211com *ic, int rate) 907 { 908 switch (rate) { 909 /* CCK rates */ 910 case 2: 911 return 2; 912 case 4: 913 case 11: 914 case 22: 915 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 916 917 /* OFDM rates */ 918 case 12: 919 case 18: 920 return 12; 921 case 24: 922 case 36: 923 return 24; 924 case 48: 925 case 72: 926 case 96: 927 case 108: 928 return 48; 929 } 930 931 /* default to 1Mbps */ 932 return 2; 933 } 934 935 /* 936 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 937 * The function automatically determines the operating mode depending on the 938 * given rate. `flags' indicates whether short preamble is in use or not. 939 */ 940 uint16_t 941 rum_txtime(int len, int rate, uint32_t flags) 942 { 943 uint16_t txtime; 944 945 if (RUM_RATE_IS_OFDM(rate)) { 946 /* IEEE Std 802.11a-1999, pp. 37 */ 947 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 948 txtime = 16 + 4 + 4 * txtime + 6; 949 } else { 950 /* IEEE Std 802.11b-1999, pp. 28 */ 951 txtime = (16 * len + rate - 1) / rate; 952 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 953 txtime += 72 + 24; 954 else 955 txtime += 144 + 48; 956 } 957 return txtime; 958 } 959 960 uint8_t 961 rum_plcp_signal(int rate) 962 { 963 switch (rate) { 964 /* CCK rates (returned values are device-dependent) */ 965 case 2: return 0x0; 966 case 4: return 0x1; 967 case 11: return 0x2; 968 case 22: return 0x3; 969 970 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 971 case 12: return 0xb; 972 case 18: return 0xf; 973 case 24: return 0xa; 974 case 36: return 0xe; 975 case 48: return 0x9; 976 case 72: return 0xd; 977 case 96: return 0x8; 978 case 108: return 0xc; 979 980 /* unsupported rates (should not get there) */ 981 default: return 0xff; 982 } 983 } 984 985 void 986 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 987 uint32_t flags, uint16_t xflags, int len, int rate) 988 { 989 struct ieee80211com *ic = &sc->sc_ic; 990 uint16_t plcp_length; 991 int remainder; 992 993 desc->flags = htole32(flags); 994 desc->flags |= htole32(RT2573_TX_VALID); 995 desc->flags |= htole32(len << 16); 996 997 desc->xflags = htole16(xflags); 998 999 desc->wme = htole16( 1000 RT2573_QID(0) | 1001 RT2573_AIFSN(2) | 1002 RT2573_LOGCWMIN(4) | 1003 RT2573_LOGCWMAX(10)); 1004 1005 /* setup PLCP fields */ 1006 desc->plcp_signal = rum_plcp_signal(rate); 1007 desc->plcp_service = 4; 1008 1009 len += IEEE80211_CRC_LEN; 1010 if (RUM_RATE_IS_OFDM(rate)) { 1011 desc->flags |= htole32(RT2573_TX_OFDM); 1012 1013 plcp_length = len & 0xfff; 1014 desc->plcp_length_hi = plcp_length >> 6; 1015 desc->plcp_length_lo = plcp_length & 0x3f; 1016 } else { 1017 plcp_length = (16 * len + rate - 1) / rate; 1018 if (rate == 22) { 1019 remainder = (16 * len) % 22; 1020 if (remainder != 0 && remainder < 7) 1021 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1022 } 1023 desc->plcp_length_hi = plcp_length >> 8; 1024 desc->plcp_length_lo = plcp_length & 0xff; 1025 1026 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1027 desc->plcp_signal |= 0x08; 1028 } 1029 } 1030 1031 #define RUM_TX_TIMEOUT 5000 1032 1033 int 1034 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1035 { 1036 struct ieee80211com *ic = &sc->sc_ic; 1037 struct rum_tx_desc *desc; 1038 struct rum_tx_data *data; 1039 struct ieee80211_frame *wh; 1040 struct ieee80211_key *k; 1041 uint32_t flags = 0; 1042 uint16_t dur; 1043 usbd_status error; 1044 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1045 1046 wh = mtod(m0, struct ieee80211_frame *); 1047 1048 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1049 k = ieee80211_get_txkey(ic, wh, ni); 1050 1051 if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) 1052 return ENOBUFS; 1053 1054 /* packet header may have moved, reset our local pointer */ 1055 wh = mtod(m0, struct ieee80211_frame *); 1056 } 1057 1058 /* compute actual packet length (including CRC and crypto overhead) */ 1059 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1060 1061 /* pickup a rate */ 1062 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1063 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1064 IEEE80211_FC0_TYPE_MGT)) { 1065 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1066 rate = ni->ni_rates.rs_rates[0]; 1067 } else if (ic->ic_fixed_rate != -1) { 1068 rate = ic->ic_sup_rates[ic->ic_curmode]. 