1 /* $OpenBSD: if_rum.c,v 1.106 2014/07/13 15:52:49 mpi Exp $ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /*- 21 * Ralink Technology RT2501USB/RT2601USB chipset driver 22 * http://www.ralinktech.com.tw/ 23 */ 24 25 #include "bpfilter.h" 26 27 #include <sys/param.h> 28 #include <sys/sockio.h> 29 #include <sys/mbuf.h> 30 #include <sys/kernel.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/timeout.h> 34 #include <sys/conf.h> 35 #include <sys/device.h> 36 37 #include <machine/bus.h> 38 #include <machine/endian.h> 39 #include <machine/intr.h> 40 41 #if NBPFILTER > 0 42 #include <net/bpf.h> 43 #endif 44 #include <net/if.h> 45 #include <net/if_arp.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 50 #include <netinet/in.h> 51 #include <netinet/if_ether.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_amrr.h> 55 #include <net80211/ieee80211_radiotap.h> 56 57 #include <dev/usb/usb.h> 58 #include <dev/usb/usbdi.h> 59 #include <dev/usb/usbdi_util.h> 60 #include <dev/usb/usbdevs.h> 61 62 #include <dev/usb/if_rumreg.h> 63 #include <dev/usb/if_rumvar.h> 64 65 #ifdef RUM_DEBUG 66 #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) 67 #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) 68 int rum_debug = 0; 69 #else 70 #define DPRINTF(x) 71 #define DPRINTFN(n, x) 72 #endif 73 74 /* various supported device vendors/products */ 75 static const struct usb_devno rum_devs[] = { 76 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, 77 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, 78 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, 79 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, 80 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, 81 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, 82 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_1 }, 83 { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_2 }, 84 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, 85 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, 86 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, 87 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, 88 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, 89 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, 90 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU2 }, 91 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2573 }, 92 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, 93 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, 94 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, 95 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, 96 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, 97 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, 98 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, 99 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, 100 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, 101 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, 102 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, 103 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, 104 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, 105 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, 106 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, 107 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, 108 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_WUB320G }, 109 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, 110 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, 111 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, 112 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_1 }, 113 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, 114 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, 115 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, 116 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, 117 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, 118 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, 119 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, 120 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, 121 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, 122 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, 123 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, 124 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573_2 }, 125 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, 126 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, 127 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, 128 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, 129 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, 130 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } 131 }; 132 133 void rum_attachhook(void *); 134 int rum_alloc_tx_list(struct rum_softc *); 135 void rum_free_tx_list(struct rum_softc *); 136 int rum_alloc_rx_list(struct rum_softc *); 137 void rum_free_rx_list(struct rum_softc *); 138 int rum_media_change(struct ifnet *); 139 void rum_next_scan(void *); 140 void rum_task(void *); 141 int rum_newstate(struct ieee80211com *, enum ieee80211_state, int); 142 void rum_txeof(struct usbd_xfer *, void *, usbd_status); 143 void rum_rxeof(struct usbd_xfer *, void *, usbd_status); 144 #if NBPFILTER > 0 145 uint8_t rum_rxrate(const struct rum_rx_desc *); 146 #endif 147 int rum_ack_rate(struct ieee80211com *, int); 148 uint16_t rum_txtime(int, int, uint32_t); 149 uint8_t rum_plcp_signal(int); 150 void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *, 151 uint32_t, uint16_t, int, int); 152 int rum_tx_data(struct rum_softc *, struct mbuf *, 153 struct ieee80211_node *); 154 void rum_start(struct ifnet *); 155 void rum_watchdog(struct ifnet *); 156 int rum_ioctl(struct ifnet *, u_long, caddr_t); 157 void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int); 158 uint32_t rum_read(struct rum_softc *, uint16_t); 159 void rum_read_multi(struct rum_softc *, uint16_t, void *, int); 160 void rum_write(struct rum_softc *, uint16_t, uint32_t); 161 void rum_write_multi(struct rum_softc *, uint16_t, void *, size_t); 162 void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 163 uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 164 void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 165 void rum_select_antenna(struct rum_softc *); 166 void rum_enable_mrr(struct rum_softc *); 167 void rum_set_txpreamble(struct rum_softc *); 168 void rum_set_basicrates(struct rum_softc *); 169 void rum_select_band(struct rum_softc *, 170 struct ieee80211_channel *); 171 void rum_set_chan(struct rum_softc *, struct ieee80211_channel *); 172 void rum_enable_tsf_sync(struct rum_softc *); 173 void rum_update_slot(struct rum_softc *); 174 void rum_set_bssid(struct rum_softc *, const uint8_t *); 175 void rum_set_macaddr(struct rum_softc *, const uint8_t *); 176 void rum_update_promisc(struct rum_softc *); 177 const char *rum_get_rf(int); 178 void rum_read_eeprom(struct rum_softc *); 179 int rum_bbp_init(struct rum_softc *); 180 int rum_init(struct ifnet *); 181 void rum_stop(struct ifnet *, int); 182 int rum_load_microcode(struct rum_softc *, const u_char *, size_t); 183 #ifndef IEEE80211_STA_ONLY 184 int rum_prepare_beacon(struct rum_softc *); 185 #endif 186 void rum_newassoc(struct ieee80211com *, struct ieee80211_node *, 187 int); 188 void rum_amrr_start(struct rum_softc *, struct ieee80211_node *); 189 void rum_amrr_timeout(void *); 190 void rum_amrr_update(struct usbd_xfer *, void *, 191 usbd_status status); 192 193 static const struct { 194 uint32_t reg; 195 uint32_t val; 196 } rum_def_mac[] = { 197 RT2573_DEF_MAC 198 }; 199 200 static const struct { 201 uint8_t reg; 202 uint8_t val; 203 } rum_def_bbp[] = { 204 RT2573_DEF_BBP 205 }; 206 207 static const struct rfprog { 208 uint8_t chan; 209 uint32_t r1, r2, r3, r4; 210 } rum_rf5226[] = { 211 RT2573_RF5226 212 }, rum_rf5225[] = { 213 RT2573_RF5225 214 }; 215 216 int rum_match(struct device *, void *, void *); 217 void rum_attach(struct device *, struct device *, void *); 218 int rum_detach(struct device *, int); 219 220 struct cfdriver rum_cd = { 221 NULL, "rum", DV_IFNET 222 }; 223 224 const struct cfattach rum_ca = { 225 sizeof(struct rum_softc), rum_match, rum_attach, rum_detach 226 }; 227 228 int 229 rum_match(struct device *parent, void *match, void *aux) 230 { 231 struct usb_attach_arg *uaa = aux; 232 233 if (uaa->iface != NULL) 234 return UMATCH_NONE; 235 236 return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? 