xref: /openbsd-src/sys/dev/usb/if_otus.c (revision 0b7734b3d77bb9b21afec6f4621cae6c805dbd45)
1 /*	$OpenBSD: if_otus.c,v 1.53 2016/04/13 11:03:37 mpi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * Driver for Atheros AR9001U chipset.
21  */
22 
23 #include "bpfilter.h"
24 
25 #include <sys/param.h>
26 #include <sys/sockio.h>
27 #include <sys/mbuf.h>
28 #include <sys/kernel.h>
29 #include <sys/socket.h>
30 #include <sys/systm.h>
31 #include <sys/timeout.h>
32 #include <sys/conf.h>
33 #include <sys/device.h>
34 #include <sys/endian.h>
35 
36 #include <machine/intr.h>
37 
38 #if NBPFILTER > 0
39 #include <net/bpf.h>
40 #endif
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 
45 #include <netinet/in.h>
46 #include <netinet/if_ether.h>
47 
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_amrr.h>
50 #include <net80211/ieee80211_radiotap.h>
51 
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55 #include <dev/usb/usbdevs.h>
56 
57 #include <dev/usb/if_otusreg.h>
58 
59 #ifdef OTUS_DEBUG
60 #define DPRINTF(x)	do { if (otus_debug) printf x; } while (0)
61 #define DPRINTFN(n, x)	do { if (otus_debug >= (n)) printf x; } while (0)
62 int otus_debug = 1;
63 #else
64 #define DPRINTF(x)
65 #define DPRINTFN(n, x)
66 #endif
67 
68 static const struct usb_devno otus_devs[] = {
69 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_WN7512 },
70 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_3CRUSBN275 },
71 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_TG121N },
72 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_AR9170 },
73 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_WN612 },
74 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_WN821NV2 },
75 	{ USB_VENDOR_AVM,		USB_PRODUCT_AVM_FRITZWLAN },
76 	{ USB_VENDOR_CACE,		USB_PRODUCT_CACE_AIRPCAPNX },
77 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA130D1 },
78 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA160A1 },
79 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA160A2 },
80 	{ USB_VENDOR_IODATA,		USB_PRODUCT_IODATA_WNGDNUS2 },
81 	{ USB_VENDOR_NEC,		USB_PRODUCT_NEC_WL300NUG },
82 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WN111V2 },
83 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WNA1000 },
84 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WNDA3100 },
85 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GW_US300 },
86 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_O8494 },
87 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_WNC0600 },
88 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_UB81 },
89 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_UB82 },
90 	{ USB_VENDOR_ZYDAS,		USB_PRODUCT_ZYDAS_ZD1221 },
91 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_NWD271N }
92 };
93 
94 int		otus_match(struct device *, void *, void *);
95 void		otus_attach(struct device *, struct device *, void *);
96 int		otus_detach(struct device *, int);
97 void		otus_attachhook(struct device *);
98 void		otus_get_chanlist(struct otus_softc *);
99 int		otus_load_firmware(struct otus_softc *, const char *,
100 		    uint32_t);
101 int		otus_open_pipes(struct otus_softc *);
102 void		otus_close_pipes(struct otus_softc *);
103 int		otus_alloc_tx_cmd(struct otus_softc *);
104 void		otus_free_tx_cmd(struct otus_softc *);
105 int		otus_alloc_tx_data_list(struct otus_softc *);
106 void		otus_free_tx_data_list(struct otus_softc *);
107 int		otus_alloc_rx_data_list(struct otus_softc *);
108 void		otus_free_rx_data_list(struct otus_softc *);
109 void		otus_next_scan(void *);
110 void		otus_task(void *);
111 void		otus_do_async(struct otus_softc *,
112 		    void (*)(struct otus_softc *, void *), void *, int);
113 int		otus_newstate(struct ieee80211com *, enum ieee80211_state,
114 		    int);
115 void		otus_newstate_cb(struct otus_softc *, void *);
116 int		otus_cmd(struct otus_softc *, uint8_t, const void *, int,
117 		    void *);
118 void		otus_write(struct otus_softc *, uint32_t, uint32_t);
119 int		otus_write_barrier(struct otus_softc *);
120 struct		ieee80211_node *otus_node_alloc(struct ieee80211com *);
121 int		otus_media_change(struct ifnet *);
122 int		otus_read_eeprom(struct otus_softc *);
123 void		otus_newassoc(struct ieee80211com *, struct ieee80211_node *,
124 		    int);
125 void		otus_intr(struct usbd_xfer *, void *, usbd_status);
126 void		otus_cmd_rxeof(struct otus_softc *, uint8_t *, int);
127 void		otus_sub_rxeof(struct otus_softc *, uint8_t *, int);
128 void		otus_rxeof(struct usbd_xfer *, void *, usbd_status);
129 void		otus_txeof(struct usbd_xfer *, void *, usbd_status);
130 int		otus_tx(struct otus_softc *, struct mbuf *,
131 		    struct ieee80211_node *);
132 void		otus_start(struct ifnet *);
133 void		otus_watchdog(struct ifnet *);
134 int		otus_ioctl(struct ifnet *, u_long, caddr_t);
135 int		otus_set_multi(struct otus_softc *);
136 void		otus_updateedca(struct ieee80211com *);
137 void		otus_updateedca_cb(struct otus_softc *, void *);
138 void		otus_updateslot(struct ieee80211com *);
139 void		otus_updateslot_cb(struct otus_softc *, void *);
140 int		otus_init_mac(struct otus_softc *);
141 uint32_t	otus_phy_get_def(struct otus_softc *, uint32_t);
142 int		otus_set_board_values(struct otus_softc *,
143 		    struct ieee80211_channel *);
144 int		otus_program_phy(struct otus_softc *,
145 		    struct ieee80211_channel *);
146 int		otus_set_rf_bank4(struct otus_softc *,
147 		    struct ieee80211_channel *);
148 void		otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
149 int		otus_set_chan(struct otus_softc *, struct ieee80211_channel *,
150 		    int);
151 int		otus_set_key(struct ieee80211com *, struct ieee80211_node *,
152 		    struct ieee80211_key *);
153 void		otus_set_key_cb(struct otus_softc *, void *);
154 void		otus_delete_key(struct ieee80211com *, struct ieee80211_node *,
155 		    struct ieee80211_key *);
156 void		otus_delete_key_cb(struct otus_softc *, void *);
157 void		otus_calibrate_to(void *);
158 int		otus_set_bssid(struct otus_softc *, const uint8_t *);
159 int		otus_set_macaddr(struct otus_softc *, const uint8_t *);
160 void		otus_led_newstate_type1(struct otus_softc *);
161 void		otus_led_newstate_type2(struct otus_softc *);
162 void		otus_led_newstate_type3(struct otus_softc *);
163 int		otus_init(struct ifnet *);
164 void		otus_stop(struct ifnet *);
165 
166 struct cfdriver otus_cd = {
167 	NULL, "otus", DV_IFNET
168 };
169 
170 const struct cfattach otus_ca = {
171 	sizeof (struct otus_softc), otus_match, otus_attach, otus_detach
172 };
173 
174 int
175 otus_match(struct device *parent, void *match, void *aux)
176 {
177 	struct usb_attach_arg *uaa = aux;
178 
179 	if (uaa->iface != NULL)
180 		return UMATCH_NONE;
181 
182 	return (usb_lookup(otus_devs, uaa->vendor, uaa->product) != NULL) ?