1069 rs_rates[ic->ic_fixed_rate]; 1070 } else 1071 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1072 if (rate == 0) 1073 rate = 2; /* XXX should not happen */ 1074 rate &= IEEE80211_RATE_VAL; 1075 1076 /* check if RTS/CTS or CTS-to-self protection must be used */ 1077 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1078 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1079 if (pktlen > ic->ic_rtsthreshold) { 1080 needrts = 1; /* RTS/CTS based on frame length */ 1081 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1082 RUM_RATE_IS_OFDM(rate)) { 1083 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1084 needcts = 1; /* CTS-to-self */ 1085 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1086 needrts = 1; /* RTS/CTS */ 1087 } 1088 } 1089 if (needrts || needcts) { 1090 struct mbuf *mprot; 1091 int protrate, ackrate; 1092 uint16_t dur; 1093 1094 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1095 ackrate = rum_ack_rate(ic, rate); 1096 1097 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1098 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1099 2 * sc->sifs; 1100 if (needrts) { 1101 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1102 protrate), ic->ic_flags) + sc->sifs; 1103 mprot = ieee80211_get_rts(ic, wh, dur); 1104 } else { 1105 mprot = ieee80211_get_cts_to_self(ic, dur); 1106 } 1107 if (mprot == NULL) { 1108 printf("%s: could not allocate protection frame\n", 1109 sc->sc_dev.dv_xname); 1110 m_freem(m0); 1111 return ENOBUFS; 1112 } 1113 1114 data = &sc->tx_data[sc->tx_cur]; 1115 desc = (struct rum_tx_desc *)data->buf; 1116 1117 /* avoid multiple free() of the same node for each fragment */ 1118 data->ni = ieee80211_ref_node(ni); 1119 1120 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1121 data->buf + RT2573_TX_DESC_SIZE); 1122 rum_setup_tx_desc(sc, desc, 1123 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1124 0, mprot->m_pkthdr.len, protrate); 1125 1126 /* no roundup necessary here */ 1127 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1128 1129 /* XXX may want to pass the protection frame to BPF */ 1130 1131 /* mbuf is no longer needed */ 1132 m_freem(mprot); 1133 1134 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1135 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1136 RUM_TX_TIMEOUT, rum_txeof); 1137 error = usbd_transfer(data->xfer); 1138 if (error != 0 && error != USBD_IN_PROGRESS) { 1139 m_freem(m0); 1140 return error; 1141 } 1142 1143 sc->tx_queued++; 1144 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1145 1146 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1147 } 1148 1149 data = &sc->tx_data[sc->tx_cur]; 1150 desc = (struct rum_tx_desc *)data->buf; 1151 1152 data->ni = ni; 1153 1154 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1155 flags |= RT2573_TX_NEED_ACK; 1156 1157 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1158 ic->ic_flags) + sc->sifs; 1159 *(uint16_t *)wh->i_dur = htole16(dur); 1160 1161 #ifndef IEEE80211_STA_ONLY 1162 /* tell hardware to set timestamp in probe responses */ 1163 if ((wh->i_fc[0] & 1164 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1165 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1166 flags |= RT2573_TX_TIMESTAMP; 1167 #endif 1168 } 1169 1170 #if NBPFILTER > 0 1171 if (sc->sc_drvbpf != NULL) { 1172 struct mbuf mb; 1173 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1174 1175 tap->wt_flags = 0; 1176 tap->wt_rate = rate; 1177 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1178 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1179 tap->wt_antenna = sc->tx_ant; 1180 1181 mb.m_data = (caddr_t)tap; 1182 mb.m_len = sc->sc_txtap_len; 1183 mb.m_next = m0; 1184 mb.m_nextpkt = NULL; 1185 mb.m_type = 0; 1186 mb.m_flags = 0; 1187 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 1188 } 1189 #endif 1190 1191 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1192 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1193 1194 /* align end on a 4-bytes boundary */ 1195 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1196 1197 /* 1198 * No space left in the last URB to store the extra 4 bytes, force 1199 * sending of another URB. 1200 */ 1201 if ((xferlen % 64) == 0) 1202 xferlen += 4; 1203 1204 DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n", 1205 m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen)); 1206 1207 /* mbuf is no longer needed */ 1208 m_freem(m0); 1209 1210 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1211 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1212 error = usbd_transfer(data->xfer); 1213 if (error != 0 && error != USBD_IN_PROGRESS) 1214 return error; 1215 1216 sc->tx_queued++; 1217 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1218 1219 return 0; 1220 } 1221 1222 void 1223 rum_start(struct ifnet *ifp) 1224 { 1225 struct rum_softc *sc = ifp->if_softc; 1226 struct ieee80211com *ic = &sc->sc_ic; 1227 struct ieee80211_node *ni; 1228 struct mbuf *m0; 1229 1230 /* 1231 * net80211 may still try to send management frames even if the 1232 * IFF_RUNNING flag is not set... 1233 */ 