xref: /openbsd-src/sys/dev/usb/if_otus.c (revision 5054e3e78af0749a9bb00ba9a024b3ee2d90290f)
1 /*	$OpenBSD: if_otus.c,v 1.14 2009/11/17 18:07:09 damien Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*-
20  * Driver for Atheros AR9001U chipset.
21  * http://www.atheros.com/pt/bulletins/AR9001USBBulletin.pdf
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/sysctl.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/timeout.h>
34 #include <sys/conf.h>
35 #include <sys/device.h>
36 
37 #include <machine/bus.h>
38 #include <machine/endian.h>
39 #include <machine/intr.h>
40 
41 #if NBPFILTER > 0
42 #include <net/bpf.h>
43 #endif
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/if_ether.h>
54 #include <netinet/ip.h>
55 
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/usb/usb.h>
61 #include <dev/usb/usbdi.h>
62 #include <dev/usb/usbdi_util.h>
63 #include <dev/usb/usbdevs.h>
64 
65 #include <dev/usb/if_otusreg.h>
66 
67 #ifdef USB_DEBUG
68 #define OTUS_DEBUG
69 #endif
70 
71 #ifdef OTUS_DEBUG
72 #define DPRINTF(x)	do { if (otus_debug) printf x; } while (0)
73 #define DPRINTFN(n, x)	do { if (otus_debug >= (n)) printf x; } while (0)
74 int otus_debug = 1;
75 #else
76 #define DPRINTF(x)
77 #define DPRINTFN(n, x)
78 #endif
79 
80 static const struct usb_devno otus_devs[] = {
81 	{ USB_VENDOR_ACCTON,	USB_PRODUCT_ACCTON_WN7512 },
82 	{ USB_VENDOR_ATHEROS2,	USB_PRODUCT_ATHEROS2_TG121N },
83 	{ USB_VENDOR_ATHEROS2,	USB_PRODUCT_ATHEROS2_AR9170 },
84 	{ USB_VENDOR_ATHEROS2,	USB_PRODUCT_ATHEROS2_WN821NV2 },
85 	{ USB_VENDOR_AVM,	USB_PRODUCT_AVM_FRITZWLAN },
86 	{ USB_VENDOR_CACE,	USB_PRODUCT_CACE_AIRPCAPNX },
87 	{ USB_VENDOR_DLINK2,	USB_PRODUCT_DLINK2_DWA130D1 },
88 	{ USB_VENDOR_DLINK2,	USB_PRODUCT_DLINK2_DWA160A1 },
89 	{ USB_VENDOR_DLINK2,	USB_PRODUCT_DLINK2_DWA160A2 },
90 	{ USB_VENDOR_IODATA,	USB_PRODUCT_IODATA_WNGDNUS2 },
91 	{ USB_VENDOR_NETGEAR,	USB_PRODUCT_NETGEAR_WN111V2 },
92 	{ USB_VENDOR_NETGEAR,	USB_PRODUCT_NETGEAR_WNDA3100 },
93 	{ USB_VENDOR_PLANEX2,	USB_PRODUCT_PLANEX2_GW_US300 },
94 	{ USB_VENDOR_ZCOM,	USB_PRODUCT_ZCOM_UB81 },
95 	{ USB_VENDOR_ZCOM,	USB_PRODUCT_ZCOM_UB82 },
96 	{ USB_VENDOR_ZYDAS,	USB_PRODUCT_ZYDAS_ZD1221 },
97 	{ USB_VENDOR_ZYXEL,	USB_PRODUCT_ZYXEL_NWD271N }
98 };
99 
100 int		otus_match(struct device *, void *, void *);
101 void		otus_attach(struct device *, struct device *, void *);
102 int		otus_detach(struct device *, int);
103 void		otus_attachhook(void *);
104 void		otus_get_chanlist(struct otus_softc *);
105 int		otus_load_firmware(struct otus_softc *, const char *,
106 		    uint32_t);
107 int		otus_open_pipes(struct otus_softc *);
108 void		otus_close_pipes(struct otus_softc *);
109 int		otus_alloc_tx_cmd(struct otus_softc *);
110 void		otus_free_tx_cmd(struct otus_softc *);
111 int		otus_alloc_tx_data_list(struct otus_softc *);
112 void		otus_free_tx_data_list(struct otus_softc *);
113 int		otus_alloc_rx_data_list(struct otus_softc *);
114 void		otus_free_rx_data_list(struct otus_softc *);
115 void		otus_next_scan(void *);
116 void		otus_task(void *);
117 void		otus_do_async(struct otus_softc *,
118 		    void (*)(struct otus_softc *, void *), void *, int);
119 int		otus_newstate(struct ieee80211com *, enum ieee80211_state,
120 		    int);
121 void		otus_newstate_cb(struct otus_softc *, void *);
122 int		otus_cmd(struct otus_softc *, uint8_t, const void *, int,
123 		    void *);
124 void		otus_write(struct otus_softc *, uint32_t, uint32_t);
125 int		otus_write_barrier(struct otus_softc *);
126 struct		ieee80211_node *otus_node_alloc(struct ieee80211com *);
127 int		otus_media_change(struct ifnet *);
128 int		otus_read_eeprom(struct otus_softc *);
129 void		otus_newassoc(struct ieee80211com *, struct ieee80211_node *,
130 		    int);
131 void		otus_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
132 void		otus_cmd_rxeof(struct otus_softc *, uint8_t *, int);
133 void		otus_sub_rxeof(struct otus_softc *, uint8_t *, int);
134 void		otus_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
135 void		otus_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
136 int		otus_tx(struct otus_softc *, struct mbuf *,
137 		    struct ieee80211_node *);
138 void		otus_start(struct ifnet *);
139 void		otus_watchdog(struct ifnet *);
140 int		otus_ioctl(struct ifnet *, u_long, caddr_t);
141 int		otus_set_multi(struct otus_softc *);
142 void		otus_updateedca(struct ieee80211com *);
143 void		otus_updateedca_cb(struct otus_softc *, void *);
144 void		otus_updateslot(struct ieee80211com *);
145 void		otus_updateslot_cb(struct otus_softc *, void *);
146 int		otus_init_mac(struct otus_softc *);
147 uint32_t	otus_phy_get_def(struct otus_softc *, uint32_t);
148 int		otus_set_board_values(struct otus_softc *,
149 		    struct ieee80211_channel *);
150 int		otus_program_phy(struct otus_softc *,
151 		    struct ieee80211_channel *);
152 int		otus_set_rf_bank4(struct otus_softc *,
153 		    struct ieee80211_channel *);
154 void		otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
155 int		otus_set_chan(struct otus_softc *, struct ieee80211_channel *,
156 		    int);
157 int		otus_set_key(struct ieee80211com *, struct ieee80211_node *,
158 		    struct ieee80211_key *);
159 void		otus_set_key_cb(struct otus_softc *, void *);
160 void		otus_delete_key(struct ieee80211com *, struct ieee80211_node *,
161 		    struct ieee80211_key *);
162 void		otus_delete_key_cb(struct otus_softc *, void *);
163 void		otus_calibrate_to(void *);
164 int		otus_set_bssid(struct otus_softc *, const uint8_t *);
165 int		otus_set_macaddr(struct otus_softc *, const uint8_t *);
166 void		otus_led_newstate_type1(struct otus_softc *);
167 void		otus_led_newstate_type2(struct otus_softc *);
168 void		otus_led_newstate_type3(struct otus_softc *);
169 int		otus_init(struct ifnet *);
170 void		otus_stop(struct ifnet *);
171 
172 struct cfdriver otus_cd = {
173 	NULL, "otus", DV_IFNET
174 };
175 
176 const struct cfattach otus_ca = {
177 	sizeof (struct otus_softc), otus_match, otus_attach, otus_detach
178 };
179 
180 int
181 otus_match(struct device *parent, void *match, void *aux)
182 {
183 	struct usb_attach_arg *uaa = aux;
184 
185 	if (uaa->iface != NULL)
186 		return UMATCH_NONE;
187 
188 	return (usb_lookup(otus_devs, uaa->vendor, uaa->product) != NULL) ?
189 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
190 }
191 
192 void
193 otus_attach(struct device *parent, struct device *self, void *aux)
194 {
195 	struct otus_softc *sc = (struct otus_softc *)self;
196 	struct usb_attach_arg *uaa = aux;
197 	int error;
198 
199 	sc->sc_udev = uaa->device;
200 
201 	usb_init_task(&sc->sc_task, otus_task, sc);
202 	timeout_set(&sc->scan_to, otus_next_scan, sc);
203 	timeout_set(&sc->calib_to, otus_calibrate_to, sc);
204 
205 	sc->amrr.amrr_min_success_threshold =  1;
206 	sc->amrr.amrr_max_success_threshold = 10;
207 
208 	if (usbd_set_config_no(sc->sc_udev, 1, 0) != 0) {
209 		printf("%s: could not set configuration no\n",
210 		    sc->sc_dev.dv_xname);
211 		return;
212 	}
213 
214 	/* Get the first interface handle. */
215 	error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
216 	if (error != 0) {
217 		printf("%s: could not get interface handle\n",
218 		    sc->sc_dev.dv_xname);
219 		return;
220 	}
221 
222 	if ((error = otus_open_pipes(sc)) != 0) {
223 		printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
224 		return;
225 	}
226 
227 	if (rootvp == NULL)
228 		mountroothook_establish(otus_attachhook, sc);
229 	else
230 		otus_attachhook(sc);
231 
232 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, &sc->sc_dev);
233 }
234 
235 int
236 otus_detach(struct device *self, int flags)
237 {
238 	struct otus_softc *sc = (struct otus_softc *)self;
239 	struct ifnet *ifp = &sc->sc_ic.ic_if;
240 	int s;
241 
242 	s = splnet();
243 
244 	/* Wait for all queued asynchronous commands to complete. */
245 	while (sc->cmdq.queued > 0)
246 		tsleep(&sc->cmdq, 0, "cmdq", 0);
247 
248 	timeout_del(&sc->scan_to);
249 	timeout_del(&sc->calib_to);
250 
251 	if (ifp->if_flags != 0) {	/* if_attach() has been called. */
252 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
253 		ieee80211_ifdetach(ifp);
254 		if_detach(ifp);
255 	}
256 
257 	otus_close_pipes(sc);
258 
259 	splx(s);
260 
261 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, &sc->sc_dev);
262 
263 	return 0;
264 }
265 
266 void
267 otus_attachhook(void *xsc)
268 {
269 	struct otus_softc *sc = xsc;
270 	struct ieee80211com *ic = &sc->sc_ic;
271 	struct ifnet *ifp = &ic->ic_if;
272 	usb_device_request_t req;
273 	uint32_t in, out;
274 	int error;
275 
276 	error = otus_load_firmware(sc, "otus-init", AR_FW_INIT_ADDR);
277 	if (error != 0) {
278 		printf("%s: could not load %s firmware\n",
279 		    sc->sc_dev.dv_xname, "init");
280 		return;
281 	}
282 
283 	usbd_delay_ms(sc->sc_udev, 1000);
284 
285 	error = otus_load_firmware(sc, "otus-main", AR_FW_MAIN_ADDR);
286 	if (error != 0) {
287 		printf("%s: could not load %s firmware\n",
288 		    sc->sc_dev.dv_xname, "main");
289 		return;
290 	}
291 
292 	/* Tell device that firmware transfer is complete. */
293 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
294 	req.bRequest = AR_FW_DOWNLOAD_COMPLETE;
295 	USETW(req.wValue, 0);
296 	USETW(req.wIndex, 0);
297 	USETW(req.wLength, 0);
298 	if (usbd_do_request(sc->sc_udev, &req, NULL) != 0) {
299 		printf("%s: firmware initialization failed\n",
300 		    sc->sc_dev.dv_xname);
301 		return;
302 	}
303 
304 	/* Send an ECHO command to check that everything is settled. */
305 	in = 0xbadc0ffe;
306 	if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out) != 0) {
307 		printf("%s: echo command failed\n", sc->sc_dev.dv_xname);
308 		return;
309 	}
310 	if (in != out) {
311 		printf("%s: echo reply mismatch: 0x%08x!=0x%08x\n",
312 		    sc->sc_dev.dv_xname, in, out);
313 		return;
314 	}
315 
316 	/* Read entire EEPROM. */
317 	if (otus_read_eeprom(sc) != 0) {
318 		printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
319 		return;
320 	}
321 
322 	sc->txmask = sc->eeprom.baseEepHeader.txMask;
323 	sc->rxmask = sc->eeprom.baseEepHeader.rxMask;
324 	sc->capflags = sc->eeprom.baseEepHeader.opCapFlags;
325 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->eeprom.baseEepHeader.macAddr);
326 	sc->sc_led_newstate = otus_led_newstate_type3;	/* XXX */
327 
328 	printf("%s: MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n",
329 	    sc->sc_dev.dv_xname, (sc->capflags & AR5416_OPFLAGS_11A) ?
