xref: /openbsd-src/sys/dev/usb/if_otus.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*	$OpenBSD: if_otus.c,v 1.42 2014/07/13 15:52:49 mpi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * Driver for Atheros AR9001U chipset.
21  */
22 
23 #include "bpfilter.h"
24 
25 #include <sys/param.h>
26 #include <sys/sockio.h>
27 #include <sys/mbuf.h>
28 #include <sys/kernel.h>
29 #include <sys/socket.h>
30 #include <sys/systm.h>
31 #include <sys/timeout.h>
32 #include <sys/conf.h>
33 #include <sys/device.h>
34 
35 #include <machine/bus.h>
36 #include <machine/endian.h>
37 #include <machine/intr.h>
38 
39 #if NBPFILTER > 0
40 #include <net/bpf.h>
41 #endif
42 #include <net/if.h>
43 #include <net/if_arp.h>
44 #include <net/if_dl.h>
45 #include <net/if_media.h>
46 #include <net/if_types.h>
47 
48 #include <netinet/in.h>
49 #include <netinet/if_ether.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_amrr.h>
53 #include <net80211/ieee80211_radiotap.h>
54 
55 #include <dev/usb/usb.h>
56 #include <dev/usb/usbdi.h>
57 #include <dev/usb/usbdi_util.h>
58 #include <dev/usb/usbdevs.h>
59 
60 #include <dev/usb/if_otusreg.h>
61 
62 #ifdef OTUS_DEBUG
63 #define DPRINTF(x)	do { if (otus_debug) printf x; } while (0)
64 #define DPRINTFN(n, x)	do { if (otus_debug >= (n)) printf x; } while (0)
65 int otus_debug = 1;
66 #else
67 #define DPRINTF(x)
68 #define DPRINTFN(n, x)
69 #endif
70 
71 static const struct usb_devno otus_devs[] = {
72 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_WN7512 },
73 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_3CRUSBN275 },
74 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_TG121N },
75 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_AR9170 },
76 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_WN612 },
77 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_WN821NV2 },
78 	{ USB_VENDOR_AVM,		USB_PRODUCT_AVM_FRITZWLAN },
79 	{ USB_VENDOR_CACE,		USB_PRODUCT_CACE_AIRPCAPNX },
80 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA130D1 },
81 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA160A1 },
82 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA160A2 },
83 	{ USB_VENDOR_IODATA,		USB_PRODUCT_IODATA_WNGDNUS2 },
84 	{ USB_VENDOR_NEC,		USB_PRODUCT_NEC_WL300NUG },
85 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WN111V2 },
86 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WNA1000 },
87 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WNDA3100 },
88 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GW_US300 },
89 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_O8494 },
90 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_WNC0600 },
91 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_UB81 },
92 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_UB82 },
93 	{ USB_VENDOR_ZYDAS,		USB_PRODUCT_ZYDAS_ZD1221 },
94 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_NWD271N }
95 };
96 
97 int		otus_match(struct device *, void *, void *);
98 void		otus_attach(struct device *, struct device *, void *);
99 int		otus_detach(struct device *, int);
100 void		otus_attachhook(void *);
101 void		otus_get_chanlist(struct otus_softc *);
102 int		otus_load_firmware(struct otus_softc *, const char *,
103 		    uint32_t);
104 int		otus_open_pipes(struct otus_softc *);
105 void		otus_close_pipes(struct otus_softc *);
106 int		otus_alloc_tx_cmd(struct otus_softc *);
107 void		otus_free_tx_cmd(struct otus_softc *);
108 int		otus_alloc_tx_data_list(struct otus_softc *);
109 void		otus_free_tx_data_list(struct otus_softc *);
110 int		otus_alloc_rx_data_list(struct otus_softc *);
111 void		otus_free_rx_data_list(struct otus_softc *);
112 void		otus_next_scan(void *);
113 void		otus_task(void *);
114 void		otus_do_async(struct otus_softc *,
115 		    void (*)(struct otus_softc *, void *), void *, int);
116 int		otus_newstate(struct ieee80211com *, enum ieee80211_state,
117 		    int);
118 void		otus_newstate_cb(struct otus_softc *, void *);
119 int		otus_cmd(struct otus_softc *, uint8_t, const void *, int,
120 		    void *);
121 void		otus_write(struct otus_softc *, uint32_t, uint32_t);
122 int		otus_write_barrier(struct otus_softc *);
123 struct		ieee80211_node *otus_node_alloc(struct ieee80211com *);
124 int		otus_media_change(struct ifnet *);
125 int		otus_read_eeprom(struct otus_softc *);
126 void		otus_newassoc(struct ieee80211com *, struct ieee80211_node *,
127 		    int);
128 void		otus_intr(struct usbd_xfer *, void *, usbd_status);
129 void		otus_cmd_rxeof(struct otus_softc *, uint8_t *, int);
130 void		otus_sub_rxeof(struct otus_softc *, uint8_t *, int);
131 void		otus_rxeof(struct usbd_xfer *, void *, usbd_status);
132 void		otus_txeof(struct usbd_xfer *, void *, usbd_status);
133 int		otus_tx(struct otus_softc *, struct mbuf *,
134 		    struct ieee80211_node *);
135 void		otus_start(struct ifnet *);
136 void		otus_watchdog(struct ifnet *);
137 int		otus_ioctl(struct ifnet *, u_long, caddr_t);
138 int		otus_set_multi(struct otus_softc *);
139 void		otus_updateedca(struct ieee80211com *);
140 void		otus_updateedca_cb(struct otus_softc *, void *);
141 void		otus_updateslot(struct ieee80211com *);
142 void		otus_updateslot_cb(struct otus_softc *, void *);
143 int		otus_init_mac(struct otus_softc *);
144 uint32_t	otus_phy_get_def(struct otus_softc *, uint32_t);
145 int		otus_set_board_values(struct otus_softc *,
146 		    struct ieee80211_channel *);
147 int		otus_program_phy(struct otus_softc *,
148 		    struct ieee80211_channel *);
149 int		otus_set_rf_bank4(struct otus_softc *,
150 		    struct ieee80211_channel *);
151 void		otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
152 int		otus_set_chan(struct otus_softc *, struct ieee80211_channel *,
153 		    int);
154 int		otus_set_key(struct ieee80211com *, struct ieee80211_node *,
155 		    struct ieee80211_key *);
156 void		otus_set_key_cb(struct otus_softc *, void *);
157 void		otus_delete_key(struct ieee80211com *, struct ieee80211_node *,
158 		    struct ieee80211_key *);
159 void		otus_delete_key_cb(struct otus_softc *, void *);
160 void		otus_calibrate_to(void *);
161 int		otus_set_bssid(struct otus_softc *, const uint8_t *);
162 int		otus_set_macaddr(struct otus_softc *, const uint8_t *);
163 void		otus_led_newstate_type1(struct otus_softc *);
164 void		otus_led_newstate_type2(struct otus_softc *);
165 void		otus_led_newstate_type3(struct otus_softc *);
166 int		otus_init(struct ifnet *);
167 void		otus_stop(struct ifnet *);
168 
169 struct cfdriver otus_cd = {
170 	NULL, "otus", DV_IFNET
171 };
172 
173 const struct cfattach otus_ca = {
174 	sizeof (struct otus_softc), otus_match, otus_attach, otus_detach
175 };
176 
177 int
178 otus_match(struct device *parent, void *match, void *aux)
179 {
180 	struct usb_attach_arg *uaa = aux;
181 
182 	if (uaa->iface != NULL)
183 		return UMATCH_NONE;
184 
185 	return (usb_lookup(otus_devs, uaa->vendor, uaa->product) != NULL) ?
186 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
187 }
188 
189 void
190 otus_attach(struct device *parent, struct device *self, void *aux)
191 {
192 	struct otus_softc *sc = (struct otus_softc *)self;
193 	struct usb_attach_arg *uaa = aux;
194 	int error;
195 
196 	sc->sc_udev = uaa->device;
197 
198 	usb_init_task(&sc->sc_task, otus_task, sc, USB_TASK_TYPE_GENERIC);
199 	timeout_set(&sc->scan_to, otus_next_scan, sc);
200 	timeout_set(&sc->calib_to, otus_calibrate_to, sc);
201 
202 	sc->amrr.amrr_min_success_threshold =  1;
203 	sc->amrr.amrr_max_success_threshold = 10;
204 
205 	if (usbd_set_config_no(sc->sc_udev, 1, 0) != 0) {
206 		printf("%s: could not set configuration no\n",
207 		    sc->sc_dev.dv_xname);
208 		return;
209 	}
210 
211 	/* Get the first interface handle. */
212 	error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
213 	if (error != 0) {
214 		printf("%s: could not get interface handle\n",
215 		    sc->sc_dev.dv_xname);
216 		return;
217 	}
218 
219 	if ((error = otus_open_pipes(sc)) != 0) {
220 		printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
221 		return;
222 	}
223 
224 	if (rootvp == NULL)
225 		mountroothook_establish(otus_attachhook, sc);
226 	else
227 		otus_attachhook(sc);
228 }
229 
230 int
231 otus_detach(struct device *self, int flags)
232 {
233 	struct otus_softc *sc = (struct otus_softc *)self;
234 	struct ifnet *ifp = &sc->sc_ic.ic_if;
235 	int s;
236 
237 	s = splusb();
238 
239 	if (timeout_initialized(&sc->scan_to))
240 		timeout_del(&sc->scan_to);
241 	if (timeout_initialized(&sc->calib_to))
242 		timeout_del(&sc->calib_to);
243 
244 	/* Wait for all queued asynchronous commands to complete. */
245 	usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
246 
247 	usbd_ref_wait(sc->sc_udev);
248 
249 	if (ifp->if_softc != NULL) {
250 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
251 		ieee80211_ifdetach(ifp);
252 		if_detach(ifp);
253 	}
254 
255 	otus_close_pipes(sc);
256 
257 	splx(s);
258 
259 	return 0;
260 }
261 
262 void
263 otus_attachhook(void *xsc)
264 {
265 	struct otus_softc *sc = xsc;
266 	struct ieee80211com *ic = &sc->sc_ic;
267 	struct ifnet *ifp = &ic->ic_if;
268 	usb_device_request_t req;
269 	uint32_t in, out;
270 	int error;
271 
272 	error = otus_load_firmware(sc, "otus-init", AR_FW_INIT_ADDR);
273 	if (error != 0) {
274 		printf("%s: could not load %s firmware\n",
275 		    sc->sc_dev.dv_xname, "init");
276 		return;
277 	}
278 
279 	usbd_delay_ms(sc->sc_udev, 1000);
280 
281 	error = otus_load_firmware(sc, "otus-main", AR_FW_MAIN_ADDR);
282 	if (error != 0) {
283 		printf("%s: could not load %s firmware\n",
284 		    sc->sc_dev.dv_xname, "main");
285 		return;
286 	}
287 
288 	/* Tell device that firmware transfer is complete. */
289 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
290 	req.bRequest = AR_FW_DOWNLOAD_COMPLETE;
291 	USETW(req.wValue, 0);
292 	USETW(req.wIndex, 0);
293 	USETW(req.wLength, 0);
294 	if (usbd_do_request(sc->sc_udev, &req, NULL) != 0) {
295 		printf("%s: firmware initialization failed\n",
296 		    sc->sc_dev.dv_xname);
297 		return;
298 	}
299 
300 	/* Send an ECHO command to check that everything is settled. */
301 	in = 0xbadc0ffe;
302 	if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out) != 0) {
303 		printf("%s: echo command failed\n", sc->sc_dev.dv_xname);
304 		return;
305 	}
306 	if (in != out) {
307 		printf("%s: echo reply mismatch: 0x%08x!=0x%08x\n",
308 		    sc->sc_dev.dv_xname, in, out);
309 		return;
310 	}
311 
312 	/* Read entire EEPROM. */
313 	if (otus_read_eeprom(sc) != 0) {
314 		printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
315 		return;
316 	}
317 
318 	sc->txmask = sc->eeprom.baseEepHeader.txMask;
319 	sc->rxmask = sc->eeprom.baseEepHeader.rxMask;
320 	sc->capflags = sc->eeprom.baseEepHeader.opCapFlags;
321 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->eeprom.baseEepHeader.macAddr);
322 	sc->sc_led_newstate = otus_led_newstate_type3;	/* XXX */
323 
324 	printf("%s: MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n",
325 	    sc->sc_dev.dv_xname, (sc->capflags & AR5416_OPFLAGS_11A) ?