237 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 238 } 239 240 void 241 rum_attachhook(void *xsc) 242 { 243 struct rum_softc *sc = xsc; 244 const char *name = "rum-rt2573"; 245 u_char *ucode; 246 size_t size; 247 int error; 248 249 if ((error = loadfirmware(name, &ucode, &size)) != 0) { 250 printf("%s: failed loadfirmware of file %s (error %d)\n", 251 sc->sc_dev.dv_xname, name, error); 252 return; 253 } 254 255 if (rum_load_microcode(sc, ucode, size) != 0) { 256 printf("%s: could not load 8051 microcode\n", 257 sc->sc_dev.dv_xname); 258 } 259 260 free(ucode, M_DEVBUF, 0); 261 } 262 263 void 264 rum_attach(struct device *parent, struct device *self, void *aux) 265 { 266 struct rum_softc *sc = (struct rum_softc *)self; 267 struct usb_attach_arg *uaa = aux; 268 struct ieee80211com *ic = &sc->sc_ic; 269 struct ifnet *ifp = &ic->ic_if; 270 usb_interface_descriptor_t *id; 271 usb_endpoint_descriptor_t *ed; 272 usbd_status error; 273 int i, ntries; 274 uint32_t tmp; 275 276 sc->sc_udev = uaa->device; 277 278 if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) { 279 printf("%s: could not set configuration no\n", 280 sc->sc_dev.dv_xname); 281 return; 282 } 283 284 /* get the first interface handle */ 285 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, 286 &sc->sc_iface); 287 if (error != 0) { 288 printf("%s: could not get interface handle\n", 289 sc->sc_dev.dv_xname); 290 return; 291 } 292 293 /* 294 * Find endpoints. 295 */ 296 id = usbd_get_interface_descriptor(sc->sc_iface); 297 298 sc->sc_rx_no = sc->sc_tx_no = -1; 299 for (i = 0; i < id->bNumEndpoints; i++) { 300 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); 301 if (ed == NULL) { 302 printf("%s: no endpoint descriptor for iface %d\n", 303 sc->sc_dev.dv_xname, i); 304 return; 305 } 306 307 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && 308 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 309 sc->sc_rx_no = ed->bEndpointAddress; 310 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && 311 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) 312 sc->sc_tx_no = ed->bEndpointAddress; 313 } 314 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { 315 printf("%s: missing endpoint\n", sc->sc_dev.dv_xname); 316 return; 317 } 318 319 usb_init_task(&sc->sc_task, rum_task, sc, USB_TASK_TYPE_GENERIC); 320 timeout_set(&sc->scan_to, rum_next_scan, sc); 321 322 sc->amrr.amrr_min_success_threshold = 1; 323 sc->amrr.amrr_max_success_threshold = 10; 324 timeout_set(&sc->amrr_to, rum_amrr_timeout, sc); 325 326 /* retrieve RT2573 rev. no */ 327 for (ntries = 0; ntries < 1000; ntries++) { 328 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 329 break; 330 DELAY(1000); 331 } 332 if (ntries == 1000) { 333 printf("%s: timeout waiting for chip to settle\n", 334 sc->sc_dev.dv_xname); 335 return; 336 } 337 338 /* retrieve MAC address and various other things from EEPROM */ 339 rum_read_eeprom(sc); 340 341 printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", 342 sc->sc_dev.dv_xname, sc->macbbp_rev, tmp, 343 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); 344 345 if (rootvp == NULL) 346 mountroothook_establish(rum_attachhook, sc); 347 else 348 rum_attachhook(sc); 349 350 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 351 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 352 ic->ic_state = IEEE80211_S_INIT; 353 354 /* set device capabilities */ 355 ic->ic_caps = 356 IEEE80211_C_MONITOR | /* monitor mode supported */ 357 #ifndef IEEE80211_STA_ONLY 358 IEEE80211_C_IBSS | /* IBSS mode supported */ 359 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 360 #endif 361 IEEE80211_C_TXPMGT | /* tx power management */ 362 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 363 IEEE80211_C_SHSLOT | /* short slot time supported */ 364 IEEE80211_C_WEP | /* s/w WEP */ 365 IEEE80211_C_RSN; /* WPA/RSN */ 366 367 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 368 /* set supported .11a rates */ 369 ic->ic_sup_rates[IEEE80211_MODE_11A] = 370 ieee80211_std_rateset_11a; 371 372 /* set supported .11a channels */ 373 for (i = 34; i <= 46; i += 4) { 374 ic->ic_channels[i].ic_freq = 375 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 376 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 377 } 378 for (i = 36; i <= 64; i += 4) { 379 ic->ic_channels[i].ic_freq = 380 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 381 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 382 } 383 for (i = 100; i <= 140; i += 4) { 384 ic->ic_channels[i].ic_freq = 385 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 386 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 387 } 388 for (i = 149; i <= 165; i += 4) { 389 ic->ic_channels[i].ic_freq = 390 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 391 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 392 } 393 } 394 395 /* set supported .11b and .11g rates */ 396 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 397 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 398 399 /* set supported .11b and .11g channels (1 through 14) */ 400 for (i = 1; i <= 14; i++) { 401 ic->ic_channels[i].ic_freq = 402 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 403 ic->ic_channels[i].ic_flags = 404 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 405 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 406 } 407 408 ifp->if_softc = sc; 409 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 410 ifp->if_ioctl = rum_ioctl; 411 ifp->if_start = rum_start; 412 ifp->if_watchdog = rum_watchdog; 413 IFQ_SET_READY(&ifp->if_snd); 414 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 415 416 if_attach(ifp); 417 ieee80211_ifattach(ifp); 418 ic->ic_newassoc = rum_newassoc; 419 420 /* override state transition machine */ 421 sc->sc_newstate = ic->ic_newstate; 422 ic->ic_newstate = rum_newstate; 423 ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status); 424 425 #if NBPFILTER > 0 426 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 427 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 428 429 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 430 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 431 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); 432 433 sc->sc_txtap_len = sizeof sc->sc_txtapu; 434 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 435 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); 436 #endif 437 } 438 439 int 440 rum_detach(struct device *self, int flags) 441 { 442 struct rum_softc *sc = (struct rum_softc *)self; 443 struct ifnet *ifp = &sc->sc_ic.ic_if; 444 int s; 445 446 s = splusb(); 447 448 if (timeout_initialized(&sc->scan_to)) 449 timeout_del(&sc->scan_to); 450 if (timeout_initialized(&sc->amrr_to)) 451 timeout_del(&sc->amrr_to); 452 453 usb_rem_wait_task(sc->sc_udev, &sc->sc_task); 454 455 usbd_ref_wait(sc->sc_udev); 456 457 if (ifp->if_softc != NULL) { 458 ieee80211_ifdetach(ifp); /* free all nodes */ 459 if_detach(ifp); 460 } 461 462 if (sc->amrr_xfer != NULL) { 463 usbd_free_xfer(sc->amrr_xfer); 464 sc->amrr_xfer = NULL; 465 } 466 if (sc->sc_rx_pipeh != NULL) { 467 usbd_abort_pipe(sc->sc_rx_pipeh); 468 usbd_close_pipe(sc->sc_rx_pipeh); 469 } 470 if (sc->sc_tx_pipeh != NULL) { 471 usbd_abort_pipe(sc->sc_tx_pipeh); 472 usbd_close_pipe(sc->sc_tx_pipeh); 473 } 474 475 rum_free_rx_list(sc); 476 rum_free_tx_list(sc); 477 478 splx(s); 479 480 return 0; 481 } 482 483 int 484 rum_alloc_tx_list(struct rum_softc *sc) 485 { 486 int i, error; 487 488 sc->tx_cur = sc->tx_queued = 0; 489 490 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 491 struct rum_tx_data *data = &sc->tx_data[i]; 492 493 data->sc = sc; 494 495 data->xfer = usbd_alloc_xfer(sc->sc_udev); 496 if (data->xfer == NULL) { 497 printf("%s: could not allocate tx