330 	        0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101),
331 	    (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1,
332 	    ether_sprintf(ic->ic_myaddr));
333 
334 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
335 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
336 	ic->ic_state = IEEE80211_S_INIT;
337 
338 	/* Set device capabilities. */
339 	ic->ic_caps =
340 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
341 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
342 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
343 	    IEEE80211_C_WEP |		/* WEP */
344 	    IEEE80211_C_RSN;		/* WPA/RSN */
345 
346 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
347 		/* Set supported .11b and .11g rates. */
348 		ic->ic_sup_rates[IEEE80211_MODE_11B] =
349 		    ieee80211_std_rateset_11b;
350 		ic->ic_sup_rates[IEEE80211_MODE_11G] =
351 		    ieee80211_std_rateset_11g;
352 	}
353 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
354 		/* Set supported .11a rates. */
355 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
356 		    ieee80211_std_rateset_11a;
357 	}
358 
359 	/* Build the list of supported channels. */
360 	otus_get_chanlist(sc);
361 
362 	ifp->if_softc = sc;
363 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
364 	ifp->if_init = otus_init;
365 	ifp->if_ioctl = otus_ioctl;
366 	ifp->if_start = otus_start;
367 	ifp->if_watchdog = otus_watchdog;
368 	IFQ_SET_READY(&ifp->if_snd);
369 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
370 
371 	if_attach(ifp);
372 	ieee80211_ifattach(ifp);
373 	ic->ic_node_alloc = otus_node_alloc;
374 	ic->ic_newassoc = otus_newassoc;
375 	ic->ic_updateslot = otus_updateslot;
376 	ic->ic_updateedca = otus_updateedca;
377 #ifdef notyet
378 	ic->ic_set_key = otus_set_key;
379 	ic->ic_delete_key = otus_delete_key;
380 #endif
381 	/* Override state transition machine. */
382 	sc->sc_newstate = ic->ic_newstate;
383 	ic->ic_newstate = otus_newstate;
384 	ieee80211_media_init(ifp, otus_media_change, ieee80211_media_status);
385 
386 #if NBPFILTER > 0
387 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
388 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
389 
390 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
391 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
392 	sc->sc_rxtap.wr_ihdr.it_present = htole32(OTUS_RX_RADIOTAP_PRESENT);
393 
394 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
395 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
396 	sc->sc_txtap.wt_ihdr.it_present = htole32(OTUS_TX_RADIOTAP_PRESENT);
397 #endif
398 }
399 
400 void
401 otus_get_chanlist(struct otus_softc *sc)
402 {
403 	struct ieee80211com *ic = &sc->sc_ic;
404 	uint16_t domain;
405 	uint8_t chan;
406 	int i;
407 
408 	/* XXX regulatory domain. */
409 	domain = letoh16(sc->eeprom.baseEepHeader.regDmn[0]);
410 	DPRINTF(("regdomain=0x%04x\n", domain));
411 
412 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
413 		for (i = 0; i < 14; i++) {
414 			chan = ar_chans[i];
415 			ic->ic_channels[chan].ic_freq =
416 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
417 			ic->ic_channels[chan].ic_flags =
418 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
419 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
420 		}
421 	}
422 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
423 		for (i = 14; i < nitems(ar_chans); i++) {
424 			chan = ar_chans[i];
425 			ic->ic_channels[chan].ic_freq =
426 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
427 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
428 		}
429 	}
430 }
431 
432 int
433 otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr)
434 {
435 	usb_device_request_t req;
436 	size_t size;
437 	u_char *fw, *ptr;
438 	int mlen, error;
439 
440 	/* Read firmware image from the filesystem. */
441 	if ((error = loadfirmware(name, &fw, &size)) != 0) {
442 		printf("%s: failed loadfirmware of file %s (error %d)\n",
443 		    sc->sc_dev.dv_xname, name, error);
444 		return error;
445 	}
446 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
447 	req.bRequest = AR_FW_DOWNLOAD;
448 	USETW(req.wIndex, 0);
449 
450 	ptr = fw;
451 	addr >>= 8;
452 	while (size > 0) {
453 		mlen = MIN(size, 4096);
454 
455 		USETW(req.wValue, addr);
456 		USETW(req.wLength, mlen);
457 		if (usbd_do_request(sc->sc_udev, &req, ptr) != 0) {
458 			error = EIO;
459 			break;
460 		}
461 		addr += mlen >> 8;
462 		ptr  += mlen;
463 		size -= mlen;
464 	}
465 	free(fw, M_DEVBUF);
466 	return error;
467 }
468 
469 int
470 otus_open_pipes(struct otus_softc *sc)
471 {
472 	usb_endpoint_descriptor_t *ed;
473 	int i, isize, error;
474 
475 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_RX_NO, 0,
476 	    &sc->data_rx_pipe);
477 	if (error != 0) {
478 		printf("%s: could not open Rx bulk pipe\n",
479 		    sc->sc_dev.dv_xname);
480 		goto fail;
481 	}
482 
483 	ed = usbd_get_endpoint_descriptor(sc->sc_iface, AR_EPT_INTR_RX_NO);
484 	if (ed == NULL) {
485 		printf("%s: could not retrieve Rx intr pipe descriptor\n",
486 		    sc->sc_dev.dv_xname);
487 		goto fail;
488 	}
489 	isize = UGETW(ed->wMaxPacketSize);
490 	if (isize == 0) {
491 		printf("%s: invalid Rx intr pipe descriptor\n",
492 		    sc->sc_dev.dv_xname);
493 		goto fail;
494 	}
495 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
496 	if (sc->ibuf == NULL) {
497 		printf("%s: could not allocate Rx intr buffer\n",
498 		    sc->sc_dev.dv_xname);
499 		goto fail;
500 	}
501 	error = usbd_open_pipe_intr(sc->sc_iface, AR_EPT_INTR_RX_NO,
502 	    USBD_SHORT_XFER_OK, &sc->cmd_rx_pipe, sc, sc->ibuf, isize,
503 	    otus_intr, USBD_DEFAULT_INTERVAL);
504 	if (error != 0) {
505 		printf("%s: could not open Rx intr pipe\n",
506 		    sc->sc_dev.dv_xname);
507 		goto fail;
508 	}
509 
510 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_TX_NO, 0,
511 	    &sc->data_tx_pipe);
512 	if (error != 0) {
513 		printf("%s: could not open Tx bulk pipe\n",
514 		    sc->sc_dev.dv_xname);
515 		goto fail;
516 	}
517 
518 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_INTR_TX_NO, 0,
519 	    &sc->cmd_tx_pipe);
520 	if (error != 0) {
521 		printf("%s: could not open Tx intr pipe\n",
522 		    sc->sc_dev.dv_xname);
523 		goto fail;
524 	}
525 
526 	if (otus_alloc_tx_cmd(sc) != 0) {
527 		printf("%s: could not allocate command xfer\n",
528 		    sc->sc_dev.dv_xname);
529 		goto fail;
530 	}
531 
532 	if (otus_alloc_tx_data_list(sc) != 0) {
533 		printf("%s: could not allocate Tx xfers\n",
534 		    sc->sc_dev.dv_xname);
535 		goto fail;
536 	}
537 
538 	if (otus_alloc_rx_data_list(sc) != 0) {
539 		printf("%s: could not allocate Rx xfers\n",
540 		    sc->sc_dev.dv_xname);
541 		goto fail;
542 	}
543 
544 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
545 		struct otus_rx_data *data = &sc->rx_data[i];
546 
547 		usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
548 		    OTUS_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
549 		    USBD_NO_TIMEOUT, otus_rxeof);
550 		error = usbd_transfer(data->xfer);
551 		if (error != USBD_IN_PROGRESS && error != 0) {
552 			printf("%s: could not queue Rx xfer\n",
553 			    sc->sc_dev.dv_xname);
554 			goto fail;
555 		}
556 	}
557 	return 0;
558 
559  fail:	otus_close_pipes(sc);
560 	return error;
561 }
562 
563 void
564 otus_close_pipes(struct otus_softc *sc)
565 {
566 	otus_free_tx_cmd(sc);
567 	otus_free_tx_data_list(sc);
568 	otus_free_rx_data_list(sc);
569 
570 	if (sc->data_rx_pipe != NULL)
571 		usbd_close_pipe(sc->data_rx_pipe);
572 	if (sc->cmd_rx_pipe != NULL) {
573 		usbd_abort_pipe(sc->cmd_rx_pipe);
574 		usbd_close_pipe(sc->cmd_rx_pipe);
575 	}
576 	if (sc->ibuf != NULL)
577 		free(sc->ibuf, M_USBDEV);
578 	if (sc->data_tx_pipe != NULL)
579 		usbd_close_pipe(sc->data_tx_pipe);
580 	if (sc->cmd_tx_pipe != NULL)
581 		usbd_close_pipe(sc->cmd_tx_pipe);
582 }
583 
584 int
585 otus_alloc_tx_cmd(struct otus_softc *sc)
586 {
587 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
588 
589 	cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
590 	if (cmd->xfer == NULL) {
591 		printf("%s: could not allocate xfer\n",
592 		    sc->sc_dev.dv_xname);