326 	        0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101),
327 	    (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1,
328 	    ether_sprintf(ic->ic_myaddr));
329 
330 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
331 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
332 	ic->ic_state = IEEE80211_S_INIT;
333 
334 	/* Set device capabilities. */
335 	ic->ic_caps =
336 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
337 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
338 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
339 	    IEEE80211_C_WEP |		/* WEP */
340 	    IEEE80211_C_RSN;		/* WPA/RSN */
341 
342 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
343 		/* Set supported .11b and .11g rates. */
344 		ic->ic_sup_rates[IEEE80211_MODE_11B] =
345 		    ieee80211_std_rateset_11b;
346 		ic->ic_sup_rates[IEEE80211_MODE_11G] =
347 		    ieee80211_std_rateset_11g;
348 	}
349 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
350 		/* Set supported .11a rates. */
351 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
352 		    ieee80211_std_rateset_11a;
353 	}
354 
355 	/* Build the list of supported channels. */
356 	otus_get_chanlist(sc);
357 
358 	ifp->if_softc = sc;
359 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
360 	ifp->if_ioctl = otus_ioctl;
361 	ifp->if_start = otus_start;
362 	ifp->if_watchdog = otus_watchdog;
363 	IFQ_SET_READY(&ifp->if_snd);
364 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
365 
366 	if_attach(ifp);
367 	ieee80211_ifattach(ifp);
368 	ic->ic_node_alloc = otus_node_alloc;
369 	ic->ic_newassoc = otus_newassoc;
370 	ic->ic_updateslot = otus_updateslot;
371 	ic->ic_updateedca = otus_updateedca;
372 #ifdef notyet
373 	ic->ic_set_key = otus_set_key;
374 	ic->ic_delete_key = otus_delete_key;
375 #endif
376 	/* Override state transition machine. */
377 	sc->sc_newstate = ic->ic_newstate;
378 	ic->ic_newstate = otus_newstate;
379 	ieee80211_media_init(ifp, otus_media_change, ieee80211_media_status);
380 
381 #if NBPFILTER > 0
382 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
383 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
384 
385 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
386 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
387 	sc->sc_rxtap.wr_ihdr.it_present = htole32(OTUS_RX_RADIOTAP_PRESENT);
388 
389 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
390 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
391 	sc->sc_txtap.wt_ihdr.it_present = htole32(OTUS_TX_RADIOTAP_PRESENT);
392 #endif
393 }
394 
395 void
396 otus_get_chanlist(struct otus_softc *sc)
397 {
398 	struct ieee80211com *ic = &sc->sc_ic;
399 	uint16_t domain;
400 	uint8_t chan;
401 	int i;
402 
403 	/* XXX regulatory domain. */
404 	domain = letoh16(sc->eeprom.baseEepHeader.regDmn[0]);
405 	DPRINTF(("regdomain=0x%04x\n", domain));
406 
407 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
408 		for (i = 0; i < 14; i++) {
409 			chan = ar_chans[i];
410 			ic->ic_channels[chan].ic_freq =
411 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
412 			ic->ic_channels[chan].ic_flags =
413 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
414 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
415 		}
416 	}
417 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
418 		for (i = 14; i < nitems(ar_chans); i++) {
419 			chan = ar_chans[i];
420 			ic->ic_channels[chan].ic_freq =
421 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
422 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
423 		}
424 	}
425 }
426 
427 int
428 otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr)
429 {
430 	usb_device_request_t req;
431 	size_t size;
432 	u_char *fw, *ptr;
433 	int mlen, error;
434 
435 	/* Read firmware image from the filesystem. */
436 	if ((error = loadfirmware(name, &fw, &size)) != 0) {
437 		printf("%s: failed loadfirmware of file %s (error %d)\n",
438 		    sc->sc_dev.dv_xname, name, error);
439 		return error;
440 	}
441 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
442 	req.bRequest = AR_FW_DOWNLOAD;
443 	USETW(req.wIndex, 0);
444 
445 	ptr = fw;
446 	addr >>= 8;
447 	while (size > 0) {
448 		mlen = MIN(size, 4096);
449 
450 		USETW(req.wValue, addr);
451 		USETW(req.wLength, mlen);
452 		if (usbd_do_request(sc->sc_udev, &req, ptr) != 0) {
453 			error = EIO;
454 			break;
455 		}
456 		addr += mlen >> 8;
457 		ptr  += mlen;
458 		size -= mlen;
459 	}
460 	free(fw, M_DEVBUF, 0);
461 	return error;
462 }
463 
464 int
465 otus_open_pipes(struct otus_softc *sc)
466 {
467 	usb_endpoint_descriptor_t *ed;
468 	int i, isize, error;
469 
470 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_RX_NO, 0,
471 	    &sc->data_rx_pipe);
472 	if (error != 0) {
473 		printf("%s: could not open Rx bulk pipe\n",
474 		    sc->sc_dev.dv_xname);
475 		goto fail;
476 	}
477 
478 	ed = usbd_get_endpoint_descriptor(sc->sc_iface, AR_EPT_INTR_RX_NO);
479 	if (ed == NULL) {
480 		printf("%s: could not retrieve Rx intr pipe descriptor\n",
481 		    sc->sc_dev.dv_xname);
482 		goto fail;
483 	}
484 	isize = UGETW(ed->wMaxPacketSize);
485 	if (isize == 0) {
486 		printf("%s: invalid Rx intr pipe descriptor\n",
487 		    sc->sc_dev.dv_xname);
488 		goto fail;
489 	}
490 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
491 	if (sc->ibuf == NULL) {
492 		printf("%s: could not allocate Rx intr buffer\n",
493 		    sc->sc_dev.dv_xname);
494 		goto fail;
495 	}
496 	error = usbd_open_pipe_intr(sc->sc_iface, AR_EPT_INTR_RX_NO,
497 	    USBD_SHORT_XFER_OK, &sc->cmd_rx_pipe, sc, sc->ibuf, isize,
498 	    otus_intr, USBD_DEFAULT_INTERVAL);
499 	if (error != 0) {
500 		printf("%s: could not open Rx intr pipe\n",
501 		    sc->sc_dev.dv_xname);
502 		goto fail;
503 	}
504 
505 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_TX_NO, 0,
506 	    &sc->data_tx_pipe);
507 	if (error != 0) {
508 		printf("%s: could not open Tx bulk pipe\n",
509 		    sc->sc_dev.dv_xname);
510 		goto fail;
511 	}
512 
513 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_INTR_TX_NO, 0,
514 	    &sc->cmd_tx_pipe);
515 	if (error != 0) {
516 		printf("%s: could not open Tx intr pipe\n",
517 		    sc->sc_dev.dv_xname);
518 		goto fail;
519 	}
520 
521 	if (otus_alloc_tx_cmd(sc) != 0) {
522 		printf("%s: could not allocate command xfer\n",
523 		    sc->sc_dev.dv_xname);
524 		goto fail;
525 	}
526 
527 	if (otus_alloc_tx_data_list(sc) != 0) {
528 		printf("%s: could not allocate Tx xfers\n",
529 		    sc->sc_dev.dv_xname);
530 		goto fail;
531 	}
532 
533 	if (otus_alloc_rx_data_list(sc) != 0) {
534 		printf("%s: could not allocate Rx xfers\n",
535 		    sc->sc_dev.dv_xname);
536 		goto fail;
537 	}
538 
539 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
540 		struct otus_rx_data *data = &sc->rx_data[i];
541 
542 		usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
543 		    OTUS_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
544 		    USBD_NO_TIMEOUT, otus_rxeof);
545 		error = usbd_transfer(data->xfer);
546 		if (error != USBD_IN_PROGRESS && error != 0) {
547 			printf("%s: could not queue Rx xfer\n",
548 			    sc->sc_dev.dv_xname);
549 			goto fail;
550 		}
551 	}
552 	return 0;
553 
554  fail:	otus_close_pipes(sc);
555 	return error;
556 }
557 
558 void
559 otus_close_pipes(struct otus_softc *sc)
560 {
561 	otus_free_tx_cmd(sc);
562 	otus_free_tx_data_list(sc);
563 	otus_free_rx_data_list(sc);
564 
565 	if (sc->data_rx_pipe != NULL)
566 		usbd_close_pipe(sc->data_rx_pipe);
567 	if (sc->cmd_rx_pipe != NULL) {
568 		usbd_abort_pipe(sc->cmd_rx_pipe);
569 		usbd_close_pipe(sc->cmd_rx_pipe);
570 	}
571 	if (sc->ibuf != NULL)
572 		free(sc->ibuf, M_USBDEV, 0);
573 	if (sc->data_tx_pipe != NULL)
574 		usbd_close_pipe(sc->data_tx_pipe);
575 	if (sc->cmd_tx_pipe != NULL)
576 		usbd_close_pipe(sc->cmd_tx_pipe);
577 }
578 
579 int
580 otus_alloc_tx_cmd(struct otus_softc *sc)
581 {
582 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
583 
584 	cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
585 	if (cmd->xfer == NULL) {
586 		printf("%s: could not allocate xfer\n",
587 		    sc->sc_dev.dv_xname);
588 		return ENOMEM;
589 	}
590 	cmd->buf = usbd_alloc_buffer(cmd->xfer, OTUS_MAX_TXCMDSZ);
591 	if (cmd->buf == NULL) {