xfer\n", 498 sc->sc_dev.dv_xname); 499 error = ENOMEM; 500 goto fail; 501 } 502 data->buf = usbd_alloc_buffer(data->xfer, 503 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN); 504 if (data->buf == NULL) { 505 printf("%s: could not allocate tx buffer\n", 506 sc->sc_dev.dv_xname); 507 error = ENOMEM; 508 goto fail; 509 } 510 /* clean Tx descriptor */ 511 bzero(data->buf, RT2573_TX_DESC_SIZE); 512 } 513 514 return 0; 515 516 fail: rum_free_tx_list(sc); 517 return error; 518 } 519 520 void 521 rum_free_tx_list(struct rum_softc *sc) 522 { 523 int i; 524 525 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 526 struct rum_tx_data *data = &sc->tx_data[i]; 527 528 if (data->xfer != NULL) { 529 usbd_free_xfer(data->xfer); 530 data->xfer = NULL; 531 } 532 /* 533 * The node has already been freed at that point so don't call 534 * ieee80211_release_node() here. 535 */ 536 data->ni = NULL; 537 } 538 } 539 540 int 541 rum_alloc_rx_list(struct rum_softc *sc) 542 { 543 int i, error; 544 545 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 546 struct rum_rx_data *data = &sc->rx_data[i]; 547 548 data->sc = sc; 549 550 data->xfer = usbd_alloc_xfer(sc->sc_udev); 551 if (data->xfer == NULL) { 552 printf("%s: could not allocate rx xfer\n", 553 sc->sc_dev.dv_xname); 554 error = ENOMEM; 555 goto fail; 556 } 557 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { 558 printf("%s: could not allocate rx buffer\n", 559 sc->sc_dev.dv_xname); 560 error = ENOMEM; 561 goto fail; 562 } 563 564 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 565 if (data->m == NULL) { 566 printf("%s: could not allocate rx mbuf\n", 567 sc->sc_dev.dv_xname); 568 error = ENOMEM; 569 goto fail; 570 } 571 MCLGET(data->m, M_DONTWAIT); 572 if (!(data->m->m_flags & M_EXT)) { 573 printf("%s: could not allocate rx mbuf cluster\n", 574 sc->sc_dev.dv_xname); 575 error = ENOMEM; 576 goto fail; 577 } 578 data->buf = mtod(data->m, uint8_t *); 579 } 580 581 return 0; 582 583 fail: rum_free_rx_list(sc); 584 return error; 585 } 586 587 void 588 rum_free_rx_list(struct rum_softc *sc) 589 { 590 int i; 591 592 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 593 struct rum_rx_data *data = &sc->rx_data[i]; 594 595 if (data->xfer != NULL) { 596 usbd_free_xfer(data->xfer); 597 data->xfer = NULL; 598 } 599 if (data->m != NULL) { 600 m_freem(data->m); 601 data->m = NULL; 602 } 603 } 604 } 605 606 int 607 rum_media_change(struct ifnet *ifp) 608 { 609 int error; 610 611 error = ieee80211_media_change(ifp); 612 if (error != ENETRESET) 613 return error; 614 615 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 616 rum_init(ifp); 617 618 return 0; 619 } 620 621 /* 622 * This function is called periodically (every 200ms) during scanning to 623 * switch from one channel to another. 624 */ 625 void 626 rum_next_scan(void *arg) 627 { 628 struct rum_softc *sc = arg; 629 struct ieee80211com *ic = &sc->sc_ic; 630 struct ifnet *ifp = &ic->ic_if; 631 632 if (usbd_is_dying(sc->sc_udev)) 633 return; 634 635 usbd_ref_incr(sc->sc_udev); 636 637 if (ic->ic_state == IEEE80211_S_SCAN) 638 ieee80211_next_scan(ifp); 639 640 usbd_ref_decr(sc->sc_udev); 641 } 642 643 void 644 rum_task(void *arg) 645 { 646 struct rum_softc *sc = arg; 647 struct ieee80211com *ic = &sc->sc_ic; 648 enum ieee80211_state ostate; 649 struct ieee80211_node *ni; 650 uint32_t tmp; 651 652 if (usbd_is_dying(sc->sc_udev)) 653 return; 654 655 ostate = ic->ic_state; 656 657 switch (sc->sc_state) { 658 case IEEE80211_S_INIT: 659 if (ostate == IEEE80211_S_RUN) { 660 /* abort TSF synchronization */ 661 tmp = rum_read(sc, RT2573_TXRX_CSR9); 662 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 663 } 664 break; 665 666 case IEEE80211_S_SCAN: 667 rum_set_chan(sc, ic->ic_bss->ni_chan); 668 if (!usbd_is_dying(sc->sc_udev)) 669 timeout_add_msec(&sc->scan_to, 200); 670 break; 671 672 case IEEE80211_S_AUTH: 673 rum_set_chan(sc, ic->ic_bss->ni_chan); 674 break; 675 676 case IEEE80211_S_ASSOC: 677 rum_set_chan(sc, ic->ic_bss->ni_chan); 678 break; 679 680 case IEEE80211_S_RUN: 681 rum_set_chan(sc, ic->ic_bss->ni_chan); 682 683 ni = ic->ic_bss; 684 685 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 686 rum_update_slot(sc); 687 rum_enable_mrr(sc); 688 rum_set_txpreamble(sc); 689 rum_set_basicrates(sc); 690 rum_set_bssid(sc, ni->ni_bssid); 691 } 692 693 #ifndef IEEE80211_STA_ONLY 694 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 695 ic->ic_opmode == IEEE80211_M_IBSS) 696 rum_prepare_beacon(sc); 697 #endif 698 699 if (ic->ic_opmode != IEEE80211_M_MONITOR) 700 rum_enable_tsf_sync(sc); 701 702 if (ic->ic_opmode == IEEE80211_M_STA) { 703 /* fake a join to init the tx rate */ 704 rum_newassoc(ic, ic->ic_bss, 1); 705 706 /* enable automatic rate control in STA mode */ 707 if (ic->ic_fixed_rate == -1) 708 rum_amrr_start(sc, ni); 709 } 710 break; 711 } 712 713 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 714 } 715 716 int 717 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 718 { 719 struct rum_softc *sc = ic->ic_if.if_softc; 720 721 usb_rem_task(sc->sc_udev, &sc->sc_task); 722 timeout_del(&sc->scan_to); 723 timeout_del(&sc->amrr_to); 724 725 /* do it in a process context */ 726 sc->sc_state = nstate; 727 sc->sc_arg = arg; 728 usb_add_task(sc->sc_udev, &sc->sc_task); 729 return 0; 730 } 731 732 /* quickly determine if a given rate is CCK or OFDM */ 733 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 734 735 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 736 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 737 738 void 739 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 740 { 741 struct rum_tx_data *data = priv; 742 struct rum_softc *sc = data->sc; 743 struct ieee80211com *ic = &sc->sc_ic; 744 struct ifnet *ifp = &ic->ic_if; 745 int s; 746 747 if (status != USBD_NORMAL_COMPLETION) { 748 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 749 return; 750 751 printf("%s: could not transmit buffer: %s\n", 752 sc->sc_dev.dv_xname, usbd_errstr(status)); 753 754 if (status == USBD_STALLED) 755 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); 756 757 ifp->if_oerrors++; 758 return; 759 } 760 761 s = splnet(); 762 763 ieee80211_release_node(ic, data->ni); 764 data->ni = NULL; 765 766 sc->tx_queued--; 767 ifp->if_opackets++; 768 769 DPRINTFN(10, ("tx done\n")); 770 771 sc->sc_tx_timer = 0; 772 ifp->if_flags &= ~IFF_OACTIVE; 773 rum_start(ifp); 774 775 splx(s); 776 } 777 778 void 779 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 780 { 781 struct rum_rx_data *data = priv; 782 struct rum_softc *sc = data->sc; 783 struct ieee80211com *ic = &sc->sc_ic; 784 struct ifnet *ifp = &ic->ic_if; 785 const struct rum_rx_desc *desc; 786 struct ieee80211_frame *wh; 787 struct ieee80211_rxinfo rxi; 788 struct ieee80211_node *ni; 789 struct mbuf *mnew, *m; 790 int s, len; 791 792 if (status != USBD_NORMAL_COMPLETION) { 793 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 794 return; 795 796 if (status == USBD_STALLED) 797 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); 798 goto skip; 799 } 800 801 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 802 803 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) { 804 DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname, 805 len)); 806 ifp->if_ierrors++; 807 goto skip; 808 } 809 810 desc = (const struct rum_rx_desc *)data->buf; 811 812 if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) { 813 /* 814 * This should not happen since we did not request to receive 815 * those frames when we filled RT2573_TXRX_CSR0. 816 */ 817 DPRINTFN(5, ("CRC error\n")); 818 ifp->if_ierrors++; 819 goto skip; 820 } 821 822 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 823 if (mnew == NULL) { 824 printf("%s: could not allocate rx mbuf\n", 825 sc->sc_dev.dv_xname); 826 ifp->if_ierrors++; 827 goto skip; 828 } 829 MCLGET(mnew, M_DONTWAIT); 830 if (!