xref: /openbsd-src/sys/dev/usb/if_otus.c (revision 43003dfe3ad45d1698bed8a37f2b0f5b14f20d4f)
1 /*	$OpenBSD: if_otus.c,v 1.12 2009/09/15 18:44:55 damien Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*-
20  * Driver for Atheros AR9001U chipset.
21  * http://www.atheros.com/pt/bulletins/AR9001USBBulletin.pdf
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/sysctl.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/timeout.h>
34 #include <sys/conf.h>
35 #include <sys/device.h>
36 
37 #include <machine/bus.h>
38 #include <machine/endian.h>
39 #include <machine/intr.h>
40 
41 #if NBPFILTER > 0
42 #include <net/bpf.h>
43 #endif
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/if_ether.h>
54 #include <netinet/ip.h>
55 
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/usb/usb.h>
61 #include <dev/usb/usbdi.h>
62 #include <dev/usb/usbdi_util.h>
63 #include <dev/usb/usbdevs.h>
64 
65 #include <dev/usb/if_otusreg.h>
66 
67 #ifdef USB_DEBUG
68 #define OTUS_DEBUG
69 #endif
70 
71 #ifdef OTUS_DEBUG
72 #define DPRINTF(x)	do { if (otus_debug) printf x; } while (0)
73 #define DPRINTFN(n, x)	do { if (otus_debug >= (n)) printf x; } while (0)
74 int otus_debug = 1;
75 #else
76 #define DPRINTF(x)
77 #define DPRINTFN(n, x)
78 #endif
79 
80 static const struct usb_devno otus_devs[] = {
81 	{ USB_VENDOR_ACCTON,	USB_PRODUCT_ACCTON_WN7512 },
82 	{ USB_VENDOR_ATHEROS2,	USB_PRODUCT_ATHEROS2_TG121N },
83 	{ USB_VENDOR_ATHEROS2,	USB_PRODUCT_ATHEROS2_AR9170 },
84 	{ USB_VENDOR_ATHEROS2,	USB_PRODUCT_ATHEROS2_WN821NV2 },
85 	{ USB_VENDOR_AVM,	USB_PRODUCT_AVM_FRITZWLAN },
86 	{ USB_VENDOR_CACE,	USB_PRODUCT_CACE_AIRPCAPNX },
87 	{ USB_VENDOR_DLINK2,	USB_PRODUCT_DLINK2_DWA130D1 },
88 	{ USB_VENDOR_DLINK2,	USB_PRODUCT_DLINK2_DWA160A },
89 	{ USB_VENDOR_IODATA,	USB_PRODUCT_IODATA_WNGDNUS2 },
90 	{ USB_VENDOR_NETGEAR,	USB_PRODUCT_NETGEAR_WN111V2 },
91 	{ USB_VENDOR_NETGEAR,	USB_PRODUCT_NETGEAR_WNDA3100 },
92 	{ USB_VENDOR_PLANEX2,	USB_PRODUCT_PLANEX2_GW_US300 },
93 	{ USB_VENDOR_ZCOM,	USB_PRODUCT_ZCOM_UB81 },
94 	{ USB_VENDOR_ZCOM,	USB_PRODUCT_ZCOM_UB82 },
95 	{ USB_VENDOR_ZYDAS,	USB_PRODUCT_ZYDAS_ZD1221 },
96 	{ USB_VENDOR_ZYXEL,	USB_PRODUCT_ZYXEL_NWD271N }
97 };
98 
99 int		otus_match(struct device *, void *, void *);
100 void		otus_attach(struct device *, struct device *, void *);
101 int		otus_detach(struct device *, int);
102 void		otus_attachhook(void *);
103 void		otus_get_chanlist(struct otus_softc *);
104 int		otus_load_firmware(struct otus_softc *, const char *,
105 		    uint32_t);
106 int		otus_open_pipes(struct otus_softc *);
107 void		otus_close_pipes(struct otus_softc *);
108 int		otus_alloc_tx_cmd(struct otus_softc *);
109 void		otus_free_tx_cmd(struct otus_softc *);
110 int		otus_alloc_tx_data_list(struct otus_softc *);
111 void		otus_free_tx_data_list(struct otus_softc *);
112 int		otus_alloc_rx_data_list(struct otus_softc *);
113 void		otus_free_rx_data_list(struct otus_softc *);
114 void		otus_next_scan(void *);
115 void		otus_task(void *);
116 void		otus_do_async(struct otus_softc *,
117 		    void (*)(struct otus_softc *, void *), void *, int);
118 int		otus_newstate(struct ieee80211com *, enum ieee80211_state,
119 		    int);
120 void		otus_newstate_cb(struct otus_softc *, void *);
121 int		otus_cmd(struct otus_softc *, uint8_t, const void *, int,
122 		    void *);
123 void		otus_write(struct otus_softc *, uint32_t, uint32_t);
124 int		otus_write_barrier(struct otus_softc *);
125 struct		ieee80211_node *otus_node_alloc(struct ieee80211com *);
126 int		otus_media_change(struct ifnet *);
127 int		otus_read_eeprom(struct otus_softc *);
128 void		otus_newassoc(struct ieee80211com *, struct ieee80211_node *,
129 		    int);
130 void		otus_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
131 void		otus_cmd_rxeof(struct otus_softc *, uint8_t *, int);
132 void		otus_sub_rxeof(struct otus_softc *, uint8_t *, int);
133 void		otus_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
134 void		otus_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
135 int		otus_tx(struct otus_softc *, struct mbuf *,
136 		    struct ieee80211_node *);
137 void		otus_start(struct ifnet *);
138 void		otus_watchdog(struct ifnet *);
139 int		otus_ioctl(struct ifnet *, u_long, caddr_t);
140 int		otus_set_multi(struct otus_softc *);
141 void		otus_updateedca(struct ieee80211com *);
142 void		otus_updateedca_cb(struct otus_softc *, void *);
143 void		otus_updateslot(struct ieee80211com *);
144 void		otus_updateslot_cb(struct otus_softc *, void *);
145 int		otus_init_mac(struct otus_softc *);
146 uint32_t	otus_phy_get_def(struct otus_softc *, uint32_t);
147 int		otus_set_board_values(struct otus_softc *,
148 		    struct ieee80211_channel *);
149 int		otus_program_phy(struct otus_softc *,
150 		    struct ieee80211_channel *);
151 int		otus_set_rf_bank4(struct otus_softc *,
152 		    struct ieee80211_channel *);
153 void		otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
154 int		otus_set_chan(struct otus_softc *, struct ieee80211_channel *,
155 		    int);
156 int		otus_set_key(struct ieee80211com *, struct ieee80211_node *,
157 		    struct ieee80211_key *);
158 void		otus_set_key_cb(struct otus_softc *, void *);
159 void		otus_delete_key(struct ieee80211com *, struct ieee80211_node *,
160 		    struct ieee80211_key *);
161 void		otus_delete_key_cb(struct otus_softc *, void *);
162 void		otus_calibrate_to(void *);
163 int		otus_set_bssid(struct otus_softc *, const uint8_t *);
164 int		otus_set_macaddr(struct otus_softc *, const uint8_t *);
165 void		otus_led_newstate_type1(struct otus_softc *);
166 void		otus_led_newstate_type2(struct otus_softc *);
167 void		otus_led_newstate_type3(struct otus_softc *);
168 int		otus_init(struct ifnet *);
169 void		otus_stop(struct ifnet *);
170 
171 struct cfdriver otus_cd = {
172 	NULL, "otus", DV_IFNET
173 };
174 
175 const struct cfattach otus_ca = {
176 	sizeof (struct otus_softc), otus_match, otus_attach, otus_detach
177 };
178 
179 int
180 otus_match(struct device *parent, void *match, void *aux)
181 {
182 	struct usb_attach_arg *uaa = aux;
183 
184 	if (uaa->iface != NULL)
185 		return UMATCH_NONE;
186 
187 	return (usb_lookup(otus_devs, uaa->vendor, uaa->product) != NULL) ?
188 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
189 }
190 
191 void
192 otus_attach(struct device *parent, struct device *self, void *aux)
193 {
194 	struct otus_softc *sc = (struct otus_softc *)self;
195 	struct usb_attach_arg *uaa = aux;
196 	int error;
197 
198 	sc->sc_udev = uaa->device;
199 
200 	usb_init_task(&sc->sc_task, otus_task, sc);
201 	timeout_set(&sc->scan_to, otus_next_scan, sc);
202 	timeout_set(&sc->calib_to, otus_calibrate_to, sc);
203 
204 	sc->amrr.amrr_min_success_threshold =  1;
205 	sc->amrr.amrr_max_success_threshold = 10;
206 
207 	if (usbd_set_config_no(sc->sc_udev, 1, 0) != 0) {
208 		printf("%s: could not set configuration no\n",
209 		    sc->sc_dev.dv_xname);
210 		return;
211 	}
212 
213 	/* Get the first interface handle. */
214 	error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
215 	if (error != 0) {
216 		printf("%s: could not get interface handle\n",
217 		    sc->sc_dev.dv_xname);
218 		return;
219 	}
220 
221 	if ((error = otus_open_pipes(sc)) != 0) {
222 		printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
223 		return;
224 	}
225 
226 	if (rootvp == NULL)
227 		mountroothook_establish(otus_attachhook, sc);
228 	else
229 		otus_attachhook(sc);
230 
231 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, &sc->sc_dev);
232 }
233 
234 int
235 otus_detach(struct device *self, int flags)
236 {
237 	struct otus_softc *sc = (struct otus_softc *)self;
238 	struct ifnet *ifp = &sc->sc_ic.ic_if;
239 	int s;
240 
241 	s = splnet();
242 
243 	/* Wait for all queued asynchronous commands to complete. */
244 	while (sc->cmdq.queued > 0)
245 		tsleep(&sc->cmdq, 0, "cmdq", 0);
246 
247 	timeout_del(&sc->scan_to);
248 	timeout_del(&sc->calib_to);
249 
250 	if (ifp->if_flags != 0) {	/* if_attach() has been called. */
251 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
252 		ieee80211_ifdetach(ifp);
253 		if_detach(ifp);
254 	}
255 
256 	otus_close_pipes(sc);
257 
258 	splx(s);
259 
260 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, &sc->sc_dev);
261 
262 	return 0;
263 }
264 
265 void
266 otus_attachhook(void *xsc)
267 {
268 	struct otus_softc *sc = xsc;
269 	struct ieee80211com *ic = &sc->sc_ic;
270 	struct ifnet *ifp = &ic->ic_if;
271 	usb_device_request_t req;
272 	uint32_t in, out;
273 	int error;
274 
275 	error = otus_load_firmware(sc, "otus-init", AR_FW_INIT_ADDR);
276 	if (error != 0) {
277 		printf("%s: could not load %s firmware\n",
278 		    sc->sc_dev.dv_xname, "init");
279 		return;
280 	}
281 
282 	usbd_delay_ms(sc->sc_udev, 1000);
283 
284 	error = otus_load_firmware(sc, "otus-main", AR_FW_MAIN_ADDR);
285 	if (error != 0) {
286 		printf("%s: could not load %s firmware\n",
287 		    sc->sc_dev.dv_xname, "main");
288 		return;
289 	}
290 
291 	/* Tell device that firmware transfer is complete. */
292 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
293 	req.bRequest = AR_FW_DOWNLOAD_COMPLETE;
294 	USETW(req.wValue, 0);
295 	USETW(req.wIndex, 0);
296 	USETW(req.wLength, 0);
297 	if (usbd_do_request(sc->sc_udev, &req, NULL) != 0) {
298 		printf("%s: firmware initialization failed\n",
299 		    sc->sc_dev.dv_xname);
300 		return;
301 	}
302 
303 	/* Send an ECHO command to check that everything is settled. */
304 	in = 0xbadc0ffe;
305 	if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out) != 0) {
306 		printf("%s: echo command failed\n", sc->sc_dev.dv_xname);
307 		return;
308 	}
309 	if (in != out) {
310 		printf("%s: echo reply mismatch: 0x%08x!=0x%08x\n",
311 		    sc->sc_dev.dv_xname, in, out);
312 		return;
313 	}
314 
315 	/* Read entire EEPROM. */
316 	if (otus_read_eeprom(sc) != 0) {
317 		printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
318 		return;
319 	}
320 
321 	sc->txmask = sc->eeprom.baseEepHeader.txMask;
322 	sc->rxmask = sc->eeprom.baseEepHeader.rxMask;
323 	sc->capflags = sc->eeprom.baseEepHeader.opCapFlags;
324 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->eeprom.baseEepHeader.macAddr);
325 	sc->sc_led_newstate = otus_led_newstate_type3;	/* XXX */
326 
327 	printf("%s: MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n",
328 	    sc->sc_dev.dv_xname, (sc->capflags & AR5416_OPFLAGS_11A) ?