592 		printf("%s: could not allocate xfer buffer\n",
593 		    sc->sc_dev.dv_xname);
594 		usbd_free_xfer(cmd->xfer);
595 		return ENOMEM;
596 	}
597 	return 0;
598 }
599 
600 void
601 otus_free_tx_cmd(struct otus_softc *sc)
602 {
603 	/* Make sure no transfers are pending. */
604 	usbd_abort_pipe(sc->cmd_tx_pipe);
605 
606 	if (sc->tx_cmd.xfer != NULL)
607 		usbd_free_xfer(sc->tx_cmd.xfer);
608 }
609 
610 int
611 otus_alloc_tx_data_list(struct otus_softc *sc)
612 {
613 	struct otus_tx_data *data;
614 	int i, error;
615 
616 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++) {
617 		data = &sc->tx_data[i];
618 
619 		data->sc = sc;  /* Backpointer for callbacks. */
620 
621 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
622 		if (data->xfer == NULL) {
623 			printf("%s: could not allocate xfer\n",
624 			    sc->sc_dev.dv_xname);
625 			error = ENOMEM;
626 			goto fail;
627 		}
628 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_TXBUFSZ);
629 		if (data->buf == NULL) {
630 			printf("%s: could not allocate xfer buffer\n",
631 			    sc->sc_dev.dv_xname);
632 			error = ENOMEM;
633 			goto fail;
634 		}
635 	}
636 	return 0;
637 
638 fail:	otus_free_tx_data_list(sc);
639 	return error;
640 }
641 
642 void
643 otus_free_tx_data_list(struct otus_softc *sc)
644 {
645 	int i;
646 
647 	/* Make sure no transfers are pending. */
648 	usbd_abort_pipe(sc->data_tx_pipe);
649 
650 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++)
651 		if (sc->tx_data[i].xfer != NULL)
652 			usbd_free_xfer(sc->tx_data[i].xfer);
653 }
654 
655 int
656 otus_alloc_rx_data_list(struct otus_softc *sc)
657 {
658 	struct otus_rx_data *data;
659 	int i, error;
660 
661 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
662 		data = &sc->rx_data[i];
663 
664 		data->sc = sc;	/* Backpointer for callbacks. */
665 
666 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
667 		if (data->xfer == NULL) {
668 			printf("%s: could not allocate xfer\n",
669 			    sc->sc_dev.dv_xname);
670 			error = ENOMEM;
671 			goto fail;
672 		}
673 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_RXBUFSZ);
674 		if (data->buf == NULL) {
675 			printf("%s: could not allocate xfer buffer\n",
676 			    sc->sc_dev.dv_xname);
677 			error = ENOMEM;
678 			goto fail;
679 		}
680 	}
681 	return 0;
682 
683 fail:	otus_free_rx_data_list(sc);
684 	return error;
685 }
686 
687 void
688 otus_free_rx_data_list(struct otus_softc *sc)
689 {
690 	int i;
691 
692 	/* Make sure no transfers are pending. */
693 	usbd_abort_pipe(sc->data_rx_pipe);
694 
695 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++)
696 		if (sc->rx_data[i].xfer != NULL)
697 			usbd_free_xfer(sc->rx_data[i].xfer);
698 }
699 
700 void
701 otus_next_scan(void *arg)
702 {
703 	struct otus_softc *sc = arg;
704 
705 	if (usbd_is_dying(sc->sc_udev))
706 		return;
707 
708 	usbd_ref_incr(sc->sc_udev);
709 
710 	if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
711 		ieee80211_next_scan(&sc->sc_ic.ic_if);
712 
713 	usbd_ref_decr(sc->sc_udev);
714 }
715 
716 void
717 otus_task(void *arg)
718 {
719 	struct otus_softc *sc = arg;
720 	struct otus_host_cmd_ring *ring = &sc->cmdq;
721 	struct otus_host_cmd *cmd;
722 	int s;
723 
724 	/* Process host commands. */
725 	s = splusb();
726 	while (ring->next != ring->cur) {
727 		cmd = &ring->cmd[ring->next];
728 		splx(s);
729 		/* Callback. */
730 		cmd->cb(sc, cmd->data);
731 		s = splusb();
732 		ring->queued--;
733 		ring->next = (ring->next + 1) % OTUS_HOST_CMD_RING_COUNT;
734 	}
735 	splx(s);
736 }
737 
738 void
739 otus_do_async(struct otus_softc *sc, void (*cb)(struct otus_softc *, void *),
740     void *arg, int len)
741 {
742 	struct otus_host_cmd_ring *ring = &sc->cmdq;
743 	struct otus_host_cmd *cmd;
744 	int s;
745 
746 	s = splusb();
747 	cmd = &ring->cmd[ring->cur];
748 	cmd->cb = cb;
749 	KASSERT(len <= sizeof (cmd->data));
750 	memcpy(cmd->data, arg, len);
751 	ring->cur = (ring->cur + 1) % OTUS_HOST_CMD_RING_COUNT;
752 
753 	/* If there is no pending command already, schedule a task. */
754 	if (++ring->queued == 1)
755 		usb_add_task(sc->sc_udev, &sc->sc_task);
756 	splx(s);
757 }
758 
759 int
760 otus_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
761 {
762 	struct otus_softc *sc = ic->ic_softc;
763 	struct otus_cmd_newstate cmd;
764 
765 	/* Do it in a process context. */
766 	cmd.state = nstate;
767 	cmd.arg = arg;
768 	otus_do_async(sc, otus_newstate_cb, &cmd, sizeof cmd);
769 	return 0;
770 }
771 
772 void
773 otus_newstate_cb(struct otus_softc *sc, void *arg)
774 {
775 	struct otus_cmd_newstate *cmd = arg;
776 	struct ieee80211com *ic = &sc->sc_ic;
777 	struct ieee80211_node *ni;
778 	int s;
779 
780 	s = splnet();
781 
782 	switch (cmd->state) {
783 	case IEEE80211_S_INIT:
784 		break;
785 
786 	case IEEE80211_S_SCAN:
787 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
788 		if (!usbd_is_dying(sc->sc_udev))
789 			timeout_add_msec(&sc->scan_to, 200);
790 		break;
791 
792 	case IEEE80211_S_AUTH:
793 	case IEEE80211_S_ASSOC:
794 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
795 		break;
796 
797 	case IEEE80211_S_RUN:
798 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 1);
799 
800 		ni = ic->ic_bss;
801 
802 		if (ic->ic_opmode == IEEE80211_M_STA) {
803 			otus_updateslot(ic);
804 			otus_set_bssid(sc, ni->ni_bssid);
805 
806 			/* Fake a join to init the Tx rate. */
807 			otus_newassoc(ic, ni, 1);
808 
809 			/* Start calibration timer. */
810 			if (!usbd_is_dying(sc->sc_udev))
811 				timeout_add_sec(&sc->calib_to, 1);
812 		}
813 		break;
814 	}
815 
816 	sc->sc_led_newstate(sc);
817 	(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
818 
819 	splx(s);
820 }
821 
822 int
823 otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen,
824     void *odata)
825 {
826 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
827 	struct ar_cmd_hdr *hdr;
828 	int s, xferlen, error;
829 
830 	/* Always bulk-out a multiple of 4 bytes. */
831 	xferlen = (sizeof (*hdr) + ilen + 3) & ~3;
832 
833 	hdr = (struct ar_cmd_hdr *)cmd->buf;
834 	hdr->code  = code;
835 	hdr->len   = ilen;
836 	hdr->token = ++cmd->token;	/* Don't care about endianness. */
837 	memcpy((uint8_t *)&hdr[1], idata, ilen);
838 
839 	DPRINTFN(2, ("sending command code=0x%02x len=%d token=%d\n",
840 	    code, ilen, hdr->token));
841 
842 	s = splusb();
843 	cmd->odata = odata;
844 	cmd->done = 0;
845 
846 	usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
847 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY | USBD_SYNCHRONOUS,
848 	    OTUS_CMD_TIMEOUT, NULL);
849 	error = usbd_transfer(cmd->xfer);
850 	if (error != 0) {
851 		splx(s);
852 		printf("%s: could not send command 0x%x (error=%s)\n",
853 		    sc->sc_dev.dv_xname, code, usbd_errstr(error));
854 		return EIO;
855 	}
856 	if (!cmd->done)
857 		error = tsleep(cmd, PCATCH, "otuscmd", hz);
858 	cmd->odata = NULL;	/* In case answer is received too late. */
859 	splx(s);
860 	if (error != 0) {
861 		printf("%s: timeout waiting for command 0x%02x reply\n",
862 		    sc->sc_dev.dv_xname, code);
863 	}
864 	return error;
865 }
866 
867 void
868 otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val)
869 {
870 	sc->write_buf[sc->write_idx].reg = htole32(reg);
871 	sc->write_buf[sc->write_idx].val = htole32(val);
872 
873 	if (++sc->write_idx > AR_MAX_WRITE_IDX)
874 		(void)otus_write_barrier(sc);
875 }
876 
877 int
878 otus_write_barrier(struct otus_softc *sc)
879 {
880 	int error;
881 
882 	if (sc->write_idx == 0)
883 		return 0;	/* Nothing to flush. */
884 
885 	error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf,
886 	    sizeof (sc->write_buf[0]) * sc->write_idx, NULL);
887 	sc->write_idx = 0;
888 	return error;
889 }
890 
891 struct ieee80211_node *
892 otus_node_alloc(struct ieee80211com *ic)
893 {
894 	return malloc(sizeof (struct otus_node), M_DEVBUF, M_NOWAIT | M_ZERO);
895 }
896 
897 int
898 otus_media_change(struct ifnet *ifp)
899 {
900 	struct otus_softc *sc = ifp->if_softc;
901 	struct ieee80211com *ic = &sc->sc_ic;
902 	uint8_t rate, ridx;
903 	int error;
904 
905 	error = ieee80211_media_change(ifp);
906 	if (error != ENETRESET)
907 		return error;
908 
909 	if (ic->ic_fixed_rate != -1) {
910 		rate = ic->ic_sup_rates[ic->ic_curmode].