183 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
184 }
185 
186 void
187 otus_attach(struct device *parent, struct device *self, void *aux)
188 {
189 	struct otus_softc *sc = (struct otus_softc *)self;
190 	struct usb_attach_arg *uaa = aux;
191 	int error;
192 
193 	sc->sc_udev = uaa->device;
194 
195 	usb_init_task(&sc->sc_task, otus_task, sc, USB_TASK_TYPE_GENERIC);
196 	timeout_set(&sc->scan_to, otus_next_scan, sc);
197 	timeout_set(&sc->calib_to, otus_calibrate_to, sc);
198 
199 	sc->amrr.amrr_min_success_threshold =  1;
200 	sc->amrr.amrr_max_success_threshold = 10;
201 
202 	if (usbd_set_config_no(sc->sc_udev, 1, 0) != 0) {
203 		printf("%s: could not set configuration no\n",
204 		    sc->sc_dev.dv_xname);
205 		return;
206 	}
207 
208 	/* Get the first interface handle. */
209 	error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
210 	if (error != 0) {
211 		printf("%s: could not get interface handle\n",
212 		    sc->sc_dev.dv_xname);
213 		return;
214 	}
215 
216 	if ((error = otus_open_pipes(sc)) != 0) {
217 		printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
218 		return;
219 	}
220 
221 	config_mountroot(self, otus_attachhook);
222 }
223 
224 int
225 otus_detach(struct device *self, int flags)
226 {
227 	struct otus_softc *sc = (struct otus_softc *)self;
228 	struct ifnet *ifp = &sc->sc_ic.ic_if;
229 	int s;
230 
231 	s = splusb();
232 
233 	if (timeout_initialized(&sc->scan_to))
234 		timeout_del(&sc->scan_to);
235 	if (timeout_initialized(&sc->calib_to))
236 		timeout_del(&sc->calib_to);
237 
238 	/* Wait for all queued asynchronous commands to complete. */
239 	usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
240 
241 	usbd_ref_wait(sc->sc_udev);
242 
243 	if (ifp->if_softc != NULL) {
244 		ifp->if_flags &= ~IFF_RUNNING;
245 		ifq_clr_oactive(&ifp->if_snd);
246 		ieee80211_ifdetach(ifp);
247 		if_detach(ifp);
248 	}
249 
250 	otus_close_pipes(sc);
251 
252 	splx(s);
253 
254 	return 0;
255 }
256 
257 void
258 otus_attachhook(struct device *self)
259 {
260 	struct otus_softc *sc = (struct otus_softc *)self;
261 	struct ieee80211com *ic = &sc->sc_ic;
262 	struct ifnet *ifp = &ic->ic_if;
263 	usb_device_request_t req;
264 	uint32_t in, out;
265 	int error;
266 
267 	error = otus_load_firmware(sc, "otus-init", AR_FW_INIT_ADDR);
268 	if (error != 0) {
269 		printf("%s: could not load %s firmware\n",
270 		    sc->sc_dev.dv_xname, "init");
271 		return;
272 	}
273 
274 	usbd_delay_ms(sc->sc_udev, 1000);
275 
276 	error = otus_load_firmware(sc, "otus-main", AR_FW_MAIN_ADDR);
277 	if (error != 0) {
278 		printf("%s: could not load %s firmware\n",
279 		    sc->sc_dev.dv_xname, "main");
280 		return;
281 	}
282 
283 	/* Tell device that firmware transfer is complete. */
284 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
285 	req.bRequest = AR_FW_DOWNLOAD_COMPLETE;
286 	USETW(req.wValue, 0);
287 	USETW(req.wIndex, 0);
288 	USETW(req.wLength, 0);
289 	if (usbd_do_request(sc->sc_udev, &req, NULL) != 0) {
290 		printf("%s: firmware initialization failed\n",
291 		    sc->sc_dev.dv_xname);
292 		return;
293 	}
294 
295 	/* Send an ECHO command to check that everything is settled. */
296 	in = 0xbadc0ffe;
297 	if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out) != 0) {
298 		printf("%s: echo command failed\n", sc->sc_dev.dv_xname);
299 		return;
300 	}
301 	if (in != out) {
302 		printf("%s: echo reply mismatch: 0x%08x!=0x%08x\n",
303 		    sc->sc_dev.dv_xname, in, out);
304 		return;
305 	}
306 
307 	/* Read entire EEPROM. */
308 	if (otus_read_eeprom(sc) != 0) {
309 		printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
310 		return;
311 	}
312 
313 	sc->txmask = sc->eeprom.baseEepHeader.txMask;
314 	sc->rxmask = sc->eeprom.baseEepHeader.rxMask;
315 	sc->capflags = sc->eeprom.baseEepHeader.opCapFlags;
316 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->eeprom.baseEepHeader.macAddr);
317 	sc->sc_led_newstate = otus_led_newstate_type3;	/* XXX */
318 
319 	printf("%s: MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n",
320 	    sc->sc_dev.dv_xname, (sc->capflags & AR5416_OPFLAGS_11A) ?
321 	        0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101),
322 	    (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1,
323 	    ether_sprintf(ic->ic_myaddr));
324 
325 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
326 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
327 	ic->ic_state = IEEE80211_S_INIT;
328 
329 	/* Set device capabilities. */
330 	ic->ic_caps =
331 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
332 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
333 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
334 	    IEEE80211_C_WEP |		/* WEP */
335 	    IEEE80211_C_RSN;		/* WPA/RSN */
336 
337 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
338 		/* Set supported .11b and .11g rates. */
339 		ic->ic_sup_rates[IEEE80211_MODE_11B] =
340 		    ieee80211_std_rateset_11b;
341 		ic->ic_sup_rates[IEEE80211_MODE_11G] =
342 		    ieee80211_std_rateset_11g;
343 	}
344 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
345 		/* Set supported .11a rates. */
346 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
347 		    ieee80211_std_rateset_11a;
348 	}
349 
350 	/* Build the list of supported channels. */
351 	otus_get_chanlist(sc);
352 
353 	ifp->if_softc = sc;
354 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
355 	ifp->if_ioctl = otus_ioctl;
356 	ifp->if_start = otus_start;
357 	ifp->if_watchdog = otus_watchdog;
358 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
359 
360 	if_attach(ifp);
361 	ieee80211_ifattach(ifp);
362 	ic->ic_node_alloc = otus_node_alloc;
363 	ic->ic_newassoc = otus_newassoc;
364 	ic->ic_updateslot = otus_updateslot;
365 	ic->ic_updateedca = otus_updateedca;
366 #ifdef notyet
367 	ic->ic_set_key = otus_set_key;
368 	ic->ic_delete_key = otus_delete_key;
369 #endif
370 	/* Override state transition machine. */
371 	sc->sc_newstate = ic->ic_newstate;
372 	ic->ic_newstate = otus_newstate;
373 	ieee80211_media_init(ifp, otus_media_change, ieee80211_media_status);
374 
375 #if NBPFILTER > 0
376 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
377 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
378 
379 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
380 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
381 	sc->sc_rxtap.wr_ihdr.it_present = htole32(OTUS_RX_RADIOTAP_PRESENT);
382 
383 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
384 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
385 	sc->sc_txtap.wt_ihdr.it_present = htole32(OTUS_TX_RADIOTAP_PRESENT);
386 #endif
387 }
388 
389 void
390 otus_get_chanlist(struct otus_softc *sc)
391 {
392 	struct ieee80211com *ic = &sc->sc_ic;
393 	uint16_t domain;
394 	uint8_t chan;
395 	int i;
396 
397 	/* XXX regulatory domain. */
398 	domain = letoh16(sc->eeprom.baseEepHeader.regDmn[0]);
399 	DPRINTF(("regdomain=0x%04x\n", domain));
400 
401 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
402 		for (i = 0; i < 14; i++) {
403 			chan = ar_chans[i];
404 			ic->ic_channels[chan].ic_freq =
405 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
406 			ic->ic_channels[chan].ic_flags =
407 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
408 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
409 		}
410 	}
411 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
412 		for (i = 14; i < nitems(ar_chans); i++) {
413 			chan = ar_chans[i];
414 			ic->ic_channels[chan].ic_freq =
415 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