329 	        0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101),
330 	    (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1,
331 	    ether_sprintf(ic->ic_myaddr));
332 
333 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
334 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
335 	ic->ic_state = IEEE80211_S_INIT;
336 
337 	/* Set device capabilities. */
338 	ic->ic_caps =
339 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
340 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
341 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
342 	    IEEE80211_C_WEP |		/* WEP */
343 	    IEEE80211_C_RSN;		/* WPA/RSN */
344 
345 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
346 		/* Set supported .11b and .11g rates. */
347 		ic->ic_sup_rates[IEEE80211_MODE_11B] =
348 		    ieee80211_std_rateset_11b;
349 		ic->ic_sup_rates[IEEE80211_MODE_11G] =
350 		    ieee80211_std_rateset_11g;
351 	}
352 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
353 		/* Set supported .11a rates. */
354 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
355 		    ieee80211_std_rateset_11a;
356 	}
357 
358 	/* Build the list of supported channels. */
359 	otus_get_chanlist(sc);
360 
361 	ifp->if_softc = sc;
362 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
363 	ifp->if_init = otus_init;
364 	ifp->if_ioctl = otus_ioctl;
365 	ifp->if_start = otus_start;
366 	ifp->if_watchdog = otus_watchdog;
367 	IFQ_SET_READY(&ifp->if_snd);
368 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
369 
370 	if_attach(ifp);
371 	ieee80211_ifattach(ifp);
372 	ic->ic_node_alloc = otus_node_alloc;
373 	ic->ic_newassoc = otus_newassoc;
374 	ic->ic_updateslot = otus_updateslot;
375 	ic->ic_updateedca = otus_updateedca;
376 #ifdef notyet
377 	ic->ic_set_key = otus_set_key;
378 	ic->ic_delete_key = otus_delete_key;
379 #endif
380 	/* Override state transition machine. */
381 	sc->sc_newstate = ic->ic_newstate;
382 	ic->ic_newstate = otus_newstate;
383 	ieee80211_media_init(ifp, otus_media_change, ieee80211_media_status);
384 
385 #if NBPFILTER > 0
386 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
387 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
388 
389 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
390 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
391 	sc->sc_rxtap.wr_ihdr.it_present = htole32(OTUS_RX_RADIOTAP_PRESENT);
392 
393 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
394 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
395 	sc->sc_txtap.wt_ihdr.it_present = htole32(OTUS_TX_RADIOTAP_PRESENT);
396 #endif
397 }
398 
399 void
400 otus_get_chanlist(struct otus_softc *sc)
401 {
402 	struct ieee80211com *ic = &sc->sc_ic;
403 	uint16_t domain;
404 	uint8_t chan;
405 	int i;
406 
407 	/* XXX regulatory domain. */
408 	domain = letoh16(sc->eeprom.baseEepHeader.regDmn[0]);
409 	DPRINTF(("regdomain=0x%04x\n", domain));
410 
411 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
412 		for (i = 0; i < 14; i++) {
413 			chan = ar_chans[i];
414 			ic->ic_channels[chan].ic_freq =
415 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
416 			ic->ic_channels[chan].ic_flags =
417 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
418 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
419 		}
420 	}
421 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
422 		for (i = 14; i < nitems(ar_chans); i++) {
423 			chan = ar_chans[i];
424 			ic->ic_channels[chan].ic_freq =
425 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
426 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
427 		}
428 	}
429 }
430 
431 int
432 otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr)
433 {
434 	usb_device_request_t req;
435 	size_t size;
436 	u_char *fw, *ptr;
437 	int mlen, error;
438 
439 	/* Read firmware image from the filesystem. */
440 	if ((error = loadfirmware(name, &fw, &size)) != 0) {
441 		printf("%s: failed loadfirmware of file %s (error %d)\n",
442 		    sc->sc_dev.dv_xname, name, error);
443 		return error;
444 	}
445 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
446 	req.bRequest = AR_FW_DOWNLOAD;
447 	USETW(req.wIndex, 0);
448 
449 	ptr = fw;
450 	addr >>= 8;
451 	while (size > 0) {
452 		mlen = MIN(size, 4096);
453 
454 		USETW(req.wValue, addr);
455 		USETW(req.wLength, mlen);
456 		if (usbd_do_request(sc->sc_udev, &req, ptr) != 0) {
457 			error = EIO;
458 			break;
459 		}
460 		addr += mlen >> 8;
461 		ptr  += mlen;
462 		size -= mlen;
463 	}
464 	free(fw, M_DEVBUF);
465 	return error;
466 }
467 
468 int
469 otus_open_pipes(struct otus_softc *sc)
470 {
471 	usb_endpoint_descriptor_t *ed;
472 	int i, isize, error;
473 
474 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_RX_NO, 0,
475 	    &sc->data_rx_pipe);
476 	if (error != 0) {
477 		printf("%s: could not open Rx bulk pipe\n",
478 		    sc->sc_dev.dv_xname);
479 		goto fail;
480 	}
481 
482 	ed = usbd_get_endpoint_descriptor(sc->sc_iface, AR_EPT_INTR_RX_NO);
483 	if (ed == NULL) {
484 		printf("%s: could not retrieve Rx intr pipe descriptor\n",
485 		    sc->sc_dev.dv_xname);
486 		goto fail;
487 	}
488 	isize = UGETW(ed->wMaxPacketSize);
489 	if (isize == 0) {
490 		printf("%s: invalid Rx intr pipe descriptor\n",
491 		    sc->sc_dev.dv_xname);
492 		goto fail;
493 	}
494 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
495 	if (sc->ibuf == NULL) {
496 		printf("%s: could not allocate Rx intr buffer\n",
497 		    sc->sc_dev.dv_xname);
498 		goto fail;
499 	}
500 	error = usbd_open_pipe_intr(sc->sc_iface, AR_EPT_INTR_RX_NO,
501 	    USBD_SHORT_XFER_OK, &sc->cmd_rx_pipe, sc, sc->ibuf, isize,
502 	    otus_intr, USBD_DEFAULT_INTERVAL);
503 	if (error != 0) {
504 		printf("%s: could not open Rx intr pipe\n",
505 		    sc->sc_dev.dv_xname);
506 		goto fail;
507 	}
508 
509 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_TX_NO, 0,
510 	    &sc->data_tx_pipe);
511 	if (error != 0) {
512 		printf("%s: could not open Tx bulk pipe\n",
513 		    sc->sc_dev.dv_xname);
514 		goto fail;
515 	}
516 
517 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_INTR_TX_NO, 0,
518 	    &sc->cmd_tx_pipe);
519 	if (error != 0) {
520 		printf("%s: could not open Tx intr pipe\n",
521 		    sc->sc_dev.dv_xname);
522 		goto fail;
523 	}
524 
525 	if (otus_alloc_tx_cmd(sc) != 0) {
526 		printf("%s: could not allocate command xfer\n",
527 		    sc->sc_dev.dv_xname);
528 		goto fail;
529 	}
530 
531 	if (otus_alloc_tx_data_list(sc) != 0) {
532 		printf("%s: could not allocate Tx xfers\n",
533 		    sc->sc_dev.dv_xname);
534 		goto fail;
535 	}
536 
537 	if (otus_alloc_rx_data_list(sc) != 0) {
538 		printf("%s: could not allocate Rx xfers\n",
539 		    sc->sc_dev.dv_xname);
540 		goto fail;
541 	}
542 
543 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
544 		struct otus_rx_data *data = &sc->rx_data[i];
545 
546 		usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
547 		    OTUS_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
548 		    USBD_NO_TIMEOUT, otus_rxeof);
549 		error = usbd_transfer(data->xfer);
550 		if (error != USBD_IN_PROGRESS && error != 0) {
551 			printf("%s: could not queue Rx xfer\n",
552 			    sc->sc_dev.dv_xname);
553 			goto fail;
554 		}
555 	}
556 	return 0;
557 
558  fail:	otus_close_pipes(sc);
559 	return error;
560 }
561 
562 void
563 otus_close_pipes(struct otus_softc *sc)
564 {
565 	otus_free_tx_cmd(sc);
566 	otus_free_tx_data_list(sc);
567 	otus_free_rx_data_list(sc);
568 
569 	if (sc->data_rx_pipe != NULL)
570 		usbd_close_pipe(sc->data_rx_pipe);
571 	if (sc->cmd_rx_pipe != NULL) {
572 		usbd_abort_pipe(sc->cmd_rx_pipe);
573 		usbd_close_pipe(sc->cmd_rx_pipe);
574 	}
575 	if (sc->ibuf != NULL)
576 		free(sc->ibuf, M_USBDEV);
577 	if (sc->data_tx_pipe != NULL)
578 		usbd_close_pipe(sc->data_tx_pipe);
579 	if (sc->cmd_tx_pipe != NULL)
580 		usbd_close_pipe(sc->cmd_tx_pipe);
581 }
582 
583 int
584 otus_alloc_tx_cmd(struct otus_softc *sc)
585 {
586 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
587 
588 	cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
589 	if (cmd->xfer == NULL) {
590 		printf("%s: could not allocate xfer\n",
591 		    sc->sc_dev.dv_xname);