593 		return ENOMEM;
594 	}
595 	cmd->buf = usbd_alloc_buffer(cmd->xfer, OTUS_MAX_TXCMDSZ);
596 	if (cmd->buf == NULL) {
597 		printf("%s: could not allocate xfer buffer\n",
598 		    sc->sc_dev.dv_xname);
599 		usbd_free_xfer(cmd->xfer);
600 		return ENOMEM;
601 	}
602 	return 0;
603 }
604 
605 void
606 otus_free_tx_cmd(struct otus_softc *sc)
607 {
608 	/* Make sure no transfers are pending. */
609 	usbd_abort_pipe(sc->cmd_tx_pipe);
610 
611 	if (sc->tx_cmd.xfer != NULL)
612 		usbd_free_xfer(sc->tx_cmd.xfer);
613 }
614 
615 int
616 otus_alloc_tx_data_list(struct otus_softc *sc)
617 {
618 	struct otus_tx_data *data;
619 	int i, error;
620 
621 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++) {
622 		data = &sc->tx_data[i];
623 
624 		data->sc = sc;  /* Backpointer for callbacks. */
625 
626 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
627 		if (data->xfer == NULL) {
628 			printf("%s: could not allocate xfer\n",
629 			    sc->sc_dev.dv_xname);
630 			error = ENOMEM;
631 			goto fail;
632 		}
633 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_TXBUFSZ);
634 		if (data->buf == NULL) {
635 			printf("%s: could not allocate xfer buffer\n",
636 			    sc->sc_dev.dv_xname);
637 			error = ENOMEM;
638 			goto fail;
639 		}
640 	}
641 	return 0;
642 
643 fail:	otus_free_tx_data_list(sc);
644 	return error;
645 }
646 
647 void
648 otus_free_tx_data_list(struct otus_softc *sc)
649 {
650 	int i;
651 
652 	/* Make sure no transfers are pending. */
653 	usbd_abort_pipe(sc->data_tx_pipe);
654 
655 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++)
656 		if (sc->tx_data[i].xfer != NULL)
657 			usbd_free_xfer(sc->tx_data[i].xfer);
658 }
659 
660 int
661 otus_alloc_rx_data_list(struct otus_softc *sc)
662 {
663 	struct otus_rx_data *data;
664 	int i, error;
665 
666 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
667 		data = &sc->rx_data[i];
668 
669 		data->sc = sc;	/* Backpointer for callbacks. */
670 
671 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
672 		if (data->xfer == NULL) {
673 			printf("%s: could not allocate xfer\n",
674 			    sc->sc_dev.dv_xname);
675 			error = ENOMEM;
676 			goto fail;
677 		}
678 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_RXBUFSZ);
679 		if (data->buf == NULL) {
680 			printf("%s: could not allocate xfer buffer\n",
681 			    sc->sc_dev.dv_xname);
682 			error = ENOMEM;
683 			goto fail;
684 		}
685 	}
686 	return 0;
687 
688 fail:	otus_free_rx_data_list(sc);
689 	return error;
690 }
691 
692 void
693 otus_free_rx_data_list(struct otus_softc *sc)
694 {
695 	int i;
696 
697 	/* Make sure no transfers are pending. */
698 	usbd_abort_pipe(sc->data_rx_pipe);
699 
700 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++)
701 		if (sc->rx_data[i].xfer != NULL)
702 			usbd_free_xfer(sc->rx_data[i].xfer);
703 }
704 
705 void
706 otus_next_scan(void *arg)
707 {
708 	struct otus_softc *sc = arg;
709 
710 	if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
711 		ieee80211_next_scan(&sc->sc_ic.ic_if);
712 }
713 
714 void
715 otus_task(void *arg)
716 {
717 	struct otus_softc *sc = arg;
718 	struct otus_host_cmd_ring *ring = &sc->cmdq;
719 	struct otus_host_cmd *cmd;
720 	int s;
721 
722 	/* Process host commands. */
723 	s = splusb();
724 	while (ring->next != ring->cur) {
725 		cmd = &ring->cmd[ring->next];
726 		splx(s);
727 		/* Callback. */
728 		cmd->cb(sc, cmd->data);
729 		s = splusb();
730 		ring->queued--;
731 		ring->next = (ring->next + 1) % OTUS_HOST_CMD_RING_COUNT;
732 	}
733 	wakeup(ring);
734 	splx(s);
735 }
736 
737 void
738 otus_do_async(struct otus_softc *sc, void (*cb)(struct otus_softc *, void *),
739     void *arg, int len)
740 {
741 	struct otus_host_cmd_ring *ring = &sc->cmdq;
742 	struct otus_host_cmd *cmd;
743 	int s;
744 
745 	s = splusb();
746 	cmd = &ring->cmd[ring->cur];
747 	cmd->cb = cb;
748 	KASSERT(len <= sizeof (cmd->data));
749 	memcpy(cmd->data, arg, len);
750 	ring->cur = (ring->cur + 1) % OTUS_HOST_CMD_RING_COUNT;
751 
752 	/* If there is no pending command already, schedule a task. */
753 	if (++ring->queued == 1)
754 		usb_add_task(sc->sc_udev, &sc->sc_task);
755 	splx(s);
756 }
757 
758 int
759 otus_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
760 {
761 	struct otus_softc *sc = ic->ic_softc;
762 	struct otus_cmd_newstate cmd;
763 
764 	/* Do it in a process context. */
765 	cmd.state = nstate;
766 	cmd.arg = arg;
767 	otus_do_async(sc, otus_newstate_cb, &cmd, sizeof cmd);
768 	return 0;
769 }
770 
771 void
772 otus_newstate_cb(struct otus_softc *sc, void *arg)
773 {
774 	struct otus_cmd_newstate *cmd = arg;
775 	struct ieee80211com *ic = &sc->sc_ic;
776 	struct ieee80211_node *ni;
777 	int s;
778 
779 	s = splnet();
780 
781 	switch (cmd->state) {
782 	case IEEE80211_S_INIT:
783 		break;
784 
785 	case IEEE80211_S_SCAN:
786 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
787 		timeout_add_msec(&sc->scan_to, 200);
788 		break;
789 
790 	case IEEE80211_S_AUTH:
791 	case IEEE80211_S_ASSOC:
792 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
793 		break;
794 
795 	case IEEE80211_S_RUN:
796 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 1);
797 
798 		ni = ic->ic_bss;
799 
800 		if (ic->ic_opmode == IEEE80211_M_STA) {
801 			otus_updateslot(ic);
802 			otus_set_bssid(sc, ni->ni_bssid);
803 
804 			/* Fake a join to init the Tx rate. */
805 			otus_newassoc(ic, ni, 1);
806 
807 			/* Start calibration timer. */
808 			timeout_add_sec(&sc->calib_to, 1);
809 		}
810 		break;
811 	}
812 
813 	sc->sc_led_newstate(sc);
814 	(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
815 
816 	splx(s);
817 }
818 
819 int
820 otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen,
821     void *odata)
822 {
823 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
824 	struct ar_cmd_hdr *hdr;
825 	int s, xferlen, error;
826 
827 	/* Always bulk-out a multiple of 4 bytes. */
828 	xferlen = (sizeof (*hdr) + ilen + 3) & ~3;
829 
830 	hdr = (struct ar_cmd_hdr *)cmd->buf;
831 	hdr->code  = code;
832 	hdr->len   = ilen;
833 	hdr->token = ++cmd->token;	/* Don't care about endianness. */
834 	memcpy((uint8_t *)&hdr[1], idata, ilen);
835 
836 	DPRINTFN(2, ("sending command code=0x%02x len=%d token=%d\n",
837 	    code, ilen, hdr->token));
838 
839 	s = splusb();
840 	cmd->odata = odata;
841 	cmd->done = 0;
842 
843 	usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
844 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_CMD_TIMEOUT, NULL);
845 	error = usbd_sync_transfer(cmd->xfer);
846 	if (error != 0) {
847 		splx(s);
848 		printf("%s: could not send command 0x%x (error=%s)\n",
849 		    sc->sc_dev.dv_xname, code, usbd_errstr(error));
850 		return EIO;
851 	}
852 	if (!cmd->done)
853 		error = tsleep(cmd, PCATCH, "otuscmd", hz);
854 	cmd->odata = NULL;	/* In case answer is received too late. */
855 	splx(s);
856 	if (error != 0) {
857 		printf("%s: timeout waiting for command 0x%02x reply\n",
858 		    sc->sc_dev.dv_xname, code);
859 	}
860 	return error;
861 }
862 
863 void
864 otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val)
865 {
866 	sc->write_buf[sc->write_idx].reg = htole32(reg);
867 	sc->write_buf[sc->write_idx].val = htole32(val);
868 
869 	if (++sc->write_idx > AR_MAX_WRITE_IDX)
870 		(void)otus_write_barrier(sc);
871 }
872 
873 int
874 otus_write_barrier(struct otus_softc *sc)
875 {
876 	int error;
877 
878 	if (sc->write_idx == 0)
879 		return 0;	/* Nothing to flush. */
880 
881 	error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf,
882 	    sizeof (sc->write_buf[0]) * sc->write_idx, NULL);
883 	sc->write_idx = 0;
884 	return error;
885 }
886 
887 struct ieee80211_node *
888 otus_node_alloc(struct ieee80211com *ic)
889 {
890 	return malloc(sizeof (struct otus_node), M_DEVBUF, M_NOWAIT | M_ZERO);
891 }
892 
893 int
894 otus_media_change(struct ifnet *ifp)
895 {
896 	struct otus_softc *sc = ifp->if_softc;
897 	struct ieee80211com *ic = &sc->sc_ic;
898 	uint8_t rate, ridx;
899 	int error;
900 
901 	error = ieee80211_media_change(ifp);
902 	if (error != ENETRESET)
903 		return error;
904 
905 	if (ic->ic_fixed_rate != -1) {
906 		rate = ic->ic_sup_rates[ic->ic_curmode].