416 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
417 		}
418 	}
419 }
420 
421 int
422 otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr)
423 {
424 	usb_device_request_t req;
425 	size_t size;
426 	u_char *fw, *ptr;
427 	int mlen, error;
428 
429 	/* Read firmware image from the filesystem. */
430 	if ((error = loadfirmware(name, &fw, &size)) != 0) {
431 		printf("%s: failed loadfirmware of file %s (error %d)\n",
432 		    sc->sc_dev.dv_xname, name, error);
433 		return error;
434 	}
435 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
436 	req.bRequest = AR_FW_DOWNLOAD;
437 	USETW(req.wIndex, 0);
438 
439 	ptr = fw;
440 	addr >>= 8;
441 	while (size > 0) {
442 		mlen = MIN(size, 4096);
443 
444 		USETW(req.wValue, addr);
445 		USETW(req.wLength, mlen);
446 		if (usbd_do_request(sc->sc_udev, &req, ptr) != 0) {
447 			error = EIO;
448 			break;
449 		}
450 		addr += mlen >> 8;
451 		ptr  += mlen;
452 		size -= mlen;
453 	}
454 	free(fw, M_DEVBUF, 0);
455 	return error;
456 }
457 
458 int
459 otus_open_pipes(struct otus_softc *sc)
460 {
461 	usb_endpoint_descriptor_t *ed;
462 	int i, isize, error;
463 
464 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_RX_NO, 0,
465 	    &sc->data_rx_pipe);
466 	if (error != 0) {
467 		printf("%s: could not open Rx bulk pipe\n",
468 		    sc->sc_dev.dv_xname);
469 		goto fail;
470 	}
471 
472 	ed = usbd_get_endpoint_descriptor(sc->sc_iface, AR_EPT_INTR_RX_NO);
473 	if (ed == NULL) {
474 		printf("%s: could not retrieve Rx intr pipe descriptor\n",
475 		    sc->sc_dev.dv_xname);
476 		goto fail;
477 	}
478 	isize = UGETW(ed->wMaxPacketSize);
479 	if (isize == 0) {
480 		printf("%s: invalid Rx intr pipe descriptor\n",
481 		    sc->sc_dev.dv_xname);
482 		goto fail;
483 	}
484 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
485 	if (sc->ibuf == NULL) {
486 		printf("%s: could not allocate Rx intr buffer\n",
487 		    sc->sc_dev.dv_xname);
488 		goto fail;
489 	}
490 	error = usbd_open_pipe_intr(sc->sc_iface, AR_EPT_INTR_RX_NO,
491 	    USBD_SHORT_XFER_OK, &sc->cmd_rx_pipe, sc, sc->ibuf, isize,
492 	    otus_intr, USBD_DEFAULT_INTERVAL);
493 	if (error != 0) {
494 		printf("%s: could not open Rx intr pipe\n",
495 		    sc->sc_dev.dv_xname);
496 		goto fail;
497 	}
498 
499 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_TX_NO, 0,
500 	    &sc->data_tx_pipe);
501 	if (error != 0) {
502 		printf("%s: could not open Tx bulk pipe\n",
503 		    sc->sc_dev.dv_xname);
504 		goto fail;
505 	}
506 
507 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_INTR_TX_NO, 0,
508 	    &sc->cmd_tx_pipe);
509 	if (error != 0) {
510 		printf("%s: could not open Tx intr pipe\n",
511 		    sc->sc_dev.dv_xname);
512 		goto fail;
513 	}
514 
515 	if (otus_alloc_tx_cmd(sc) != 0) {
516 		printf("%s: could not allocate command xfer\n",
517 		    sc->sc_dev.dv_xname);
518 		goto fail;
519 	}
520 
521 	if (otus_alloc_tx_data_list(sc) != 0) {
522 		printf("%s: could not allocate Tx xfers\n",
523 		    sc->sc_dev.dv_xname);
524 		goto fail;
525 	}
526 
527 	if (otus_alloc_rx_data_list(sc) != 0) {
528 		printf("%s: could not allocate Rx xfers\n",
529 		    sc->sc_dev.dv_xname);
530 		goto fail;
531 	}
532 
533 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
534 		struct otus_rx_data *data = &sc->rx_data[i];
535 
536 		usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
537 		    OTUS_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
538 		    USBD_NO_TIMEOUT, otus_rxeof);
539 		error = usbd_transfer(data->xfer);
540 		if (error != USBD_IN_PROGRESS && error != 0) {
541 			printf("%s: could not queue Rx xfer\n",
542 			    sc->sc_dev.dv_xname);
543 			goto fail;
544 		}
545 	}
546 	return 0;
547 
548  fail:	otus_close_pipes(sc);
549 	return error;
550 }
551 
552 void
553 otus_close_pipes(struct otus_softc *sc)
554 {
555 	otus_free_tx_cmd(sc);
556 	otus_free_tx_data_list(sc);
557 	otus_free_rx_data_list(sc);
558 
559 	if (sc->data_rx_pipe != NULL)
560 		usbd_close_pipe(sc->data_rx_pipe);
561 	if (sc->cmd_rx_pipe != NULL) {
562 		usbd_abort_pipe(sc->cmd_rx_pipe);
563 		usbd_close_pipe(sc->cmd_rx_pipe);
564 	}
565 	if (sc->ibuf != NULL)
566 		free(sc->ibuf, M_USBDEV, 0);
567 	if (sc->data_tx_pipe != NULL)
568 		usbd_close_pipe(sc->data_tx_pipe);
569 	if (sc->cmd_tx_pipe != NULL)
570 		usbd_close_pipe(sc->cmd_tx_pipe);
571 }
572 
573 int
574 otus_alloc_tx_cmd(struct otus_softc *sc)
575 {
576 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
577 
578 	cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
579 	if (cmd->xfer == NULL) {
580 		printf("%s: could not allocate xfer\n",
581 		    sc->sc_dev.dv_xname);
582 		return ENOMEM;
583 	}
584 	cmd->buf = usbd_alloc_buffer(cmd->xfer, OTUS_MAX_TXCMDSZ);
585 	if (cmd->buf == NULL) {
586 		printf("%s: could not allocate xfer buffer\n",
587 		    sc->sc_dev.dv_xname);
588 		usbd_free_xfer(cmd->xfer);
589 		return ENOMEM;
590 	}
591 	return 0;
592 }
593 
594 void
595 otus_free_tx_cmd(struct otus_softc *sc)
596 {
597 	/* Make sure no transfers are pending. */
598 	usbd_abort_pipe(sc->cmd_tx_pipe);
599 
600 	if (sc->tx_cmd.xfer != NULL)
601 		usbd_free_xfer(sc->tx_cmd.xfer);
602 }
603 
604 int
605 otus_alloc_tx_data_list(struct otus_softc *sc)
606 {
607 	struct otus_tx_data *data;
608 	int i, error;
609 
610 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++) {
611 		data = &sc->tx_data[i];
612 
613 		data->sc = sc;  /* Backpointer for callbacks. */
614 
615 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
616 		if (data->xfer == NULL) {
617 			printf("%s: could not allocate xfer\n",
618 			    sc->sc_dev.dv_xname);
619 			error = ENOMEM;
620 			goto fail;
621 		}
622 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_TXBUFSZ);
623 		if (data->buf == NULL) {
624 			printf("%s: could not allocate xfer buffer\n",
625 			    sc->sc_dev.dv_xname);
626 			error = ENOMEM;
627 			goto fail;
628 		}
629 	}
630 	return 0;
631 
632 fail:	otus_free_tx_data_list(sc);
633 	return error;
634 }
635 
636 void
637 otus_free_tx_data_list(struct otus_softc *sc)
638 {
639 	int i;
640 
641 	/* Make sure no transfers are pending. */
642 	usbd_abort_pipe(sc->data_tx_pipe);
643 
644 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++)
645 		if (sc->tx_data[i].xfer != NULL)
646 			usbd_free_xfer(sc->tx_data[i].xfer);
647 }
648 
649 int
650 otus_alloc_rx_data_list(struct otus_softc *sc)
651 {
652 	struct otus_rx_data *data;
653 	int i, error;
654 
655 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
656 		data = &sc->rx_data[i];
657 
658 		data->sc = sc;	/* Backpointer for callbacks. */
659 
660 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
661 		if (data->xfer == NULL) {
662 			printf("%s: could not allocate xfer\n",
663 			    sc->sc_dev.dv_xname);
664 			error = ENOMEM;
665 			goto fail;
666 		}
667 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_RXBUFSZ);
668 		if (data->buf == NULL) {
669 			printf("%s: could not allocate xfer buffer\n",
670 			    sc->sc_dev.dv_xname);
671 			error = ENOMEM;
672 			goto fail;
673 		}
674 	}
675 	return 0;
676 
677 fail:	otus_free_rx_data_list(sc);
678 	return error;
679 }
680 
681 void
682 otus_free_rx_data_list(struct otus_softc *sc)
683 {
684 	int i;
685 
686 	/* Make sure no transfers are pending. */
687 	usbd_abort_pipe(sc->data_rx_pipe);
688 
689 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++)
690 		if (sc->rx_data[i].xfer != NULL)
691 			usbd_free_xfer(sc->rx_data[i].xfer);
692 }
693 
694 void
695 otus_next_scan(void *arg)
696 {
697 	struct otus_softc *sc = arg;
698 