592 		return ENOMEM;
593 	}
594 	cmd->buf = usbd_alloc_buffer(cmd->xfer, OTUS_MAX_TXCMDSZ);
595 	if (cmd->buf == NULL) {
596 		printf("%s: could not allocate xfer buffer\n",
597 		    sc->sc_dev.dv_xname);
598 		usbd_free_xfer(cmd->xfer);
599 		return ENOMEM;
600 	}
601 	return 0;
602 }
603 
604 void
605 otus_free_tx_cmd(struct otus_softc *sc)
606 {
607 	/* Make sure no transfers are pending. */
608 	usbd_abort_pipe(sc->cmd_tx_pipe);
609 
610 	if (sc->tx_cmd.xfer != NULL)
611 		usbd_free_xfer(sc->tx_cmd.xfer);
612 }
613 
614 int
615 otus_alloc_tx_data_list(struct otus_softc *sc)
616 {
617 	struct otus_tx_data *data;
618 	int i, error;
619 
620 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++) {
621 		data = &sc->tx_data[i];
622 
623 		data->sc = sc;  /* Backpointer for callbacks. */
624 
625 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
626 		if (data->xfer == NULL) {
627 			printf("%s: could not allocate xfer\n",
628 			    sc->sc_dev.dv_xname);
629 			error = ENOMEM;
630 			goto fail;
631 		}
632 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_TXBUFSZ);
633 		if (data->buf == NULL) {
634 			printf("%s: could not allocate xfer buffer\n",
635 			    sc->sc_dev.dv_xname);
636 			error = ENOMEM;
637 			goto fail;
638 		}
639 	}
640 	return 0;
641 
642 fail:	otus_free_tx_data_list(sc);
643 	return error;
644 }
645 
646 void
647 otus_free_tx_data_list(struct otus_softc *sc)
648 {
649 	int i;
650 
651 	/* Make sure no transfers are pending. */
652 	usbd_abort_pipe(sc->data_tx_pipe);
653 
654 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++)
655 		if (sc->tx_data[i].xfer != NULL)
656 			usbd_free_xfer(sc->tx_data[i].xfer);
657 }
658 
659 int
660 otus_alloc_rx_data_list(struct otus_softc *sc)
661 {
662 	struct otus_rx_data *data;
663 	int i, error;
664 
665 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
666 		data = &sc->rx_data[i];
667 
668 		data->sc = sc;	/* Backpointer for callbacks. */
669 
670 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
671 		if (data->xfer == NULL) {
672 			printf("%s: could not allocate xfer\n",
673 			    sc->sc_dev.dv_xname);
674 			error = ENOMEM;
675 			goto fail;
676 		}
677 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_RXBUFSZ);
678 		if (data->buf == NULL) {
679 			printf("%s: could not allocate xfer buffer\n",
680 			    sc->sc_dev.dv_xname);
681 			error = ENOMEM;
682 			goto fail;
683 		}
684 	}
685 	return 0;
686 
687 fail:	otus_free_rx_data_list(sc);
688 	return error;
689 }
690 
691 void
692 otus_free_rx_data_list(struct otus_softc *sc)
693 {
694 	int i;
695 
696 	/* Make sure no transfers are pending. */
697 	usbd_abort_pipe(sc->data_rx_pipe);
698 
699 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++)
700 		if (sc->rx_data[i].xfer != NULL)
701 			usbd_free_xfer(sc->rx_data[i].xfer);
702 }
703 
704 void
705 otus_next_scan(void *arg)
706 {
707 	struct otus_softc *sc = arg;
708 
709 	if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
710 		ieee80211_next_scan(&sc->sc_ic.ic_if);
711 }
712 
713 void
714 otus_task(void *arg)
715 {
716 	struct otus_softc *sc = arg;
717 	struct otus_host_cmd_ring *ring = &sc->cmdq;
718 	struct otus_host_cmd *cmd;
719 	int s;
720 
721 	/* Process host commands. */
722 	s = splusb();
723 	while (ring->next != ring->cur) {
724 		cmd = &ring->cmd[ring->next];
725 		splx(s);
726 		/* Callback. */
727 		cmd->cb(sc, cmd->data);
728 		s = splusb();
729 		ring->queued--;
730 		ring->next = (ring->next + 1) % OTUS_HOST_CMD_RING_COUNT;
731 	}
732 	wakeup(ring);
733 	splx(s);
734 }
735 
736 void
737 otus_do_async(struct otus_softc *sc, void (*cb)(struct otus_softc *, void *),
738     void *arg, int len)
739 {
740 	struct otus_host_cmd_ring *ring = &sc->cmdq;
741 	struct otus_host_cmd *cmd;
742 	int s;
743 
744 	s = splusb();
745 	cmd = &ring->cmd[ring->cur];
746 	cmd->cb = cb;
747 	KASSERT(len <= sizeof (cmd->data));
748 	memcpy(cmd->data, arg, len);
749 	ring->cur = (ring->cur + 1) % OTUS_HOST_CMD_RING_COUNT;
750 
751 	/* If there is no pending command already, schedule a task. */
752 	if (++ring->queued == 1)
753 		usb_add_task(sc->sc_udev, &sc->sc_task);
754 	splx(s);
755 }
756 
757 int
758 otus_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
759 {
760 	struct otus_softc *sc = ic->ic_softc;
761 	struct otus_cmd_newstate cmd;
762 
763 	/* Do it in a process context. */
764 	cmd.state = nstate;
765 	cmd.arg = arg;
766 	otus_do_async(sc, otus_newstate_cb, &cmd, sizeof cmd);
767 	return 0;
768 }
769 
770 void
771 otus_newstate_cb(struct otus_softc *sc, void *arg)
772 {
773 	struct otus_cmd_newstate *cmd = arg;
774 	struct ieee80211com *ic = &sc->sc_ic;
775 	struct ieee80211_node *ni;
776 	int s;
777 
778 	s = splnet();
779 
780 	switch (cmd->state) {
781 	case IEEE80211_S_INIT:
782 		break;
783 
784 	case IEEE80211_S_SCAN:
785 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
786 		timeout_add_msec(&sc->scan_to, 200);
787 		break;
788 
789 	case IEEE80211_S_AUTH:
790 	case IEEE80211_S_ASSOC:
791 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
792 		break;
793 
794 	case IEEE80211_S_RUN:
795 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 1);
796 
797 		ni = ic->ic_bss;
798 
799 		if (ic->ic_opmode == IEEE80211_M_STA) {
800 			otus_updateslot(ic);
801 			otus_set_bssid(sc, ni->ni_bssid);
802 
803 			/* Fake a join to init the Tx rate. */
804 			otus_newassoc(ic, ni, 1);
805 
806 			/* Start calibration timer. */
807 			timeout_add_sec(&sc->calib_to, 1);
808 		}
809 		break;
810 	}
811 
812 	sc->sc_led_newstate(sc);
813 	(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
814 
815 	splx(s);
816 }
817 
818 int
819 otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen,
820     void *odata)
821 {
822 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
823 	struct ar_cmd_hdr *hdr;
824 	int s, xferlen, error;
825 
826 	/* Always bulk-out a multiple of 4 bytes. */
827 	xferlen = (sizeof (*hdr) + ilen + 3) & ~3;
828 
829 	hdr = (struct ar_cmd_hdr *)cmd->buf;
830 	hdr->code  = code;
831 	hdr->len   = ilen;
832 	hdr->token = ++cmd->token;	/* Don't care about endianness. */
833 	memcpy((uint8_t *)&hdr[1], idata, ilen);
834 
835 	DPRINTFN(2, ("sending command code=0x%02x len=%d token=%d\n",
836 	    code, ilen, hdr->token));
837 
838 	s = splusb();
839 	cmd->odata = odata;
840 	cmd->done = 0;
841 
842 	usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
843 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_CMD_TIMEOUT, NULL);
844 	error = usbd_sync_transfer(cmd->xfer);
845 	if (error != 0) {
846 		splx(s);
847 		printf("%s: could not send command 0x%x (error=%s)\n",
848 		    sc->sc_dev.dv_xname, code, usbd_errstr(error));
849 		return EIO;
850 	}
851 	if (!cmd->done)
852 		error = tsleep(cmd, PCATCH, "otuscmd", hz);
853 	cmd->odata = NULL;	/* In case answer is received too late. */
854 	splx(s);
855 	if (error != 0) {
856 		printf("%s: timeout waiting for command 0x%02x reply\n",
857 		    sc->sc_dev.dv_xname, code);
858 	}
859 	return error;
860 }
861 
862 void
863 otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val)
864 {
865 	sc->write_buf[sc->write_idx].reg = htole32(reg);
866 	sc->write_buf[sc->write_idx].val = htole32(val);
867 
868 	if (++sc->write_idx > AR_MAX_WRITE_IDX)
869 		(void)otus_write_barrier(sc);
870 }
871 
872 int
873 otus_write_barrier(struct otus_softc *sc)
874 {
875 	int error;
876 
877 	if (sc->write_idx == 0)
878 		return 0;	/* Nothing to flush. */
879 
880 	error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf,
881 	    sizeof (sc->write_buf[0]) * sc->write_idx, NULL);
882 	sc->write_idx = 0;
883 	return error;
884 }
885 
886 struct ieee80211_node *
887 otus_node_alloc(struct ieee80211com *ic)
888 {
889 	return malloc(sizeof (struct otus_node), M_DEVBUF, M_NOWAIT | M_ZERO);
890 }
891 
892 int
893 otus_media_change(struct ifnet *ifp)
894 {
895 	struct otus_softc *sc = ifp->if_softc;
896 	struct ieee80211com *ic = &sc->sc_ic;
897 	uint8_t rate, ridx;
898 	int error;
899 
900 	error = ieee80211_media_change(ifp);
901 	if (error != ENETRESET)
902 		return error;
903 
904 	if (ic->ic_fixed_rate != -1) {
905 		rate = ic->ic_sup_rates[ic->ic_curmode].