907 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
908 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
909 			if (otus_rates[ridx].rate == rate)
910 				break;
911 		sc->fixed_ridx = ridx;
912 	}
913 
914 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
915 		error = otus_init(ifp);
916 
917 	return error;
918 }
919 
920 int
921 otus_read_eeprom(struct otus_softc *sc)
922 {
923 	uint32_t regs[8], reg;
924 	uint8_t *eep;
925 	int i, j, error;
926 
927 	/* Read EEPROM by blocks of 32 bytes. */
928 	eep = (uint8_t *)&sc->eeprom;
929 	reg = AR_EEPROM_OFFSET;
930 	for (i = 0; i < sizeof (sc->eeprom) / 32; i++) {
931 		for (j = 0; j < 8; j++, reg += 4)
932 			regs[j] = htole32(reg);
933 		error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep);
934 		if (error != 0)
935 			break;
936 		eep += 32;
937 	}
938 	return error;
939 }
940 
941 void
942 otus_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
943 {
944 	struct otus_softc *sc = ic->ic_softc;
945 	struct otus_node *on = (void *)ni;
946 	struct ieee80211_rateset *rs = &ni->ni_rates;
947 	uint8_t rate;
948 	int ridx, i;
949 
950 	DPRINTF(("new assoc isnew=%d addr=%s\n",
951 	    isnew, ether_sprintf(ni->ni_macaddr)));
952 
953 	ieee80211_amrr_node_init(&sc->amrr, &on->amn);
954 	/* Start at lowest available bit-rate, AMRR will raise. */
955 	ni->ni_txrate = 0;
956 
957 	for (i = 0; i < rs->rs_nrates; i++) {
958 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
959 		/* Convert 802.11 rate to hardware rate index. */
960 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
961 			if (otus_rates[ridx].rate == rate)
962 				break;
963 		on->ridx[i] = ridx;
964 		DPRINTF(("rate=0x%02x ridx=%d\n",
965 		    rs->rs_rates[i], on->ridx[i]));
966 	}
967 }
968 
969 /* ARGSUSED */
970 void
971 otus_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
972 {
973 #if 0
974 	struct otus_softc *sc = priv;
975 	int len;
976 
977 	/*
978 	 * The Rx intr pipe is unused with current firmware.  Notifications
979 	 * and replies to commands are sent through the Rx bulk pipe instead
980 	 * (with a magic PLCP header.)
981 	 */
982 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
983 		DPRINTF(("intr status=%d\n", status));
984 		if (status == USBD_STALLED)
985 			usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
986 		return;
987 	}
988 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
989 
990 	otus_cmd_rxeof(sc, sc->ibuf, len);
991 #endif
992 }
993 
994 void
995 otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
996 {
997 	struct ieee80211com *ic = &sc->sc_ic;
998 	struct otus_tx_cmd *cmd;
999 	struct ar_cmd_hdr *hdr;
1000 	int s;
1001 
1002 	if (__predict_false(len < sizeof (*hdr))) {
1003 		DPRINTF(("cmd too small %d\n", len));
1004 		return;
1005 	}
1006 	hdr = (struct ar_cmd_hdr *)buf;
1007 	if (__predict_false(sizeof (*hdr) + hdr->len > len ||
1008 	    sizeof (*hdr) + hdr->len > 64)) {
1009 		DPRINTF(("cmd too large %d\n", hdr->len));
1010 		return;
1011 	}
1012 
1013 	if ((hdr->code & 0xc0) != 0xc0) {
1014 		DPRINTFN(2, ("received reply code=0x%02x len=%d token=%d\n",
1015 		    hdr->code, hdr->len, hdr->token));
1016 		cmd = &sc->tx_cmd;
1017 		if (__predict_false(hdr->token != cmd->token))
1018 			return;
1019 		/* Copy answer into caller's supplied buffer. */
1020 		if (cmd->odata != NULL)
1021 			memcpy(cmd->odata, &hdr[1], hdr->len);
1022 		cmd->done = 1;
1023 		wakeup(cmd);
1024 		return;
1025 	}
1026 
1027 	/* Received unsolicited notification. */
1028 	DPRINTF(("received notification code=0x%02x len=%d\n",
1029 	    hdr->code, hdr->len));
1030 	switch (hdr->code & 0x3f) {
1031 	case AR_EVT_BEACON:
1032 		break;
1033 	case AR_EVT_TX_COMP:
1034 	{
1035 		struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1];
1036 		struct ieee80211_node *ni;
1037 		struct otus_node *on;
1038 
1039 		DPRINTF(("tx completed %s status=%d phy=0x%x\n",
1040 		    ether_sprintf(tx->macaddr), letoh16(tx->status),
1041 		    letoh32(tx->phy)));
1042 		s = splnet();
1043 #ifdef notyet
1044 #ifndef IEEE80211_STA_ONLY
1045 		if (ic->ic_opmode != IEEE80211_M_STA) {
1046 			ni = ieee80211_find_node(ic, tx->macaddr);
1047 			if (__predict_false(ni == NULL)) {
1048 				splx(s);
1049 				break;
1050 			}
1051 		} else
1052 #endif
1053 #endif
1054 			ni = ic->ic_bss;
1055 		/* Update rate control statistics. */
1056 		on = (void *)ni;
1057 		/* NB: we do not set the TX_MAC_RATE_PROBING flag. */
1058 		if (__predict_true(tx->status != 0))
1059 			on->amn.amn_retrycnt++;
1060 		splx(s);
1061 		break;
1062 	}
1063 	case AR_EVT_TBTT:
1064 		break;
1065 	}
1066 }
1067 
1068 void
1069 otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
1070 {
1071 	struct ieee80211com *ic = &sc->sc_ic;
1072 	struct ifnet *ifp = &ic->ic_if;
1073 	struct ieee80211_rxinfo rxi;
1074 	struct ieee80211_node *ni;
1075 	struct ar_rx_tail *tail;
1076 	struct ieee80211_frame *wh;
1077 	struct mbuf *m;
1078 	uint8_t *plcp;
1079 	int s, mlen, align;
1080 
1081 	if (__predict_false(len < AR_PLCP_HDR_LEN)) {
1082 		DPRINTF(("sub-xfer too short %d\n", len));
1083 		return;
1084 	}
1085 	plcp = buf;
1086 
1087 	/* All bits in the PLCP header are set to 1 for non-MPDU. */
1088 	if (memcmp(plcp, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) {
1089 		otus_cmd_rxeof(sc, plcp + AR_PLCP_HDR_LEN,
1090 		    len - AR_PLCP_HDR_LEN);
1091 		return;
1092 	}
1093 
1094 	/* Received MPDU. */
1095 	if (__predict_false(len < AR_PLCP_HDR_LEN + sizeof (*tail))) {
1096 		DPRINTF(("MPDU too short %d\n", len));
1097 		ifp->if_ierrors++;
1098 		return;
1099 	}
1100 	tail = (struct ar_rx_tail *)(plcp + len - sizeof (*tail));
1101 
1102 	/* Discard error frames. */
1103 	if (__predict_false(tail->error != 0)) {
1104 		DPRINTF(("error frame 0x%02x\n", tail->error));
1105 		if (tail->error & AR_RX_ERROR_FCS) {
1106 			DPRINTFN(3, ("bad FCS\n"));
1107 		} else if (tail->error & AR_RX_ERROR_MMIC) {
1108 			/* Report Michael MIC failures to net80211. */
1109 			ic->ic_stats.is_rx_locmicfail++;
1110 			ieee80211_michael_mic_failure(ic, 0);
1111 		}
1112 		ifp->if_ierrors++;
1113 		return;
1114 	}
1115 	/* Compute MPDU's length. */
1116 	mlen = len - AR_PLCP_HDR_LEN - sizeof (*tail);
1117 	/* Make sure there's room for an 802.11 header + FCS. */
1118 	if (__predict_false(mlen < IEEE80211_MIN_LEN)) {
1119 		ifp->if_ierrors++;
1120 		return;
1121 	}
1122 	mlen -= IEEE80211_CRC_LEN;	/* strip 802.11 FCS */
1123 
1124 	wh = (struct ieee80211_frame *)(plcp + AR_PLCP_HDR_LEN);
1125 	/* Provide a 32-bit aligned protocol header to the stack. */
1126 	align = (ieee80211_has_qos(wh) ^ ieee80211_has_addr4(wh)) ? 2 : 0;
1127 
1128 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1129 	if (__predict_false(m == NULL)) {
1130 		ifp->if_ierrors++;
1131 		return;
1132 	}
1133 	if (align + mlen > MHLEN) {
1134 		MCLGET(m, M_DONTWAIT);
1135 		if (__predict_false(!(m->m_flags & M_EXT))) {
1136 			ifp->if_ierrors++;
1137 			m_freem(m);
1138 			return;
1139 		}
1140 	}
1141 	/* Finalize mbuf. */
1142 	m->m_pkthdr.rcvif = ifp;
1143 	m->m_data += align;
1144 	memcpy(mtod(m, caddr_t), wh, mlen);
1145 	m->m_pkthdr.len = m->m_len = mlen;
1146 
1147 #if NBPFILTER > 0
1148 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1149 		struct otus_rx_radiotap_header *tap = &sc->sc_rxtap;
1150 		struct mbuf mb;
1151 
1152 		tap->wr_flags = 0;
1153 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1154 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1155 		tap->wr_antsignal = tail->rssi;
1156 		tap->wr_rate = 2;	/* In case it can't be found below. */
1157 		switch (tail->status & AR_RX_STATUS_MT_MASK) {
1158 		case AR_RX_STATUS_MT_CCK:
1159 			switch (plcp[0]) {
1160 			case  10: tap->wr_rate =   2; break;
1161 			case  20: tap->wr_rate =   4; break;
1162 			case  55: tap->wr_rate =  11; break;
1163 			case 110: tap->wr_rate =  22; break;
1164 			}
1165 			if (tail->status & AR_RX_STATUS_SHPREAMBLE)
1166 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1167 			break;
1168 		case AR_RX_STATUS_MT_OFDM:
1169 			switch (plcp[0] & 0xf) {
1170 			case 0xb: tap->wr_rate =  12; break;
1171 			case 0xf: tap->wr_rate =  18; break;
1172 			case 0xa: tap->wr_rate =  24; break;
1173 			case 0xe: tap->wr_rate =  36; break;
1174 			case 0x9: tap->wr_rate =  48; break;
1175 			case 0xd: tap->wr_rate =  72; break;
1176 			case 0x8: tap->wr_rate =  96; break;
1177 			case 0xc: tap->wr_rate = 108; break;
1178 			}
1179 			break;
1180 		}
1181 		mb.m_data = (caddr_t)tap;
1182 		mb.m_len = sc->sc_rxtap_len;
1183 		mb.m_next = m;
1184 		mb.m_nextpkt = NULL;
1185 		mb.m_type = 0;
1186 		mb.m_flags = 0;
1187 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1188 	}
1189 #endif
1190 
1191 	s = splnet();
1192 	ni = ieee80211_find_rxnode(ic, wh);
1193 	rxi.rxi_flags = 0;
1194 	rxi.rxi_rssi = tail->rssi;
1195 	rxi.rxi_tstamp = 0;	/* unused */
1196 	ieee80211_input(ifp, m, ni, &rxi);
1197 
1198 	/* Node is no longer needed. */
1199 	ieee80211_release_node(ic, ni);
1200 	splx(s);
1201 }
1202 
1203 void
1204 otus_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1205 {
1206 	struct otus_rx_data *data = priv;
1207 	struct otus_softc *sc = data->sc;