(mnew->m_flags & M_EXT)) { 831 printf("%s: could not allocate rx mbuf cluster\n", 832 sc->sc_dev.dv_xname); 833 m_freem(mnew); 834 ifp->if_ierrors++; 835 goto skip; 836 } 837 m = data->m; 838 data->m = mnew; 839 data->buf = mtod(data->m, uint8_t *); 840 841 /* finalize mbuf */ 842 m->m_pkthdr.rcvif = ifp; 843 m->m_data = (caddr_t)(desc + 1); 844 m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff; 845 846 s = splnet(); 847 848 #if NBPFILTER > 0 849 if (sc->sc_drvbpf != NULL) { 850 struct mbuf mb; 851 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 852 853 tap->wr_flags = 0; 854 tap->wr_rate = rum_rxrate(desc); 855 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 856 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 857 tap->wr_antenna = sc->rx_ant; 858 tap->wr_antsignal = desc->rssi; 859 860 mb.m_data = (caddr_t)tap; 861 mb.m_len = sc->sc_rxtap_len; 862 mb.m_next = m; 863 mb.m_nextpkt = NULL; 864 mb.m_type = 0; 865 mb.m_flags = 0; 866 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 867 } 868 #endif 869 870 wh = mtod(m, struct ieee80211_frame *); 871 ni = ieee80211_find_rxnode(ic, wh); 872 873 /* send the frame to the 802.11 layer */ 874 rxi.rxi_flags = 0; 875 rxi.rxi_rssi = desc->rssi; 876 rxi.rxi_tstamp = 0; /* unused */ 877 ieee80211_input(ifp, m, ni, &rxi); 878 879 /* node is no longer needed */ 880 ieee80211_release_node(ic, ni); 881 882 splx(s); 883 884 DPRINTFN(15, ("rx done\n")); 885 886 skip: /* setup a new transfer */ 887 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, 888 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 889 (void)usbd_transfer(xfer); 890 } 891 892 /* 893 * This function is only used by the Rx radiotap code. It returns the rate at 894 * which a given frame was received. 895 */ 896 #if NBPFILTER > 0 897 uint8_t 898 rum_rxrate(const struct rum_rx_desc *desc) 899 { 900 if (letoh32(desc->flags) & RT2573_RX_OFDM) { 901 /* reverse function of rum_plcp_signal */ 902 switch (desc->rate) { 903 case 0xb: return 12; 904 case 0xf: return 18; 905 case 0xa: return 24; 906 case 0xe: return 36; 907 case 0x9: return 48; 908 case 0xd: return 72; 909 case 0x8: return 96; 910 case 0xc: return 108; 911 } 912 } else { 913 if (desc->rate == 10) 914 return 2; 915 if (desc->rate == 20) 916 return 4; 917 if (desc->rate == 55) 918 return 11; 919 if (desc->rate == 110) 920 return 22; 921 } 922 return 2; /* should not get there */ 923 } 924 #endif 925 926 /* 927 * Return the expected ack rate for a frame transmitted at rate `rate'. 928 */ 929 int 930 rum_ack_rate(struct ieee80211com *ic, int rate) 931 { 932 switch (rate) { 933 /* CCK rates */ 934 case 2: 935 return 2; 936 case 4: 937 case 11: 938 case 22: 939 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 940 941 /* OFDM rates */ 942 case 12: 943 case 18: 944 return 12; 945 case 24: 946 case 36: 947 return 24; 948 case 48: 949 case 72: 950 case 96: 951 case 108: 952 return 48; 953 } 954 955 /* default to 1Mbps */ 956 return 2; 957 } 958 959 /* 960 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 961 * The function automatically determines the operating mode depending on the 962 * given rate. `flags' indicates whether short preamble is in use or not. 963 */ 964 uint16_t 965 rum_txtime(int len, int rate, uint32_t flags) 966 { 967 uint16_t txtime; 968 969 if (RUM_RATE_IS_OFDM(rate)) { 970 /* IEEE Std 802.11a-1999, pp. 37 */ 971 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 972 txtime = 16 + 4 + 4 * txtime + 6; 973 } else { 974 /* IEEE Std 802.11b-1999, pp. 28 */ 975 txtime = (16 * len + rate - 1) / rate; 976 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 977 txtime += 72 + 24; 978 else 979 txtime += 144 + 48; 980 } 981 return txtime; 982 } 983 984 uint8_t 985 rum_plcp_signal(int rate) 986 { 987 switch (rate) { 988 /* CCK rates (returned values are device-dependent) */ 989 case 2: return 0x0; 990 case 4: return 0x1; 991 case 11: return 0x2; 992 case 22: return 0x3; 993 994 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 995 case 12: return 0xb; 996 case 18: return 0xf; 997 case 24: return 0xa; 998 case 36: return 0xe; 999 case 48: return 0x9; 1000 case 72: return 0xd; 1001 case 96: return 0x8; 1002 case 108: return 0xc; 1003 1004 /* unsupported rates (should not get there) */ 1005 default: return 0xff; 1006 } 1007 } 1008 1009 void 1010 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1011 uint32_t flags, uint16_t xflags, int len, int rate) 1012 { 1013 struct ieee80211com *ic = &sc->sc_ic; 1014 uint16_t plcp_length; 1015 int remainder; 1016 1017 desc->flags = htole32(flags); 1018 desc->flags |= htole32(RT2573_TX_VALID); 1019 desc->flags |= htole32(len << 16); 1020 1021 desc->xflags = htole16(xflags); 1022 1023 desc->wme = htole16( 1024 RT2573_QID(0) | 1025 RT2573_AIFSN(2) | 1026 RT2573_LOGCWMIN(4) | 1027 RT2573_LOGCWMAX(10)); 1028 1029 /* setup PLCP fields */ 1030 desc->plcp_signal = rum_plcp_signal(rate); 1031 desc->plcp_service = 4; 1032 1033 len += IEEE80211_CRC_LEN; 1034 if (RUM_RATE_IS_OFDM(rate)) { 1035 desc->flags |= htole32(RT2573_TX_OFDM); 1036 1037 plcp_length = len & 0xfff; 1038 desc->plcp_length_hi = plcp_length >> 6; 1039 desc->plcp_length_lo = plcp_length & 0x3f; 1040 } else { 1041 plcp_length = (16 * len + rate - 1) / rate; 1042 if (rate == 22) { 1043 remainder = (16 * len) % 22; 1044 if (remainder != 0 && remainder < 7) 1045 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1046 } 1047 desc->plcp_length_hi = plcp_length >> 8; 1048 desc->plcp_length_lo = plcp_length & 0xff; 1049 1050 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1051 desc->plcp_signal |= 0x08; 1052 } 1053 } 1054 1055 #define RUM_TX_TIMEOUT 5000 1056 1057 int 1058 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1059 { 1060 struct ieee80211com *ic = &sc->sc_ic; 1061 struct rum_tx_desc *desc; 1062 struct rum_tx_data *data; 1063 struct ieee80211_frame *wh; 1064 struct ieee80211_key *k; 1065 uint32_t flags = 0; 1066 uint16_t dur; 1067 usbd_status error; 1068 int rate, xferlen, pktlen, needrts = 0, needcts = 0; 1069 1070 wh = mtod(m0, struct ieee80211_frame *); 1071 1072 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1073 k = ieee80211_get_txkey(ic, wh, ni); 1074 1075 if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) 1076 return ENOBUFS; 1077 1078 /* packet header may have moved, reset our local pointer */ 1079 wh = mtod(m0, struct ieee80211_frame *); 1080 } 1081 1082 /* compute actual packet length (including CRC and crypto overhead) */ 1083 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1084 1085 /* pickup a rate */ 1086 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1087 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1088 IEEE80211_FC0_TYPE_MGT)) { 1089 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1090 rate = ni->ni_rates.rs_rates[0]; 1091 } else if (ic->ic_fixed_rate != -1) { 1092 rate = ic->ic_sup_rates[ic->ic_curmode]. 1093 rs_rates[ic->ic_fixed_rate]; 1094 } else 1095 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1096 if (rate == 0) 1097 rate = 2; /* XXX should not happen */ 1098 rate &= IEEE80211_RATE_VAL; 1099 1100 /* check if RTS/CTS or CTS-to-self protection must be used */ 1101 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1102 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1103 if (pktlen > ic->ic_rtsthreshold) { 1104 needrts = 1; /* RTS/CTS based on frame length */ 1105 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1106 RUM_RATE_IS_OFDM(rate)) { 1107 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1108 needcts = 1; /* CTS-to-self */ 1109 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1110 needrts = 1; /* RTS/CTS */ 1111 } 1112 } 1113 if (needrts || needcts) { 1114 struct mbuf *mprot; 1115 int protrate, ackrate; 1116 uint16_t dur; 1117 1118 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1119 ackrate = rum_ack_rate(ic, rate); 1120 1121 dur = rum_txtime(pktlen, rate, ic->ic_flags) + 1122 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 1123 2 * sc->sifs; 1124 if (needrts) { 1125 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, 1126 protrate), ic->ic_flags) + sc->sifs; 1127 mprot = ieee80211_get_rts(ic, wh, dur); 1128 } else { 1129 mprot = ieee80211_get_cts_to_self(ic, dur); 1130 } 1131 if (mprot == NULL) { 1132 printf("%s: could not allocate protection frame\n", 1133 