906 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
907 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
908 			if (otus_rates[ridx].rate == rate)
909 				break;
910 		sc->fixed_ridx = ridx;
911 	}
912 
913 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
914 		error = otus_init(ifp);
915 
916 	return error;
917 }
918 
919 int
920 otus_read_eeprom(struct otus_softc *sc)
921 {
922 	uint32_t regs[8], reg;
923 	uint8_t *eep;
924 	int i, j, error;
925 
926 	/* Read EEPROM by blocks of 32 bytes. */
927 	eep = (uint8_t *)&sc->eeprom;
928 	reg = AR_EEPROM_OFFSET;
929 	for (i = 0; i < sizeof (sc->eeprom) / 32; i++) {
930 		for (j = 0; j < 8; j++, reg += 4)
931 			regs[j] = htole32(reg);
932 		error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep);
933 		if (error != 0)
934 			break;
935 		eep += 32;
936 	}
937 	return error;
938 }
939 
940 void
941 otus_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
942 {
943 	struct otus_softc *sc = ic->ic_softc;
944 	struct otus_node *on = (void *)ni;
945 	struct ieee80211_rateset *rs = &ni->ni_rates;
946 	uint8_t rate;
947 	int ridx, i;
948 
949 	DPRINTF(("new assoc isnew=%d addr=%s\n",
950 	    isnew, ether_sprintf(ni->ni_macaddr)));
951 
952 	ieee80211_amrr_node_init(&sc->amrr, &on->amn);
953 	/* Start at lowest available bit-rate, AMRR will raise. */
954 	ni->ni_txrate = 0;
955 
956 	for (i = 0; i < rs->rs_nrates; i++) {
957 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
958 		/* Convert 802.11 rate to hardware rate index. */
959 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
960 			if (otus_rates[ridx].rate == rate)
961 				break;
962 		on->ridx[i] = ridx;
963 		DPRINTF(("rate=0x%02x ridx=%d\n",
964 		    rs->rs_rates[i], on->ridx[i]));
965 	}
966 }
967 
968 /* ARGSUSED */
969 void
970 otus_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
971 {
972 #if 0
973 	struct otus_softc *sc = priv;
974 	int len;
975 
976 	/*
977 	 * The Rx intr pipe is unused with current firmware.  Notifications
978 	 * and replies to commands are sent through the Rx bulk pipe instead
979 	 * (with a magic PLCP header.)
980 	 */
981 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
982 		DPRINTF(("intr status=%d\n", status));
983 		if (status == USBD_STALLED)
984 			usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
985 		return;
986 	}
987 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
988 
989 	otus_cmd_rxeof(sc, sc->ibuf, len);
990 #endif
991 }
992 
993 void
994 otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
995 {
996 	struct ieee80211com *ic = &sc->sc_ic;
997 	struct otus_tx_cmd *cmd;
998 	struct ar_cmd_hdr *hdr;
999 	int s;
1000 
1001 	if (__predict_false(len < sizeof (*hdr))) {
1002 		DPRINTF(("cmd too small %d\n", len));
1003 		return;
1004 	}
1005 	hdr = (struct ar_cmd_hdr *)buf;
1006 	if (__predict_false(sizeof (*hdr) + hdr->len > len ||
1007 	    sizeof (*hdr) + hdr->len > 64)) {
1008 		DPRINTF(("cmd too large %d\n", hdr->len));
1009 		return;
1010 	}
1011 
1012 	if ((hdr->code & 0xc0) != 0xc0) {
1013 		DPRINTFN(2, ("received reply code=0x%02x len=%d token=%d\n",
1014 		    hdr->code, hdr->len, hdr->token));
1015 		cmd = &sc->tx_cmd;
1016 		if (__predict_false(hdr->token != cmd->token))
1017 			return;
1018 		/* Copy answer into caller's supplied buffer. */
1019 		if (cmd->odata != NULL)
1020 			memcpy(cmd->odata, &hdr[1], hdr->len);
1021 		cmd->done = 1;
1022 		wakeup(cmd);
1023 		return;
1024 	}
1025 
1026 	/* Received unsolicited notification. */
1027 	DPRINTF(("received notification code=0x%02x len=%d\n",
1028 	    hdr->code, hdr->len));
1029 	switch (hdr->code & 0x3f) {
1030 	case AR_EVT_BEACON:
1031 		break;
1032 	case AR_EVT_TX_COMP:
1033 	{
1034 		struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1];
1035 		struct ieee80211_node *ni;
1036 		struct otus_node *on;
1037 
1038 		DPRINTF(("tx completed %s status=%d phy=0x%x\n",
1039 		    ether_sprintf(tx->macaddr), letoh16(tx->status),
1040 		    letoh32(tx->phy)));
1041 		s = splnet();
1042 #ifdef notyet
1043 #ifndef IEEE80211_STA_ONLY
1044 		if (ic->ic_opmode != IEEE80211_M_STA) {
1045 			ni = ieee80211_find_node(ic, tx->macaddr);
1046 			if (__predict_false(ni == NULL)) {
1047 				splx(s);
1048 				break;
1049 			}
1050 		} else
1051 #endif
1052 #endif
1053 			ni = ic->ic_bss;
1054 		/* Update rate control statistics. */
1055 		on = (void *)ni;
1056 		/* NB: we do not set the TX_MAC_RATE_PROBING flag. */
1057 		if (__predict_true(tx->status != 0))
1058 			on->amn.amn_retrycnt++;
1059 		splx(s);
1060 		break;
1061 	}
1062 	case AR_EVT_TBTT:
1063 		break;
1064 	}
1065 }
1066 
1067 void
1068 otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
1069 {
1070 	struct ieee80211com *ic = &sc->sc_ic;
1071 	struct ifnet *ifp = &ic->ic_if;
1072 	struct ieee80211_rxinfo rxi;
1073 	struct ieee80211_node *ni;
1074 	struct ar_rx_tail *tail;
1075 	struct ieee80211_frame *wh;
1076 	struct mbuf *m;
1077 	uint8_t *plcp;
1078 	int s, mlen, align;
1079 
1080 	if (__predict_false(len < AR_PLCP_HDR_LEN)) {
1081 		DPRINTF(("sub-xfer too short %d\n", len));
1082 		return;
1083 	}
1084 	plcp = buf;
1085 
1086 	/* All bits in the PLCP header are set to 1 for non-MPDU. */
1087 	if (memcmp(plcp, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) {
1088 		otus_cmd_rxeof(sc, plcp + AR_PLCP_HDR_LEN,
1089 		    len - AR_PLCP_HDR_LEN);
1090 		return;
1091 	}
1092 
1093 	/* Received MPDU. */
1094 	if (__predict_false(len < AR_PLCP_HDR_LEN + sizeof (*tail))) {
1095 		DPRINTF(("MPDU too short %d\n", len));
1096 		ifp->if_ierrors++;
1097 		return;
1098 	}
1099 	tail = (struct ar_rx_tail *)(plcp + len - sizeof (*tail));
1100 
1101 	/* Discard error frames. */
1102 	if (__predict_false(tail->error != 0)) {
1103 		DPRINTF(("error frame 0x%02x\n", tail->error));
1104 		if (tail->error & AR_RX_ERROR_FCS) {
1105 			DPRINTFN(3, ("bad FCS\n"));
1106 		} else if (tail->error & AR_RX_ERROR_MMIC) {
1107 			/* Report Michael MIC failures to net80211. */
1108 			ic->ic_stats.is_rx_locmicfail++;
1109 			ieee80211_michael_mic_failure(ic, 0);
1110 		}
1111 		ifp->if_ierrors++;
1112 		return;
1113 	}
1114 	/* Compute MPDU's length. */
1115 	mlen = len - AR_PLCP_HDR_LEN - sizeof (*tail);
1116 	/* Make sure there's room for an 802.11 header + FCS. */
1117 	if (__predict_false(mlen < IEEE80211_MIN_LEN)) {
1118 		ifp->if_ierrors++;
1119 		return;
1120 	}
1121 	mlen -= IEEE80211_CRC_LEN;	/* strip 802.11 FCS */
1122 
1123 	wh = (struct ieee80211_frame *)(plcp + AR_PLCP_HDR_LEN);
1124 	/* Provide a 32-bit aligned protocol header to the stack. */
1125 	align = (ieee80211_has_qos(wh) ^ ieee80211_has_addr4(wh)) ? 2 : 0;
1126 
1127 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1128 	if (__predict_false(m == NULL)) {
1129 		ifp->if_ierrors++;
1130 		return;
1131 	}
1132 	if (align + mlen > MHLEN) {
1133 		MCLGET(m, M_DONTWAIT);
1134 		if (__predict_false(!(m->m_flags & M_EXT))) {
1135 			ifp->if_ierrors++;
1136 			m_freem(m);
1137 			return;
1138 		}
1139 	}
1140 	/* Finalize mbuf. */
1141 	m->m_pkthdr.rcvif = ifp;
1142 	m->m_data += align;
1143 	memcpy(mtod(m, caddr_t), wh, mlen);
1144 	m->m_pkthdr.len = m->m_len = mlen;
1145 
1146 #if NBPFILTER > 0
1147 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1148 		struct otus_rx_radiotap_header *tap = &sc->sc_rxtap;
1149 		struct mbuf mb;
1150 
1151 		tap->wr_flags = 0;
1152 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1153 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1154 		tap->wr_antsignal = tail->rssi;
1155 		tap->wr_rate = 2;	/* In case it can't be found below. */
1156 		switch (tail->status & AR_RX_STATUS_MT_MASK) {
1157 		case AR_RX_STATUS_MT_CCK:
1158 			switch (plcp[0]) {
1159 			case  10: tap->wr_rate =   2; break;
1160 			case  20: tap->wr_rate =   4; break;
1161 			case  55: tap->wr_rate =  11; break;
1162 			case 110: tap->wr_rate =  22; break;
1163 			}
1164 			if (tail->status & AR_RX_STATUS_SHPREAMBLE)
1165 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1166 			break;
1167 		case AR_RX_STATUS_MT_OFDM:
1168 			switch (plcp[0] & 0xf) {
1169 			case 0xb: tap->wr_rate =  12; break;
1170 			case 0xf: tap->wr_rate =  18; break;
1171 			case 0xa: tap->wr_rate =  24; break;
1172 			case 0xe: tap->wr_rate =  36; break;
1173 			case 0x9: tap->wr_rate =  48; break;
1174 			case 0xd: tap->wr_rate =  72; break;
1175 			case 0x8: tap->wr_rate =  96; break;
1176 			case 0xc: tap->wr_rate = 108; break;
1177 			}
1178 			break;
1179 		}
1180 		mb.m_data = (caddr_t)tap;
1181 		mb.m_len = sc->sc_rxtap_len;
1182 		mb.m_next = m;
1183 		mb.m_nextpkt = NULL;
1184 		mb.m_type = 0;
1185 		mb.m_flags = 0;
1186 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1187 	}
1188 #endif
1189 
1190 	s = splnet();
1191 	ni = ieee80211_find_rxnode(ic, wh);
1192 	rxi.rxi_flags = 0;
1193 	rxi.rxi_rssi = tail->rssi;
1194 	rxi.rxi_tstamp = 0;	/* unused */
1195 	ieee80211_input(ifp, m, ni, &rxi);
1196 
1197 	/* Node is no longer needed. */
1198 	ieee80211_release_node(ic, ni);
1199 	splx(s);
1200 }
1201 
1202 void
1203 otus_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1204 {
1205 	struct otus_rx_data *data = priv;
1206 	struct otus_softc *sc = data->sc;