1208 	caddr_t buf = data->buf;
1209 	struct ar_rx_head *head;
1210 	uint16_t hlen;
1211 	int len;
1212 
1213 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1214 		DPRINTF(("RX status=%d\n", status));
1215 		if (status == USBD_STALLED)
1216 			usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1217 		if (status != USBD_CANCELLED)
1218 			goto resubmit;
1219 		return;
1220 	}
1221 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1222 
1223 	while (len >= sizeof (*head)) {
1224 		head = (struct ar_rx_head *)buf;
1225 		if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) {
1226 			DPRINTF(("tag not valid 0x%x\n", letoh16(head->tag)));
1227 			break;
1228 		}
1229 		hlen = letoh16(head->len);
1230 		if (__predict_false(sizeof (*head) + hlen > len)) {
1231 			DPRINTF(("xfer too short %d/%d\n", len, hlen));
1232 			break;
1233 		}
1234 		/* Process sub-xfer. */
1235 		otus_sub_rxeof(sc, (uint8_t *)&head[1], hlen);
1236 
1237 		/* Next sub-xfer is aligned on a 32-bit boundary. */
1238 		hlen = (sizeof (*head) + hlen + 3) & ~3;
1239 		buf += hlen;
1240 		len -= hlen;
1241 	}
1242 
1243  resubmit:
1244 	usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, OTUS_RXBUFSZ,
1245 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, otus_rxeof);
1246 	(void)usbd_transfer(data->xfer);
1247 }
1248 
1249 void
1250 otus_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1251 {
1252 	struct otus_tx_data *data = priv;
1253 	struct otus_softc *sc = data->sc;
1254 	struct ieee80211com *ic = &sc->sc_ic;
1255 	struct ifnet *ifp = &ic->ic_if;
1256 	int s;
1257 
1258 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1259 		DPRINTF(("TX status=%d\n", status));
1260 		if (status == USBD_STALLED)
1261 			usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1262 		ifp->if_oerrors++;
1263 		return;
1264 	}
1265 	s = splnet();
1266 	sc->tx_queued--;
1267 	sc->sc_tx_timer = 0;
1268 	ifp->if_flags &= ~IFF_OACTIVE;
1269 	otus_start(ifp);
1270 	splx(s);
1271 }
1272 
1273 int
1274 otus_tx(struct otus_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1275 {
1276 	struct ieee80211com *ic = &sc->sc_ic;
1277 	struct otus_node *on = (void *)ni;
1278 	struct otus_tx_data *data;
1279 	struct ieee80211_frame *wh;
1280 	struct ieee80211_key *k;
1281 	struct ar_tx_head *head;
1282 	uint32_t phyctl;
1283 	uint16_t macctl, qos;
1284 	uint8_t tid, qid;
1285 	int error, ridx, hasqos, xferlen;
1286 
1287 	wh = mtod(m, struct ieee80211_frame *);
1288 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1289 		k = ieee80211_get_txkey(ic, wh, ni);
1290 		if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1291 			return ENOBUFS;
1292 		wh = mtod(m, struct ieee80211_frame *);
1293 	}
1294 
1295 	if ((hasqos = ieee80211_has_qos(wh))) {
1296 		qos = ieee80211_get_qos(wh);
1297 		tid = qos & IEEE80211_QOS_TID;
1298 		qid = ieee80211_up_to_ac(ic, tid);
1299 	} else
1300 		qid = EDCA_AC_BE;
1301 
1302 	/* Pickup a rate index. */
1303 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1304 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA)
1305 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1306 		    OTUS_RIDX_OFDM6 : OTUS_RIDX_CCK1;
1307 	else if (ic->ic_fixed_rate != -1)
1308 		ridx = sc->fixed_ridx;
1309 	else
1310 		ridx = on->ridx[ni->ni_txrate];
1311 
1312 	phyctl = 0;
1313 	macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid);
1314 
1315 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1316 	    (hasqos && ((qos & IEEE80211_QOS_ACK_POLICY_MASK) ==
1317 	     IEEE80211_QOS_ACK_POLICY_NOACK)))
1318 		macctl |= AR_TX_MAC_NOACK;
1319 
1320 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1321 		if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
1322 			macctl |= AR_TX_MAC_RTS;
1323 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1324 		    ridx >= OTUS_RIDX_OFDM6) {
1325 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1326 				macctl |= AR_TX_MAC_CTS;
1327 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1328 				macctl |= AR_TX_MAC_RTS;
1329 		}
1330 	}
1331 
1332 	phyctl |= AR_TX_PHY_MCS(otus_rates[ridx].mcs);
1333 	if (ridx >= OTUS_RIDX_OFDM6) {
1334 		phyctl |= AR_TX_PHY_MT_OFDM;
1335 		if (ridx <= OTUS_RIDX_OFDM24)
1336 			phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1337 		else
1338 			phyctl |= AR_TX_PHY_ANTMSK(1);
1339 	} else {	/* CCK */
1340 		phyctl |= AR_TX_PHY_MT_CCK;
1341 		phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1342 	}
1343 
1344 	/* Update rate control stats for frames that are ACK'ed. */
1345 	if (!(macctl & AR_TX_MAC_NOACK))
1346 		((struct otus_node *)ni)->amn.amn_txcnt++;
1347 
1348 	data = &sc->tx_data[sc->tx_cur];
1349 	/* Fill Tx descriptor. */
1350 	head = (struct ar_tx_head *)data->buf;
1351 	head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN);
1352 	head->macctl = htole16(macctl);
1353 	head->phyctl = htole32(phyctl);
1354 
1355 #if NBPFILTER > 0
1356 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1357 		struct otus_tx_radiotap_header *tap = &sc->sc_txtap;
1358 		struct mbuf mb;
1359 
1360 		tap->wt_flags = 0;
1361 		tap->wt_rate = otus_rates[ridx].rate;
1362 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1363 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1364 
1365 		mb.m_data = (caddr_t)tap;
1366 		mb.m_len = sc->sc_txtap_len;
1367 		mb.m_next = m;
1368 		mb.m_nextpkt = NULL;
1369 		mb.m_type = 0;
1370 		mb.m_flags = 0;
1371 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1372 	}
1373 #endif
1374 
1375 	xferlen = sizeof (*head) + m->m_pkthdr.len;
1376 	m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]);
1377 	m_freem(m);
1378 	ieee80211_release_node(ic, ni);
1379 
1380 	DPRINTFN(5, ("tx queued=%d len=%d mac=0x%04x phy=0x%08x rate=%d\n",
1381 	    sc->tx_queued, head->len, head->macctl, head->phyctl,
1382 	    otus_rates[ridx].rate));
1383 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1384 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_TX_TIMEOUT, otus_txeof);
1385 	error = usbd_transfer(data->xfer);
1386 	if (__predict_false(error != USBD_IN_PROGRESS && error != 0))
1387 		return error;
1388 
1389 	sc->tx_queued++;
1390 	sc->tx_cur = (sc->tx_cur + 1) % OTUS_TX_DATA_LIST_COUNT;
1391 
1392 	return 0;
1393 }
1394 
1395 void
1396 otus_start(struct ifnet *ifp)
1397 {
1398 	struct otus_softc *sc = ifp->if_softc;
1399 	struct ieee80211com *ic = &sc->sc_ic;
1400 	struct ieee80211_node *ni;
1401 	struct mbuf *m;
1402 
1403 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1404 		return;
1405 
1406 	for (;;) {
1407 		if (sc->tx_queued >= OTUS_TX_DATA_LIST_COUNT) {
1408 			ifp->if_flags |= IFF_OACTIVE;
1409 			break;
1410 		}
1411 		/* Send pending management frames first. */
1412 		IF_DEQUEUE(&ic->ic_mgtq, m);
1413 		if (m != NULL) {
1414 			ni = (void *)m->m_pkthdr.rcvif;
1415 			goto sendit;
1416 		}
1417 		if (ic->ic_state != IEEE80211_S_RUN)
1418 			break;
1419 
1420 		/* Encapsulate and send data frames. */
1421 		IFQ_DEQUEUE(&ifp->if_snd, m);
1422 		if (m == NULL)
1423 			break;
1424 #if NBPFILTER > 0
1425 		if (ifp->if_bpf != NULL)
1426 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1427 #endif
1428 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1429 			continue;
1430 sendit:
1431 #if NBPFILTER > 0
1432 		if (ic->ic_rawbpf != NULL)
1433 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1434 #endif
1435 		if (otus_tx(sc, m, ni) != 0) {
1436 			ieee80211_release_node(ic, ni);
1437 			ifp->if_oerrors++;
1438 			continue;
1439 		}
1440 
1441 		sc->sc_tx_timer = 5;
1442 		ifp->if_timer = 1;
1443 	}
1444 }
1445 
1446 void
1447 otus_watchdog(struct ifnet *ifp)
1448 {
1449 	struct otus_softc *sc = ifp->if_softc;
1450 
1451 	ifp->if_timer = 0;
1452 
1453 	if (sc->sc_tx_timer > 0) {
1454 		if (--sc->sc_tx_timer == 0) {
1455 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1456 			/* otus_init(ifp); XXX needs a process context! */
1457 			ifp->if_oerrors++;
1458 			return;
1459 		}
1460 		ifp->if_timer = 1;
1461 	}
1462 	ieee80211_watchdog(ifp);
1463 }
1464 
1465 int
1466 otus_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1467 {
1468 	struct otus_softc *sc = ifp->if_softc;
1469 	struct ieee80211com *ic = &sc->sc_ic;
1470 	struct ifaddr *ifa;
1471 	struct ifreq *ifr;
1472 	int s, error = 0;
1473 
1474 	s = splnet();
1475 
1476 	switch (cmd) {
1477 	case SIOCSIFADDR:
1478 		ifa = (struct ifaddr *)data;
1479 		ifp->if_flags |= IFF_UP;
1480 #ifdef INET
1481 		if (ifa->ifa_addr->sa_family == AF_INET)
1482 			arp_ifinit(&ic->ic_ac, ifa);
1483 #endif
1484 		/* FALLTHROUGH */
1485 	case SIOCSIFFLAGS:
1486 		if (ifp->if_flags & IFF_UP) {
1487 			if ((ifp->if_flags & IFF_RUNNING) &&
1488 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1489 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1490 				otus_set_multi(sc);
1491 			} else if (!(ifp->if_flags & IFF_RUNNING))
1492 				otus_init(ifp);
1493 
1494 		} else if (ifp->if_flags & IFF_RUNNING)
1495 			otus_stop(ifp);
1496 
1497 		sc->sc_if_flags = ifp->if_flags;
1498 		break;
1499 	case SIOCADDMULTI:
1500 	case SIOCDELMULTI:
1501 		ifr = (struct ifreq *)data;
1502 		error = (cmd == SIOCADDMULTI) ?