1234 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 1235 return; 1236 1237 for (;;) { 1238 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1239 ifq_set_oactive(&ifp->if_snd); 1240 break; 1241 } 1242 1243 m0 = mq_dequeue(&ic->ic_mgtq); 1244 if (m0 != NULL) { 1245 ni = m0->m_pkthdr.ph_cookie; 1246 #if NBPFILTER > 0 1247 if (ic->ic_rawbpf != NULL) 1248 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1249 #endif 1250 if (rum_tx_data(sc, m0, ni) != 0) 1251 break; 1252 1253 } else { 1254 if (ic->ic_state != IEEE80211_S_RUN) 1255 break; 1256 1257 IFQ_DEQUEUE(&ifp->if_snd, m0); 1258 if (m0 == NULL) 1259 break; 1260 #if NBPFILTER > 0 1261 if (ifp->if_bpf != NULL) 1262 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); 1263 #endif 1264 m0 = ieee80211_encap(ifp, m0, &ni); 1265 if (m0 == NULL) 1266 continue; 1267 #if NBPFILTER > 0 1268 if (ic->ic_rawbpf != NULL) 1269 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1270 #endif 1271 if (rum_tx_data(sc, m0, ni) != 0) { 1272 if (ni != NULL) 1273 ieee80211_release_node(ic, ni); 1274 ifp->if_oerrors++; 1275 break; 1276 } 1277 } 1278 1279 sc->sc_tx_timer = 5; 1280 ifp->if_timer = 1; 1281 } 1282 } 1283 1284 void 1285 rum_watchdog(struct ifnet *ifp) 1286 { 1287 struct rum_softc *sc = ifp->if_softc; 1288 1289 ifp->if_timer = 0; 1290 1291 if (sc->sc_tx_timer > 0) { 1292 if (--sc->sc_tx_timer == 0) { 1293 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1294 /*rum_init(ifp); XXX needs a process context! */ 1295 ifp->if_oerrors++; 1296 return; 1297 } 1298 ifp->if_timer = 1; 1299 } 1300 1301 ieee80211_watchdog(ifp); 1302 } 1303 1304 int 1305 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1306 { 1307 struct rum_softc *sc = ifp->if_softc; 1308 struct ieee80211com *ic = &sc->sc_ic; 1309 int s, error = 0; 1310 1311 if (usbd_is_dying(sc->sc_udev)) 1312 return ENXIO; 1313 1314 usbd_ref_incr(sc->sc_udev); 1315 1316 s = splnet(); 1317 1318 switch (cmd) { 1319 case SIOCSIFADDR: 1320 ifp->if_flags |= IFF_UP; 1321 /* FALLTHROUGH */ 1322 case SIOCSIFFLAGS: 1323 if (ifp->if_flags & IFF_UP) { 1324 if (ifp->if_flags & IFF_RUNNING) 1325 rum_update_promisc(sc); 1326 else 1327 rum_init(ifp); 1328 } else { 1329 if (ifp->if_flags & IFF_RUNNING) 1330 rum_stop(ifp, 1); 1331 } 1332 break; 1333 1334 case SIOCS80211CHANNEL: 1335 /* 1336 * This allows for fast channel switching in monitor mode 1337 * (used by kismet). In IBSS mode, we must explicitly reset 1338 * the interface to generate a new beacon frame. 1339 */ 1340 error = ieee80211_ioctl(ifp, cmd, data); 1341 if (error == ENETRESET && 1342 ic->ic_opmode == IEEE80211_M_MONITOR) { 1343 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1344 (IFF_UP | IFF_RUNNING)) 1345 rum_set_chan(sc, ic->ic_ibss_chan); 1346 error = 0; 1347 } 1348 break; 1349 1350 default: 1351 error = ieee80211_ioctl(ifp, cmd, data); 1352 } 1353 1354 if (error == ENETRESET) { 1355 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1356 (IFF_UP | IFF_RUNNING)) 1357 rum_init(ifp); 1358 error = 0; 1359 } 1360 1361 splx(s); 1362 1363 usbd_ref_decr(sc->sc_udev); 1364 1365 return error; 1366 } 1367 1368 void 1369 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1370 { 1371 usb_device_request_t req; 1372 usbd_status error; 1373 1374 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1375 req.bRequest = RT2573_READ_EEPROM; 1376 USETW(req.wValue, 0); 1377 USETW(req.wIndex, addr); 1378 USETW(req.wLength, len); 1379 1380 error = usbd_do_request(sc->sc_udev, &req, buf); 1381 if (error != 0) { 1382 printf("%s: could not read EEPROM: %s\n", 1383 sc->sc_dev.dv_xname, usbd_errstr(error)); 1384 } 1385 } 1386 1387 uint32_t 1388 rum_read(struct rum_softc *sc, uint16_t reg) 1389 { 1390 uint32_t val; 1391 1392 rum_read_multi(sc, reg, &val, sizeof val); 1393 1394 return letoh32(val); 1395 } 1396 1397 void 1398 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1399 { 1400 usb_device_request_t req; 1401 usbd_status error; 1402 1403 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1404 req.bRequest = RT2573_READ_MULTI_MAC; 1405 USETW(req.wValue, 0); 1406 USETW(req.wIndex, reg); 1407 USETW(req.wLength, len); 1408 1409 error = usbd_do_request(sc->sc_udev, &req, buf); 1410 if (error != 0) { 1411 printf("%s: could not multi read MAC register: %s\n", 1412 sc->sc_dev.dv_xname, usbd_errstr(error)); 1413 } 1414 } 1415 1416 void 1417 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1418 { 1419 uint32_t tmp = htole32(val); 1420 1421 rum_write_multi(sc, reg, &tmp, sizeof tmp); 1422 } 1423 1424 void 1425 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1426 { 1427 usb_device_request_t req; 1428 usbd_status error; 1429 int offset; 1430 1431 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1432 