911 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
912 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
913 			if (otus_rates[ridx].rate == rate)
914 				break;
915 		sc->fixed_ridx = ridx;
916 	}
917 
918 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
919 		error = otus_init(ifp);
920 
921 	return error;
922 }
923 
924 int
925 otus_read_eeprom(struct otus_softc *sc)
926 {
927 	uint32_t regs[8], reg;
928 	uint8_t *eep;
929 	int i, j, error;
930 
931 	/* Read EEPROM by blocks of 32 bytes. */
932 	eep = (uint8_t *)&sc->eeprom;
933 	reg = AR_EEPROM_OFFSET;
934 	for (i = 0; i < sizeof (sc->eeprom) / 32; i++) {
935 		for (j = 0; j < 8; j++, reg += 4)
936 			regs[j] = htole32(reg);
937 		error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep);
938 		if (error != 0)
939 			break;
940 		eep += 32;
941 	}
942 	return error;
943 }
944 
945 void
946 otus_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
947 {
948 	struct otus_softc *sc = ic->ic_softc;
949 	struct otus_node *on = (void *)ni;
950 	struct ieee80211_rateset *rs = &ni->ni_rates;
951 	uint8_t rate;
952 	int ridx, i;
953 
954 	DPRINTF(("new assoc isnew=%d addr=%s\n",
955 	    isnew, ether_sprintf(ni->ni_macaddr)));
956 
957 	ieee80211_amrr_node_init(&sc->amrr, &on->amn);
958 	/* Start at lowest available bit-rate, AMRR will raise. */
959 	ni->ni_txrate = 0;
960 
961 	for (i = 0; i < rs->rs_nrates; i++) {
962 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
963 		/* Convert 802.11 rate to hardware rate index. */
964 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
965 			if (otus_rates[ridx].rate == rate)
966 				break;
967 		on->ridx[i] = ridx;
968 		DPRINTF(("rate=0x%02x ridx=%d\n",
969 		    rs->rs_rates[i], on->ridx[i]));
970 	}
971 }
972 
973 /* ARGSUSED */
974 void
975 otus_intr(struct usbd_xfer *xfer, void *priv, usbd_status status)
976 {
977 #if 0
978 	struct otus_softc *sc = priv;
979 	int len;
980 
981 	/*
982 	 * The Rx intr pipe is unused with current firmware.  Notifications
983 	 * and replies to commands are sent through the Rx bulk pipe instead
984 	 * (with a magic PLCP header.)
985 	 */
986 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
987 		DPRINTF(("intr status=%d\n", status));
988 		if (status == USBD_STALLED)
989 			usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
990 		return;
991 	}
992 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
993 
994 	otus_cmd_rxeof(sc, sc->ibuf, len);
995 #endif
996 }
997 
998 void
999 otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
1000 {
1001 	struct ieee80211com *ic = &sc->sc_ic;
1002 	struct otus_tx_cmd *cmd;
1003 	struct ar_cmd_hdr *hdr;
1004 	int s;
1005 
1006 	if (__predict_false(len < sizeof (*hdr))) {
1007 		DPRINTF(("cmd too small %d\n", len));
1008 		return;
1009 	}
1010 	hdr = (struct ar_cmd_hdr *)buf;
1011 	if (__predict_false(sizeof (*hdr) + hdr->len > len ||
1012 	    sizeof (*hdr) + hdr->len > 64)) {
1013 		DPRINTF(("cmd too large %d\n", hdr->len));
1014 		return;
1015 	}
1016 
1017 	if ((hdr->code & 0xc0) != 0xc0) {
1018 		DPRINTFN(2, ("received reply code=0x%02x len=%d token=%d\n",
1019 		    hdr->code, hdr->len, hdr->token));
1020 		cmd = &sc->tx_cmd;
1021 		if (__predict_false(hdr->token != cmd->token))
1022 			return;
1023 		/* Copy answer into caller's supplied buffer. */
1024 		if (cmd->odata != NULL)
1025 			memcpy(cmd->odata, &hdr[1], hdr->len);
1026 		cmd->done = 1;
1027 		wakeup(cmd);
1028 		return;
1029 	}
1030 
1031 	/* Received unsolicited notification. */
1032 	DPRINTF(("received notification code=0x%02x len=%d\n",
1033 	    hdr->code, hdr->len));
1034 	switch (hdr->code & 0x3f) {
1035 	case AR_EVT_BEACON:
1036 		break;
1037 	case AR_EVT_TX_COMP:
1038 	{
1039 		struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1];
1040 		struct ieee80211_node *ni;
1041 		struct otus_node *on;
1042 
1043 		DPRINTF(("tx completed %s status=%d phy=0x%x\n",
1044 		    ether_sprintf(tx->macaddr), letoh16(tx->status),
1045 		    letoh32(tx->phy)));
1046 		s = splnet();
1047 #ifdef notyet
1048 #ifndef IEEE80211_STA_ONLY
1049 		if (ic->ic_opmode != IEEE80211_M_STA) {
1050 			ni = ieee80211_find_node(ic, tx->macaddr);
1051 			if (__predict_false(ni == NULL)) {
1052 				splx(s);
1053 				break;
1054 			}
1055 		} else
1056 #endif
1057 #endif
1058 			ni = ic->ic_bss;
1059 		/* Update rate control statistics. */
1060 		on = (void *)ni;
1061 		/* NB: we do not set the TX_MAC_RATE_PROBING flag. */
1062 		if (__predict_true(tx->status != 0))
1063 			on->amn.amn_retrycnt++;
1064 		splx(s);
1065 		break;
1066 	}
1067 	case AR_EVT_TBTT:
1068 		break;
1069 	}
1070 }
1071 
1072 void
1073 otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
1074 {
1075 	struct ieee80211com *ic = &sc->sc_ic;
1076 	struct ifnet *ifp = &ic->ic_if;
1077 	struct ieee80211_rxinfo rxi;
1078 	struct ieee80211_node *ni;
1079 	struct ar_rx_tail *tail;
1080 	struct ieee80211_frame *wh;
1081 	struct mbuf *m;
1082 	uint8_t *plcp;
1083 	int s, mlen, align;
1084 
1085 	if (__predict_false(len < AR_PLCP_HDR_LEN)) {
1086 		DPRINTF(("sub-xfer too short %d\n", len));
1087 		return;
1088 	}
1089 	plcp = buf;
1090 
1091 	/* All bits in the PLCP header are set to 1 for non-MPDU. */
1092 	if (memcmp(plcp, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) {
1093 		otus_cmd_rxeof(sc, plcp + AR_PLCP_HDR_LEN,
1094 		    len - AR_PLCP_HDR_LEN);
1095 		return;
1096 	}
1097 
1098 	/* Received MPDU. */
1099 	if (__predict_false(len < AR_PLCP_HDR_LEN + sizeof (*tail))) {
1100 		DPRINTF(("MPDU too short %d\n", len));
1101 		ifp->if_ierrors++;
1102 		return;
1103 	}
1104 	tail = (struct ar_rx_tail *)(plcp + len - sizeof (*tail));
1105 
1106 	/* Discard error frames. */
1107 	if (__predict_false(tail->error != 0)) {
1108 		DPRINTF(("error frame 0x%02x\n", tail->error));
1109 		if (tail->error & AR_RX_ERROR_FCS) {
1110 			DPRINTFN(3, ("bad FCS\n"));
1111 		} else if (tail->error & AR_RX_ERROR_MMIC) {
1112 			/* Report Michael MIC failures to net80211. */
1113 			ic->ic_stats.is_rx_locmicfail++;
1114 			ieee80211_michael_mic_failure(ic, 0);
1115 		}
1116 		ifp->if_ierrors++;
1117 		return;
1118 	}
1119 	/* Compute MPDU's length. */
1120 	mlen = len - AR_PLCP_HDR_LEN - sizeof (*tail);
1121 	/* Make sure there's room for an 802.11 header + FCS. */
1122 	if (__predict_false(mlen < IEEE80211_MIN_LEN)) {
1123 		ifp->if_ierrors++;
1124 		return;
1125 	}
1126 	mlen -= IEEE80211_CRC_LEN;	/* strip 802.11 FCS */
1127 
1128 	wh = (struct ieee80211_frame *)(plcp + AR_PLCP_HDR_LEN);
1129 	/* Provide a 32-bit aligned protocol header to the stack. */
1130 	align = (ieee80211_has_qos(wh) ^ ieee80211_has_addr4(wh)) ? 2 : 0;
1131 
1132 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1133 	if (__predict_false(m == NULL)) {
1134 		ifp->if_ierrors++;
1135 		return;
1136 	}
1137 	if (align + mlen > MHLEN) {
1138 		MCLGET(m, M_DONTWAIT);
1139 		if (__predict_false(!(m->m_flags & M_EXT))) {
1140 			ifp->if_ierrors++;
1141 			m_freem(m);
1142 			return;
1143 		}
1144 	}
1145 	/* Finalize mbuf. */
1146 	m->m_pkthdr.rcvif = ifp;
1147 	m->m_data += align;
1148 	memcpy(mtod(m, caddr_t), wh, mlen);
1149 	m->m_pkthdr.len = m->m_len = mlen;
1150 
1151 #if NBPFILTER > 0
1152 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1153 		struct otus_rx_radiotap_header *tap = &sc->sc_rxtap;
1154 		struct mbuf mb;
1155 
1156 		tap->wr_flags = 0;
1157 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1158 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1159 		tap->wr_antsignal = tail->rssi;
1160 		tap->wr_rate = 2;	/* In case it can't be found below. */
1161 		switch (tail->status & AR_RX_STATUS_MT_MASK) {
1162 		case AR_RX_STATUS_MT_CCK:
1163 			switch (plcp[0]) {
1164 			case  10: tap->wr_rate =   2; break;
1165 			case  20: tap->wr_rate =   4; break;
1166 			case  55: tap->wr_rate =  11; break;
1167 			case 110: tap->wr_rate =  22; break;
1168 			}
1169 			if (tail->status & AR_RX_STATUS_SHPREAMBLE)
1170 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1171 			break;
1172 		case AR_RX_STATUS_MT_OFDM:
1173 			switch (plcp[0] & 0xf) {
1174 			case 0xb: tap->wr_rate =  12; break;
1175 			case 0xf: tap->wr_rate =  18; break;
1176 			case 0xa: tap->wr_rate =  24; break;
1177 			case 0xe: tap->wr_rate =  36; break;
1178 			case 0x9: tap->wr_rate =  48; break;
1179 			case 0xd: tap->wr_rate =  72; break;
1180 			case 0x8: tap->wr_rate =  96; break;
1181 			case 0xc: tap->wr_rate = 108; break;
1182 			}
1183 			break;
1184 		}
1185 		mb.m_data = (caddr_t)tap;
1186 		mb.m_len = sc->sc_rxtap_len;
1187 		mb.m_next = m;
1188 		mb.m_nextpkt = NULL;
1189 		mb.m_type = 0;
1190 		mb.m_flags = 0;
1191 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1192 	}
1193 #endif
1194 
1195 	s = splnet();
1196 	ni = ieee80211_find_rxnode(ic, wh);
1197 	rxi.rxi_flags = 0;
1198 	rxi.rxi_rssi = tail->rssi;
1199 	rxi.rxi_tstamp = 0;	/* unused */
1200 	ieee80211_input(ifp, m, ni, &rxi);
1201 
1202 	/* Node is no longer needed. */
1203 	ieee80211_release_node(ic, ni);
1204 	splx(s);
1205 }
1206 
1207 void
1208 otus_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1209 {
1210 	struct otus_rx_data *data = priv;
1211 	struct otus_softc *sc = data->sc;
1212 	caddr_t buf = data->buf;
1213 	struct ar_rx_head *head;