1503 		    ether_addmulti(ifr, &ic->ic_ac) :
1504 		    ether_delmulti(ifr, &ic->ic_ac);
1505 		if (error == ENETRESET)
1506 			error = 0;
1507 		break;
1508 	case SIOCS80211CHANNEL:
1509 		error = ieee80211_ioctl(ifp, cmd, data);
1510 		if (error == ENETRESET &&
1511 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1512 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1513 			    (IFF_UP | IFF_RUNNING))
1514 				otus_set_chan(sc, ic->ic_ibss_chan, 0);
1515 			error = 0;
1516 		}
1517 		break;
1518 	default:
1519 		error = ieee80211_ioctl(ifp, cmd, data);
1520 	}
1521 
1522 	if (error == ENETRESET) {
1523 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1524 		    (IFF_UP | IFF_RUNNING))
1525 			otus_init(ifp);
1526 		error = 0;
1527 	}
1528 
1529 	splx(s);
1530 	return error;
1531 }
1532 
1533 int
1534 otus_set_multi(struct otus_softc *sc)
1535 {
1536 	struct arpcom *ac = &sc->sc_ic.ic_ac;
1537 	struct ifnet *ifp = &ac->ac_if;
1538 	struct ether_multi *enm;
1539 	struct ether_multistep step;
1540 	uint32_t lo, hi;
1541 	uint8_t bit;
1542 
1543 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1544 		lo = hi = 0xffffffff;
1545 		goto done;
1546 	}
1547 	lo = hi = 0;
1548 	ETHER_FIRST_MULTI(step, ac, enm);
1549 	while (enm != NULL) {
1550 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1551 			ifp->if_flags |= IFF_ALLMULTI;
1552 			lo = hi = 0xffffffff;
1553 			goto done;
1554 		}
1555 		bit = enm->enm_addrlo[5] >> 2;
1556 		if (bit < 32)
1557 			lo |= 1 << bit;
1558 		else
1559 			hi |= 1 << (bit - 32);
1560 		ETHER_NEXT_MULTI(step, enm);
1561 	}
1562  done:
1563 	hi |= 1 << 31;	/* Make sure the broadcast bit is set. */
1564 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, lo);
1565 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hi);
1566 	return otus_write_barrier(sc);
1567 }
1568 
1569 void
1570 otus_updateedca(struct ieee80211com *ic)
1571 {
1572 	/* Do it in a process context. */
1573 	otus_do_async(ic->ic_softc, otus_updateedca_cb, NULL, 0);
1574 }
1575 
1576 /* ARGSUSED */
1577 void
1578 otus_updateedca_cb(struct otus_softc *sc, void *arg)
1579 {
1580 #define EXP2(val)	((1 << (val)) - 1)
1581 #define AIFS(val)	((val) * 9 + 10)
1582 	struct ieee80211com *ic = &sc->sc_ic;
1583 	const struct ieee80211_edca_ac_params *edca;
1584 	int s;
1585 
1586 	s = splnet();
1587 
1588 	edca = (ic->ic_flags & IEEE80211_F_QOS) ?
1589 	    ic->ic_edca_ac : otus_edca_def;
1590 
1591 	/* Set CWmin/CWmax values. */
1592 	otus_write(sc, AR_MAC_REG_AC0_CW,
1593 	    EXP2(edca[EDCA_AC_BE].ac_ecwmax) << 16 |
1594 	    EXP2(edca[EDCA_AC_BE].ac_ecwmin));
1595 	otus_write(sc, AR_MAC_REG_AC1_CW,
1596 	    EXP2(edca[EDCA_AC_BK].ac_ecwmax) << 16 |
1597 	    EXP2(edca[EDCA_AC_BK].ac_ecwmin));
1598 	otus_write(sc, AR_MAC_REG_AC2_CW,
1599 	    EXP2(edca[EDCA_AC_VI].ac_ecwmax) << 16 |
1600 	    EXP2(edca[EDCA_AC_VI].ac_ecwmin));
1601 	otus_write(sc, AR_MAC_REG_AC3_CW,
1602 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1603 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1604 	otus_write(sc, AR_MAC_REG_AC4_CW,		/* Special TXQ. */
1605 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1606 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1607 
1608 	/* Set AIFSN values. */
1609 	otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS,
1610 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) << 24 |
1611 	    AIFS(edca[EDCA_AC_BK].ac_aifsn) << 12 |
1612 	    AIFS(edca[EDCA_AC_BE].ac_aifsn));
1613 	otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS,
1614 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) << 16 |	/* Special TXQ. */
1615 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) <<  4 |
1616 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) >>  8);
1617 
1618 	/* Set TXOP limit. */
1619 	otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP,
1620 	    edca[EDCA_AC_BK].ac_txoplimit << 16 |
1621 	    edca[EDCA_AC_BE].ac_txoplimit);
1622 	otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP,
1623 	    edca[EDCA_AC_VO].ac_txoplimit << 16 |
1624 	    edca[EDCA_AC_VI].ac_txoplimit);
1625 
1626 	splx(s);
1627 
1628 	(void)otus_write_barrier(sc);
1629 #undef AIFS
1630 #undef EXP2
1631 }
1632 
1633 void
1634 otus_updateslot(struct ieee80211com *ic)
1635 {
1636 	/* Do it in a process context. */
1637 	otus_do_async(ic->ic_softc, otus_updateslot_cb, NULL, 0);
1638 }
1639 
1640 /* ARGSUSED */
1641 void
1642 otus_updateslot_cb(struct otus_softc *sc, void *arg)
1643 {
1644 	uint32_t slottime;
1645 
1646 	slottime = (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1647 	otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10);
1648 	(void)otus_write_barrier(sc);
1649 }
1650 
1651 int
1652 otus_init_mac(struct otus_softc *sc)
1653 {
1654 	int error;
1655 
1656 	otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40);
1657 	otus_write(sc, AR_MAC_REG_RETRY_MAX, 0);
1658 	otus_write(sc, AR_MAC_REG_SNIFFER, 0x2000000);
1659 	otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80);
1660 	otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70);
1661 	otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000);
1662 	otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10);
1663 	otus_write(sc, 0x1c3b2c, 0x19000000);
1664 	/* NAV protects ACK only (in TXOP). */
1665 	otus_write(sc, 0x1c3b38, 0x201);
1666 	/* Set beacon Tx power to 0x7. */
1667 	otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170);
1668 	otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105);
1669 	otus_write(sc, 0x1c3b9c, 0x10000a);
1670 	/* Filter any control frames, BAR is bit 24. */
1671 	otus_write(sc, 0x1c368c, 0x0500ffff);
1672 	otus_write(sc, 0x1c3c40, 0x1);
1673 	otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f);
1674 	otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f);
1675 	otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb);
1676 	otus_write(sc, 0x1c3694, 0x4003c1e);
1677 	/* Enable LED0 and LED1. */
1678 	otus_write(sc, 0x1d0100, 0x3);
1679 	otus_write(sc, 0x1d0104, 0x3);
1680 	/* Switch MAC to OTUS interface. */
1681 	otus_write(sc, 0x1c3600, 0x3);
1682 	otus_write(sc, 0x1c3c50, 0xffff);
1683 	otus_write(sc, 0x1c3680, 0xf00008);
1684 	/* Disable Rx timeout (workaround). */
1685 	otus_write(sc, 0x1c362c, 0);
1686 
1687 	/* Set USB Rx stream mode maximum frame number to 2. */
1688 	otus_write(sc, 0x1e1110, 0x4);
1689 	/* Set USB Rx stream mode timeout to 10us. */
1690 	otus_write(sc, 0x1e1114, 0x80);
1691 
1692 	/* Set clock frequency to 88/80MHz. */
1693 	otus_write(sc, 0x1d4008, 0x73);
1694 	/* Set WLAN DMA interrupt mode: generate intr per packet. */
1695 	otus_write(sc, 0x1c3d7c, 0x110011);
1696 	otus_write(sc, 0x1c3bb0, 0x4);
1697 	otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48);
1698 
1699 	/* Disable HW decryption for now. */
1700 	otus_write(sc, 0x1c3678, 0x78);
1701 
1702 	if ((error = otus_write_barrier(sc)) != 0)
1703 		return error;
1704 
1705 	/* Set default EDCA parameters. */
1706 	otus_updateedca_cb(sc, NULL);
1707 
1708 	return 0;
1709 }
1710 
1711 /*
1712  * Return default value for PHY register based on current operating mode.
1713  */
1714 uint32_t
1715 otus_phy_get_def(struct otus_softc *sc, uint32_t reg)
1716 {
1717 	int i;
1718 
1719 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1720 		if (AR_PHY(ar5416_phy_regs[i]) == reg)
1721 			return sc->phy_vals[i];
1722 	return 0;	/* Register not found. */
1723 }
1724 
1725 /*
1726  * Update PHY's programming based on vendor-specific data stored in EEPROM.
1727  * This is for FEM-type devices only.