699 	if (usbd_is_dying(sc->sc_udev))
700 		return;
701 
702 	usbd_ref_incr(sc->sc_udev);
703 
704 	if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
705 		ieee80211_next_scan(&sc->sc_ic.ic_if);
706 
707 	usbd_ref_decr(sc->sc_udev);
708 }
709 
710 void
711 otus_task(void *arg)
712 {
713 	struct otus_softc *sc = arg;
714 	struct otus_host_cmd_ring *ring = &sc->cmdq;
715 	struct otus_host_cmd *cmd;
716 	int s;
717 
718 	/* Process host commands. */
719 	s = splusb();
720 	while (ring->next != ring->cur) {
721 		cmd = &ring->cmd[ring->next];
722 		splx(s);
723 		/* Callback. */
724 		cmd->cb(sc, cmd->data);
725 		s = splusb();
726 		ring->queued--;
727 		ring->next = (ring->next + 1) % OTUS_HOST_CMD_RING_COUNT;
728 	}
729 	splx(s);
730 }
731 
732 void
733 otus_do_async(struct otus_softc *sc, void (*cb)(struct otus_softc *, void *),
734     void *arg, int len)
735 {
736 	struct otus_host_cmd_ring *ring = &sc->cmdq;
737 	struct otus_host_cmd *cmd;
738 	int s;
739 
740 	s = splusb();
741 	cmd = &ring->cmd[ring->cur];
742 	cmd->cb = cb;
743 	KASSERT(len <= sizeof (cmd->data));
744 	memcpy(cmd->data, arg, len);
745 	ring->cur = (ring->cur + 1) % OTUS_HOST_CMD_RING_COUNT;
746 
747 	/* If there is no pending command already, schedule a task. */
748 	if (++ring->queued == 1)
749 		usb_add_task(sc->sc_udev, &sc->sc_task);
750 	splx(s);
751 }
752 
753 int
754 otus_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
755 {
756 	struct otus_softc *sc = ic->ic_softc;
757 	struct otus_cmd_newstate cmd;
758 
759 	/* Do it in a process context. */
760 	cmd.state = nstate;
761 	cmd.arg = arg;
762 	otus_do_async(sc, otus_newstate_cb, &cmd, sizeof cmd);
763 	return 0;
764 }
765 
766 void
767 otus_newstate_cb(struct otus_softc *sc, void *arg)
768 {
769 	struct otus_cmd_newstate *cmd = arg;
770 	struct ieee80211com *ic = &sc->sc_ic;
771 	struct ieee80211_node *ni;
772 	int s;
773 
774 	s = splnet();
775 
776 	switch (cmd->state) {
777 	case IEEE80211_S_INIT:
778 		break;
779 
780 	case IEEE80211_S_SCAN:
781 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
782 		if (!usbd_is_dying(sc->sc_udev))
783 			timeout_add_msec(&sc->scan_to, 200);
784 		break;
785 
786 	case IEEE80211_S_AUTH:
787 	case IEEE80211_S_ASSOC:
788 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
789 		break;
790 
791 	case IEEE80211_S_RUN:
792 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 1);
793 
794 		ni = ic->ic_bss;
795 
796 		if (ic->ic_opmode == IEEE80211_M_STA) {
797 			otus_updateslot(ic);
798 			otus_set_bssid(sc, ni->ni_bssid);
799 
800 			/* Fake a join to init the Tx rate. */
801 			otus_newassoc(ic, ni, 1);
802 
803 			/* Start calibration timer. */
804 			if (!usbd_is_dying(sc->sc_udev))
805 				timeout_add_sec(&sc->calib_to, 1);
806 		}
807 		break;
808 	}
809 
810 	sc->sc_led_newstate(sc);
811 	(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
812 
813 	splx(s);
814 }
815 
816 int
817 otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen,
818     void *odata)
819 {
820 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
821 	struct ar_cmd_hdr *hdr;
822 	int s, xferlen, error;
823 
824 	/* Always bulk-out a multiple of 4 bytes. */
825 	xferlen = (sizeof (*hdr) + ilen + 3) & ~3;
826 
827 	hdr = (struct ar_cmd_hdr *)cmd->buf;
828 	hdr->code  = code;
829 	hdr->len   = ilen;
830 	hdr->token = ++cmd->token;	/* Don't care about endianness. */
831 	memcpy((uint8_t *)&hdr[1], idata, ilen);
832 
833 	DPRINTFN(2, ("sending command code=0x%02x len=%d token=%d\n",
834 	    code, ilen, hdr->token));
835 
836 	s = splusb();
837 	cmd->odata = odata;
838 	cmd->done = 0;
839 
840 	usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
841 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY | USBD_SYNCHRONOUS,
842 	    OTUS_CMD_TIMEOUT, NULL);
843 	error = usbd_transfer(cmd->xfer);
844 	if (error != 0) {
845 		splx(s);
846 		printf("%s: could not send command 0x%x (error=%s)\n",
847 		    sc->sc_dev.dv_xname, code, usbd_errstr(error));
848 		return EIO;
849 	}
850 	if (!cmd->done)
851 		error = tsleep(cmd, PCATCH, "otuscmd", hz);
852 	cmd->odata = NULL;	/* In case answer is received too late. */
853 	splx(s);
854 	if (error != 0) {
855 		printf("%s: timeout waiting for command 0x%02x reply\n",
856 		    sc->sc_dev.dv_xname, code);
857 	}
858 	return error;
859 }
860 
861 void
862 otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val)
863 {
864 	sc->write_buf[sc->write_idx].reg = htole32(reg);
865 	sc->write_buf[sc->write_idx].val = htole32(val);
866 
867 	if (++sc->write_idx > AR_MAX_WRITE_IDX)
868 		(void)otus_write_barrier(sc);
869 }
870 
871 int
872 otus_write_barrier(struct otus_softc *sc)
873 {
874 	int error;
875 
876 	if (sc->write_idx == 0)
877 		return 0;	/* Nothing to flush. */
878 
879 	error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf,
880 	    sizeof (sc->write_buf[0]) * sc->write_idx, NULL);
881 	sc->write_idx = 0;
882 	return error;
883 }
884 
885 struct ieee80211_node *
886 otus_node_alloc(struct ieee80211com *ic)
887 {
888 	return malloc(sizeof (struct otus_node), M_DEVBUF, M_NOWAIT | M_ZERO);
889 }
890 
891 int
892 otus_media_change(struct ifnet *ifp)
893 {
894 	struct otus_softc *sc = ifp->if_softc;
895 	struct ieee80211com *ic = &sc->sc_ic;
896 	uint8_t rate, ridx;
897 	int error;
898 
899 	error = ieee80211_media_change(ifp);
900 	if (error != ENETRESET)
901 		return error;
902 
903 	if (ic->ic_fixed_rate != -1) {
904 		rate = ic->ic_sup_rates[ic->ic_curmode].
905 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
906 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
907 			if (otus_rates[ridx].rate == rate)
908 				break;
909 		sc->fixed_ridx = ridx;
910 	}
911 
912 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
913 		error = otus_init(ifp);
914 
915 	return error;
916 }
917 
918 int
919 otus_read_eeprom(struct otus_softc *sc)
920 {
921 	uint32_t regs[8], reg;
922 	uint8_t *eep;
923 	int i, j, error;
924 
925 	/* Read EEPROM by blocks of 32 bytes. */
926 	eep = (uint8_t *)&sc->eeprom;
927 	reg = AR_EEPROM_OFFSET;
928 	for (i = 0; i < sizeof (sc->eeprom) / 32; i++) {
929 		for (j = 0; j < 8; j++, reg += 4)
930 			regs[j] = htole32(reg);
931 		error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep);
932 		if (error != 0)
933 			break;
934 		eep += 32;
935 	}
936 	return error;
937 }
938 
939 void
940 otus_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
941 {
942 	struct otus_softc *sc = ic->ic_softc;
943 	struct otus_node *on = (void *)ni;
944 	struct ieee80211_rateset *rs = &ni->ni_rates;
945 	uint8_t rate;
946 	int ridx, i;
947 
948 	DPRINTF(("new assoc isnew=%d addr=%s\n",
949 	    isnew, ether_sprintf(ni->ni_macaddr)));
950 
951 	ieee80211_amrr_node_init(&sc->amrr, &on->amn);
952 	/* Start at lowest available bit-rate, AMRR will raise. */
953 	ni->ni_txrate = 0;
954 
955 	for (i = 0; i < rs->rs_nrates; i++) {
956 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
957 		/* Convert 802.11 rate to hardware rate index. */
958 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
959 			if (otus_rates[ridx].rate == rate)
960 				break;
961 		on->ridx[i] = ridx;
962 		DPRINTF(("rate=0x%02x ridx=%d\n",
963 		    rs->rs_rates[i], on->ridx[i]));
964 	}
965 }
966 
967 /* ARGSUSED */
968 void
969 otus_intr(struct usbd_xfer *xfer, void *priv, usbd_status status)
970 {
971 #if 0
972 	struct otus_softc *sc = priv;
973 	int len;
974 
975 	/*
976 	 * The Rx intr pipe is unused with current firmware.  Notifications
977 	 * and replies to commands are sent through the Rx bulk pipe instead
978 	 * (with a magic PLCP header.)