req.bRequest = RT2573_WRITE_MULTI_MAC; 1433 USETW(req.wValue, 0); 1434 1435 /* write at most 64 bytes at a time */ 1436 for (offset = 0; offset < len; offset += 64) { 1437 USETW(req.wIndex, reg + offset); 1438 USETW(req.wLength, MIN(len - offset, 64)); 1439 1440 error = usbd_do_request(sc->sc_udev, &req, buf + offset); 1441 if (error != 0) { 1442 printf("%s: could not multi write MAC register: %s\n", 1443 sc->sc_dev.dv_xname, usbd_errstr(error)); 1444 } 1445 } 1446 } 1447 1448 void 1449 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1450 { 1451 uint32_t tmp; 1452 int ntries; 1453 1454 for (ntries = 0; ntries < 5; ntries++) { 1455 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1456 break; 1457 } 1458 if (ntries == 5) { 1459 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname); 1460 return; 1461 } 1462 1463 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1464 rum_write(sc, RT2573_PHY_CSR3, tmp); 1465 } 1466 1467 uint8_t 1468 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1469 { 1470 uint32_t val; 1471 int ntries; 1472 1473 for (ntries = 0; ntries < 5; ntries++) { 1474 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1475 break; 1476 } 1477 if (ntries == 5) { 1478 printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); 1479 return 0; 1480 } 1481 1482 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1483 rum_write(sc, RT2573_PHY_CSR3, val); 1484 1485 for (ntries = 0; ntries < 100; ntries++) { 1486 val = rum_read(sc, RT2573_PHY_CSR3); 1487 if (!(val & RT2573_BBP_BUSY)) 1488 return val & 0xff; 1489 DELAY(1); 1490 } 1491 1492 printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); 1493 return 0; 1494 } 1495 1496 void 1497 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1498 { 1499 uint32_t tmp; 1500 int ntries; 1501 1502 for (ntries = 0; ntries < 5; ntries++) { 1503 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1504 break; 1505 } 1506 if (ntries == 5) { 1507 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname); 1508 return; 1509 } 1510 1511 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1512 (reg & 3); 1513 rum_write(sc, RT2573_PHY_CSR4, tmp); 1514 1515 /* remember last written value in sc */ 1516 sc->rf_regs[reg] = val; 1517 1518 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1519 } 1520 1521 void 1522 rum_select_antenna(struct rum_softc *sc) 1523 { 1524 uint8_t bbp4, bbp77; 1525 uint32_t tmp; 1526 1527 bbp4 = rum_bbp_read(sc, 4); 1528 bbp77 = rum_bbp_read(sc, 77); 1529 1530 /* TBD */ 1531 1532 /* make sure Rx is disabled before switching antenna */ 1533 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1534 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1535 1536 rum_bbp_write(sc, 4, bbp4); 1537 rum_bbp_write(sc, 77, bbp77); 1538 1539 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1540 } 1541 1542 /* 1543 * Enable multi-rate retries for frames sent at OFDM rates. 1544 * In 802.11b/g mode, allow fallback to CCK rates. 1545 */ 1546 void 1547 rum_enable_mrr(struct rum_softc *sc) 1548 { 1549 struct ieee80211com *ic = &sc->sc_ic; 1550 uint32_t tmp; 1551 1552 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1553 1554 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1555 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) 1556 tmp |= RT2573_MRR_CCK_FALLBACK; 1557 tmp |= RT2573_MRR_ENABLED; 1558 1559 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1560 } 1561 1562 void 1563 rum_set_txpreamble(struct rum_softc *sc) 1564 { 1565 uint32_t tmp; 1566 1567 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1568 1569 tmp &= ~RT2573_SHORT_PREAMBLE; 1570 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1571 tmp |= RT2573_SHORT_PREAMBLE; 1572 1573 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1574 } 1575 1576 void 1577 rum_set_basicrates(struct rum_softc *sc) 1578 { 1579 struct ieee80211com *ic = &sc->sc_ic; 1580 1581 /* update basic rate set */ 1582 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1583 /* 11b basic rates: 1, 2Mbps */ 1584 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1585 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1586 /* 11a basic rates: 6, 12, 24Mbps */ 1587 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1588 } else { 1589 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1590 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1591 } 1592 } 1593 1594 /* 1595 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1596 * driver. 