1728  */
1729 int
1730 otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c)
1731 {
1732 	const struct ModalEepHeader *eep;
1733 	uint32_t tmp, offset;
1734 
1735 	if (IEEE80211_IS_CHAN_5GHZ(c))
1736 		eep = &sc->eeprom.modalHeader[0];
1737 	else
1738 		eep = &sc->eeprom.modalHeader[1];
1739 
1740 	/* Offset of chain 2. */
1741 	offset = 2 * 0x1000;
1742 
1743 	tmp = letoh32(eep->antCtrlCommon);
1744 	otus_write(sc, AR_PHY_SWITCH_COM, tmp);
1745 
1746 	tmp = letoh32(eep->antCtrlChain[0]);
1747 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp);
1748 
1749 	tmp = letoh32(eep->antCtrlChain[1]);
1750 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp);
1751 
1752 	if (1 /* sc->sc_sco == AR_SCO_SCN */) {
1753 		tmp = otus_phy_get_def(sc, AR_PHY_SETTLING);
1754 		tmp &= ~(0x7f << 7);
1755 		tmp |= (eep->switchSettling & 0x7f) << 7;
1756 		otus_write(sc, AR_PHY_SETTLING, tmp);
1757 	}
1758 
1759 	tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ);
1760 	tmp &= ~0xffff;
1761 	tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize;
1762 	otus_write(sc, AR_PHY_DESIRED_SZ, tmp);
1763 
1764 	tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 |
1765 	      eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn;
1766 	otus_write(sc, AR_PHY_RF_CTL4, tmp);
1767 
1768 	tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3);
1769 	tmp &= ~(0xff << 16);
1770 	tmp |= eep->txEndToRxOn << 16;
1771 	otus_write(sc, AR_PHY_RF_CTL3, tmp);
1772 
1773 	tmp = otus_phy_get_def(sc, AR_PHY_CCA);
1774 	tmp &= ~(0x7f << 12);
1775 	tmp |= (eep->thresh62 & 0x7f) << 12;
1776 	otus_write(sc, AR_PHY_CCA, tmp);
1777 
1778 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN);
1779 	tmp &= ~(0x3f << 12);
1780 	tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12;
1781 	otus_write(sc, AR_PHY_RXGAIN, tmp);
1782 
1783 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset);
1784 	tmp &= ~(0x3f << 12);
1785 	tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12;
1786 	otus_write(sc, AR_PHY_RXGAIN + offset, tmp);
1787 
1788 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ);
1789 	tmp &= ~(0x3f << 18);
1790 	tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18;
1791 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1792 		tmp &= ~(0xf << 10);
1793 		tmp |= (eep->bswMargin[0] & 0xf) << 10;
1794 	}
1795 	otus_write(sc, AR_PHY_GAIN_2GHZ, tmp);
1796 
1797 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset);
1798 	tmp &= ~(0x3f << 18);
1799 	tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18;
1800 	otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp);
1801 
1802 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4);
1803 	tmp &= ~(0x3f << 5 | 0x1f);
1804 	tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f);
1805 	otus_write(sc, AR_PHY_TIMING_CTRL4, tmp);
1806 
1807 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset);
1808 	tmp &= ~(0x3f << 5 | 0x1f);
1809 	tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f);
1810 	otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp);
1811 
1812 	tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1);
1813 	tmp &= ~(0xf << 16);
1814 	tmp |= (eep->xpd & 0xf) << 16;
1815 	otus_write(sc, AR_PHY_TPCRG1, tmp);
1816 
1817 	return otus_write_barrier(sc);
1818 }
1819 
1820 int
1821 otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c)
1822 {
1823 	const uint32_t *vals;
1824 	int error, i;
1825 
1826 	/* Select PHY programming based on band and bandwidth. */
1827 	if (IEEE80211_IS_CHAN_2GHZ(c))
1828 		vals = ar5416_phy_vals_2ghz_20mhz;
1829 	else
1830 		vals = ar5416_phy_vals_5ghz_20mhz;
1831 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1832 		otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]);
1833 	sc->phy_vals = vals;
1834 
1835 	if (sc->eeprom.baseEepHeader.deviceType == 0x80)	/* FEM */
1836 		if ((error = otus_set_board_values(sc, c)) != 0)
1837 			return error;
1838 
1839 	/* Initial Tx power settings. */
1840 	otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f);
1841 	otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f);
1842 	otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f);
1843 	otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f);
1844 	otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f);
1845 	otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f);
1846 	otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f);
1847 	otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f);
1848 	otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f);
1849 	otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f);
1850 
1851 	if (IEEE80211_IS_CHAN_2GHZ(c))
1852 		otus_write(sc, 0x1d4014, 0x5163);
1853 	else
1854 		otus_write(sc, 0x1d4014, 0x5143);
1855 
1856 	return otus_write_barrier(sc);
1857 }
1858 
1859 static __inline uint8_t
1860 otus_reverse_bits(uint8_t v)
1861 {
1862 	v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
1863 	v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
1864 	v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
1865 	return v;
1866 }
1867 
1868 int
1869 otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c)
1870 {
1871 	uint8_t chansel, d0, d1;
1872 	uint16_t data;
1873 	int error;
1874 
1875 	d0 = 0;
1876 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1877 		chansel = (c->ic_freq - 4800) / 5;
1878 		if (chansel & 1)
1879 			d0 |= AR_BANK4_AMODE_REFSEL(2);
1880 		else
1881 			d0 |= AR_BANK4_AMODE_REFSEL(1);
1882 	} else {
1883 		d0 |= AR_BANK4_AMODE_REFSEL(2);
1884 		if (c->ic_freq == 2484) {	/* CH 14 */
1885 			d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ;
1886 			chansel = 10 + (c->ic_freq - 2274) / 5;
1887 		} else
1888 			chansel = 16 + (c->ic_freq - 2272) / 5;
1889 		chansel <<= 2;
1890 	}
1891 	d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP;
1892 	d1 = otus_reverse_bits(chansel);
1893 
1894 	/* Write bits 0-4 of d0 and d1. */
1895 	data = (d1 & 0x1f) << 5 | (d0 & 0x1f);
1896 	otus_write(sc, AR_PHY(44), data);
1897 	/* Write bits 5-7 of d0 and d1. */
1898 	data = (d1 >> 5) << 5 | (d0 >> 5);
1899 	otus_write(sc, AR_PHY(58), data);
1900 
1901 	if ((error = otus_write_barrier(sc)) == 0)
1902 		usbd_delay_ms(sc->sc_udev, 10);
1903 	return error;
1904 }
1905 
1906 void
1907 otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1908 {
1909 #define COEFF_SCALE_SHIFT	24
1910 	uint32_t exp, man;
1911 
1912 	/* exponent = 14 - floor(log2(coeff)) */
1913 	for (exp = 31; exp > 0; exp--)
1914 		if (coeff & (1 << exp))
1915 			break;
1916 	KASSERT(exp != 0);
1917 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
1918 
1919 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
1920 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1921 
1922 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1923 	*exponent = exp - 16;
1924 #undef COEFF_SCALE_SHIFT
1925 }
1926 
1927 int
1928 otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc)
1929 {
1930 	struct ieee80211com *ic = &sc->sc_ic;
1931 	struct ar_cmd_frequency cmd;
1932 	struct ar_rsp_frequency rsp;
1933 	const uint32_t *vals;
1934 	uint32_t coeff, exp, man, tmp;
1935 	uint8_t code;
1936 	int error, chan, i;
1937 
1938 	chan = ieee80211_chan2ieee(ic, c);
1939 	DPRINTF(("setting channel %d (%dMHz)\n", chan, c->ic_freq));
1940 
1941 	tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104;
1942 	otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp);
1943 	if ((error = otus_write_barrier(sc)) != 0)
1944 		return error;
1945 
1946 	/* Disable BB Heavy Clip. */
1947 	otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200);
1948 	if ((error = otus_write_barrier(sc)) != 0)
1949 		return error;
1950 
1951 	/* XXX Is that FREQ_START ? */
1952 	error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL);
1953 	if (error != 0)
1954 		return error;
1955 
1956 	/* Reprogram PHY and RF on channel band or bandwidth changes. */
1957 	if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) {
1958 		DPRINTF(("band switch\n"));
1959 
1960 		/* Cold/Warm reset BB/ADDA. */
1961 		otus_write(sc, 0x1d4004, sc->bb_reset ? 0x800 : 0x400);
1962 		if ((error = otus_write_barrier(sc)) != 0)
1963 			return error;
1964 		otus_write(sc, 0x1d4004, 0);
1965 		if ((error = otus_write_barrier(sc)) != 0)
1966 			return error;
1967 		sc->bb_reset = 0;
1968 
1969 		if ((error = otus_program_phy(sc, c)) != 0) {
1970 			printf("%s: could not program PHY\n",
1971 			    sc->sc_dev.dv_xname);
1972 			return error;
1973 		}
1974 
1975 		/* Select RF programming based on band. */
1976 		if (IEEE80211_IS_CHAN_5GHZ(c))
1977 			vals = ar5416_banks_vals_5ghz;
1978 		else
1979 			vals = ar5416_banks_vals_2ghz;
1980 		for (i = 0; i < nitems(ar5416_banks_regs); i++)
1981 			otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]);
1982 		if ((error = otus_write_barrier(sc)) != 0) {
1983 			printf("%s: could not program RF\n",
1984 			    sc->sc_dev.dv_xname);
1985 			return error;
1986 		}
1987 		code = AR_CMD_RF_INIT;
1988 	} else {
1989 		code = AR_CMD_FREQUENCY;
1990 	}
1991 
1992 	if ((error = otus_set_rf_bank4(sc, c)) != 0)
1993 		return error;
1994 
1995 	tmp = (sc->txmask == 0x5) ? 0x340 : 0x240;
1996 	otus_write(sc, AR_PHY_TURBO, tmp);
1997 	if ((error = otus_write_barrier(sc)) != 0)
1998 		return error;
1999 
2000 	/* Send firmware command to set channel. */
2001 	cmd.freq = htole32((uint32_t)c->ic_freq * 1000);
2002 	cmd.dynht2040 = htole32(0);