979 	 */
980 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
981 		DPRINTF(("intr status=%d\n", status));
982 		if (status == USBD_STALLED)
983 			usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
984 		return;
985 	}
986 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
987 
988 	otus_cmd_rxeof(sc, sc->ibuf, len);
989 #endif
990 }
991 
992 void
993 otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
994 {
995 	struct ieee80211com *ic = &sc->sc_ic;
996 	struct otus_tx_cmd *cmd;
997 	struct ar_cmd_hdr *hdr;
998 	int s;
999 
1000 	if (__predict_false(len < sizeof (*hdr))) {
1001 		DPRINTF(("cmd too small %d\n", len));
1002 		return;
1003 	}
1004 	hdr = (struct ar_cmd_hdr *)buf;
1005 	if (__predict_false(sizeof (*hdr) + hdr->len > len ||
1006 	    sizeof (*hdr) + hdr->len > 64)) {
1007 		DPRINTF(("cmd too large %d\n", hdr->len));
1008 		return;
1009 	}
1010 
1011 	if ((hdr->code & 0xc0) != 0xc0) {
1012 		DPRINTFN(2, ("received reply code=0x%02x len=%d token=%d\n",
1013 		    hdr->code, hdr->len, hdr->token));
1014 		cmd = &sc->tx_cmd;
1015 		if (__predict_false(hdr->token != cmd->token))
1016 			return;
1017 		/* Copy answer into caller's supplied buffer. */
1018 		if (cmd->odata != NULL)
1019 			memcpy(cmd->odata, &hdr[1], hdr->len);
1020 		cmd->done = 1;
1021 		wakeup(cmd);
1022 		return;
1023 	}
1024 
1025 	/* Received unsolicited notification. */
1026 	DPRINTF(("received notification code=0x%02x len=%d\n",
1027 	    hdr->code, hdr->len));
1028 	switch (hdr->code & 0x3f) {
1029 	case AR_EVT_BEACON:
1030 		break;
1031 	case AR_EVT_TX_COMP:
1032 	{
1033 		struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1];
1034 		struct ieee80211_node *ni;
1035 		struct otus_node *on;
1036 
1037 		DPRINTF(("tx completed %s status=%d phy=0x%x\n",
1038 		    ether_sprintf(tx->macaddr), letoh16(tx->status),
1039 		    letoh32(tx->phy)));
1040 		s = splnet();
1041 #ifdef notyet
1042 #ifndef IEEE80211_STA_ONLY
1043 		if (ic->ic_opmode != IEEE80211_M_STA) {
1044 			ni = ieee80211_find_node(ic, tx->macaddr);
1045 			if (__predict_false(ni == NULL)) {
1046 				splx(s);
1047 				break;
1048 			}
1049 		} else
1050 #endif
1051 #endif
1052 			ni = ic->ic_bss;
1053 		/* Update rate control statistics. */
1054 		on = (void *)ni;
1055 		/* NB: we do not set the TX_MAC_RATE_PROBING flag. */
1056 		if (__predict_true(tx->status != 0))
1057 			on->amn.amn_retrycnt++;
1058 		splx(s);
1059 		break;
1060 	}
1061 	case AR_EVT_TBTT:
1062 		break;
1063 	}
1064 }
1065 
1066 void
1067 otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
1068 {
1069 	struct ieee80211com *ic = &sc->sc_ic;
1070 	struct ifnet *ifp = &ic->ic_if;
1071 	struct ieee80211_rxinfo rxi;
1072 	struct ieee80211_node *ni;
1073 	struct ar_rx_tail *tail;
1074 	struct ieee80211_frame *wh;
1075 	struct mbuf *m;
1076 	uint8_t *plcp;
1077 	int s, mlen, align;
1078 
1079 	if (__predict_false(len < AR_PLCP_HDR_LEN)) {
1080 		DPRINTF(("sub-xfer too short %d\n", len));
1081 		return;
1082 	}
1083 	plcp = buf;
1084 
1085 	/* All bits in the PLCP header are set to 1 for non-MPDU. */
1086 	if (memcmp(plcp, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) {
1087 		otus_cmd_rxeof(sc, plcp + AR_PLCP_HDR_LEN,
1088 		    len - AR_PLCP_HDR_LEN);
1089 		return;
1090 	}
1091 
1092 	/* Received MPDU. */
1093 	if (__predict_false(len < AR_PLCP_HDR_LEN + sizeof (*tail))) {
1094 		DPRINTF(("MPDU too short %d\n", len));
1095 		ifp->if_ierrors++;
1096 		return;
1097 	}
1098 	tail = (struct ar_rx_tail *)(plcp + len - sizeof (*tail));
1099 
1100 	/* Discard error frames. */
1101 	if (__predict_false(tail->error != 0)) {
1102 		DPRINTF(("error frame 0x%02x\n", tail->error));
1103 		if (tail->error & AR_RX_ERROR_FCS) {
1104 			DPRINTFN(3, ("bad FCS\n"));
1105 		} else if (tail->error & AR_RX_ERROR_MMIC) {
1106 			/* Report Michael MIC failures to net80211. */
1107 			ic->ic_stats.is_rx_locmicfail++;
1108 			ieee80211_michael_mic_failure(ic, 0);
1109 		}
1110 		ifp->if_ierrors++;
1111 		return;
1112 	}
1113 	/* Compute MPDU's length. */
1114 	mlen = len - AR_PLCP_HDR_LEN - sizeof (*tail);
1115 	/* Make sure there's room for an 802.11 header + FCS. */
1116 	if (__predict_false(mlen < IEEE80211_MIN_LEN)) {
1117 		ifp->if_ierrors++;
1118 		return;
1119 	}
1120 	mlen -= IEEE80211_CRC_LEN;	/* strip 802.11 FCS */
1121 
1122 	wh = (struct ieee80211_frame *)(plcp + AR_PLCP_HDR_LEN);
1123 	/* Provide a 32-bit aligned protocol header to the stack. */
1124 	align = (ieee80211_has_qos(wh) ^ ieee80211_has_addr4(wh)) ? 2 : 0;
1125 
1126 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1127 	if (__predict_false(m == NULL)) {
1128 		ifp->if_ierrors++;
1129 		return;
1130 	}
1131 	if (align + mlen > MHLEN) {
1132 		MCLGET(m, M_DONTWAIT);
1133 		if (__predict_false(!(m->m_flags & M_EXT))) {
1134 			ifp->if_ierrors++;
1135 			m_freem(m);
1136 			return;
1137 		}
1138 	}
1139 	/* Finalize mbuf. */
1140 	m->m_data += align;
1141 	memcpy(mtod(m, caddr_t), wh, mlen);
1142 	m->m_pkthdr.len = m->m_len = mlen;
1143 
1144 #if NBPFILTER > 0
1145 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1146 		struct otus_rx_radiotap_header *tap = &sc->sc_rxtap;
1147 		struct mbuf mb;
1148 
1149 		tap->wr_flags = 0;
1150 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1151 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1152 		tap->wr_antsignal = tail->rssi;
1153 		tap->wr_rate = 2;	/* In case it can't be found below. */
1154 		switch (tail->status & AR_RX_STATUS_MT_MASK) {
1155 		case AR_RX_STATUS_MT_CCK:
1156 			switch (plcp[0]) {
1157 			case  10: tap->wr_rate =   2; break;
1158 			case  20: tap->wr_rate =   4; break;
1159 			case  55: tap->wr_rate =  11; break;
1160 			case 110: tap->wr_rate =  22; break;
1161 			}
1162 			if (tail->status & AR_RX_STATUS_SHPREAMBLE)
1163 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1164 			break;
1165 		case AR_RX_STATUS_MT_OFDM:
1166 			switch (plcp[0] & 0xf) {
1167 			case 0xb: tap->wr_rate =  12; break;
1168 			case 0xf: tap->wr_rate =  18; break;
1169 			case 0xa: tap->wr_rate =  24; break;
1170 			case 0xe: tap->wr_rate =  36; break;
1171 			case 0x9: tap->wr_rate =  48; break;
1172 			case 0xd: tap->wr_rate =  72; break;