sc->sc_dev.dv_xname); 1134 m_freem(m0); 1135 return ENOBUFS; 1136 } 1137 1138 data = &sc->tx_data[sc->tx_cur]; 1139 desc = (struct rum_tx_desc *)data->buf; 1140 1141 /* avoid multiple free() of the same node for each fragment */ 1142 data->ni = ieee80211_ref_node(ni); 1143 1144 m_copydata(mprot, 0, mprot->m_pkthdr.len, 1145 data->buf + RT2573_TX_DESC_SIZE); 1146 rum_setup_tx_desc(sc, desc, 1147 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 1148 0, mprot->m_pkthdr.len, protrate); 1149 1150 /* no roundup necessary here */ 1151 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; 1152 1153 /* XXX may want to pass the protection frame to BPF */ 1154 1155 /* mbuf is no longer needed */ 1156 m_freem(mprot); 1157 1158 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, 1159 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 1160 RUM_TX_TIMEOUT, rum_txeof); 1161 error = usbd_transfer(data->xfer); 1162 if (error != 0 && error != USBD_IN_PROGRESS) { 1163 m_freem(m0); 1164 return error; 1165 } 1166 1167 sc->tx_queued++; 1168 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1169 1170 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1171 } 1172 1173 data = &sc->tx_data[sc->tx_cur]; 1174 desc = (struct rum_tx_desc *)data->buf; 1175 1176 data->ni = ni; 1177 1178 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1179 flags |= RT2573_TX_NEED_ACK; 1180 1181 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 1182 ic->ic_flags) + sc->sifs; 1183 *(uint16_t *)wh->i_dur = htole16(dur); 1184 1185 #ifndef IEEE80211_STA_ONLY 1186 /* tell hardware to set timestamp in probe responses */ 1187 if ((wh->i_fc[0] & 1188 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1189 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1190 flags |= RT2573_TX_TIMESTAMP; 1191 #endif 1192 } 1193 1194 #if NBPFILTER > 0 1195 if (sc->sc_drvbpf != NULL) { 1196 struct mbuf mb; 1197 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1198 1199 tap->wt_flags = 0; 1200 tap->wt_rate = rate; 1201 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1202 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1203 tap->wt_antenna = sc->tx_ant; 1204 1205 mb.m_data = (caddr_t)tap; 1206 mb.m_len = sc->sc_txtap_len; 1207 mb.m_next = m0; 1208 mb.m_nextpkt = NULL; 1209 mb.m_type = 0; 1210 mb.m_flags = 0; 1211 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 1212 } 1213 #endif 1214 1215 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); 1216 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); 1217 1218 /* align end on a 4-bytes boundary */ 1219 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; 1220 1221 /* 1222 * No space left in the last URB to store the extra 4 bytes, force 1223 * sending of another URB. 1224 */ 1225 if ((xferlen % 64) == 0) 1226 xferlen += 4; 1227 1228 DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n", 1229 m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen)); 1230 1231 /* mbuf is no longer needed */ 1232 m_freem(m0); 1233 1234 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, 1235 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); 1236 error = usbd_transfer(data->xfer); 1237 if (error != 0 && error != USBD_IN_PROGRESS) 1238 return error; 1239 1240 sc->tx_queued++; 1241 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; 1242 1243 return 0; 1244 } 1245 1246 void 1247 rum_start(struct ifnet *ifp) 1248 { 1249 struct rum_softc *sc = ifp->if_softc; 1250 struct ieee80211com *ic = &sc->sc_ic; 1251 struct ieee80211_node *ni; 1252 struct mbuf *m0; 1253 1254 /* 1255 * net80211 may still try to send management frames even if the 1256 * IFF_RUNNING flag is not set... 1257 */ 1258 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1259 return; 1260 1261 for (;;) { 1262 IF_POLL(&ic->ic_mgtq, m0); 1263 if (m0 != NULL) { 1264 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1265 ifp->if_flags |= IFF_OACTIVE; 1266 break; 1267 } 1268 IF_DEQUEUE(&ic->ic_mgtq, m0); 1269 1270 ni = m0->m_pkthdr.ph_cookie; 1271 #if NBPFILTER > 0 1272 if (ic->ic_rawbpf != NULL) 1273 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1274 #endif 1275 if (rum_tx_data(sc, m0, ni) != 0) 1276 break; 1277 1278 } else { 1279 if (ic->ic_state != IEEE80211_S_RUN) 1280 break; 1281 IFQ_POLL(&ifp->if_snd, m0); 1282 if (m0 == NULL) 1283 break; 1284 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { 1285 ifp->if_flags |= IFF_OACTIVE; 1286 break; 1287 } 1288 IFQ_DEQUEUE(&ifp->if_snd, m0); 1289 #if NBPFILTER > 0 1290 if (ifp->if_bpf != NULL) 1291 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); 1292 #endif 1293 m0 = ieee80211_encap(ifp, m0, &ni); 1294 if (m0 == NULL) 1295 continue; 1296 #if NBPFILTER > 0 1297 if (ic->ic_rawbpf != NULL) 1298 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1299 #endif 1300 if (rum_tx_data(sc, m0, ni) != 0) { 1301 if (ni != NULL) 1302 ieee80211_release_node(ic, ni); 1303 ifp->if_oerrors++; 1304 break; 1305 } 1306 } 1307 1308 sc->sc_tx_timer = 5; 1309 ifp->if_timer = 1; 1310 } 1311 } 1312 1313 void 1314 rum_watchdog(struct ifnet *ifp) 1315 { 1316 struct rum_softc *sc = ifp->if_softc; 1317 1318 ifp->if_timer = 0; 1319 1320 if (sc->sc_tx_timer > 0) { 1321 if (--sc->sc_tx_timer == 0) { 1322 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1323 /*rum_init(ifp); XXX needs a process context! */ 1324 ifp->if_oerrors++; 1325 return; 1326 } 1327 ifp->if_timer = 1; 1328 } 1329 1330 ieee80211_watchdog(ifp); 1331 } 1332 1333 int 1334 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1335 { 1336 struct rum_softc *sc = ifp->if_softc; 1337 struct ieee80211com *ic = &sc->sc_ic; 1338 struct ifaddr *ifa; 1339 struct ifreq *ifr; 1340 int s, error = 0; 1341 1342 if (usbd_is_dying(sc->sc_udev)) 1343 return ENXIO; 1344 1345 usbd_ref_incr(sc->sc_udev); 1346 1347 s = splnet(); 1348 1349 switch (cmd) { 1350 case SIOCSIFADDR: 1351 ifa = (struct ifaddr *)data; 1352 ifp->if_flags |= IFF_UP; 1353 #ifdef INET 1354 if (ifa->ifa_addr->sa_family == AF_INET) 1355 arp_ifinit(&ic->ic_ac, ifa); 1356 #endif 1357 /* FALLTHROUGH */ 1358 case SIOCSIFFLAGS: 1359 if (ifp->if_flags & IFF_UP) { 1360 if (ifp->if_flags & IFF_RUNNING) 1361 rum_update_promisc(sc); 1362 else 1363 rum_init(ifp); 1364 } else { 1365 if (ifp->if_flags & IFF_RUNNING) 1366 rum_stop(ifp, 1); 1367 } 1368 break; 1369 1370 case SIOCADDMULTI: 1371 case SIOCDELMULTI: 1372 ifr = (struct ifreq *)data; 1373 error = (cmd == SIOCADDMULTI) ? 1374 ether_addmulti(ifr, &ic->ic_ac) : 1375 ether_delmulti(ifr, &ic->ic_ac); 1376 1377 if (error == ENETRESET) 1378 error = 0; 1379 break; 1380 1381 case SIOCS80211CHANNEL: 1382 /* 1383 * This allows for fast channel switching in monitor mode 1384 * (used by kismet). In IBSS mode, we must explicitly reset 1385 * the interface to generate a new beacon frame. 1386 */ 1387 error = ieee80211_ioctl(ifp, cmd, data); 1388 if (error == ENETRESET && 1389 ic->ic_opmode == IEEE80211_M_MONITOR) { 1390 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1391 (IFF_UP | IFF_RUNNING)) 1392 rum_set_chan(sc, ic->ic_ibss_chan); 1393 error = 0; 1394 } 1395 break; 1396 1397 default: 1398 error = ieee80211_ioctl(ifp, cmd, data); 1399 } 1400 1401 if (error == ENETRESET) { 1402 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1403 (IFF_UP | IFF_RUNNING)) 1404 rum_init(ifp); 1405 error = 0; 1406 } 1407 1408 splx(s); 1409 1410 usbd_ref_decr(sc->sc_udev); 1411 1412 return error; 1413 } 1414 1415 void 1416 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1417 { 1418 usb_device_request_t req; 1419 usbd_status error; 1420 1421 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1422 req.bRequest = RT2573_READ_EEPROM; 1423 USETW(req.wValue, 0); 1424 USETW(req.wIndex, addr); 1425 USETW(req.wLength, len); 1426 1427 error = usbd_do_request(sc->sc_udev, &req, buf); 1428 if (error != 0) { 1429 printf("%s: could not read EEPROM: %s\n", 1430 sc->sc_dev.dv_xname, usbd_errstr(error)); 1431 } 1432 } 1433 1434 uint32_t 1435 rum_read(struct rum_softc *sc, uint16_t reg) 1436 { 1437 uint32_t val; 1438 1439 rum_read_multi(sc, reg, &val, sizeof val); 1440 1441 return letoh32(val); 1442 } 1443 1444 void 1445 