1214 	uint16_t hlen;
1215 	int len;
1216 
1217 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1218 		DPRINTF(("RX status=%d\n", status));
1219 		if (status == USBD_STALLED)
1220 			usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1221 		if (status != USBD_CANCELLED)
1222 			goto resubmit;
1223 		return;
1224 	}
1225 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1226 
1227 	while (len >= sizeof (*head)) {
1228 		head = (struct ar_rx_head *)buf;
1229 		if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) {
1230 			DPRINTF(("tag not valid 0x%x\n", letoh16(head->tag)));
1231 			break;
1232 		}
1233 		hlen = letoh16(head->len);
1234 		if (__predict_false(sizeof (*head) + hlen > len)) {
1235 			DPRINTF(("xfer too short %d/%d\n", len, hlen));
1236 			break;
1237 		}
1238 		/* Process sub-xfer. */
1239 		otus_sub_rxeof(sc, (uint8_t *)&head[1], hlen);
1240 
1241 		/* Next sub-xfer is aligned on a 32-bit boundary. */
1242 		hlen = (sizeof (*head) + hlen + 3) & ~3;
1243 		buf += hlen;
1244 		len -= hlen;
1245 	}
1246 
1247  resubmit:
1248 	usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, OTUS_RXBUFSZ,
1249 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, otus_rxeof);
1250 	(void)usbd_transfer(data->xfer);
1251 }
1252 
1253 void
1254 otus_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1255 {
1256 	struct otus_tx_data *data = priv;
1257 	struct otus_softc *sc = data->sc;
1258 	struct ieee80211com *ic = &sc->sc_ic;
1259 	struct ifnet *ifp = &ic->ic_if;
1260 	int s;
1261 
1262 	s = splnet();
1263 	sc->tx_queued--;
1264 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1265 		DPRINTF(("TX status=%d\n", status));
1266 		if (status == USBD_STALLED)
1267 			usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1268 		ifp->if_oerrors++;
1269 		splx(s);
1270 		return;
1271 	}
1272 	sc->sc_tx_timer = 0;
1273 	ifp->if_opackets++;
1274 	ifp->if_flags &= ~IFF_OACTIVE;
1275 	otus_start(ifp);
1276 	splx(s);
1277 }
1278 
1279 int
1280 otus_tx(struct otus_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1281 {
1282 	struct ieee80211com *ic = &sc->sc_ic;
1283 	struct otus_node *on = (void *)ni;
1284 	struct otus_tx_data *data;
1285 	struct ieee80211_frame *wh;
1286 	struct ieee80211_key *k;
1287 	struct ar_tx_head *head;
1288 	uint32_t phyctl;
1289 	uint16_t macctl, qos;
1290 	uint8_t tid, qid;
1291 	int error, ridx, hasqos, xferlen;
1292 
1293 	wh = mtod(m, struct ieee80211_frame *);
1294 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1295 		k = ieee80211_get_txkey(ic, wh, ni);
1296 		if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1297 			return ENOBUFS;
1298 		wh = mtod(m, struct ieee80211_frame *);
1299 	}
1300 
1301 	if ((hasqos = ieee80211_has_qos(wh))) {
1302 		qos = ieee80211_get_qos(wh);
1303 		tid = qos & IEEE80211_QOS_TID;
1304 		qid = ieee80211_up_to_ac(ic, tid);
1305 	} else {
1306 		qos = 0;
1307 		qid = EDCA_AC_BE;
1308 	}
1309 
1310 	/* Pickup a rate index. */
1311 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1312 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA)
1313 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1314 		    OTUS_RIDX_OFDM6 : OTUS_RIDX_CCK1;
1315 	else if (ic->ic_fixed_rate != -1)
1316 		ridx = sc->fixed_ridx;
1317 	else
1318 		ridx = on->ridx[ni->ni_txrate];
1319 
1320 	phyctl = 0;
1321 	macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid);
1322 
1323 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1324 	    (hasqos && ((qos & IEEE80211_QOS_ACK_POLICY_MASK) ==
1325 	     IEEE80211_QOS_ACK_POLICY_NOACK)))
1326 		macctl |= AR_TX_MAC_NOACK;
1327 
1328 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1329 		if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
1330 			macctl |= AR_TX_MAC_RTS;
1331 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1332 		    ridx >= OTUS_RIDX_OFDM6) {
1333 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1334 				macctl |= AR_TX_MAC_CTS;
1335 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1336 				macctl |= AR_TX_MAC_RTS;
1337 		}
1338 	}
1339 
1340 	phyctl |= AR_TX_PHY_MCS(otus_rates[ridx].mcs);
1341 	if (ridx >= OTUS_RIDX_OFDM6) {
1342 		phyctl |= AR_TX_PHY_MT_OFDM;
1343 		if (ridx <= OTUS_RIDX_OFDM24)
1344 			phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1345 		else
1346 			phyctl |= AR_TX_PHY_ANTMSK(1);
1347 	} else {	/* CCK */
1348 		phyctl |= AR_TX_PHY_MT_CCK;
1349 		phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1350 	}
1351 
1352 	/* Update rate control stats for frames that are ACK'ed. */
1353 	if (!(macctl & AR_TX_MAC_NOACK))
1354 		((struct otus_node *)ni)->amn.amn_txcnt++;
1355 
1356 	data = &sc->tx_data[sc->tx_cur];
1357 	/* Fill Tx descriptor. */
1358 	head = (struct ar_tx_head *)data->buf;
1359 	head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN);
1360 	head->macctl = htole16(macctl);
1361 	head->phyctl = htole32(phyctl);
1362 
1363 #if NBPFILTER > 0
1364 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1365 		struct otus_tx_radiotap_header *tap = &sc->sc_txtap;
1366 		struct mbuf mb;
1367 
1368 		tap->wt_flags = 0;
1369 		tap->wt_rate = otus_rates[ridx].rate;
1370 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1371 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1372 
1373 		mb.m_data = (caddr_t)tap;
1374 		mb.m_len = sc->sc_txtap_len;
1375 		mb.m_next = m;
1376 		mb.m_nextpkt = NULL;
1377 		mb.m_type = 0;
1378 		mb.m_flags = 0;
1379 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1380 	}
1381 #endif
1382 
1383 	xferlen = sizeof (*head) + m->m_pkthdr.len;
1384 	m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]);
1385 	m_freem(m);
1386 
1387 	DPRINTFN(5, ("tx queued=%d len=%d mac=0x%04x phy=0x%08x rate=%d\n",
1388 	    sc->tx_queued, head->len, head->macctl, head->phyctl,
1389 	    otus_rates[ridx].rate));
1390 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1391 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_TX_TIMEOUT, otus_txeof);
1392 	error = usbd_transfer(data->xfer);
1393 	if (__predict_false(error != USBD_IN_PROGRESS && error != 0))
1394 		return error;
1395 
1396 	ieee80211_release_node(ic, ni);
1397 
1398 	sc->tx_queued++;
1399 	sc->tx_cur = (sc->tx_cur + 1) % OTUS_TX_DATA_LIST_COUNT;
1400 
1401 	return 0;
1402 }
1403 
1404 void
1405 otus_start(struct ifnet *ifp)
1406 {
1407 	struct otus_softc *sc = ifp->if_softc;
1408 	struct ieee80211com *ic = &sc->sc_ic;
1409 	struct ieee80211_node *ni;
1410 	struct mbuf *m;
1411 
1412 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1413 		return;
1414 
1415 	for (;;) {
1416 		if (sc->tx_queued >= OTUS_TX_DATA_LIST_COUNT) {
1417 			ifp->if_flags |= IFF_OACTIVE;
1418 			break;
1419 		}
1420 		/* Send pending management frames first. */
1421 		IF_DEQUEUE(&ic->ic_mgtq, m);
1422 		if (m != NULL) {
1423 			ni = m->m_pkthdr.ph_cookie;
1424 			goto sendit;
1425 		}
1426 		if (ic->ic_state != IEEE80211_S_RUN)
1427 			break;
1428 
1429 		/* Encapsulate and send data frames. */
1430 		IFQ_DEQUEUE(&ifp->if_snd, m);
1431 		if (m == NULL)
1432 			break;
1433 #if NBPFILTER > 0
1434 		if (ifp->if_bpf != NULL)
1435 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1436 #endif
1437 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1438 			continue;
1439 sendit:
1440 #if NBPFILTER > 0
1441 		if (ic->ic_rawbpf != NULL)
1442 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1443 #endif
1444 		if (otus_tx(sc, m, ni) != 0) {
1445 			ieee80211_release_node(ic, ni);
1446 			ifp->if_oerrors++;
1447 			continue;
1448 		}
1449 
1450 		sc->sc_tx_timer = 5;
1451 		ifp->if_timer = 1;
1452 	}
1453 }
1454 
1455 void
1456 otus_watchdog(struct ifnet *ifp)
1457 {
1458 	struct otus_softc *sc = ifp->if_softc;
1459 
1460 	ifp->if_timer = 0;
1461 
1462 	if (sc->sc_tx_timer > 0) {
1463 		if (--sc->sc_tx_timer == 0) {
1464 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1465 			/* otus_init(ifp); XXX needs a process context! */
1466 			ifp->if_oerrors++;
1467 			return;
1468 		}
1469 		ifp->if_timer = 1;
1470 	}
1471 	ieee80211_watchdog(ifp);
1472 }
1473 
1474 int
1475 otus_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1476 {
1477 	struct otus_softc *sc = ifp->if_softc;
1478 	struct ieee80211com *ic = &sc->sc_ic;
1479 	struct ifaddr *ifa;
1480 	struct ifreq *ifr;
1481 	int s, error = 0;
1482 
1483 	if (usbd_is_dying(sc->sc_udev))
1484 		return ENXIO;
1485 
1486 	usbd_ref_incr(sc->sc_udev);
1487 
1488 	s = splnet();
1489 
1490 	switch (cmd) {
1491 	case SIOCSIFADDR:
1492 		ifa = (struct ifaddr *)data;
1493 		ifp->if_flags |= IFF_UP;
1494 #ifdef INET
1495 		if (ifa->ifa_addr->sa_family == AF_INET)
1496 			arp_ifinit(&ic->ic_ac, ifa);
1497 #endif
1498 		/* FALLTHROUGH */
1499 	case SIOCSIFFLAGS:
1500 		if (ifp->if_flags & IFF_UP) {
1501 			if ((ifp->if_flags & IFF_RUNNING) &&
1502 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1503 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1504 				otus_set_multi(sc);
1505 			} else if (!(ifp->if_flags & IFF_RUNNING))
1506 				otus_init(ifp);
1507 
1508 		} else if (ifp->if_flags & IFF_RUNNING)
1509 			otus_stop(ifp);
1510 
1511 		sc->sc_if_flags = ifp->if_flags;
1512 		break;
1513 	case SIOCADDMULTI:
1514 	case SIOCDELMULTI:
1515 		ifr = (struct ifreq *)data;
1516 		error = (cmd == SIOCADDMULTI) ?