1173 			case 0x8: tap->wr_rate =  96; break;
1174 			case 0xc: tap->wr_rate = 108; break;
1175 			}
1176 			break;
1177 		}
1178 		mb.m_data = (caddr_t)tap;
1179 		mb.m_len = sc->sc_rxtap_len;
1180 		mb.m_next = m;
1181 		mb.m_nextpkt = NULL;
1182 		mb.m_type = 0;
1183 		mb.m_flags = 0;
1184 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1185 	}
1186 #endif
1187 
1188 	s = splnet();
1189 	ni = ieee80211_find_rxnode(ic, wh);
1190 	rxi.rxi_flags = 0;
1191 	rxi.rxi_rssi = tail->rssi;
1192 	rxi.rxi_tstamp = 0;	/* unused */
1193 	ieee80211_input(ifp, m, ni, &rxi);
1194 
1195 	/* Node is no longer needed. */
1196 	ieee80211_release_node(ic, ni);
1197 	splx(s);
1198 }
1199 
1200 void
1201 otus_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1202 {
1203 	struct otus_rx_data *data = priv;
1204 	struct otus_softc *sc = data->sc;
1205 	caddr_t buf = data->buf;
1206 	struct ar_rx_head *head;
1207 	uint16_t hlen;
1208 	int len;
1209 
1210 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1211 		DPRINTF(("RX status=%d\n", status));
1212 		if (status == USBD_STALLED)
1213 			usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1214 		if (status != USBD_CANCELLED)
1215 			goto resubmit;
1216 		return;
1217 	}
1218 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1219 
1220 	while (len >= sizeof (*head)) {
1221 		head = (struct ar_rx_head *)buf;
1222 		if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) {
1223 			DPRINTF(("tag not valid 0x%x\n", letoh16(head->tag)));
1224 			break;
1225 		}
1226 		hlen = letoh16(head->len);
1227 		if (__predict_false(sizeof (*head) + hlen > len)) {
1228 			DPRINTF(("xfer too short %d/%d\n", len, hlen));
1229 			break;
1230 		}
1231 		/* Process sub-xfer. */
1232 		otus_sub_rxeof(sc, (uint8_t *)&head[1], hlen);
1233 
1234 		/* Next sub-xfer is aligned on a 32-bit boundary. */
1235 		hlen = (sizeof (*head) + hlen + 3) & ~3;
1236 		buf += hlen;
1237 		len -= hlen;
1238 	}
1239 
1240  resubmit:
1241 	usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, OTUS_RXBUFSZ,
1242 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, otus_rxeof);
1243 	(void)usbd_transfer(data->xfer);
1244 }
1245 
1246 void
1247 otus_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1248 {
1249 	struct otus_tx_data *data = priv;
1250 	struct otus_softc *sc = data->sc;
1251 	struct ieee80211com *ic = &sc->sc_ic;
1252 	struct ifnet *ifp = &ic->ic_if;
1253 	int s;
1254 
1255 	s = splnet();
1256 	sc->tx_queued--;
1257 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1258 		DPRINTF(("TX status=%d\n", status));
1259 		if (status == USBD_STALLED)
1260 			usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1261 		ifp->if_oerrors++;
1262 		splx(s);
1263 		return;
1264 	}
1265 	sc->sc_tx_timer = 0;
1266 	ifp->if_opackets++;
1267 	ifq_clr_oactive(&ifp->if_snd);
1268 	otus_start(ifp);
1269 	splx(s);
1270 }
1271 
1272 int
1273 otus_tx(struct otus_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1274 {
1275 	struct ieee80211com *ic = &sc->sc_ic;
1276 	struct otus_node *on = (void *)ni;
1277 	struct otus_tx_data *data;
1278 	struct ieee80211_frame *wh;
1279 	struct ieee80211_key *k;
1280 	struct ar_tx_head *head;
1281 	uint32_t phyctl;
1282 	uint16_t macctl, qos;
1283 	uint8_t tid, qid;
1284 	int error, ridx, hasqos, xferlen;
1285 
1286 	wh = mtod(m, struct ieee80211_frame *);
1287 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1288 		k = ieee80211_get_txkey(ic, wh, ni);
1289 		if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1290 			return ENOBUFS;
1291 		wh = mtod(m, struct ieee80211_frame *);
1292 	}
1293 
1294 	if ((hasqos = ieee80211_has_qos(wh))) {
1295 		qos = ieee80211_get_qos(wh);
1296 		tid = qos & IEEE80211_QOS_TID;
1297 		qid = ieee80211_up_to_ac(ic, tid);
1298 	} else {
1299 		qos = 0;
1300 		qid = EDCA_AC_BE;
1301 	}
1302 
1303 	/* Pickup a rate index. */
1304 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1305 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA)
1306 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1307 		    OTUS_RIDX_OFDM6 : OTUS_RIDX_CCK1;
1308 	else if (ic->ic_fixed_rate != -1)
1309 		ridx = sc->fixed_ridx;
1310 	else
1311 		ridx = on->ridx[ni->ni_txrate];
1312 
1313 	phyctl = 0;
1314 	macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid);
1315 
1316 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1317 	    (hasqos && ((qos & IEEE80211_QOS_ACK_POLICY_MASK) ==
1318 	     IEEE80211_QOS_ACK_POLICY_NOACK)))
1319 		macctl |= AR_TX_MAC_NOACK;
1320 
1321 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1322 		if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
1323 			macctl |= AR_TX_MAC_RTS;
1324 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1325 		    ridx >= OTUS_RIDX_OFDM6) {
1326 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1327 				macctl |= AR_TX_MAC_CTS;
1328 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1329 				macctl |= AR_TX_MAC_RTS;
1330 		}
1331 	}
1332 
1333 	phyctl |= AR_TX_PHY_MCS(otus_rates[ridx].mcs);
1334 	if (ridx >= OTUS_RIDX_OFDM6) {
1335 		phyctl |= AR_TX_PHY_MT_OFDM;
1336 		if (ridx <= OTUS_RIDX_OFDM24)
1337 			phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1338 		else
1339 			phyctl |= AR_TX_PHY_ANTMSK(1);
1340 	} else {	/* CCK */
1341 		phyctl |= AR_TX_PHY_MT_CCK;
1342 		phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1343 	}
1344 
1345 	/* Update rate control stats for frames that are ACK'ed. */
1346 	if (!(macctl & AR_TX_MAC_NOACK))
1347 		((struct otus_node *)ni)->amn.amn_txcnt++;
1348 
1349 	data = &sc->tx_data[sc->tx_cur];
1350 	/* Fill Tx descriptor. */
1351 	head = (struct ar_tx_head *)data->buf;
1352 	head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN);
1353 	head->macctl = htole16(macctl);
1354 	head->phyctl = htole32(phyctl);
1355 
1356 #if NBPFILTER > 0
1357 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1358 		struct otus_tx_radiotap_header *tap = &sc->sc_txtap;
1359 		struct mbuf mb;
1360 
1361 		tap->wt_flags = 0;
1362 		tap->wt_rate = otus_rates[ridx].rate;
1363 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1364 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1365 