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1446 { 1447 usb_device_request_t req; 1448 usbd_status error; 1449 1450 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1451 req.bRequest = RT2573_READ_MULTI_MAC; 1452 USETW(req.wValue, 0); 1453 USETW(req.wIndex, reg); 1454 USETW(req.wLength, len); 1455 1456 error = usbd_do_request(sc->sc_udev, &req, buf); 1457 if (error != 0) { 1458 printf("%s: could not multi read MAC register: %s\n", 1459 sc->sc_dev.dv_xname, usbd_errstr(error)); 1460 } 1461 } 1462 1463 void 1464 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1465 { 1466 uint32_t tmp = htole32(val); 1467 1468 rum_write_multi(sc, reg, &tmp, sizeof tmp); 1469 } 1470 1471 void 1472 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1473 { 1474 usb_device_request_t req; 1475 usbd_status error; 1476 int offset; 1477 1478 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1479 req.bRequest = RT2573_WRITE_MULTI_MAC; 1480 USETW(req.wValue, 0); 1481 1482 /* write at most 64 bytes at a time */ 1483 for (offset = 0; offset < len; offset += 64) { 1484 USETW(req.wIndex, reg + offset); 1485 USETW(req.wLength, MIN(len - offset, 64)); 1486 1487 error = usbd_do_request(sc->sc_udev, &req, buf + offset); 1488 if (error != 0) { 1489 printf("%s: could not multi write MAC register: %s\n", 1490 sc->sc_dev.dv_xname, usbd_errstr(error)); 1491 } 1492 } 1493 } 1494 1495 void 1496 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1497 { 1498 uint32_t tmp; 1499 int ntries; 1500 1501 for (ntries = 0; ntries < 5; ntries++) { 1502 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1503 break; 1504 } 1505 if (ntries == 5) { 1506 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname); 1507 return; 1508 } 1509 1510 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1511 rum_write(sc, RT2573_PHY_CSR3, tmp); 1512 } 1513 1514 uint8_t 1515 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1516 { 1517 uint32_t val; 1518 int ntries; 1519 1520 for (ntries = 0; ntries < 5; ntries++) { 1521 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1522 break; 1523 } 1524 if (ntries == 5) { 1525 printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); 1526 return 0; 1527 } 1528 1529 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1530 rum_write(sc, RT2573_PHY_CSR3, val); 1531 1532 for (ntries = 0; ntries < 100; ntries++) { 1533 val = rum_read(sc, RT2573_PHY_CSR3); 1534 if (!(val & RT2573_BBP_BUSY)) 1535 return val & 0xff; 1536 DELAY(1); 1537 } 1538 1539 printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); 1540 return 0; 1541 } 1542 1543 void 1544 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1545 { 1546 uint32_t tmp; 1547 int ntries; 1548 1549 for (ntries = 0; ntries < 5; ntries++) { 1550 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1551 break; 1552 } 1553 if (ntries == 5) { 1554 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname); 1555 return; 1556 } 1557 1558 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1559 (reg & 3); 1560 rum_write(sc, RT2573_PHY_CSR4, tmp); 1561 1562 /* remember last written value in sc */ 1563 sc->rf_regs[reg] = val; 1564 1565 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); 1566 } 1567 1568 void 1569 rum_select_antenna(struct rum_softc *sc) 1570 { 1571 uint8_t bbp4, bbp77; 1572 uint32_t tmp; 1573 1574 bbp4 = rum_bbp_read(sc, 4); 1575 bbp77 = rum_bbp_read(sc, 77); 1576 1577 /* TBD */ 1578 1579 /* make sure Rx is disabled before switching antenna */ 1580 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1581 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1582 1583 rum_bbp_write(sc, 4, bbp4); 1584 rum_bbp_write(sc, 77, bbp77); 1585 1586 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1587 } 1588 1589 /* 1590 * Enable multi-rate retries for frames sent at OFDM rates. 1591 * In 802.11b/g mode, allow fallback to CCK rates. 1592 */ 1593 void 1594 rum_enable_mrr(struct rum_softc *sc) 1595 { 1596 struct ieee80211com *ic = &sc->sc_ic; 1597 uint32_t tmp; 1598 1599 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1600 1601 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1602 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) 1603 tmp |= RT2573_MRR_CCK_FALLBACK; 1604 tmp |= RT2573_MRR_ENABLED; 1605 1606 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1607 } 1608 1609 void 1610 rum_set_txpreamble(struct rum_softc *sc) 1611 { 1612 uint32_t tmp; 1613 1614 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1615 1616 tmp &= ~RT2573_SHORT_PREAMBLE; 1617 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1618 tmp |= RT2573_SHORT_PREAMBLE; 1619 1620 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1621 } 1622 1623 void 1624 rum_set_basicrates(struct rum_softc *sc) 1625 { 1626 struct ieee80211com *ic = &sc->sc_ic; 1627 1628 /* update basic rate set */ 1629 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1630 /* 11b basic rates: 1, 2Mbps */ 1631 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1632 } else if (ic->ic_curmode == IEEE80211_MODE_11A) { 1633 /* 11a basic rates: 6, 12, 24Mbps */ 1634 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1635 } else { 1636 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1637 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1638 } 1639 } 1640 1641 /* 1642 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1643 * driver. 1644 */ 1645 void 1646 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1647 { 1648 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1649 uint32_t tmp; 1650 1651 /* update all BBP registers that depend on the band */ 1652 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1653 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1654 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1655 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1656 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1657 } 1658 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1659 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1660 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1661 } 1662 1663 sc->bbp17 = bbp17; 1664 rum_bbp_write(sc, 17, bbp17); 1665 rum_bbp_write(sc, 96, bbp96); 1666 rum_bbp_write(sc, 104, bbp104); 1667 1668 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1669 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1670 rum_bbp_write(sc, 75, 0x80); 1671 rum_bbp_write(sc, 86, 0x80); 1672 rum_bbp_write(sc, 88, 0x80); 1673 } 1674 1675 rum_bbp_write(sc, 35, bbp35); 1676 rum_bbp_write(sc, 97, bbp97); 1677 rum_bbp_write(sc, 98, bbp98); 1678 1679 tmp = rum_read(sc, RT2573_PHY_CSR0); 1680 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1681 if (IEEE80211_IS_CHAN_2GHZ(c)) 1682 tmp |= RT2573_PA_PE_2GHZ; 1683 else 1684 tmp |= RT2573_PA_PE_5GHZ; 1685 rum_write(sc, RT2573_PHY_CSR0, tmp); 1686 1687 /* 802.11a uses a 16 microseconds short interframe space */ 1688 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1689 } 1690 1691 void 1692 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1693 { 1694 struct ieee80211com *ic = &sc->sc_ic; 1695 const struct rfprog *rfprog; 1696 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1697 int8_t power; 1698 u_int i, chan; 1699 1700 chan = ieee80211_chan2ieee(ic, c); 1701 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1702 return; 1703 1704 /* select the appropriate RF settings based on what EEPROM says */ 1705 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1706 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1707 1708 /* find the settings for this channel (we know it exists) */ 1709 for (i = 0; rfprog[i].chan != chan; i++); 1710 1711 power = sc->txpow[i]; 1712 if (power < 0) { 1713 bbp94 += power; 1714 power = 0; 1715 } else if (power > 31) { 1716 bbp94 += power - 31; 1717 power = 31; 1718 } 1719 1720 /* 1721 * If we are switching from the 2GHz band to the 5GHz band or 1722 * vice-versa, BBP registers need to be reprogrammed. 