1597 */ 1598 void 1599 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1600 { 1601 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1602 uint32_t tmp; 1603 1604 /* update all BBP registers that depend on the band */ 1605 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1606 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1607 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1608 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1609 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1610 } 1611 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1612 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1613 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1614 } 1615 1616 sc->bbp17 = bbp17; 1617 rum_bbp_write(sc, 17, bbp17); 1618 rum_bbp_write(sc, 96, bbp96); 1619 rum_bbp_write(sc, 104, bbp104); 1620 1621 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1622 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1623 rum_bbp_write(sc, 75, 0x80); 1624 rum_bbp_write(sc, 86, 0x80); 1625 rum_bbp_write(sc, 88, 0x80); 1626 } 1627 1628 rum_bbp_write(sc, 35, bbp35); 1629 rum_bbp_write(sc, 97, bbp97); 1630 rum_bbp_write(sc, 98, bbp98); 1631 1632 tmp = rum_read(sc, RT2573_PHY_CSR0); 1633 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1634 if (IEEE80211_IS_CHAN_2GHZ(c)) 1635 tmp |= RT2573_PA_PE_2GHZ; 1636 else 1637 tmp |= RT2573_PA_PE_5GHZ; 1638 rum_write(sc, RT2573_PHY_CSR0, tmp); 1639 1640 /* 802.11a uses a 16 microseconds short interframe space */ 1641 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1642 } 1643 1644 void 1645 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1646 { 1647 struct ieee80211com *ic = &sc->sc_ic; 1648 const struct rfprog *rfprog; 1649 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1650 int8_t power; 1651 u_int i, chan; 1652 1653 chan = ieee80211_chan2ieee(ic, c); 1654 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1655 return; 1656 1657 /* select the appropriate RF settings based on what EEPROM says */ 1658 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1659 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1660 1661 /* find the settings for this channel (we know it exists) */ 1662 for (i = 0; rfprog[i].chan != chan; i++); 1663 1664 power = sc->txpow[i]; 1665 if (power < 0) { 1666 bbp94 += power; 1667 power = 0; 1668 } else if (power > 31) { 1669 bbp94 += power - 31; 1670 power = 31; 1671 } 1672 1673 /* 1674 * If we are switching from the 2GHz band to the 5GHz band or 1675 * vice-versa, BBP registers need to be reprogrammed. 1676 */ 1677 if (c->ic_flags != sc->sc_curchan->ic_flags) { 1678 rum_select_band(sc, c); 1679 rum_select_antenna(sc); 1680 } 1681 sc->sc_curchan = c; 1682 1683 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1684 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1685 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1686 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1687 1688 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1689 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1690 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1691 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1692 1693 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1694 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1695 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1696 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1697 1698 DELAY(10); 1699 1700 /* enable smart mode for MIMO-capable RFs */ 1701 bbp3 = rum_bbp_read(sc, 3); 1702 1703 bbp3 &= ~RT2573_SMART_MODE; 1704 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1705 bbp3 |= RT2573_SMART_MODE; 1706 1707 rum_bbp_write(sc, 3, bbp3); 1708 1709 if (bbp94 != RT2573_BBPR94_DEFAULT) 1710 rum_bbp_write(sc, 94, bbp94); 1711 } 1712 1713 /* 1714 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1715 * and HostAP operating modes. 1716 */ 1717 void 1718 rum_enable_tsf_sync(struct rum_softc *sc) 1719 { 1720 struct ieee80211com *ic = &sc->sc_ic; 1721 uint32_t tmp; 1722 1723 #ifndef IEEE80211_STA_ONLY 1724 if (ic->ic_opmode != IEEE80211_M_STA) { 1725 /* 1726 * Change default 16ms TBTT adjustment to 8ms. 1727 * Must be done before enabling beacon generation. 1728 */ 1729 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1730 } 1731 #endif 1732 1733 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1734 1735 /* set beacon interval (in 1/16ms unit) */ 1736 tmp |= ic->ic_bss->ni_intval * 16; 1737 1738 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1739 if (ic->ic_opmode == IEEE80211_M_STA) 1740 tmp |= RT2573_TSF_MODE(1); 1741 #ifndef IEEE80211_STA_ONLY 1742 else 1743 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1744 #endif 1745 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1746 } 1747 1748 void 1749 rum_update_slot(struct rum_softc *sc) 1750 { 1751 struct ieee80211com *ic = &sc->sc_ic; 1752 uint8_t slottime; 1753 uint32_t tmp; 1754 1755 