1366 		mb.m_data = (caddr_t)tap;
1367 		mb.m_len = sc->sc_txtap_len;
1368 		mb.m_next = m;
1369 		mb.m_nextpkt = NULL;
1370 		mb.m_type = 0;
1371 		mb.m_flags = 0;
1372 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1373 	}
1374 #endif
1375 
1376 	xferlen = sizeof (*head) + m->m_pkthdr.len;
1377 	m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]);
1378 	m_freem(m);
1379 
1380 	DPRINTFN(5, ("tx queued=%d len=%d mac=0x%04x phy=0x%08x rate=%d\n",
1381 	    sc->tx_queued, head->len, head->macctl, head->phyctl,
1382 	    otus_rates[ridx].rate));
1383 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1384 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_TX_TIMEOUT, otus_txeof);
1385 	error = usbd_transfer(data->xfer);
1386 	if (__predict_false(error != USBD_IN_PROGRESS && error != 0))
1387 		return error;
1388 
1389 	ieee80211_release_node(ic, ni);
1390 
1391 	sc->tx_queued++;
1392 	sc->tx_cur = (sc->tx_cur + 1) % OTUS_TX_DATA_LIST_COUNT;
1393 
1394 	return 0;
1395 }
1396 
1397 void
1398 otus_start(struct ifnet *ifp)
1399 {
1400 	struct otus_softc *sc = ifp->if_softc;
1401 	struct ieee80211com *ic = &sc->sc_ic;
1402 	struct ieee80211_node *ni;
1403 	struct mbuf *m;
1404 
1405 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1406 		return;
1407 
1408 	for (;;) {
1409 		if (sc->tx_queued >= OTUS_TX_DATA_LIST_COUNT) {
1410 			ifq_set_oactive(&ifp->if_snd);
1411 			break;
1412 		}
1413 		/* Send pending management frames first. */
1414 		m = mq_dequeue(&ic->ic_mgtq);
1415 		if (m != NULL) {
1416 			ni = m->m_pkthdr.ph_cookie;
1417 			goto sendit;
1418 		}
1419 		if (ic->ic_state != IEEE80211_S_RUN)
1420 			break;
1421 
1422 		/* Encapsulate and send data frames. */
1423 		IFQ_DEQUEUE(&ifp->if_snd, m);
1424 		if (m == NULL)
1425 			break;
1426 #if NBPFILTER > 0
1427 		if (ifp->if_bpf != NULL)
1428 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1429 #endif
1430 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1431 			continue;
1432 sendit:
1433 #if NBPFILTER > 0
1434 		if (ic->ic_rawbpf != NULL)
1435 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1436 #endif
1437 		if (otus_tx(sc, m, ni) != 0) {
1438 			ieee80211_release_node(ic, ni);
1439 			ifp->if_oerrors++;
1440 			continue;
1441 		}
1442 
1443 		sc->sc_tx_timer = 5;
1444 		ifp->if_timer = 1;
1445 	}
1446 }
1447 
1448 void
1449 otus_watchdog(struct ifnet *ifp)
1450 {
1451 	struct otus_softc *sc = ifp->if_softc;
1452 
1453 	ifp->if_timer = 0;
1454 
1455 	if (sc->sc_tx_timer > 0) {
1456 		if (--sc->sc_tx_timer == 0) {
1457 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1458 			/* otus_init(ifp); XXX needs a process context! */
1459 			ifp->if_oerrors++;
1460 			return;
1461 		}
1462 		ifp->if_timer = 1;
1463 	}
1464 	ieee80211_watchdog(ifp);
1465 }
1466 
1467 int
1468 otus_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1469 {
1470 	struct otus_softc *sc = ifp->if_softc;
1471 	struct ieee80211com *ic = &sc->sc_ic;
1472 	struct ifreq *ifr;
1473 	int s, error = 0;
1474 
1475 	if (usbd_is_dying(sc->sc_udev))
1476 		return ENXIO;
1477 
1478 	usbd_ref_incr(sc->sc_udev);
1479 
1480 	s = splnet();
1481 
1482 	switch (cmd) {
1483 	case SIOCSIFADDR:
1484 		ifp->if_flags |= IFF_UP;
1485 		/* FALLTHROUGH */
1486 	case SIOCSIFFLAGS:
1487 		if (ifp->if_flags & IFF_UP) {
1488 			if ((ifp->if_flags & IFF_RUNNING) &&
1489 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1490 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1491 				otus_set_multi(sc);
1492 			} else if (!(ifp->if_flags & IFF_RUNNING))
1493 				otus_init(ifp);
1494 
1495 		} else if (ifp->if_flags & IFF_RUNNING)
1496 			otus_stop(ifp);
1497 
1498 		sc->sc_if_flags = ifp->if_flags;
1499 		break;
1500 	case SIOCADDMULTI:
1501 	case SIOCDELMULTI:
1502 		ifr = (struct ifreq *)data;
1503 		error = (cmd == SIOCADDMULTI) ?
1504 		    ether_addmulti(ifr, &ic->ic_ac) :
1505 		    ether_delmulti(ifr, &ic->ic_ac);
1506 		if (error == ENETRESET)
1507 			error = 0;
1508 		break;
1509 	case SIOCS80211CHANNEL:
1510 		error = ieee80211_ioctl(ifp, cmd, data);
1511 		if (error == ENETRESET &&
1512 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1513 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1514 			    (IFF_UP | IFF_RUNNING))
1515 				otus_set_chan(sc, ic->ic_ibss_chan, 0);
1516 			error = 0;
1517 		}
1518 		break;
1519 	default:
1520 		error = ieee80211_ioctl(ifp, cmd, data);
1521 	}
1522 
1523 	if (error == ENETRESET) {
1524 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1525 		    (IFF_UP | IFF_RUNNING))
1526 			otus_init(ifp);
1527 		error = 0;
1528 	}
1529 
1530 	splx(s);
1531 
1532 	usbd_ref_decr(sc->sc_udev);
1533 
1534 	return error;
1535 }
1536 
1537 int
1538 otus_set_multi(struct otus_softc *sc)
1539 {
1540 	struct arpcom *ac = &sc->sc_ic.ic_ac;
1541 	struct ifnet *ifp = &ac->ac_if;
1542 	struct ether_multi *enm;
1543 	struct ether_multistep step;
1544 	uint32_t lo, hi;
1545 	uint8_t bit;
1546 
1547 	if (ac->ac_multirangecnt > 0)
1548 		ifp->if_flags |= IFF_ALLMULTI;
1549 
1550 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1551 		lo = hi = 0xffffffff;
1552 		goto done;
1553 	}
1554 	lo = hi = 0;
1555 	ETHER_FIRST_MULTI(step, ac, enm);
1556 	while (enm != NULL) {
1557 		bit = enm->enm_addrlo[5] >> 2;
1558 		if (bit < 32)
1559 			lo |= 1 << bit;
1560 		else
1561 			hi |= 1 << (bit - 32);
1562 		ETHER_NEXT_MULTI(step, enm);
1563 	}
1564  done:
1565 	hi |= 1U << 31;	/* Make sure the broadcast bit is set. */
1566 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, lo);
1567 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hi);
1568 	return otus_write_barrier(sc);
1569 }
1570 
1571 void
1572 otus_updateedca(struct ieee80211com *ic)
1573 {
1574 	/* Do it in a process context. */
1575 	otus_do_async(ic->ic_softc, otus_updateedca_cb, NULL, 0);
1576 }
1577 
1578 /* ARGSUSED */
1579 void
1580 otus_updateedca_cb(struct otus_softc *sc, void *arg)
1581 {
1582 #define EXP2(val)	((1 << (val)) - 1)
1583 #define AIFS(val)	((val) * 9 + 10)
1584 	struct ieee80211com *ic = &sc->sc_ic;
1585 	const struct ieee80211_edca_ac_params *edca;
1586 	int s;
1587 
1588 	s = splnet();
1589 
1590 	edca = (ic->ic_flags & IEEE80211_F_QOS) ?