1207 	caddr_t buf = data->buf;
1208 	struct ar_rx_head *head;
1209 	uint16_t hlen;
1210 	int len;
1211 
1212 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1213 		DPRINTF(("RX status=%d\n", status));
1214 		if (status == USBD_STALLED)
1215 			usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1216 		if (status != USBD_CANCELLED)
1217 			goto resubmit;
1218 		return;
1219 	}
1220 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1221 
1222 	while (len >= sizeof (*head)) {
1223 		head = (struct ar_rx_head *)buf;
1224 		if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) {
1225 			DPRINTF(("tag not valid 0x%x\n", letoh16(head->tag)));
1226 			break;
1227 		}
1228 		hlen = letoh16(head->len);
1229 		if (__predict_false(sizeof (*head) + hlen > len)) {
1230 			DPRINTF(("xfer too short %d/%d\n", len, hlen));
1231 			break;
1232 		}
1233 		/* Process sub-xfer. */
1234 		otus_sub_rxeof(sc, (uint8_t *)&head[1], hlen);
1235 
1236 		/* Next sub-xfer is aligned on a 32-bit boundary. */
1237 		hlen = (sizeof (*head) + hlen + 3) & ~3;
1238 		buf += hlen;
1239 		len -= hlen;
1240 	}
1241 
1242  resubmit:
1243 	usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, OTUS_RXBUFSZ,
1244 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, otus_rxeof);
1245 	(void)usbd_transfer(data->xfer);
1246 }
1247 
1248 void
1249 otus_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1250 {
1251 	struct otus_tx_data *data = priv;
1252 	struct otus_softc *sc = data->sc;
1253 	struct ieee80211com *ic = &sc->sc_ic;
1254 	struct ifnet *ifp = &ic->ic_if;
1255 	int s;
1256 
1257 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1258 		DPRINTF(("TX status=%d\n", status));
1259 		if (status == USBD_STALLED)
1260 			usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1261 		ifp->if_oerrors++;
1262 		return;
1263 	}
1264 	s = splnet();
1265 	sc->tx_queued--;
1266 	sc->sc_tx_timer = 0;
1267 	ifp->if_flags &= ~IFF_OACTIVE;
1268 	otus_start(ifp);
1269 	splx(s);
1270 }
1271 
1272 int
1273 otus_tx(struct otus_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1274 {
1275 	struct ieee80211com *ic = &sc->sc_ic;
1276 	struct otus_node *on = (void *)ni;
1277 	struct otus_tx_data *data;
1278 	struct ieee80211_frame *wh;
1279 	struct ieee80211_key *k;
1280 	struct ar_tx_head *head;
1281 	uint32_t phyctl;
1282 	uint16_t macctl, qos;
1283 	uint8_t tid, qid;
1284 	int error, ridx, hasqos, xferlen;
1285 
1286 	wh = mtod(m, struct ieee80211_frame *);
1287 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1288 		k = ieee80211_get_txkey(ic, wh, ni);
1289 		if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1290 			return ENOBUFS;
1291 		wh = mtod(m, struct ieee80211_frame *);
1292 	}
1293 
1294 	if ((hasqos = ieee80211_has_qos(wh))) {
1295 		qos = ieee80211_get_qos(wh);
1296 		tid = qos & IEEE80211_QOS_TID;
1297 		qid = ieee80211_up_to_ac(ic, tid);
1298 	} else
1299 		qid = EDCA_AC_BE;
1300 
1301 	/* Pickup a rate index. */
1302 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1303 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA)
1304 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1305 		    OTUS_RIDX_OFDM6 : OTUS_RIDX_CCK1;
1306 	else if (ic->ic_fixed_rate != -1)
1307 		ridx = sc->fixed_ridx;
1308 	else
1309 		ridx = on->ridx[ni->ni_txrate];
1310 
1311 	phyctl = 0;
1312 	macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid);
1313 
1314 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1315 	    (hasqos && ((qos & IEEE80211_QOS_ACK_POLICY_MASK) ==
1316 	     IEEE80211_QOS_ACK_POLICY_NOACK)))
1317 		macctl |= AR_TX_MAC_NOACK;
1318 
1319 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1320 		if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
1321 			macctl |= AR_TX_MAC_RTS;
1322 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1323 		    ridx >= OTUS_RIDX_OFDM6) {
1324 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1325 				macctl |= AR_TX_MAC_CTS;
1326 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1327 				macctl |= AR_TX_MAC_RTS;
1328 		}
1329 	}
1330 
1331 	phyctl |= AR_TX_PHY_MCS(otus_rates[ridx].mcs);
1332 	if (ridx >= OTUS_RIDX_OFDM6) {
1333 		phyctl |= AR_TX_PHY_MT_OFDM;
1334 		if (ridx <= OTUS_RIDX_OFDM24)
1335 			phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1336 		else
1337 			phyctl |= AR_TX_PHY_ANTMSK(1);
1338 	} else {	/* CCK */
1339 		phyctl |= AR_TX_PHY_MT_CCK;
1340 		phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1341 	}
1342 
1343 	/* Update rate control stats for frames that are ACK'ed. */
1344 	if (!(macctl & AR_TX_MAC_NOACK))
1345 		((struct otus_node *)ni)->amn.amn_txcnt++;
1346 
1347 	data = &sc->tx_data[sc->tx_cur];
1348 	/* Fill Tx descriptor. */
1349 	head = (struct ar_tx_head *)data->buf;
1350 	head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN);
1351 	head->macctl = htole16(macctl);
1352 	head->phyctl = htole32(phyctl);
1353 
1354 #if NBPFILTER > 0
1355 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1356 		struct otus_tx_radiotap_header *tap = &sc->sc_txtap;
1357 		struct mbuf mb;
1358 
1359 		tap->wt_flags = 0;
1360 		tap->wt_rate = otus_rates[ridx].rate;
1361 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1362 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1363 
1364 		mb.m_data = (caddr_t)tap;
1365 		mb.m_len = sc->sc_txtap_len;
1366 		mb.m_next = m;
1367 		mb.m_nextpkt = NULL;
1368 		mb.m_type = 0;
1369 		mb.m_flags = 0;
1370 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1371 	}
1372 #endif
1373 
1374 	xferlen = sizeof (*head) + m->m_pkthdr.len;
1375 	m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]);
1376 	m_freem(m);
1377 	ieee80211_release_node(ic, ni);
1378 
1379 	DPRINTFN(5, ("tx queued=%d len=%d mac=0x%04x phy=0x%08x rate=%d\n",
1380 	    sc->tx_queued, head->len, head->macctl, head->phyctl,
1381 	    otus_rates[ridx].rate));
1382 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1383 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_TX_TIMEOUT, otus_txeof);
1384 	error = usbd_transfer(data->xfer);
1385 	if (__predict_false(error != USBD_IN_PROGRESS && error != 0))
1386 		return error;
1387 
1388 	sc->tx_queued++;
1389 	sc->tx_cur = (sc->tx_cur + 1) % OTUS_TX_DATA_LIST_COUNT;
1390 
1391 	return 0;
1392 }
1393 
1394 void
1395 otus_start(struct ifnet *ifp)
1396 {
1397 	struct otus_softc *sc = ifp->if_softc;
1398 	struct ieee80211com *ic = &sc->sc_ic;
1399 	struct ieee80211_node *ni;
1400 	struct mbuf *m;
1401 
1402 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1403 		return;
1404 
1405 	for (;;) {
1406 		if (sc->tx_queued >= OTUS_TX_DATA_LIST_COUNT) {
1407 			ifp->if_flags |= IFF_OACTIVE;
1408 			break;
1409 		}
1410 		/* Send pending management frames first. */
1411 		IF_DEQUEUE(&ic->ic_mgtq, m);
1412 		if (m != NULL) {
1413 			ni = (void *)m->m_pkthdr.rcvif;
1414 			goto sendit;
1415 		}
1416 		if (ic->ic_state != IEEE80211_S_RUN)
1417 			break;
1418 
1419 		/* Encapsulate and send data frames. */
1420 		IFQ_DEQUEUE(&ifp->if_snd, m);
1421 		if (m == NULL)
1422 			break;
1423 #if NBPFILTER > 0
1424 		if (ifp->if_bpf != NULL)
1425 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1426 #endif
1427 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1428 			continue;
1429 sendit:
1430 #if NBPFILTER > 0
1431 		if (ic->ic_rawbpf != NULL)
1432 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1433 #endif
1434 		if (otus_tx(sc, m, ni) != 0) {
1435 			ieee80211_release_node(ic, ni);
1436 			ifp->if_oerrors++;
1437 			continue;
1438 		}
1439 
1440 		sc->sc_tx_timer = 5;
1441 		ifp->if_timer = 1;
1442 	}
1443 }
1444 
1445 void
1446 otus_watchdog(struct ifnet *ifp)
1447 {
1448 	struct otus_softc *sc = ifp->if_softc;
1449 
1450 	ifp->if_timer = 0;
1451 
1452 	if (sc->sc_tx_timer > 0) {
1453 		if (--sc->sc_tx_timer == 0) {
1454 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1455 			/* otus_init(ifp); XXX needs a process context! */
1456 			ifp->if_oerrors++;
1457 			return;
1458 		}
1459 		ifp->if_timer = 1;
1460 	}
1461 	ieee80211_watchdog(ifp);
1462 }
1463 
1464 int
1465 otus_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1466 {
1467 	struct otus_softc *sc = ifp->if_softc;
1468 	struct ieee80211com *ic = &sc->sc_ic;
1469 	struct ifaddr *ifa;
1470 	struct ifreq *ifr;
1471 	int s, error = 0;
1472 
1473 	s = splnet();
1474 
1475 	switch (cmd) {
1476 	case SIOCSIFADDR:
1477 		ifa = (struct ifaddr *)data;
1478 		ifp->if_flags |= IFF_UP;
1479 #ifdef INET
1480 		if (ifa->ifa_addr->sa_family == AF_INET)
1481 			arp_ifinit(&ic->ic_ac, ifa);
1482 #endif
1483 		/* FALLTHROUGH */
1484 	case SIOCSIFFLAGS:
1485 		if (ifp->if_flags & IFF_UP) {
1486 			if ((ifp->if_flags & IFF_RUNNING) &&
1487 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1488 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1489 				otus_set_multi(sc);
1490 			} else if (!(ifp->if_flags & IFF_RUNNING))
1491 				otus_init(ifp);
1492 
1493 		} else if (ifp->if_flags & IFF_RUNNING)
1494 			otus_stop(ifp);
1495 
1496 		sc->sc_if_flags = ifp->if_flags;
1497 		break;
1498 	case SIOCADDMULTI:
1499 	case SIOCDELMULTI:
1500 		ifr = (struct ifreq *)data;
1501 		error = (cmd == SIOCADDMULTI) ?