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 1756 IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT; 1757 1758 tmp = rum_read(sc, RT2573_MAC_CSR9); 1759 tmp = (tmp & ~0xff) | slottime; 1760 rum_write(sc, RT2573_MAC_CSR9, tmp); 1761 1762 DPRINTF(("setting slot time to %uus\n", slottime)); 1763 } 1764 1765 void 1766 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1767 { 1768 uint32_t tmp; 1769 1770 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1771 rum_write(sc, RT2573_MAC_CSR4, tmp); 1772 1773 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1774 rum_write(sc, RT2573_MAC_CSR5, tmp); 1775 } 1776 1777 void 1778 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1779 { 1780 uint32_t tmp; 1781 1782 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1783 rum_write(sc, RT2573_MAC_CSR2, tmp); 1784 1785 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1786 rum_write(sc, RT2573_MAC_CSR3, tmp); 1787 } 1788 1789 void 1790 rum_update_promisc(struct rum_softc *sc) 1791 { 1792 struct ifnet *ifp = &sc->sc_ic.ic_if; 1793 uint32_t tmp; 1794 1795 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1796 1797 tmp &= ~RT2573_DROP_NOT_TO_ME; 1798 if (!(ifp->if_flags & IFF_PROMISC)) 1799 tmp |= RT2573_DROP_NOT_TO_ME; 1800 1801 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1802 1803 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1804 "entering" : "leaving")); 1805 } 1806 1807 const char * 1808 rum_get_rf(int rev) 1809 { 1810 switch (rev) { 1811 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1812 case RT2573_RF_2528: return "RT2528"; 1813 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1814 case RT2573_RF_5226: return "RT5226"; 1815 default: return "unknown"; 1816 } 1817 } 1818 1819 void 1820 rum_read_eeprom(struct rum_softc *sc) 1821 { 1822 struct ieee80211com *ic = &sc->sc_ic; 1823 uint16_t val; 1824 #ifdef RUM_DEBUG 1825 int i; 1826 #endif 1827 1828 /* read MAC/BBP type */ 1829 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1830 sc->macbbp_rev = letoh16(val); 1831 1832 /* read MAC address */ 1833 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1834 1835 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1836 val = letoh16(val); 1837 sc->rf_rev = (val >> 11) & 0x1f; 1838 sc->hw_radio = (val >> 10) & 0x1; 1839 sc->rx_ant = (val >> 4) & 0x3; 1840 sc->tx_ant = (val >> 2) & 0x3; 1841 sc->nb_ant = val & 0x3; 1842 1843 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1844 1845 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1846 val = letoh16(val); 1847 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1848 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1849 1850 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1851 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1852 1853 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1854 val = letoh16(val); 1855 if ((val & 0xff) != 0xff) 1856 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1857 1858 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1859 val = letoh16(val); 1860 if ((val & 0xff) != 0xff) 1861 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1862 1863 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1864 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1865 1866 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1867 val = letoh16(val); 1868 if ((val & 0xff) != 0xff) 1869 sc->rffreq = val & 0xff; 1870 1871 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1872 1873 /* read Tx power for all a/b/g channels */ 1874 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1875 /* XXX default Tx power for 802.11a channels */ 1876 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1877 #ifdef RUM_DEBUG 1878 for (i = 0; i < 14; i++) 1879 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1880 #endif 1881 1882 /* read default values for BBP registers */ 1883 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1884 #ifdef RUM_DEBUG 1885 for (i = 0; i < 14; i++) { 1886 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1887 continue; 1888 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1889 sc->bbp_prom[i].val)); 1890 } 1891 #endif 1892 } 1893 1894 int 1895 rum_bbp_init(struct rum_softc *sc) 1896 { 1897 int i, ntries; 1898 1899 /* wait for BBP to be ready */ 1900 for (ntries = 0; ntries < 100; ntries++) { 1901 const uint8_t val = rum_bbp_read(sc, 0); 1902 if (val != 0 && val != 0xff) 1903 break; 1904 DELAY(1000); 1905 } 1906 if (ntries == 100) { 1907 printf("%s: timeout waiting for BBP\n", 1908 sc->sc_dev.dv_xname); 1909 return EIO; 1910 } 1911 1912 /* initialize BBP registers to default values */ 1913 for (i = 0; i < nitems(rum_def_bbp); i++) 1914 