2003 	cmd.htena = htole32(1);
2004 	/* Set Delta Slope (exponent and mantissa). */
2005 	coeff = (100 << 24) / c->ic_freq;
2006 	otus_get_delta_slope(coeff, &exp, &man);
2007 	cmd.dsc_exp = htole32(exp);
2008 	cmd.dsc_man = htole32(man);
2009 	DPRINTF(("ds coeff=%u exp=%u man=%u\n", coeff, exp, man));
2010 	/* For Short GI, coeff is 9/10 that of normal coeff. */
2011 	coeff = (9 * coeff) / 10;
2012 	otus_get_delta_slope(coeff, &exp, &man);
2013 	cmd.dsc_shgi_exp = htole32(exp);
2014 	cmd.dsc_shgi_man = htole32(man);
2015 	DPRINTF(("ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man));
2016 	/* Set wait time for AGC and noise calibration (100 or 200ms). */
2017 	cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000);
2018 	DPRINTF(("%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY"));
2019 	error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp);
2020 	if (error != 0)
2021 		return error;
2022 	if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) {
2023 		DPRINTF(("status=0x%x\n", letoh32(rsp.status)));
2024 		/* Force cold reset on next channel. */
2025 		sc->bb_reset = 1;
2026 	}
2027 #ifdef OTUS_DEBUG
2028 	if (otus_debug) {
2029 		printf("calibration status=0x%x\n", letoh32(rsp.status));
2030 		for (i = 0; i < 2; i++) {	/* 2 Rx chains */
2031 			/* Sign-extend 9-bit NF values. */
2032 			printf("noisefloor chain %d=%d\n", i,
2033 			    (((int32_t)letoh32(rsp.nf[i])) << 4) >> 23);
2034 			printf("noisefloor ext chain %d=%d\n", i,
2035 			    ((int32_t)letoh32(rsp.nf_ext[i])) >> 23);
2036 		}
2037 	}
2038 #endif
2039 	sc->sc_curchan = c;
2040 	return 0;
2041 }
2042 
2043 #ifdef notyet
2044 int
2045 otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2046     struct ieee80211_key *k)
2047 {
2048 	struct otus_softc *sc = ic->ic_softc;
2049 	struct otus_cmd_key cmd;
2050 
2051 	/* Defer setting of WEP keys until interface is brought up. */
2052 	if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
2053 	    (IFF_UP | IFF_RUNNING))
2054 		return 0;
2055 
2056 	/* Do it in a process context. */
2057 	cmd.key = *k;
2058 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2059 	otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd);
2060 	return 0;
2061 }
2062 
2063 void
2064 otus_set_key_cb(struct otus_softc *sc, void *arg)
2065 {
2066 	struct otus_cmd_key *cmd = arg;
2067 	struct ieee80211_key *k = &cmd->key;
2068 	struct ar_cmd_ekey key;
2069 	uint16_t cipher;
2070 	int error;
2071 
2072 	memset(&key, 0, sizeof key);
2073 	if (k->k_flags & IEEE80211_KEY_GROUP) {
2074 		key.uid = htole16(k->k_id);
2075 		IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr);
2076 		key.macaddr[0] |= 0x80;
2077 	} else {
2078 		key.uid = htole16(OTUS_UID(cmd->associd));
2079 		IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr);
2080 	}
2081 	key.kix = htole16(0);
2082 	/* Map net80211 cipher to hardware. */
2083 	switch (k->k_cipher) {
2084 	case IEEE80211_CIPHER_WEP40:
2085 		cipher = AR_CIPHER_WEP64;
2086 		break;
2087 	case IEEE80211_CIPHER_WEP104:
2088 		cipher = AR_CIPHER_WEP128;
2089 		break;
2090 	case IEEE80211_CIPHER_TKIP:
2091 		cipher = AR_CIPHER_TKIP;
2092 		break;
2093 	case IEEE80211_CIPHER_CCMP:
2094 		cipher = AR_CIPHER_AES;
2095 		break;
2096 	default:
2097 		return;
2098 	}
2099 	key.cipher = htole16(cipher);
2100 	memcpy(key.key, k->k_key, MIN(k->k_len, 16));
2101 	error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2102 	if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP)
2103 		return;
2104 
2105 	/* TKIP: set Tx/Rx MIC Key. */
2106 	key.kix = htole16(1);
2107 	memcpy(key.key, k->k_key + 16, 16);
2108 	(void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2109 }
2110 
2111 void
2112 otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2113     struct ieee80211_key *k)
2114 {
2115 	struct otus_softc *sc = ic->ic_softc;
2116 	struct otus_cmd_key cmd;
2117 
2118 	if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
2119 	    ic->ic_state != IEEE80211_S_RUN)
2120 		return;	/* Nothing to do. */
2121 
2122 	/* Do it in a process context. */
2123 	cmd.key = *k;
2124 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2125 	otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd);
2126 }
2127 
2128 void
2129 otus_delete_key_cb(struct otus_softc *sc, void *arg)
2130 {
2131 	struct otus_cmd_key *cmd = arg;
2132 	struct ieee80211_key *k = &cmd->key;
2133 	uint32_t uid;
2134 
2135 	if (k->k_flags & IEEE80211_KEY_GROUP)
2136 		uid = htole32(k->k_id);
2137 	else
2138 		uid = htole32(OTUS_UID(cmd->associd));
2139 	(void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL);
2140 }
2141 #endif
2142 
2143 void
2144 otus_calibrate_to(void *arg)
2145 {
2146 	struct otus_softc *sc = arg;
2147 	struct ieee80211com *ic = &sc->sc_ic;
2148 	struct ieee80211_node *ni;
2149 	int s;
2150 
2151 	s = splnet();
2152 	ni = ic->ic_bss;
2153 	ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn);
2154 	splx(s);
2155 
2156 	timeout_add_sec(&sc->calib_to, 1);
2157 }
2158 
2159 int
2160 otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid)
2161 {
2162 	otus_write(sc, AR_MAC_REG_BSSID_L,
2163 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2164 	otus_write(sc, AR_MAC_REG_BSSID_H,
2165 	    bssid[4] | bssid[5] << 8);
2166 	return otus_write_barrier(sc);
2167 }
2168 
2169 int
2170 otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr)
2171 {
2172 	otus_write(sc, AR_MAC_REG_MAC_ADDR_L,
2173 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2174 	otus_write(sc, AR_MAC_REG_MAC_ADDR_H,
2175 	    addr[4] | addr[5] << 8);
2176 	return otus_write_barrier(sc);
2177 }
2178 
2179 /* Default single-LED. */
2180 void
2181 otus_led_newstate_type1(struct otus_softc *sc)
2182 {
2183 	/* TBD */
2184 }
2185 
2186 /* NETGEAR, dual-LED. */
2187 void
2188 otus_led_newstate_type2(struct otus_softc *sc)
2189 {
2190 	/* TBD */
2191 }
2192 
2193 /* NETGEAR, single-LED/3 colors (blue, red, purple.) */
2194 void
2195 otus_led_newstate_type3(struct otus_softc *sc)
2196 {
2197 	struct ieee80211com *ic = &sc->sc_ic;
2198 	uint32_t state = sc->led_state;
2199 
2200 	if (ic->ic_state == IEEE80211_S_INIT) {
2201 		state = 0;	/* LED off. */
2202 	} else if (ic->ic_state == IEEE80211_S_RUN) {
2203 		/* Associated, LED always on. */
2204 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2205 			state = AR_LED0_ON;	/* 2GHz=>Red. */
2206 		else
2207 			state = AR_LED1_ON;	/* 5GHz=>Blue. */
2208 	} else {
2209 		/* Scanning, blink LED. */
2210 		state ^= AR_LED0_ON | AR_LED1_ON;
2211 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2212 			state &= ~AR_LED1_ON;
2213 		else
2214 			state &= ~AR_LED0_ON;
2215 	}
2216 	if (state != sc->led_state) {
2217 		otus_write(sc, 0x1d0104, state);
2218 		if (otus_write_barrier(sc) == 0)
2219 			sc->led_state = state;
2220 	}
2221 }
2222 
2223 int
2224 otus_init(struct ifnet *ifp)
2225 {
2226 	struct otus_softc *sc = ifp->if_softc;
2227 	struct ieee80211com *ic = &sc->sc_ic;
2228 	int error;
2229 
2230 	/* Init host command ring. */
2231 	sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
2232 
2233 	if ((error = otus_init_mac(sc)) != 0) {
2234 		printf("%s: could not initialize MAC\n", sc->sc_dev.dv_xname);
2235 		return error;
2236 	}
2237 
2238 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2239 	(void)otus_set_macaddr(sc, ic->ic_myaddr);
2240 
2241 	switch (ic->ic_opmode) {
2242 #ifdef notyet
2243 #ifndef IEEE80211_STA_ONLY
2244 	case IEEE80211_M_HOSTAP:
2245 		otus_write(sc, 0x1c3700, 0x0f0000a1);
2246 		otus_write(sc, 0x1c3c40, 0x1);
2247 		break;
2248 	case IEEE80211_M_IBSS:
2249 		otus_write(sc, 0x1c3700, 0x0f000000);
2250 		otus_write(sc, 0x1c3c40, 0x1);
2251 		break;
2252 #endif
2253 #endif
2254 	case IEEE80211_M_STA:
2255 		otus_write(sc, 0x1c3700, 0x0f000002);
2256 		otus_write(sc, 0x1c3c40, 0x1);
2257 		break;
2258 	default:
2259 		break;
2260 	}
2261 	otus_write(sc, AR_MAC_REG_SNIFFER,
2262 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 0x2000001 : 0x2000000);
2263 	(void)otus_write_barrier(sc);
2264 
2265 	sc->bb_reset = 1;	/* Force cold reset. */
2266 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2267 	if ((error = otus_set_chan(sc, ic->ic_ibss_chan, 0)) != 0) {
2268 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
2269 		return error;
2270 	}
2271 
2272 	/* Start Rx. */
2273 	otus_write(sc, 0x1c3d30, 0x100);
2274 	(void)otus_write_barrier(sc);
2275 
2276 	ifp->if_flags &= ~IFF_OACTIVE;
2277 	ifp->if_flags |= IFF_RUNNING;
2278 
2279 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2280 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2281 	else
2282 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2283 
2284 	return 0;
2285 }
2286 
2287 void
2288 otus_stop(struct ifnet *ifp)
2289 {
2290 	struct otus_softc *sc = ifp->if_softc;
2291 	struct ieee80211com *ic = &sc->sc_ic;
2292 	int s;
2293 
2294 	sc->sc_tx_timer = 0;
2295 	ifp->if_timer = 0;
2296 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2297 
2298 	timeout_del(&sc->scan_to);
2299 	timeout_del(&sc->calib_to);
2300 
2301 	s = splusb();
2302 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2303 	/* Wait for all queued asynchronous commands to complete. */
2304 	while (sc->cmdq.queued > 0)
2305 		tsleep(&sc->cmdq, 0, "cmdq", 0);
2306 	splx(s);
2307 
2308 	/* Stop Rx. */
2309 	otus_write(sc, 0x1c3d30, 0);
2310 	(void)otus_write_barrier(sc);
2311 
2312 	sc->tx_queued = 0;
2313 }
2314