1502 		    ether_addmulti(ifr, &ic->ic_ac) :
1503 		    ether_delmulti(ifr, &ic->ic_ac);
1504 		if (error == ENETRESET)
1505 			error = 0;
1506 		break;
1507 	case SIOCS80211CHANNEL:
1508 		error = ieee80211_ioctl(ifp, cmd, data);
1509 		if (error == ENETRESET &&
1510 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1511 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1512 			    (IFF_UP | IFF_RUNNING))
1513 				otus_set_chan(sc, ic->ic_ibss_chan, 0);
1514 			error = 0;
1515 		}
1516 		break;
1517 	default:
1518 		error = ieee80211_ioctl(ifp, cmd, data);
1519 	}
1520 
1521 	if (error == ENETRESET) {
1522 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1523 		    (IFF_UP | IFF_RUNNING))
1524 			otus_init(ifp);
1525 		error = 0;
1526 	}
1527 
1528 	splx(s);
1529 	return error;
1530 }
1531 
1532 int
1533 otus_set_multi(struct otus_softc *sc)
1534 {
1535 	struct arpcom *ac = &sc->sc_ic.ic_ac;
1536 	struct ifnet *ifp = &ac->ac_if;
1537 	struct ether_multi *enm;
1538 	struct ether_multistep step;
1539 	uint32_t lo, hi;
1540 	uint8_t bit;
1541 
1542 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1543 		lo = hi = 0xffffffff;
1544 		goto done;
1545 	}
1546 	lo = hi = 0;
1547 	ETHER_FIRST_MULTI(step, ac, enm);
1548 	while (enm != NULL) {
1549 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1550 			ifp->if_flags |= IFF_ALLMULTI;
1551 			lo = hi = 0xffffffff;
1552 			goto done;
1553 		}
1554 		bit = enm->enm_addrlo[5] >> 2;
1555 		if (bit < 32)
1556 			lo |= 1 << bit;
1557 		else
1558 			hi |= 1 << (bit - 32);
1559 		ETHER_NEXT_MULTI(step, enm);
1560 	}
1561  done:
1562 	hi |= 1 << 31;	/* Make sure the broadcast bit is set. */
1563 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, lo);
1564 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hi);
1565 	return otus_write_barrier(sc);
1566 }
1567 
1568 void
1569 otus_updateedca(struct ieee80211com *ic)
1570 {
1571 	/* Do it in a process context. */
1572 	otus_do_async(ic->ic_softc, otus_updateedca_cb, NULL, 0);
1573 }
1574 
1575 /* ARGSUSED */
1576 void
1577 otus_updateedca_cb(struct otus_softc *sc, void *arg)
1578 {
1579 #define EXP2(val)	((1 << (val)) - 1)
1580 #define AIFS(val)	((val) * 9 + 10)
1581 	struct ieee80211com *ic = &sc->sc_ic;
1582 	const struct ieee80211_edca_ac_params *edca;
1583 	int s;
1584 
1585 	s = splnet();
1586 
1587 	edca = (ic->ic_flags & IEEE80211_F_QOS) ?
1588 	    ic->ic_edca_ac : otus_edca_def;
1589 
1590 	/* Set CWmin/CWmax values. */
1591 	otus_write(sc, AR_MAC_REG_AC0_CW,
1592 	    EXP2(edca[EDCA_AC_BE].ac_ecwmax) << 16 |
1593 	    EXP2(edca[EDCA_AC_BE].ac_ecwmin));
1594 	otus_write(sc, AR_MAC_REG_AC1_CW,
1595 	    EXP2(edca[EDCA_AC_BK].ac_ecwmax) << 16 |
1596 	    EXP2(edca[EDCA_AC_BK].ac_ecwmin));
1597 	otus_write(sc, AR_MAC_REG_AC2_CW,
1598 	    EXP2(edca[EDCA_AC_VI].ac_ecwmax) << 16 |
1599 	    EXP2(edca[EDCA_AC_VI].ac_ecwmin));
1600 	otus_write(sc, AR_MAC_REG_AC3_CW,
1601 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1602 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1603 	otus_write(sc, AR_MAC_REG_AC4_CW,		/* Special TXQ. */
1604 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1605 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1606 
1607 	/* Set AIFSN values. */
1608 	otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS,
1609 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) << 24 |
1610 	    AIFS(edca[EDCA_AC_BK].ac_aifsn) << 12 |
1611 	    AIFS(edca[EDCA_AC_BE].ac_aifsn));
1612 	otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS,
1613 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) << 16 |	/* Special TXQ. */
1614 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) <<  4 |
1615 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) >>  8);
1616 
1617 	/* Set TXOP limit. */
1618 	otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP,
1619 	    edca[EDCA_AC_BK].ac_txoplimit << 16 |
1620 	    edca[EDCA_AC_BE].ac_txoplimit);
1621 	otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP,
1622 	    edca[EDCA_AC_VO].ac_txoplimit << 16 |
1623 	    edca[EDCA_AC_VI].ac_txoplimit);
1624 
1625 	splx(s);
1626 
1627 	(void)otus_write_barrier(sc);
1628 #undef AIFS
1629 #undef EXP2
1630 }
1631 
1632 void
1633 otus_updateslot(struct ieee80211com *ic)
1634 {
1635 	/* Do it in a process context. */
1636 	otus_do_async(ic->ic_softc, otus_updateslot_cb, NULL, 0);
1637 }
1638 
1639 /* ARGSUSED */
1640 void
1641 otus_updateslot_cb(struct otus_softc *sc, void *arg)
1642 {
1643 	uint32_t slottime;
1644 
1645 	slottime = (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1646 	otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10);
1647 	(void)otus_write_barrier(sc);
1648 }
1649 
1650 int
1651 otus_init_mac(struct otus_softc *sc)
1652 {
1653 	int error;
1654 
1655 	otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40);
1656 	otus_write(sc, AR_MAC_REG_RETRY_MAX, 0);
1657 	otus_write(sc, AR_MAC_REG_SNIFFER, 0x2000000);
1658 	otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80);
1659 	otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70);
1660 	otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000);
1661 	otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10);
1662 	otus_write(sc, 0x1c3b2c, 0x19000000);
1663 	/* NAV protects ACK only (in TXOP). */
1664 	otus_write(sc, 0x1c3b38, 0x201);
1665 	/* Set beacon Tx power to 0x7. */
1666 	otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170);
1667 	otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105);
1668 	otus_write(sc, 0x1c3b9c, 0x10000a);
1669 	/* Filter any control frames, BAR is bit 24. */
1670 	otus_write(sc, 0x1c368c, 0x0500ffff);
1671 	otus_write(sc, 0x1c3c40, 0x1);
1672 	otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f);
1673 	otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f);
1674 	otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb);
1675 	otus_write(sc, 0x1c3694, 0x4003c1e);
1676 	/* Enable LED0 and LED1. */
1677 	otus_write(sc, 0x1d0100, 0x3);
1678 	otus_write(sc, 0x1d0104, 0x3);
1679 	/* Switch MAC to OTUS interface. */
1680 	otus_write(sc, 0x1c3600, 0x3);
1681 	otus_write(sc, 0x1c3c50, 0xffff);
1682 	otus_write(sc, 0x1c3680, 0xf00008);
1683 	/* Disable Rx timeout (workaround). */
1684 	otus_write(sc, 0x1c362c, 0);
1685 
1686 	/* Set USB Rx stream mode maximum frame number to 2. */
1687 	otus_write(sc, 0x1e1110, 0x4);
1688 	/* Set USB Rx stream mode timeout to 10us. */
1689 	otus_write(sc, 0x1e1114, 0x80);
1690 
1691 	/* Set clock frequency to 88/80MHz. */
1692 	otus_write(sc, 0x1d4008, 0x73);
1693 	/* Set WLAN DMA interrupt mode: generate intr per packet. */
1694 	otus_write(sc, 0x1c3d7c, 0x110011);
1695 	otus_write(sc, 0x1c3bb0, 0x4);
1696 	otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48);
1697 
1698 	/* Disable HW decryption for now. */
1699 	otus_write(sc, 0x1c3678, 0x78);
1700 
1701 	if ((error = otus_write_barrier(sc)) != 0)
1702 		return error;
1703 
1704 	/* Set default EDCA parameters. */
1705 	otus_updateedca_cb(sc, NULL);
1706 
1707 	return 0;
1708 }
1709 
1710 /*
1711  * Return default value for PHY register based on current operating mode.
1712  */
1713 uint32_t
1714 otus_phy_get_def(struct otus_softc *sc, uint32_t reg)
1715 {
1716 	int i;
1717 
1718 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1719 		if (AR_PHY(ar5416_phy_regs[i]) == reg)
1720 			return sc->phy_vals[i];
1721 	return 0;	/* Register not found. */
1722 }
1723 
1724 /*
1725  * Update PHY's programming based on vendor-specific data stored in EEPROM.
1726  * This is for FEM-type devices only.