1723 */ 1724 if (c->ic_flags != sc->sc_curchan->ic_flags) { 1725 rum_select_band(sc, c); 1726 rum_select_antenna(sc); 1727 } 1728 sc->sc_curchan = c; 1729 1730 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1731 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1732 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1733 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1734 1735 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1736 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1737 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1738 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1739 1740 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1741 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1742 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1743 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1744 1745 DELAY(10); 1746 1747 /* enable smart mode for MIMO-capable RFs */ 1748 bbp3 = rum_bbp_read(sc, 3); 1749 1750 bbp3 &= ~RT2573_SMART_MODE; 1751 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1752 bbp3 |= RT2573_SMART_MODE; 1753 1754 rum_bbp_write(sc, 3, bbp3); 1755 1756 if (bbp94 != RT2573_BBPR94_DEFAULT) 1757 rum_bbp_write(sc, 94, bbp94); 1758 } 1759 1760 /* 1761 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1762 * and HostAP operating modes. 1763 */ 1764 void 1765 rum_enable_tsf_sync(struct rum_softc *sc) 1766 { 1767 struct ieee80211com *ic = &sc->sc_ic; 1768 uint32_t tmp; 1769 1770 #ifndef IEEE80211_STA_ONLY 1771 if (ic->ic_opmode != IEEE80211_M_STA) { 1772 /* 1773 * Change default 16ms TBTT adjustment to 8ms. 1774 * Must be done before enabling beacon generation. 1775 */ 1776 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1777 } 1778 #endif 1779 1780 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1781 1782 /* set beacon interval (in 1/16ms unit) */ 1783 tmp |= ic->ic_bss->ni_intval * 16; 1784 1785 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1786 if (ic->ic_opmode == IEEE80211_M_STA) 1787 tmp |= RT2573_TSF_MODE(1); 1788 #ifndef IEEE80211_STA_ONLY 1789 else 1790 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1791 #endif 1792 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1793 } 1794 1795 void 1796 rum_update_slot(struct rum_softc *sc) 1797 { 1798 struct ieee80211com *ic = &sc->sc_ic; 1799 uint8_t slottime; 1800 uint32_t tmp; 1801 1802 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1803 1804 tmp = rum_read(sc, RT2573_MAC_CSR9); 1805 tmp = (tmp & ~0xff) | slottime; 1806 rum_write(sc, RT2573_MAC_CSR9, tmp); 1807 1808 DPRINTF(("setting slot time to %uus\n", slottime)); 1809 } 1810 1811 void 1812 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1813 { 1814 uint32_t tmp; 1815 1816 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1817 rum_write(sc, RT2573_MAC_CSR4, tmp); 1818 1819 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1820 rum_write(sc, RT2573_MAC_CSR5, tmp); 1821 } 1822 1823 void 1824 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1825 { 1826 uint32_t tmp; 1827 1828 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1829 rum_write(sc, RT2573_MAC_CSR2, tmp); 1830 1831 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1832 rum_write(sc, RT2573_MAC_CSR3, tmp); 1833 } 1834 1835 void 1836 rum_update_promisc(struct rum_softc *sc) 1837 { 1838 struct ifnet *ifp = &sc->sc_ic.ic_if; 1839 uint32_t tmp; 1840 1841 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1842 1843 tmp &= ~RT2573_DROP_NOT_TO_ME; 1844 if (!(ifp->if_flags & IFF_PROMISC)) 1845 tmp |= RT2573_DROP_NOT_TO_ME; 1846 1847 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1848 1849 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1850 "entering" : "leaving")); 1851 } 1852 1853 const char * 1854 rum_get_rf(int rev) 1855 { 1856 switch (rev) { 1857 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1858 case RT2573_RF_2528: return "RT2528"; 1859 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1860 case RT2573_RF_5226: return "RT5226"; 1861 default: return "unknown"; 1862 } 1863 } 1864 1865 void 1866 rum_read_eeprom(struct rum_softc *sc) 1867 { 1868 struct ieee80211com *ic = &sc->sc_ic; 1869 uint16_t val; 1870 #ifdef RUM_DEBUG 1871 int i; 1872 #endif 1873 1874 /* read MAC/BBP type */ 1875 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); 1876 sc->macbbp_rev = letoh16(val); 1877 1878 /* read MAC address */ 1879 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); 1880 1881 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1882 val = letoh16(val); 1883 sc->rf_rev = (val >> 11) & 0x1f; 1884 sc->hw_radio = (val >> 10) & 0x1; 1885 sc->rx_ant = (val >> 4) & 0x3; 1886 sc->tx_ant = (val >> 2) & 0x3; 1887 sc->nb_ant = val & 0x3; 1888 1889 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 1890 1891 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1892 val = letoh16(val); 1893 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1894 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1895 1896 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1897 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 1898 1899 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1900 val = letoh16(val); 1901 if ((val & 0xff) != 0xff) 1902 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1903 1904 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1905 val = letoh16(val); 1906 if ((val & 0xff) != 0xff) 1907 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1908 1909 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1910 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 1911 1912 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1913 val = letoh16(val); 1914 if ((val & 0xff) != 0xff) 1915 sc->rffreq = val & 0xff; 1916 1917 DPRINTF(("RF freq=%d\n", sc->rffreq)); 1918 1919 /* read Tx power for all a/b/g channels */ 1920 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1921 /* XXX default Tx power for 802.11a channels */ 1922 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1923 #ifdef RUM_DEBUG 1924 for (i = 0; i < 14; i++) 1925 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); 1926 #endif 1927 1928 /* read default values for BBP registers */ 1929 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1930 #ifdef RUM_DEBUG 1931 for (i = 0; i < 14; i++) { 1932 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1933 continue; 1934 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1935 sc->bbp_prom[i].val)); 1936 } 1937 #endif 1938 } 1939 1940 int 1941 rum_bbp_init(struct rum_softc *sc) 1942 { 1943 int i, ntries; 1944 1945 /* wait for BBP to be ready */ 1946 for (ntries = 0; ntries < 100; ntries++) { 1947 const uint8_t val = rum_bbp_read(sc, 0); 1948 if (val != 0 && val != 0xff) 1949 break; 1950 DELAY(1000); 1951 } 1952 if (ntries == 100) { 1953 printf("%s: timeout waiting for BBP\n", 1954 sc->sc_dev.dv_xname); 1955 return EIO; 1956 } 1957 1958 /* initialize BBP registers to default values */ 1959 for (i = 0; i < nitems(rum_def_bbp); i++) 1960 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1961 1962 /* write vendor-specific BBP values (from EEPROM) */ 1963 for (i = 0; i < 16; i++) { 1964 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1965 continue; 1966 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1967 } 1968 1969 return 0; 1970 } 1971 1972 int 1973 rum_init(struct ifnet *ifp) 1974 { 1975 struct rum_softc *sc = ifp->if_softc; 1976 struct ieee80211com *ic = &sc->sc_ic; 1977 uint32_t tmp; 1978 usbd_status error; 1979 int i, ntries; 1980 1981 rum_stop(ifp, 0); 1982 1983 /* initialize MAC registers to default values */ 1984 for (i = 0; i < nitems(rum_def_mac); i++) 1985 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1986 1987 /* set host ready */ 1988 rum_write(sc, RT2573_MAC_CSR1, 3); 1989 rum_write(sc, RT2573_MAC_CSR1, 0); 1990 1991 /* wait for BBP/RF to wakeup */ 1992 for (ntries = 0; ntries < 1000; ntries++) { 1993 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1994 break; 1995 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1996 DELAY(1000); 1997 } 1998 if (ntries == 1000) { 1999 printf("%s: timeout waiting for BBP/RF to wakeup\n", 2000 sc->sc_dev.dv_xname); 2001 error = ENODEV; 2002 goto fail; 2003 } 2004 2005 if ((error = rum_bbp_init(sc)) != 0) 2006 goto fail; 2007 2008 /* select default channel */ 2009 sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2010 rum_select_band(sc, sc->sc_curchan); 2011 rum_select_antenna(sc); 2012 rum_set_chan(sc, sc->sc_curchan); 2013 2014 /* clear STA registers */ 2015 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2016 2017 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 2018 rum_set_macaddr(sc, ic->ic_myaddr); 2019 2020 /* initialize ASIC */ 2021 rum_write(sc, RT2573_MAC_CSR1, 4); 2022 2023 /* 2024 * Allocate xfer for AMRR statistics requests. 