1517 		    ether_addmulti(ifr, &ic->ic_ac) :
1518 		    ether_delmulti(ifr, &ic->ic_ac);
1519 		if (error == ENETRESET)
1520 			error = 0;
1521 		break;
1522 	case SIOCS80211CHANNEL:
1523 		error = ieee80211_ioctl(ifp, cmd, data);
1524 		if (error == ENETRESET &&
1525 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1526 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1527 			    (IFF_UP | IFF_RUNNING))
1528 				otus_set_chan(sc, ic->ic_ibss_chan, 0);
1529 			error = 0;
1530 		}
1531 		break;
1532 	default:
1533 		error = ieee80211_ioctl(ifp, cmd, data);
1534 	}
1535 
1536 	if (error == ENETRESET) {
1537 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1538 		    (IFF_UP | IFF_RUNNING))
1539 			otus_init(ifp);
1540 		error = 0;
1541 	}
1542 
1543 	splx(s);
1544 
1545 	usbd_ref_decr(sc->sc_udev);
1546 
1547 	return error;
1548 }
1549 
1550 int
1551 otus_set_multi(struct otus_softc *sc)
1552 {
1553 	struct arpcom *ac = &sc->sc_ic.ic_ac;
1554 	struct ifnet *ifp = &ac->ac_if;
1555 	struct ether_multi *enm;
1556 	struct ether_multistep step;
1557 	uint32_t lo, hi;
1558 	uint8_t bit;
1559 
1560 	if (ac->ac_multirangecnt > 0)
1561 		ifp->if_flags |= IFF_ALLMULTI;
1562 
1563 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1564 		lo = hi = 0xffffffff;
1565 		goto done;
1566 	}
1567 	lo = hi = 0;
1568 	ETHER_FIRST_MULTI(step, ac, enm);
1569 	while (enm != NULL) {
1570 		bit = enm->enm_addrlo[5] >> 2;
1571 		if (bit < 32)
1572 			lo |= 1 << bit;
1573 		else
1574 			hi |= 1 << (bit - 32);
1575 		ETHER_NEXT_MULTI(step, enm);
1576 	}
1577  done:
1578 	hi |= 1U << 31;	/* Make sure the broadcast bit is set. */
1579 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, lo);
1580 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hi);
1581 	return otus_write_barrier(sc);
1582 }
1583 
1584 void
1585 otus_updateedca(struct ieee80211com *ic)
1586 {
1587 	/* Do it in a process context. */
1588 	otus_do_async(ic->ic_softc, otus_updateedca_cb, NULL, 0);
1589 }
1590 
1591 /* ARGSUSED */
1592 void
1593 otus_updateedca_cb(struct otus_softc *sc, void *arg)
1594 {
1595 #define EXP2(val)	((1 << (val)) - 1)
1596 #define AIFS(val)	((val) * 9 + 10)
1597 	struct ieee80211com *ic = &sc->sc_ic;
1598 	const struct ieee80211_edca_ac_params *edca;
1599 	int s;
1600 
1601 	s = splnet();
1602 
1603 	edca = (ic->ic_flags & IEEE80211_F_QOS) ?
1604 	    ic->ic_edca_ac : otus_edca_def;
1605 
1606 	/* Set CWmin/CWmax values. */
1607 	otus_write(sc, AR_MAC_REG_AC0_CW,
1608 	    EXP2(edca[EDCA_AC_BE].ac_ecwmax) << 16 |
1609 	    EXP2(edca[EDCA_AC_BE].ac_ecwmin));
1610 	otus_write(sc, AR_MAC_REG_AC1_CW,
1611 	    EXP2(edca[EDCA_AC_BK].ac_ecwmax) << 16 |
1612 	    EXP2(edca[EDCA_AC_BK].ac_ecwmin));
1613 	otus_write(sc, AR_MAC_REG_AC2_CW,
1614 	    EXP2(edca[EDCA_AC_VI].ac_ecwmax) << 16 |
1615 	    EXP2(edca[EDCA_AC_VI].ac_ecwmin));
1616 	otus_write(sc, AR_MAC_REG_AC3_CW,
1617 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1618 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1619 	otus_write(sc, AR_MAC_REG_AC4_CW,		/* Special TXQ. */
1620 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1621 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1622 
1623 	/* Set AIFSN values. */
1624 	otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS,
1625 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) << 24 |
1626 	    AIFS(edca[EDCA_AC_BK].ac_aifsn) << 12 |
1627 	    AIFS(edca[EDCA_AC_BE].ac_aifsn));
1628 	otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS,
1629 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) << 16 |	/* Special TXQ. */
1630 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) <<  4 |
1631 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) >>  8);
1632 
1633 	/* Set TXOP limit. */
1634 	otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP,
1635 	    edca[EDCA_AC_BK].ac_txoplimit << 16 |
1636 	    edca[EDCA_AC_BE].ac_txoplimit);
1637 	otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP,
1638 	    edca[EDCA_AC_VO].ac_txoplimit << 16 |
1639 	    edca[EDCA_AC_VI].ac_txoplimit);
1640 
1641 	splx(s);
1642 
1643 	(void)otus_write_barrier(sc);
1644 #undef AIFS
1645 #undef EXP2
1646 }
1647 
1648 void
1649 otus_updateslot(struct ieee80211com *ic)
1650 {
1651 	/* Do it in a process context. */
1652 	otus_do_async(ic->ic_softc, otus_updateslot_cb, NULL, 0);
1653 }
1654 
1655 /* ARGSUSED */
1656 void
1657 otus_updateslot_cb(struct otus_softc *sc, void *arg)
1658 {
1659 	uint32_t slottime;
1660 
1661 	slottime = (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1662 	otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10);
1663 	(void)otus_write_barrier(sc);
1664 }
1665 
1666 int
1667 otus_init_mac(struct otus_softc *sc)
1668 {
1669 	int error;
1670 
1671 	otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40);
1672 	otus_write(sc, AR_MAC_REG_RETRY_MAX, 0);
1673 	otus_write(sc, AR_MAC_REG_SNIFFER, 0x2000000);
1674 	otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80);
1675 	otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70);
1676 	otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000);
1677 	otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10);
1678 	otus_write(sc, 0x1c3b2c, 0x19000000);
1679 	/* NAV protects ACK only (in TXOP). */
1680 	otus_write(sc, 0x1c3b38, 0x201);
1681 	/* Set beacon Tx power to 0x7. */
1682 	otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170);
1683 	otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105);
1684 	otus_write(sc, 0x1c3b9c, 0x10000a);
1685 	/* Filter any control frames, BAR is bit 24. */
1686 	otus_write(sc, 0x1c368c, 0x0500ffff);
1687 	otus_write(sc, 0x1c3c40, 0x1);
1688 	otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f);
1689 	otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f);
1690 	otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb);
1691 	otus_write(sc, 0x1c3694, 0x4003c1e);
1692 	/* Enable LED0 and LED1. */
1693 	otus_write(sc, 0x1d0100, 0x3);
1694 	otus_write(sc, 0x1d0104, 0x3);
1695 	/* Switch MAC to OTUS interface. */
1696 	otus_write(sc, 0x1c3600, 0x3);
1697 	otus_write(sc, 0x1c3c50, 0xffff);
1698 	otus_write(sc, 0x1c3680, 0xf00008);
1699 	/* Disable Rx timeout (workaround). */
1700 	otus_write(sc, 0x1c362c, 0);
1701 
1702 	/* Set USB Rx stream mode maximum frame number to 2. */
1703 	otus_write(sc, 0x1e1110, 0x4);
1704 	/* Set USB Rx stream mode timeout to 10us. */
1705 	otus_write(sc, 0x1e1114, 0x80);
1706 
1707 	/* Set clock frequency to 88/80MHz. */
1708 	otus_write(sc, 0x1d4008, 0x73);
1709 	/* Set WLAN DMA interrupt mode: generate intr per packet. */
1710 	otus_write(sc, 0x1c3d7c, 0x110011);
1711 	otus_write(sc, 0x1c3bb0, 0x4);
1712 	otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48);
1713 
1714 	/* Disable HW decryption for now. */
1715 	otus_write(sc, 0x1c3678, 0x78);
1716 
1717 	if ((error = otus_write_barrier(sc)) != 0)
1718 		return error;
1719 
1720 	/* Set default EDCA parameters. */
1721 	otus_updateedca_cb(sc, NULL);
1722 
1723 	return 0;
1724 }
1725 
1726 /*
1727  * Return default value for PHY register based on current operating mode.
1728  */
1729 uint32_t
1730 otus_phy_get_def(struct otus_softc *sc, uint32_t reg)
1731 {
1732 	int i;
1733 
1734 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1735 		if (AR_PHY(ar5416_phy_regs[i]) == reg)
1736 			return sc->phy_vals[i];
1737 	return 0;	/* Register not found. */
1738 }
1739 
1740 /*
1741  * Update PHY's programming based on vendor-specific data stored in EEPROM.
1742  * This is for FEM-type devices only.