1727  */
1728 int
1729 otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c)
1730 {
1731 	const struct ModalEepHeader *eep;
1732 	uint32_t tmp, offset;
1733 
1734 	if (IEEE80211_IS_CHAN_5GHZ(c))
1735 		eep = &sc->eeprom.modalHeader[0];
1736 	else
1737 		eep = &sc->eeprom.modalHeader[1];
1738 
1739 	/* Offset of chain 2. */
1740 	offset = 2 * 0x1000;
1741 
1742 	tmp = letoh32(eep->antCtrlCommon);
1743 	otus_write(sc, AR_PHY_SWITCH_COM, tmp);
1744 
1745 	tmp = letoh32(eep->antCtrlChain[0]);
1746 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp);
1747 
1748 	tmp = letoh32(eep->antCtrlChain[1]);
1749 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp);
1750 
1751 	if (1 /* sc->sc_sco == AR_SCO_SCN */) {
1752 		tmp = otus_phy_get_def(sc, AR_PHY_SETTLING);
1753 		tmp &= ~(0x7f << 7);
1754 		tmp |= (eep->switchSettling & 0x7f) << 7;
1755 		otus_write(sc, AR_PHY_SETTLING, tmp);
1756 	}
1757 
1758 	tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ);
1759 	tmp &= ~0xffff;
1760 	tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize;
1761 	otus_write(sc, AR_PHY_DESIRED_SZ, tmp);
1762 
1763 	tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 |
1764 	      eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn;
1765 	otus_write(sc, AR_PHY_RF_CTL4, tmp);
1766 
1767 	tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3);
1768 	tmp &= ~(0xff << 16);
1769 	tmp |= eep->txEndToRxOn << 16;
1770 	otus_write(sc, AR_PHY_RF_CTL3, tmp);
1771 
1772 	tmp = otus_phy_get_def(sc, AR_PHY_CCA);
1773 	tmp &= ~(0x7f << 12);
1774 	tmp |= (eep->thresh62 & 0x7f) << 12;
1775 	otus_write(sc, AR_PHY_CCA, tmp);
1776 
1777 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN);
1778 	tmp &= ~(0x3f << 12);
1779 	tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12;
1780 	otus_write(sc, AR_PHY_RXGAIN, tmp);
1781 
1782 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset);
1783 	tmp &= ~(0x3f << 12);
1784 	tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12;
1785 	otus_write(sc, AR_PHY_RXGAIN + offset, tmp);
1786 
1787 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ);
1788 	tmp &= ~(0x3f << 18);
1789 	tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18;
1790 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1791 		tmp &= ~(0xf << 10);
1792 		tmp |= (eep->bswMargin[0] & 0xf) << 10;
1793 	}
1794 	otus_write(sc, AR_PHY_GAIN_2GHZ, tmp);
1795 
1796 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset);
1797 	tmp &= ~(0x3f << 18);
1798 	tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18;
1799 	otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp);
1800 
1801 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4);
1802 	tmp &= ~(0x3f << 5 | 0x1f);
1803 	tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f);
1804 	otus_write(sc, AR_PHY_TIMING_CTRL4, tmp);
1805 
1806 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset);
1807 	tmp &= ~(0x3f << 5 | 0x1f);
1808 	tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f);
1809 	otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp);
1810 
1811 	tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1);
1812 	tmp &= ~(0xf << 16);
1813 	tmp |= (eep->xpd & 0xf) << 16;
1814 	otus_write(sc, AR_PHY_TPCRG1, tmp);
1815 
1816 	return otus_write_barrier(sc);
1817 }
1818 
1819 int
1820 otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c)
1821 {
1822 	const uint32_t *vals;
1823 	int error, i;
1824 
1825 	/* Select PHY programming based on band and bandwidth. */
1826 	if (IEEE80211_IS_CHAN_2GHZ(c))
1827 		vals = ar5416_phy_vals_2ghz_20mhz;
1828 	else
1829 		vals = ar5416_phy_vals_5ghz_20mhz;
1830 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1831 		otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]);
1832 	sc->phy_vals = vals;
1833 
1834 	if (sc->eeprom.baseEepHeader.deviceType == 0x80)	/* FEM */
1835 		if ((error = otus_set_board_values(sc, c)) != 0)
1836 			return error;
1837 
1838 	/* Initial Tx power settings. */
1839 	otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f);
1840 	otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f);
1841 	otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f);
1842 	otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f);
1843 	otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f);
1844 	otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f);
1845 	otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f);
1846 	otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f);
1847 	otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f);
1848 	otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f);
1849 
1850 	if (IEEE80211_IS_CHAN_2GHZ(c))
1851 		otus_write(sc, 0x1d4014, 0x5163);
1852 	else
1853 		otus_write(sc, 0x1d4014, 0x5143);
1854 
1855 	return otus_write_barrier(sc);
1856 }
1857 
1858 static __inline uint8_t
1859 otus_reverse_bits(uint8_t v)
1860 {
1861 	v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
1862 	v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
1863 	v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
1864 	return v;
1865 }
1866 
1867 int
1868 otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c)
1869 {
1870 	uint8_t chansel, d0, d1;
1871 	uint16_t data;
1872 	int error;
1873 
1874 	d0 = 0;
1875 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1876 		chansel = (c->ic_freq - 4800) / 5;
1877 		if (chansel & 1)
1878 			d0 |= AR_BANK4_AMODE_REFSEL(2);
1879 		else
1880 			d0 |= AR_BANK4_AMODE_REFSEL(1);
1881 	} else {
1882 		d0 |= AR_BANK4_AMODE_REFSEL(2);
1883 		if (c->ic_freq == 2484) {	/* CH 14 */
1884 			d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ;
1885 			chansel = 10 + (c->ic_freq - 2274) / 5;
1886 		} else
1887 			chansel = 16 + (c->ic_freq - 2272) / 5;
1888 		chansel <<= 2;
1889 	}
1890 	d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP;
1891 	d1 = otus_reverse_bits(chansel);
1892 
1893 	/* Write bits 0-4 of d0 and d1. */
1894 	data = (d1 & 0x1f) << 5 | (d0 & 0x1f);
1895 	otus_write(sc, AR_PHY(44), data);
1896 	/* Write bits 5-7 of d0 and d1. */
1897 	data = (d1 >> 5) << 5 | (d0 >> 5);
1898 	otus_write(sc, AR_PHY(58), data);
1899 
1900 	if ((error = otus_write_barrier(sc)) == 0)
1901 		usbd_delay_ms(sc->sc_udev, 10);
1902 	return error;
1903 }
1904 
1905 void
1906 otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1907 {
1908 #define COEFF_SCALE_SHIFT	24
1909 	uint32_t exp, man;
1910 
1911 	/* exponent = 14 - floor(log2(coeff)) */
1912 	for (exp = 31; exp > 0; exp--)
1913 		if (coeff & (1 << exp))
1914 			break;
1915 	KASSERT(exp != 0);
1916 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
1917 
1918 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
1919 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1920 
1921 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1922 	*exponent = exp - 16;
1923 #undef COEFF_SCALE_SHIFT
1924 }
1925 
1926 int
1927 otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc)
1928 {
1929 	struct ieee80211com *ic = &sc->sc_ic;
1930 	struct ar_cmd_frequency cmd;
1931 	struct ar_rsp_frequency rsp;
1932 	const uint32_t *vals;
1933 	uint32_t coeff, exp, man, tmp;
1934 	uint8_t code;
1935 	int error, chan, i;
1936 
1937 	chan = ieee80211_chan2ieee(ic, c);
1938 	DPRINTF(("setting channel %d (%dMHz)\n", chan, c->ic_freq));
1939 
1940 	tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104;
1941 	otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp);
1942 	if ((error = otus_write_barrier(sc)) != 0)
1943 		return error;
1944 
1945 	/* Disable BB Heavy Clip. */
1946 	otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200);
1947 	if ((error = otus_write_barrier(sc)) != 0)
1948 		return error;
1949 
1950 	/* XXX Is that FREQ_START ? */
1951 	error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL);
1952 	if (error != 0)
1953 		return error;
1954 
1955 	/* Reprogram PHY and RF on channel band or bandwidth changes. */
1956 	if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) {
1957 		DPRINTF(("band switch\n"));
1958 
1959 		/* Cold/Warm reset BB/ADDA. */
1960 		otus_write(sc, 0x1d4004, sc->bb_reset ? 0x800 : 0x400);
1961 		if ((error = otus_write_barrier(sc)) != 0)
1962 			return error;
1963 		otus_write(sc, 0x1d4004, 0);
1964 		if ((error = otus_write_barrier(sc)) != 0)
1965 			return error;
1966 		sc->bb_reset = 0;
1967 
1968 		if ((error = otus_program_phy(sc, c)) != 0) {
1969 			printf("%s: could not program PHY\n",
1970 			    sc->sc_dev.dv_xname);
1971 			return error;
1972 		}
1973 
1974 		/* Select RF programming based on band. */
1975 		if (IEEE80211_IS_CHAN_5GHZ(c))
1976 			vals = ar5416_banks_vals_5ghz;
1977 		else
1978 			vals = ar5416_banks_vals_2ghz;
1979 		for (i = 0; i < nitems(ar5416_banks_regs); i++)
1980 			otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]);
1981 		if ((error = otus_write_barrier(sc)) != 0) {
1982 			printf("%s: could not program RF\n",
1983 			    sc->sc_dev.dv_xname);
1984 			return error;
1985 		}
1986 		code = AR_CMD_RF_INIT;
1987 	} else {
1988 		code = AR_CMD_FREQUENCY;
1989 	}
1990 
1991 	if ((error = otus_set_rf_bank4(sc, c)) != 0)
1992 		return error;
1993 
1994 	tmp = (sc->txmask == 0x5) ? 0x340 : 0x240;
1995 	otus_write(sc, AR_PHY_TURBO, tmp);
1996 	if ((error = otus_write_barrier(sc)) != 0)
1997 		return error;
1998 
1999 	/* Send firmware command to set channel. */