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1915 1916 /* write vendor-specific BBP values (from EEPROM) */ 1917 for (i = 0; i < 16; i++) { 1918 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1919 continue; 1920 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1921 } 1922 1923 return 0; 1924 } 1925 1926 int 1927 rum_init(struct ifnet *ifp) 1928 { 1929 struct rum_softc *sc = ifp->if_softc; 1930 struct ieee80211com *ic = &sc->sc_ic; 1931 uint32_t tmp; 1932 usbd_status error; 1933 int i, ntries; 1934 1935 rum_stop(ifp, 0); 1936 1937 /* initialize MAC registers to default values */ 1938 for (i = 0; i < nitems(rum_def_mac); i++) 1939 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1940 1941 /* set host ready */ 1942 rum_write(sc, RT2573_MAC_CSR1, 3); 1943 rum_write(sc, RT2573_MAC_CSR1, 0); 1944 1945 /* wait for BBP/RF to wakeup */ 1946 for (ntries = 0; ntries < 1000; ntries++) { 1947 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1948 break; 1949 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1950 DELAY(1000); 1951 } 1952 if (ntries == 1000) { 1953 printf("%s: timeout waiting for BBP/RF to wakeup\n", 1954 sc->sc_dev.dv_xname); 1955 error = ENODEV; 1956 goto fail; 1957 } 1958 1959 if ((error = rum_bbp_init(sc)) != 0) 1960 goto fail; 1961 1962 /* select default channel */ 1963 sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan; 1964 rum_select_band(sc, sc->sc_curchan); 1965 rum_select_antenna(sc); 1966 rum_set_chan(sc, sc->sc_curchan); 1967 1968 /* clear STA registers */ 1969 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 1970 1971 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 1972 rum_set_macaddr(sc, ic->ic_myaddr); 1973 1974 /* initialize ASIC */ 1975 rum_write(sc, RT2573_MAC_CSR1, 4); 1976 1977 /* 1978 * Allocate xfer for AMRR statistics requests. 1979 */ 1980 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 1981 if (sc->amrr_xfer == NULL) { 1982 printf("%s: could not allocate AMRR xfer\n", 1983 sc->sc_dev.dv_xname); 1984 goto fail; 1985 } 1986 1987 /* 1988 * Open Tx and Rx USB bulk pipes. 1989 */ 1990 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 1991 &sc->sc_tx_pipeh); 1992 if (error != 0) { 1993 printf("%s: could not open Tx pipe: %s\n", 1994 sc->sc_dev.dv_xname, usbd_errstr(error)); 1995 goto fail; 1996 } 1997 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 1998 &sc->sc_rx_pipeh); 1999 if (error != 0) { 2000 printf("%s: could not open Rx pipe: %s\n", 2001 sc->sc_dev.dv_xname, usbd_errstr(error)); 2002 goto fail; 2003 } 2004 2005 /* 2006 * Allocate Tx and Rx xfer queues. 2007 */ 2008 error = rum_alloc_tx_list(sc); 2009 if (error != 0) { 2010 printf("%s: could not allocate Tx list\n", 2011 sc->sc_dev.dv_xname); 2012 goto fail; 2013 } 2014 error = rum_alloc_rx_list(sc); 2015 if (error != 0) { 2016 printf("%s: could not allocate Rx list\n", 2017 sc->sc_dev.dv_xname); 2018 goto fail; 2019 } 2020 2021 /* 2022 * Start up the receive pipe. 2023 */ 2024 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2025 struct rum_rx_data *data = &sc->rx_data[i]; 2026 2027 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2028 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2029 error = usbd_transfer(data->xfer); 2030 if (error != 0 && error != USBD_IN_PROGRESS) { 2031 printf("%s: could not queue Rx transfer\n", 2032 sc->sc_dev.dv_xname); 2033 goto fail; 2034 } 2035 } 2036 2037 /* update Rx filter */ 2038 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2039 2040 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2041 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2042 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2043 RT2573_DROP_ACKCTS; 2044 #ifndef IEEE80211_STA_ONLY 2045 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2046 #endif 2047 tmp |= RT2573_DROP_TODS; 2048 if (!(ifp->if_flags & IFF_PROMISC)) 2049 tmp |= RT2573_DROP_NOT_TO_ME; 2050 } 2051 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2052 2053 ifq_clr_oactive(&ifp->if_snd); 2054 ifp->if_flags |= IFF_RUNNING; 2055 2056 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2057 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2058 else 2059 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2060 2061 return 0; 2062 2063 fail: rum_stop(ifp, 1); 2064 return error; 2065 } 2066 2067 void 2068 rum_stop(struct ifnet *ifp, int disable) 2069 { 2070 struct rum_softc *sc = ifp->if_softc; 2071 struct ieee80211com *ic = &sc->sc_ic; 2072 uint32_t tmp; 2073 2074 sc->sc_tx_timer = 0; 2075 ifp->if_timer = 0; 2076 ifp->if_flags &= ~IFF_RUNNING; 2077 ifq_clr_oactive(&ifp->if_snd); 2078 2079 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2080 2081 /* disable Rx */ 2082 