1743  */
1744 int
1745 otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c)
1746 {
1747 	const struct ModalEepHeader *eep;
1748 	uint32_t tmp, offset;
1749 
1750 	if (IEEE80211_IS_CHAN_5GHZ(c))
1751 		eep = &sc->eeprom.modalHeader[0];
1752 	else
1753 		eep = &sc->eeprom.modalHeader[1];
1754 
1755 	/* Offset of chain 2. */
1756 	offset = 2 * 0x1000;
1757 
1758 	tmp = letoh32(eep->antCtrlCommon);
1759 	otus_write(sc, AR_PHY_SWITCH_COM, tmp);
1760 
1761 	tmp = letoh32(eep->antCtrlChain[0]);
1762 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp);
1763 
1764 	tmp = letoh32(eep->antCtrlChain[1]);
1765 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp);
1766 
1767 	if (1 /* sc->sc_sco == AR_SCO_SCN */) {
1768 		tmp = otus_phy_get_def(sc, AR_PHY_SETTLING);
1769 		tmp &= ~(0x7f << 7);
1770 		tmp |= (eep->switchSettling & 0x7f) << 7;
1771 		otus_write(sc, AR_PHY_SETTLING, tmp);
1772 	}
1773 
1774 	tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ);
1775 	tmp &= ~0xffff;
1776 	tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize;
1777 	otus_write(sc, AR_PHY_DESIRED_SZ, tmp);
1778 
1779 	tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 |
1780 	      eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn;
1781 	otus_write(sc, AR_PHY_RF_CTL4, tmp);
1782 
1783 	tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3);
1784 	tmp &= ~(0xff << 16);
1785 	tmp |= eep->txEndToRxOn << 16;
1786 	otus_write(sc, AR_PHY_RF_CTL3, tmp);
1787 
1788 	tmp = otus_phy_get_def(sc, AR_PHY_CCA);
1789 	tmp &= ~(0x7f << 12);
1790 	tmp |= (eep->thresh62 & 0x7f) << 12;
1791 	otus_write(sc, AR_PHY_CCA, tmp);
1792 
1793 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN);
1794 	tmp &= ~(0x3f << 12);
1795 	tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12;
1796 	otus_write(sc, AR_PHY_RXGAIN, tmp);
1797 
1798 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset);
1799 	tmp &= ~(0x3f << 12);
1800 	tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12;
1801 	otus_write(sc, AR_PHY_RXGAIN + offset, tmp);
1802 
1803 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ);
1804 	tmp &= ~(0x3f << 18);
1805 	tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18;
1806 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1807 		tmp &= ~(0xf << 10);
1808 		tmp |= (eep->bswMargin[0] & 0xf) << 10;
1809 	}
1810 	otus_write(sc, AR_PHY_GAIN_2GHZ, tmp);
1811 
1812 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset);
1813 	tmp &= ~(0x3f << 18);
1814 	tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18;
1815 	otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp);
1816 
1817 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4);
1818 	tmp &= ~(0x3f << 5 | 0x1f);
1819 	tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f);
1820 	otus_write(sc, AR_PHY_TIMING_CTRL4, tmp);
1821 
1822 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset);
1823 	tmp &= ~(0x3f << 5 | 0x1f);
1824 	tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f);
1825 	otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp);
1826 
1827 	tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1);
1828 	tmp &= ~(0xf << 16);
1829 	tmp |= (eep->xpd & 0xf) << 16;
1830 	otus_write(sc, AR_PHY_TPCRG1, tmp);
1831 
1832 	return otus_write_barrier(sc);
1833 }
1834 
1835 int
1836 otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c)
1837 {
1838 	const uint32_t *vals;
1839 	int error, i;
1840 
1841 	/* Select PHY programming based on band and bandwidth. */
1842 	if (IEEE80211_IS_CHAN_2GHZ(c))
1843 		vals = ar5416_phy_vals_2ghz_20mhz;
1844 	else
1845 		vals = ar5416_phy_vals_5ghz_20mhz;
1846 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1847 		otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]);
1848 	sc->phy_vals = vals;
1849 
1850 	if (sc->eeprom.baseEepHeader.deviceType == 0x80)	/* FEM */
1851 		if ((error = otus_set_board_values(sc, c)) != 0)
1852 			return error;
1853 
1854 	/* Initial Tx power settings. */
1855 	otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f);
1856 	otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f);
1857 	otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f);
1858 	otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f);
1859 	otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f);
1860 	otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f);
1861 	otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f);
1862 	otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f);
1863 	otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f);
1864 	otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f);
1865 
1866 	if (IEEE80211_IS_CHAN_2GHZ(c))
1867 		otus_write(sc, 0x1d4014, 0x5163);
1868 	else
1869 		otus_write(sc, 0x1d4014, 0x5143);
1870 
1871 	return otus_write_barrier(sc);
1872 }
1873 
1874 static __inline uint8_t
1875 otus_reverse_bits(uint8_t v)
1876 {
1877 	v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
1878 	v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
1879 	v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
1880 	return v;
1881 }
1882 
1883 int
1884 otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c)
1885 {
1886 	uint8_t chansel, d0, d1;
1887 	uint16_t data;
1888 	int error;
1889 
1890 	d0 = 0;
1891 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1892 		chansel = (c->ic_freq - 4800) / 5;
1893 		if (chansel & 1)
1894 			d0 |= AR_BANK4_AMODE_REFSEL(2);
1895 		else
1896 			d0 |= AR_BANK4_AMODE_REFSEL(1);
1897 	} else {
1898 		d0 |= AR_BANK4_AMODE_REFSEL(2);
1899 		if (c->ic_freq == 2484) {	/* CH 14 */
1900 			d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ;
1901 			chansel = 10 + (c->ic_freq - 2274) / 5;
1902 		} else
1903 			chansel = 16 + (c->ic_freq - 2272) / 5;
1904 		chansel <<= 2;
1905 	}
1906 	d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP;
1907 	d1 = otus_reverse_bits(chansel);
1908 
1909 	/* Write bits 0-4 of d0 and d1. */
1910 	data = (d1 & 0x1f) << 5 | (d0 & 0x1f);
1911 	otus_write(sc, AR_PHY(44), data);
1912 	/* Write bits 5-7 of d0 and d1. */
1913 	data = (d1 >> 5) << 5 | (d0 >> 5);
1914 	otus_write(sc, AR_PHY(58), data);
1915 
1916 	if ((error = otus_write_barrier(sc)) == 0)
1917 		usbd_delay_ms(sc->sc_udev, 10);
1918 	return error;
1919 }
1920 
1921 void
1922 otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1923 {
1924 #define COEFF_SCALE_SHIFT	24
1925 	uint32_t exp, man;
1926 
1927 	/* exponent = 14 - floor(log2(coeff)) */
1928 	for (exp = 31; exp > 0; exp--)
1929 		if (coeff & (1 << exp))
1930 			break;
1931 	KASSERT(exp != 0);
1932 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
1933 
1934 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
1935 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1936 
1937 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1938 	*exponent = exp - 16;
1939 #undef COEFF_SCALE_SHIFT
1940 }
1941 
1942 int
1943 otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc)
1944 {
1945 	struct ieee80211com *ic = &sc->sc_ic;
1946 	struct ar_cmd_frequency cmd;
1947 	struct ar_rsp_frequency rsp;
1948 	const uint32_t *vals;
1949 	uint32_t coeff, exp, man, tmp;
1950 	uint8_t code;
1951 	int error, chan, i;
1952 
1953 	chan = ieee80211_chan2ieee(ic, c);
1954 	DPRINTF(("setting channel %d (%dMHz)\n", chan, c->ic_freq));
1955 
1956 	tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104;
1957 	otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp);
1958 	if ((error = otus_write_barrier(sc)) != 0)
1959 		return error;
1960 
1961 	/* Disable BB Heavy Clip. */
1962 	otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200);
1963 	if ((error = otus_write_barrier(sc)) != 0)
1964 		return error;
1965 
1966 	/* XXX Is that FREQ_START ? */
1967 	error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL);
1968 	if (error != 0)
1969 		return error;
1970 
1971 	/* Reprogram PHY and RF on channel band or bandwidth changes. */
1972 	if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) {
1973 		DPRINTF(("band switch\n"));
1974 
1975 		/* Cold/Warm reset BB/ADDA. */
1976 		otus_write(sc, 0x1d4004, sc->bb_reset ? 0x800 : 0x400);
1977 		if ((error = otus_write_barrier(sc)) != 0)
1978 			return error;
1979 		otus_write(sc, 0x1d4004, 0);
1980 		if ((error = otus_write_barrier(sc)) != 0)
1981 			return error;
1982 		sc->bb_reset = 0;
1983 
1984 		if ((error = otus_program_phy(sc, c)) != 0) {
1985 			printf("%s: could not program PHY\n",
1986 			    sc->sc_dev.dv_xname);
1987 			return error;
1988 		}
1989 
1990 		/* Select RF programming based on band. */
1991 		if (IEEE80211_IS_CHAN_5GHZ(c))
1992 			vals = ar5416_banks_vals_5ghz;
1993 		else
1994 			vals = ar5416_banks_vals_2ghz;
1995 		for (i = 0; i < nitems(ar5416_banks_regs); i++)
1996 			otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]);
1997 		if ((error = otus_write_barrier(sc)) != 0) {
1998 			printf("%s: could not program RF\n",
1999 			    sc->sc_dev.dv_xname);
2000 			return error;
2001 		}
2002 		code = AR_CMD_RF_INIT;
2003 	} else {
2004 		code = AR_CMD_FREQUENCY;
2005 	}
2006 
2007 	if ((error = otus_set_rf_bank4(sc, c)) != 0)
2008 		return error;
2009 
2010 	tmp = (sc->txmask == 0x5) ? 0x340 : 0x240;
2011 	otus_write(sc, AR_PHY_TURBO, tmp);
2012 	if ((error = otus_write_barrier(sc)) != 0)
2013 		return error;
2014 
2015 	/* Send firmware command to set channel. */
2016 	cmd.freq = htole32((uint32_t)c->ic_freq * 1000);
2017 	cmd.dynht2040 = htole32(0);
2018 	cmd.htena = htole32(1);
2019 	/* Set Delta Slope (exponent and mantissa). */