2000 	cmd.freq = htole32((uint32_t)c->ic_freq * 1000);
2001 	cmd.dynht2040 = htole32(0);
2002 	cmd.htena = htole32(1);
2003 	/* Set Delta Slope (exponent and mantissa). */
2004 	coeff = (100 << 24) / c->ic_freq;
2005 	otus_get_delta_slope(coeff, &exp, &man);
2006 	cmd.dsc_exp = htole32(exp);
2007 	cmd.dsc_man = htole32(man);
2008 	DPRINTF(("ds coeff=%u exp=%u man=%u\n", coeff, exp, man));
2009 	/* For Short GI, coeff is 9/10 that of normal coeff. */
2010 	coeff = (9 * coeff) / 10;
2011 	otus_get_delta_slope(coeff, &exp, &man);
2012 	cmd.dsc_shgi_exp = htole32(exp);
2013 	cmd.dsc_shgi_man = htole32(man);
2014 	DPRINTF(("ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man));
2015 	/* Set wait time for AGC and noise calibration (100 or 200ms). */
2016 	cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000);
2017 	DPRINTF(("%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY"));
2018 	error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp);
2019 	if (error != 0)
2020 		return error;
2021 	if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) {
2022 		DPRINTF(("status=0x%x\n", letoh32(rsp.status)));
2023 		/* Force cold reset on next channel. */
2024 		sc->bb_reset = 1;
2025 	}
2026 #ifdef OTUS_DEBUG
2027 	if (otus_debug) {
2028 		printf("calibration status=0x%x\n", letoh32(rsp.status));
2029 		for (i = 0; i < 2; i++) {	/* 2 Rx chains */
2030 			/* Sign-extend 9-bit NF values. */
2031 			printf("noisefloor chain %d=%d\n", i,
2032 			    (((int32_t)letoh32(rsp.nf[i])) << 4) >> 23);
2033 			printf("noisefloor ext chain %d=%d\n", i,
2034 			    ((int32_t)letoh32(rsp.nf_ext[i])) >> 23);
2035 		}
2036 	}
2037 #endif
2038 	sc->sc_curchan = c;
2039 	return 0;
2040 }
2041 
2042 #ifdef notyet
2043 int
2044 otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2045     struct ieee80211_key *k)
2046 {
2047 	struct otus_softc *sc = ic->ic_softc;
2048 	struct otus_cmd_key cmd;
2049 
2050 	/* Do it in a process context. */
2051 	cmd.key = *k;
2052 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2053 	otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd);
2054 	return 0;
2055 }
2056 
2057 void
2058 otus_set_key_cb(struct otus_softc *sc, void *arg)
2059 {
2060 	struct otus_cmd_key *cmd = arg;
2061 	struct ieee80211_key *k = &cmd->key;
2062 	struct ar_cmd_ekey key;
2063 	uint16_t cipher;
2064 	int error;
2065 
2066 	memset(&key, 0, sizeof key);
2067 	if (k->k_flags & IEEE80211_KEY_GROUP) {
2068 		key.uid = htole16(k->k_id);
2069 		IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr);
2070 		key.macaddr[0] |= 0x80;
2071 	} else {
2072 		key.uid = htole16(OTUS_UID(cmd->associd));
2073 		IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr);
2074 	}
2075 	key.kix = htole16(0);
2076 	/* Map net80211 cipher to hardware. */
2077 	switch (k->k_cipher) {
2078 	case IEEE80211_CIPHER_WEP40:
2079 		cipher = AR_CIPHER_WEP64;
2080 		break;
2081 	case IEEE80211_CIPHER_WEP104:
2082 		cipher = AR_CIPHER_WEP128;
2083 		break;
2084 	case IEEE80211_CIPHER_TKIP:
2085 		cipher = AR_CIPHER_TKIP;
2086 		break;
2087 	case IEEE80211_CIPHER_CCMP:
2088 		cipher = AR_CIPHER_AES;
2089 		break;
2090 	default:
2091 		return;
2092 	}
2093 	key.cipher = htole16(cipher);
2094 	memcpy(key.key, k->k_key, MIN(k->k_len, 16));
2095 	error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2096 	if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP)
2097 		return;
2098 
2099 	/* TKIP: set Tx/Rx MIC Key. */
2100 	key.kix = htole16(1);
2101 	memcpy(key.key, k->k_key + 16, 16);
2102 	(void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2103 }
2104 
2105 void
2106 otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2107     struct ieee80211_key *k)
2108 {
2109 	struct otus_softc *sc = ic->ic_softc;
2110 	struct otus_cmd_key cmd;
2111 
2112 	if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
2113 	    ic->ic_state != IEEE80211_S_RUN)
2114 		return;	/* Nothing to do. */
2115 
2116 	/* Do it in a process context. */
2117 	cmd.key = *k;
2118 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2119 	otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd);
2120 }
2121 
2122 void
2123 otus_delete_key_cb(struct otus_softc *sc, void *arg)
2124 {
2125 	struct otus_cmd_key *cmd = arg;
2126 	struct ieee80211_key *k = &cmd->key;
2127 	uint32_t uid;
2128 
2129 	if (k->k_flags & IEEE80211_KEY_GROUP)
2130 		uid = htole32(k->k_id);
2131 	else
2132 		uid = htole32(OTUS_UID(cmd->associd));
2133 	(void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL);
2134 }
2135 #endif
2136 
2137 void
2138 otus_calibrate_to(void *arg)
2139 {
2140 	struct otus_softc *sc = arg;
2141 	struct ieee80211com *ic = &sc->sc_ic;
2142 	struct ieee80211_node *ni;
2143 	int s;
2144 
2145 	s = splnet();
2146 	ni = ic->ic_bss;
2147 	ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn);
2148 	splx(s);
2149 
2150 	timeout_add_sec(&sc->calib_to, 1);
2151 }
2152 
2153 int
2154 otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid)
2155 {
2156 	otus_write(sc, AR_MAC_REG_BSSID_L,
2157 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2158 	otus_write(sc, AR_MAC_REG_BSSID_H,
2159 	    bssid[4] | bssid[5] << 8);
2160 	return otus_write_barrier(sc);
2161 }
2162 
2163 int
2164 otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr)
2165 {
2166 	otus_write(sc, AR_MAC_REG_MAC_ADDR_L,
2167 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2168 	otus_write(sc, AR_MAC_REG_MAC_ADDR_H,
2169 	    addr[4] | addr[5] << 8);
2170 	return otus_write_barrier(sc);
2171 }
2172 
2173 /* Default single-LED. */
2174 void
2175 otus_led_newstate_type1(struct otus_softc *sc)
2176 {
2177 	/* TBD */
2178 }
2179 
2180 /* NETGEAR, dual-LED. */
2181 void
2182 otus_led_newstate_type2(struct otus_softc *sc)
2183 {
2184 	/* TBD */
2185 }
2186 
2187 /* NETGEAR, single-LED/3 colors (blue, red, purple.) */
2188 void
2189 otus_led_newstate_type3(struct otus_softc *sc)
2190 {
2191 	struct ieee80211com *ic = &sc->sc_ic;
2192 	uint32_t state = sc->led_state;
2193 
2194 	if (ic->ic_state == IEEE80211_S_INIT) {
2195 		state = 0;	/* LED off. */
2196 	} else if (ic->ic_state == IEEE80211_S_RUN) {
2197 		/* Associated, LED always on. */
2198 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2199 			state = AR_LED0_ON;	/* 2GHz=>Red. */
2200 		else
2201 			state = AR_LED1_ON;	/* 5GHz=>Blue. */
2202 	} else {
2203 		/* Scanning, blink LED. */
2204 		state ^= AR_LED0_ON | AR_LED1_ON;
2205 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2206 			state &= ~AR_LED1_ON;
2207 		else
2208 			state &= ~AR_LED0_ON;
2209 	}
2210 	if (state != sc->led_state) {
2211 		otus_write(sc, 0x1d0104, state);
2212 		if (otus_write_barrier(sc) == 0)
2213 			sc->led_state = state;
2214 	}
2215 }
2216 
2217 int
2218 otus_init(struct ifnet *ifp)
2219 {
2220 	struct otus_softc *sc = ifp->if_softc;
2221 	struct ieee80211com *ic = &sc->sc_ic;
2222 	int error;
2223 
2224 	/* Init host command ring. */
2225 	sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
2226 
2227 	if ((error = otus_init_mac(sc)) != 0) {
2228 		printf("%s: could not initialize MAC\n", sc->sc_dev.dv_xname);
2229 		return error;
2230 	}
2231 
2232 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2233 	(void)otus_set_macaddr(sc, ic->ic_myaddr);
2234 
2235 	switch (ic->ic_opmode) {
2236 #ifdef notyet
2237 #ifndef IEEE80211_STA_ONLY
2238 	case IEEE80211_M_HOSTAP:
2239 		otus_write(sc, 0x1c3700, 0x0f0000a1);
2240 		otus_write(sc, 0x1c3c40, 0x1);
2241 		break;
2242 	case IEEE80211_M_IBSS:
2243 		otus_write(sc, 0x1c3700, 0x0f000000);
2244 		otus_write(sc, 0x1c3c40, 0x1);
2245 		break;
2246 #endif
2247 #endif
2248 	case IEEE80211_M_STA:
2249 		otus_write(sc, 0x1c3700, 0x0f000002);
2250 		otus_write(sc, 0x1c3c40, 0x1);
2251 		break;
2252 	default:
2253 		break;
2254 	}
2255 	otus_write(sc, AR_MAC_REG_SNIFFER,
2256 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 0x2000001 : 0x2000000);
2257 	(void)otus_write_barrier(sc);
2258 
2259 	sc->bb_reset = 1;	/* Force cold reset. */
2260 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2261 	if ((error = otus_set_chan(sc, ic->ic_ibss_chan, 0)) != 0) {
2262 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
2263 		return error;
2264 	}
2265 
2266 	/* Start Rx. */
2267 	otus_write(sc, 0x1c3d30, 0x100);
2268 	(void)otus_write_barrier(sc);
2269 
2270 	ifp->if_flags &= ~IFF_OACTIVE;
2271 	ifp->if_flags |= IFF_RUNNING;
2272 
2273 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2274 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2275 	else
2276 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2277 
2278 	return 0;
2279 }
2280 
2281 void
2282 otus_stop(struct ifnet *ifp)
2283 {
2284 	struct otus_softc *sc = ifp->if_softc;
2285 	struct ieee80211com *ic = &sc->sc_ic;
2286 	int s;
2287 
2288 	sc->sc_tx_timer = 0;
2289 	ifp->if_timer = 0;
2290 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2291 
2292 	timeout_del(&sc->scan_to);
2293 	timeout_del(&sc->calib_to);
2294 
2295 	s = splusb();
2296 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2297 	/* Wait for all queued asynchronous commands to complete. */
2298 	while (sc->cmdq.queued > 0)
2299 		tsleep(&sc->cmdq, 0, "cmdq", 0);
2300 	splx(s);
2301 
2302 	/* Stop Rx. */
2303 	otus_write(sc, 0x1c3d30, 0);
2304 	(void)otus_write_barrier(sc);
2305 
2306 	sc->tx_queued = 0;
2307 }
2308