2025 */ 2026 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); 2027 if (sc->amrr_xfer == NULL) { 2028 printf("%s: could not allocate AMRR xfer\n", 2029 sc->sc_dev.dv_xname); 2030 goto fail; 2031 } 2032 2033 /* 2034 * Open Tx and Rx USB bulk pipes. 2035 */ 2036 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, 2037 &sc->sc_tx_pipeh); 2038 if (error != 0) { 2039 printf("%s: could not open Tx pipe: %s\n", 2040 sc->sc_dev.dv_xname, usbd_errstr(error)); 2041 goto fail; 2042 } 2043 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, 2044 &sc->sc_rx_pipeh); 2045 if (error != 0) { 2046 printf("%s: could not open Rx pipe: %s\n", 2047 sc->sc_dev.dv_xname, usbd_errstr(error)); 2048 goto fail; 2049 } 2050 2051 /* 2052 * Allocate Tx and Rx xfer queues. 2053 */ 2054 error = rum_alloc_tx_list(sc); 2055 if (error != 0) { 2056 printf("%s: could not allocate Tx list\n", 2057 sc->sc_dev.dv_xname); 2058 goto fail; 2059 } 2060 error = rum_alloc_rx_list(sc); 2061 if (error != 0) { 2062 printf("%s: could not allocate Rx list\n", 2063 sc->sc_dev.dv_xname); 2064 goto fail; 2065 } 2066 2067 /* 2068 * Start up the receive pipe. 2069 */ 2070 for (i = 0; i < RUM_RX_LIST_COUNT; i++) { 2071 struct rum_rx_data *data = &sc->rx_data[i]; 2072 2073 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, 2074 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); 2075 error = usbd_transfer(data->xfer); 2076 if (error != 0 && error != USBD_IN_PROGRESS) { 2077 printf("%s: could not queue Rx transfer\n", 2078 sc->sc_dev.dv_xname); 2079 goto fail; 2080 } 2081 } 2082 2083 /* update Rx filter */ 2084 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2085 2086 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2087 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2088 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2089 RT2573_DROP_ACKCTS; 2090 #ifndef IEEE80211_STA_ONLY 2091 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2092 #endif 2093 tmp |= RT2573_DROP_TODS; 2094 if (!(ifp->if_flags & IFF_PROMISC)) 2095 tmp |= RT2573_DROP_NOT_TO_ME; 2096 } 2097 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2098 2099 ifp->if_flags &= ~IFF_OACTIVE; 2100 ifp->if_flags |= IFF_RUNNING; 2101 2102 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2103 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2104 else 2105 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2106 2107 return 0; 2108 2109 fail: rum_stop(ifp, 1); 2110 return error; 2111 } 2112 2113 void 2114 rum_stop(struct ifnet *ifp, int disable) 2115 { 2116 struct rum_softc *sc = ifp->if_softc; 2117 struct ieee80211com *ic = &sc->sc_ic; 2118 uint32_t tmp; 2119 2120 sc->sc_tx_timer = 0; 2121 ifp->if_timer = 0; 2122 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2123 2124 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2125 2126 /* disable Rx */ 2127 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2128 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2129 2130 /* reset ASIC */ 2131 rum_write(sc, RT2573_MAC_CSR1, 3); 2132 rum_write(sc, RT2573_MAC_CSR1, 0); 2133 2134 if (sc->amrr_xfer != NULL) { 2135 usbd_free_xfer(sc->amrr_xfer); 2136 sc->amrr_xfer = NULL; 2137 } 2138 if (sc->sc_rx_pipeh != NULL) { 2139 usbd_abort_pipe(sc->sc_rx_pipeh); 2140 usbd_close_pipe(sc->sc_rx_pipeh); 2141 sc->sc_rx_pipeh = NULL; 2142 } 2143 if (sc->sc_tx_pipeh != NULL) { 2144 usbd_abort_pipe(sc->sc_tx_pipeh); 2145 usbd_close_pipe(sc->sc_tx_pipeh); 2146 sc->sc_tx_pipeh = NULL; 2147 } 2148 2149 rum_free_rx_list(sc); 2150 rum_free_tx_list(sc); 2151 } 2152 2153 int 2154 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) 2155 { 2156 usb_device_request_t req; 2157 uint16_t reg = RT2573_MCU_CODE_BASE; 2158 usbd_status error; 2159 2160 /* copy firmware image into NIC */ 2161 for (; size >= 4; reg += 4, ucode += 4, size -= 4) 2162 rum_write(sc, reg, UGETDW(ucode)); 2163 2164 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2165 req.bRequest = RT2573_MCU_CNTL; 2166 USETW(req.wValue, RT2573_MCU_RUN); 2167 USETW(req.wIndex, 0); 2168 USETW(req.wLength, 0); 2169 2170 error = usbd_do_request(sc->sc_udev, &req, NULL); 2171 if (error != 0) { 2172 printf("%s: could not run firmware: %s\n", 2173 sc->sc_dev.dv_xname, usbd_errstr(error)); 2174 } 2175 return error; 2176 } 2177 2178 #ifndef IEEE80211_STA_ONLY 2179 int 2180 rum_prepare_beacon(struct rum_softc *sc) 2181 { 2182 struct ieee80211com *ic = &sc->sc_ic; 2183 struct rum_tx_desc desc; 2184 struct mbuf *m0; 2185 int rate; 2186 2187 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss); 2188 if (m0 == NULL) { 2189 printf("%s: could not allocate beacon frame\n", 2190 sc->sc_dev.dv_xname); 2191 return ENOBUFS; 2192 } 2193 2194 /* send beacons at the lowest available rate */ 2195 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2; 2196 2197 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2198 m0->m_pkthdr.len, rate); 2199 2200 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2201 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2202 2203 /* copy beacon header and payload into NIC memory */ 2204 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2205 m0->m_pkthdr.len); 2206 2207 m_freem(m0); 2208 2209 return 0; 2210 } 2211 #endif 2212 2213 void 2214 rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 2215 { 2216 /* start with lowest Tx rate */ 2217 ni->ni_txrate = 0; 2218 } 2219 2220 void 2221 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2222 { 2223 int i; 2224 2225 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2226 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2227 2228 ieee80211_amrr_node_init(&sc->amrr, &sc->amn); 2229 2230 /* set rate to some reasonable initial value */ 2231 for (i = ni->ni_rates.rs_nrates - 1; 2232 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2233 i--); 2234 ni->ni_txrate = i; 2235 2236 if (!usbd_is_dying(sc->sc_udev)) 2237 timeout_add_sec(&sc->amrr_to, 1); 2238 } 2239 2240 void 2241 rum_amrr_timeout(void *arg) 2242 { 2243 struct rum_softc *sc = arg; 2244 usb_device_request_t req; 2245 2246 if (usbd_is_dying(sc->sc_udev)) 2247 return; 2248 2249 /* 2250 * Asynchronously read statistic registers (cleared by read). 2251 */ 2252 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2253 req.bRequest = RT2573_READ_MULTI_MAC; 2254 USETW(req.wValue, 0); 2255 USETW(req.wIndex, RT2573_STA_CSR0); 2256 USETW(req.wLength, sizeof sc->sta); 2257 2258 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, 2259 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, 2260 rum_amrr_update); 2261 (void)usbd_transfer(sc->amrr_xfer); 2262 } 2263 2264 void 2265 rum_amrr_update(struct usbd_xfer *xfer, void *priv, 2266 usbd_status status) 2267 { 2268 struct rum_softc *sc = (struct rum_softc *)priv; 2269 struct ifnet *ifp = &sc->sc_ic.ic_if; 2270 2271 if (status != USBD_NORMAL_COMPLETION) { 2272 printf("%s: could not retrieve Tx statistics - cancelling " 2273 "automatic rate control\n", sc->sc_dev.dv_xname); 2274 return; 2275 } 2276 2277 /* count TX retry-fail as Tx errors */ 2278 ifp->if_oerrors += letoh32(sc->sta[5]) >> 16; 2279 2280 sc->amn.amn_retrycnt = 2281 (letoh32(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 2282 (letoh32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 2283 (letoh32(sc->sta[5]) >> 16); /* TX retry-fail count */ 2284 2285 sc->amn.amn_txcnt = 2286 sc->amn.amn_retrycnt + 2287 (letoh32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 2288 2289 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); 2290 2291 if (!usbd_is_dying(sc->sc_udev)) 2292 timeout_add_sec(&sc->amrr_to, 1); 2293 } 2294