2020 	coeff = (100 << 24) / c->ic_freq;
2021 	otus_get_delta_slope(coeff, &exp, &man);
2022 	cmd.dsc_exp = htole32(exp);
2023 	cmd.dsc_man = htole32(man);
2024 	DPRINTF(("ds coeff=%u exp=%u man=%u\n", coeff, exp, man));
2025 	/* For Short GI, coeff is 9/10 that of normal coeff. */
2026 	coeff = (9 * coeff) / 10;
2027 	otus_get_delta_slope(coeff, &exp, &man);
2028 	cmd.dsc_shgi_exp = htole32(exp);
2029 	cmd.dsc_shgi_man = htole32(man);
2030 	DPRINTF(("ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man));
2031 	/* Set wait time for AGC and noise calibration (100 or 200ms). */
2032 	cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000);
2033 	DPRINTF(("%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY"));
2034 	error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp);
2035 	if (error != 0)
2036 		return error;
2037 	if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) {
2038 		DPRINTF(("status=0x%x\n", letoh32(rsp.status)));
2039 		/* Force cold reset on next channel. */
2040 		sc->bb_reset = 1;
2041 	}
2042 #ifdef OTUS_DEBUG
2043 	if (otus_debug) {
2044 		printf("calibration status=0x%x\n", letoh32(rsp.status));
2045 		for (i = 0; i < 2; i++) {	/* 2 Rx chains */
2046 			/* Sign-extend 9-bit NF values. */
2047 			printf("noisefloor chain %d=%d\n", i,
2048 			    (((int32_t)letoh32(rsp.nf[i])) << 4) >> 23);
2049 			printf("noisefloor ext chain %d=%d\n", i,
2050 			    ((int32_t)letoh32(rsp.nf_ext[i])) >> 23);
2051 		}
2052 	}
2053 #endif
2054 	sc->sc_curchan = c;
2055 	return 0;
2056 }
2057 
2058 #ifdef notyet
2059 int
2060 otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2061     struct ieee80211_key *k)
2062 {
2063 	struct otus_softc *sc = ic->ic_softc;
2064 	struct otus_cmd_key cmd;
2065 
2066 	/* Defer setting of WEP keys until interface is brought up. */
2067 	if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
2068 	    (IFF_UP | IFF_RUNNING))
2069 		return 0;
2070 
2071 	/* Do it in a process context. */
2072 	cmd.key = *k;
2073 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2074 	otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd);
2075 	return 0;
2076 }
2077 
2078 void
2079 otus_set_key_cb(struct otus_softc *sc, void *arg)
2080 {
2081 	struct otus_cmd_key *cmd = arg;
2082 	struct ieee80211_key *k = &cmd->key;
2083 	struct ar_cmd_ekey key;
2084 	uint16_t cipher;
2085 	int error;
2086 
2087 	memset(&key, 0, sizeof key);
2088 	if (k->k_flags & IEEE80211_KEY_GROUP) {
2089 		key.uid = htole16(k->k_id);
2090 		IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr);
2091 		key.macaddr[0] |= 0x80;
2092 	} else {
2093 		key.uid = htole16(OTUS_UID(cmd->associd));
2094 		IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr);
2095 	}
2096 	key.kix = htole16(0);
2097 	/* Map net80211 cipher to hardware. */
2098 	switch (k->k_cipher) {
2099 	case IEEE80211_CIPHER_WEP40:
2100 		cipher = AR_CIPHER_WEP64;
2101 		break;
2102 	case IEEE80211_CIPHER_WEP104:
2103 		cipher = AR_CIPHER_WEP128;
2104 		break;
2105 	case IEEE80211_CIPHER_TKIP:
2106 		cipher = AR_CIPHER_TKIP;
2107 		break;
2108 	case IEEE80211_CIPHER_CCMP:
2109 		cipher = AR_CIPHER_AES;
2110 		break;
2111 	default:
2112 		return;
2113 	}
2114 	key.cipher = htole16(cipher);
2115 	memcpy(key.key, k->k_key, MIN(k->k_len, 16));
2116 	error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2117 	if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP)
2118 		return;
2119 
2120 	/* TKIP: set Tx/Rx MIC Key. */
2121 	key.kix = htole16(1);
2122 	memcpy(key.key, k->k_key + 16, 16);
2123 	(void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2124 }
2125 
2126 void
2127 otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2128     struct ieee80211_key *k)
2129 {
2130 	struct otus_softc *sc = ic->ic_softc;
2131 	struct otus_cmd_key cmd;
2132 
2133 	if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
2134 	    ic->ic_state != IEEE80211_S_RUN)
2135 		return;	/* Nothing to do. */
2136 
2137 	/* Do it in a process context. */
2138 	cmd.key = *k;
2139 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2140 	otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd);
2141 }
2142 
2143 void
2144 otus_delete_key_cb(struct otus_softc *sc, void *arg)
2145 {
2146 	struct otus_cmd_key *cmd = arg;
2147 	struct ieee80211_key *k = &cmd->key;
2148 	uint32_t uid;
2149 
2150 	if (k->k_flags & IEEE80211_KEY_GROUP)
2151 		uid = htole32(k->k_id);
2152 	else
2153 		uid = htole32(OTUS_UID(cmd->associd));
2154 	(void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL);
2155 }
2156 #endif
2157 
2158 void
2159 otus_calibrate_to(void *arg)
2160 {
2161 	struct otus_softc *sc = arg;
2162 	struct ieee80211com *ic = &sc->sc_ic;
2163 	struct ieee80211_node *ni;
2164 	int s;
2165 
2166 	if (usbd_is_dying(sc->sc_udev))
2167 		return;
2168 
2169 	usbd_ref_incr(sc->sc_udev);
2170 
2171 	s = splnet();
2172 	ni = ic->ic_bss;
2173 	ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn);
2174 	splx(s);
2175 
2176 	if (!usbd_is_dying(sc->sc_udev))
2177 		timeout_add_sec(&sc->calib_to, 1);
2178 
2179 	usbd_ref_decr(sc->sc_udev);
2180 }
2181 
2182 int
2183 otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid)
2184 {
2185 	otus_write(sc, AR_MAC_REG_BSSID_L,
2186 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2187 	otus_write(sc, AR_MAC_REG_BSSID_H,
2188 	    bssid[4] | bssid[5] << 8);
2189 	return otus_write_barrier(sc);
2190 }
2191 
2192 int
2193 otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr)
2194 {
2195 	otus_write(sc, AR_MAC_REG_MAC_ADDR_L,
2196 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2197 	otus_write(sc, AR_MAC_REG_MAC_ADDR_H,
2198 	    addr[4] | addr[5] << 8);
2199 	return otus_write_barrier(sc);
2200 }
2201 
2202 /* Default single-LED. */
2203 void
2204 otus_led_newstate_type1(struct otus_softc *sc)
2205 {
2206 	/* TBD */
2207 }
2208 
2209 /* NETGEAR, dual-LED. */
2210 void
2211 otus_led_newstate_type2(struct otus_softc *sc)
2212 {
2213 	/* TBD */
2214 }
2215 
2216 /* NETGEAR, single-LED/3 colors (blue, red, purple.) */
2217 void
2218 otus_led_newstate_type3(struct otus_softc *sc)
2219 {
2220 	struct ieee80211com *ic = &sc->sc_ic;
2221 	uint32_t state = sc->led_state;
2222 
2223 	if (ic->ic_state == IEEE80211_S_INIT) {
2224 		state = 0;	/* LED off. */
2225 	} else if (ic->ic_state == IEEE80211_S_RUN) {
2226 		/* Associated, LED always on. */
2227 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2228 			state = AR_LED0_ON;	/* 2GHz=>Red. */
2229 		else
2230 			state = AR_LED1_ON;	/* 5GHz=>Blue. */
2231 	} else {
2232 		/* Scanning, blink LED. */
2233 		state ^= AR_LED0_ON | AR_LED1_ON;
2234 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2235 			state &= ~AR_LED1_ON;
2236 		else
2237 			state &= ~AR_LED0_ON;
2238 	}
2239 	if (state != sc->led_state) {
2240 		otus_write(sc, 0x1d0104, state);
2241 		if (otus_write_barrier(sc) == 0)
2242 			sc->led_state = state;
2243 	}
2244 }
2245 
2246 int
2247 otus_init(struct ifnet *ifp)
2248 {
2249 	struct otus_softc *sc = ifp->if_softc;
2250 	struct ieee80211com *ic = &sc->sc_ic;
2251 	int error;
2252 
2253 	/* Init host command ring. */
2254 	sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
2255 
2256 	if ((error = otus_init_mac(sc)) != 0) {
2257 		printf("%s: could not initialize MAC\n", sc->sc_dev.dv_xname);
2258 		return error;
2259 	}
2260 
2261 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2262 	(void)otus_set_macaddr(sc, ic->ic_myaddr);
2263 
2264 	switch (ic->ic_opmode) {
2265 #ifdef notyet
2266 #ifndef IEEE80211_STA_ONLY
2267 	case IEEE80211_M_HOSTAP:
2268 		otus_write(sc, 0x1c3700, 0x0f0000a1);
2269 		otus_write(sc, 0x1c3c40, 0x1);
2270 		break;
2271 	case IEEE80211_M_IBSS:
2272 		otus_write(sc, 0x1c3700, 0x0f000000);
2273 		otus_write(sc, 0x1c3c40, 0x1);
2274 		break;
2275 #endif
2276 #endif
2277 	case IEEE80211_M_STA:
2278 		otus_write(sc, 0x1c3700, 0x0f000002);
2279 		otus_write(sc, 0x1c3c40, 0x1);
2280 		break;
2281 	default:
2282 		break;
2283 	}
2284 	otus_write(sc, AR_MAC_REG_SNIFFER,
2285 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 0x2000001 : 0x2000000);
2286 	(void)otus_write_barrier(sc);
2287 
2288 	sc->bb_reset = 1;	/* Force cold reset. */
2289 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2290 	if ((error = otus_set_chan(sc, ic->ic_ibss_chan, 0)) != 0) {
2291 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
2292 		return error;
2293 	}
2294 
2295 	/* Start Rx. */
2296 	otus_write(sc, 0x1c3d30, 0x100);
2297 	(void)otus_write_barrier(sc);
2298 
2299 	ifp->if_flags &= ~IFF_OACTIVE;
2300 	ifp->if_flags |= IFF_RUNNING;
2301 
2302 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2303 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2304 	else
2305 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2306 
2307 	return 0;
2308 }
2309 
2310 void
2311 otus_stop(struct ifnet *ifp)
2312 {
2313 	struct otus_softc *sc = ifp->if_softc;
2314 	struct ieee80211com *ic = &sc->sc_ic;
2315 	int s;
2316 
2317 	sc->sc_tx_timer = 0;
2318 	ifp->if_timer = 0;
2319 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2320 
2321 	timeout_del(&sc->scan_to);
2322 	timeout_del(&sc->calib_to);
2323 
2324 	s = splusb();
2325 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2326 	/* Wait for all queued asynchronous commands to complete. */
2327 	usb_wait_task(sc->sc_udev, &sc->sc_task);
2328 	splx(s);
2329 
2330 	/* Stop Rx. */
2331 	otus_write(sc, 0x1c3d30, 0);
2332 	(void)otus_write_barrier(sc);
2333 
2334 	sc->tx_queued = 0;
2335 }
2336