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2083 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2084 2085 /* reset ASIC */ 2086 rum_write(sc, RT2573_MAC_CSR1, 3); 2087 rum_write(sc, RT2573_MAC_CSR1, 0); 2088 2089 if (sc->amrr_xfer != NULL) { 2090 usbd_free_xfer(sc->amrr_xfer); 2091 sc->amrr_xfer = NULL; 2092 } 2093 if (sc->sc_rx_pipeh != NULL) { 2094 usbd_abort_pipe(sc->sc_rx_pipeh); 2095 usbd_close_pipe(sc->sc_rx_pipeh); 2096 sc->sc_rx_pipeh = NULL; 2097 } 2098 if (sc->sc_tx_pipeh != NULL) { 2099 usbd_abort_pipe(sc->sc_tx_pipeh); 2100 usbd_close_pipe(sc->sc_tx_pipeh); 2101 sc->sc_tx_pipeh = NULL; 2102 } 2103 2104 rum_free_rx_list(sc); 2105 rum_free_tx_list(sc); 2106 } 2107 2108 int 2109 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2110 { 2111 usb_device_request_t req; 2112 uint16_t reg = RT2573_MCU_CODE_BASE; 2113 usbd_status error; 2114 2115 /* copy firmware image into NIC */ 2116 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2117 rum_write(sc, reg, UGETDW(ucode)); 2118 2119 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2120 req.bRequest = RT2573_MCU_CNTL; 2121 USETW(req.wValue, RT2573_MCU_RUN); 2122 USETW(req.wIndex, 0); 2123 USETW(req.wLength, 0); 2124 2125 error = usbd_do_request(sc->sc_udev, &req, NULL); 2126 if (error != 0) { 2127 printf("%s: could not run firmware: %s\n", 2128 sc->sc_dev.dv_xname, usbd_errstr(error)); 2129 } 2130 return error; 2131 } 2132 2133 #ifndef IEEE80211_STA_ONLY 2134 int 2135 rum_prepare_beacon(struct rum_softc *sc) 2136 { 2137 struct ieee80211com *ic = &sc->sc_ic; 2138 struct rum_tx_desc desc; 2139 struct mbuf *m0; 2140 int rate; 2141 2142 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss); 2143 if (m0 == NULL) { 2144 printf("%s: could not allocate beacon frame\n", 2145 sc->sc_dev.dv_xname); 2146 return ENOBUFS; 2147 } 2148 2149 /* send beacons at the lowest available rate */ 2150 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2; 2151 2152 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2153 m0->m_pkthdr.len, rate); 2154 2155 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2156 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2157 2158 /* copy beacon header and payload into NIC memory */ 2159 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2160 m0->m_pkthdr.len); 2161 2162 m_freem(m0); 2163 2164 return 0; 2165 } 2166 #endif 2167 2168 void 2169 rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 2170 { 2171 /* start with lowest Tx rate */ 2172 ni->ni_txrate = 0; 2173 } 2174 2175 void 2176 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2177 { 2178 int i; 2179 2180 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2181 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2182 2183 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2184 2185 /* set rate to some reasonable initial value */ 2186 for (i = ni->ni_rates.rs_nrates - 1; 2187 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2188 i--); 2189 ni->ni_txrate = i; 2190 2191 if (!usbd_is_dying(sc->sc_udev)) 2192 timeout_add_sec(&sc->amrr_to, 1); 2193 } 2194 2195 void 2196 rum_amrr_timeout(void *arg) 2197 { 2198 struct rum_softc *sc = arg; 2199 usb_device_request_t req; 2200 2201 if (usbd_is_dying(sc->sc_udev)) 2202 return; 2203 2204 /* 2205 * Asynchronously read statistic registers (cleared by read). 2206 */ 2207 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2208 req.bRequest = RT2573_READ_MULTI_MAC; 2209 USETW(req.wValue, 0); 2210 USETW(req.wIndex, RT2573_STA_CSR0); 2211 USETW(req.wLength, sizeof sc->sta); 2212 2213 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2214 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2215 rum_amrr_update); 2216 (void)usbd_transfer(sc->amrr_xfer); 2217 } 2218 2219 void 2220 rum_amrr_update(struct usbd_xfer *xfer, void *priv, 2221 usbd_status status) 2222 { 2223 struct rum_softc *sc = (struct rum_softc *)priv; 2224 struct ifnet *ifp = &sc->sc_ic.ic_if; 2225 2226 if (status != USBD_NORMAL_COMPLETION) { 2227 printf("%s: could not retrieve Tx statistics - cancelling " 2228 "automatic rate control\n", sc->sc_dev.dv_xname); 2229 return; 2230 } 2231 2232 /* count TX retry-fail as Tx errors */ 2233 ifp->if_oerrors += letoh32(sc->sta[5]) >> 16; 2234 2235 sc->amn.amn_retrycnt = 2236 (letoh32(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2237 (letoh32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2238 (letoh32(sc->sta[5]) >> 16); /* TX retry-fail count */ 2239 2240 sc->amn.amn_txcnt = 2241 sc->amn.amn_retrycnt + 2242 (letoh32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2243 2244 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2245 2246 if (!usbd_is_dying(sc->sc_udev)) 2247 timeout_add_sec(&sc->amrr_to, 1); 2248 } 2249