1591 	    ic->ic_edca_ac : otus_edca_def;
1592 
1593 	/* Set CWmin/CWmax values. */
1594 	otus_write(sc, AR_MAC_REG_AC0_CW,
1595 	    EXP2(edca[EDCA_AC_BE].ac_ecwmax) << 16 |
1596 	    EXP2(edca[EDCA_AC_BE].ac_ecwmin));
1597 	otus_write(sc, AR_MAC_REG_AC1_CW,
1598 	    EXP2(edca[EDCA_AC_BK].ac_ecwmax) << 16 |
1599 	    EXP2(edca[EDCA_AC_BK].ac_ecwmin));
1600 	otus_write(sc, AR_MAC_REG_AC2_CW,
1601 	    EXP2(edca[EDCA_AC_VI].ac_ecwmax) << 16 |
1602 	    EXP2(edca[EDCA_AC_VI].ac_ecwmin));
1603 	otus_write(sc, AR_MAC_REG_AC3_CW,
1604 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1605 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1606 	otus_write(sc, AR_MAC_REG_AC4_CW,		/* Special TXQ. */
1607 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1608 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1609 
1610 	/* Set AIFSN values. */
1611 	otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS,
1612 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) << 24 |
1613 	    AIFS(edca[EDCA_AC_BK].ac_aifsn) << 12 |
1614 	    AIFS(edca[EDCA_AC_BE].ac_aifsn));
1615 	otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS,
1616 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) << 16 |	/* Special TXQ. */
1617 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) <<  4 |
1618 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) >>  8);
1619 
1620 	/* Set TXOP limit. */
1621 	otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP,
1622 	    edca[EDCA_AC_BK].ac_txoplimit << 16 |
1623 	    edca[EDCA_AC_BE].ac_txoplimit);
1624 	otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP,
1625 	    edca[EDCA_AC_VO].ac_txoplimit << 16 |
1626 	    edca[EDCA_AC_VI].ac_txoplimit);
1627 
1628 	splx(s);
1629 
1630 	(void)otus_write_barrier(sc);
1631 #undef AIFS
1632 #undef EXP2
1633 }
1634 
1635 void
1636 otus_updateslot(struct ieee80211com *ic)
1637 {
1638 	/* Do it in a process context. */
1639 	otus_do_async(ic->ic_softc, otus_updateslot_cb, NULL, 0);
1640 }
1641 
1642 /* ARGSUSED */
1643 void
1644 otus_updateslot_cb(struct otus_softc *sc, void *arg)
1645 {
1646 	uint32_t slottime;
1647 
1648 	slottime = (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1649 	otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10);
1650 	(void)otus_write_barrier(sc);
1651 }
1652 
1653 int
1654 otus_init_mac(struct otus_softc *sc)
1655 {
1656 	int error;
1657 
1658 	otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40);
1659 	otus_write(sc, AR_MAC_REG_RETRY_MAX, 0);
1660 	otus_write(sc, AR_MAC_REG_SNIFFER, 0x2000000);
1661 	otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80);
1662 	otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70);
1663 	otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000);
1664 	otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10);
1665 	otus_write(sc, 0x1c3b2c, 0x19000000);
1666 	/* NAV protects ACK only (in TXOP). */
1667 	otus_write(sc, 0x1c3b38, 0x201);
1668 	/* Set beacon Tx power to 0x7. */
1669 	otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170);
1670 	otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105);
1671 	otus_write(sc, 0x1c3b9c, 0x10000a);
1672 	/* Filter any control frames, BAR is bit 24. */
1673 	otus_write(sc, 0x1c368c, 0x0500ffff);
1674 	otus_write(sc, 0x1c3c40, 0x1);
1675 	otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f);
1676 	otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f);
1677 	otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb);
1678 	otus_write(sc, 0x1c3694, 0x4003c1e);
1679 	/* Enable LED0 and LED1. */
1680 	otus_write(sc, 0x1d0100, 0x3);
1681 	otus_write(sc, 0x1d0104, 0x3);
1682 	/* Switch MAC to OTUS interface. */
1683 	otus_write(sc, 0x1c3600, 0x3);
1684 	otus_write(sc, 0x1c3c50, 0xffff);
1685 	otus_write(sc, 0x1c3680, 0xf00008);
1686 	/* Disable Rx timeout (workaround). */
1687 	otus_write(sc, 0x1c362c, 0);
1688 
1689 	/* Set USB Rx stream mode maximum frame number to 2. */
1690 	otus_write(sc, 0x1e1110, 0x4);
1691 	/* Set USB Rx stream mode timeout to 10us. */
1692 	otus_write(sc, 0x1e1114, 0x80);
1693 
1694 	/* Set clock frequency to 88/80MHz. */
1695 	otus_write(sc, 0x1d4008, 0x73);
1696 	/* Set WLAN DMA interrupt mode: generate intr per packet. */
1697 	otus_write(sc, 0x1c3d7c, 0x110011);
1698 	otus_write(sc, 0x1c3bb0, 0x4);
1699 	otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48);
1700 
1701 	/* Disable HW decryption for now. */
1702 	otus_write(sc, 0x1c3678, 0x78);
1703 
1704 	if ((error = otus_write_barrier(sc)) != 0)
1705 		return error;
1706 
1707 	/* Set default EDCA parameters. */
1708 	otus_updateedca_cb(sc, NULL);
1709 
1710 	return 0;
1711 }
1712 
1713 /*
1714  * Return default value for PHY register based on current operating mode.
1715  */
1716 uint32_t
1717 otus_phy_get_def(struct otus_softc *sc, uint32_t reg)
1718 {
1719 	int i;
1720 
1721 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1722 		if (AR_PHY(ar5416_phy_regs[i]) == reg)
1723 			return sc->phy_vals[i];
1724 	return 0;	/* Register not found. */
1725 }
1726 
1727 /*
1728  * Update PHY's programming based on vendor-specific data stored in EEPROM.
1729  * This is for FEM-type devices only.
1730  */
1731 int
1732 otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c)
1733 {
1734 	const struct ModalEepHeader *eep;
1735 	uint32_t tmp, offset;
1736 
1737 	if (IEEE80211_IS_CHAN_5GHZ(c))
1738 		eep = &sc->eeprom.modalHeader[0];
1739 	else
1740 		eep = &sc->eeprom.modalHeader[1];
1741 
1742 	/* Offset of chain 2. */
1743 	offset = 2 * 0x1000;
1744 
1745 	tmp = letoh32(eep->antCtrlCommon);
1746 	otus_write(sc, AR_PHY_SWITCH_COM, tmp);
1747 
1748 	tmp = letoh32(eep->antCtrlChain[0]);
1749 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp);
1750 
1751 	tmp = letoh32(eep->antCtrlChain[1]);
1752 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp);
1753 
1754 	if (1 /* sc->sc_sco == AR_SCO_SCN */) {
1755 		tmp = otus_phy_get_def(sc, AR_PHY_SETTLING);
1756 		tmp &= ~(0x7f << 7);
1757 		tmp |= (eep->switchSettling & 0x7f) << 7;
1758 		otus_write(sc, AR_PHY_SETTLING, tmp);
1759 	}
1760 
1761 	tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ);
1762 	tmp &= ~0xffff;
1763 	tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize;
1764 	otus_write(sc, AR_PHY_DESIRED_SZ, tmp);
1765 
1766 	tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 |
1767 	      eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn;
1768 	otus_write(sc, AR_PHY_RF_CTL4, tmp);
1769 
1770 	tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3);
1771 	tmp &= ~(0xff << 16);
1772 	tmp |= eep->txEndToRxOn << 16;
1773 	otus_write(sc, AR_PHY_RF_CTL3, tmp);
1774 
1775 	tmp = otus_phy_get_def(sc, AR_PHY_CCA);
1776 	tmp &= ~(0x7f << 12);
1777 	tmp |= (eep->thresh62 & 0x7f) << 12;
1778 	otus_write(sc, AR_PHY_CCA, tmp);
1779 
1780 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN);
1781 	tmp &= ~(0x3f << 12);
1782 	tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12;
1783 	otus_write(sc, AR_PHY_RXGAIN, tmp);
1784 
1785 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset);
1786 	tmp &= ~(0x3f << 12);
1787 	tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12;
1788 	otus_write(sc, AR_PHY_RXGAIN + offset, tmp);
1789 
1790 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ);
1791 	tmp &= ~(0x3f << 18);
1792 	tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18;
1793 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1794 		tmp &= ~(0xf << 10);
1795 		tmp |= (eep->bswMargin[0] & 0xf) << 10;
1796 	}
1797 	otus_write(sc, AR_PHY_GAIN_2GHZ, tmp);
1798 
1799 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset);
1800 	tmp &= ~(0x3f << 18);
1801 	tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18;
1802 	otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp);
1803 
1804 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4);
1805 	tmp &= ~(0x3f << 5 | 0x1f);
1806 	tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f);
1807 	otus_write(sc, AR_PHY_TIMING_CTRL4, tmp);
1808 
1809 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset);
1810 	tmp &= ~(0x3f << 5 | 0x1f);
1811 	tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f);
1812 	otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp);
1813 
1814 	tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1);
1815 	tmp &= ~(0xf << 16);
1816 	tmp |= (eep->xpd & 0xf) << 16;
1817 	otus_write(sc, AR_PHY_TPCRG1, tmp);
1818 
1819 	return otus_write_barrier(sc);
1820 }
1821 
1822 int
1823 otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c)
1824 {
1825 	const uint32_t *vals;
1826 	int error, i;
1827 
1828 	/* Select PHY programming based on band and bandwidth. */
1829 	if (IEEE80211_IS_CHAN_2GHZ(c))
1830 		vals = ar5416_phy_vals_2ghz_20mhz;
1831 	else
1832 		vals = ar5416_phy_vals_5ghz_20mhz;
1833 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1834 		otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]);
1835 	sc->phy_vals = vals;
1836 
1837 	if (sc->eeprom.baseEepHeader.deviceType == 0x80)	/* FEM */
1838 		if ((error = otus_set_board_values(sc, c)) != 0)
1839 			return error;
1840 
1841 	/* Initial Tx power settings. */
1842 	otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f);
1843 	otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f);
1844 	otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f);
1845 	otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f);
1846 	otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f);
1847 	otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f);
1848 	otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f);
1849 	otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f);
1850 	otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f);
1851 	otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f);
1852 
1853 	if (IEEE80211_IS_CHAN_2GHZ(c))
1854 		otus_write(sc, 0x1d4014, 0x5163);
1855 	else
1856 		otus_write(sc, 0x1d4014, 0x5143);
1857 
1858 	return otus_write_barrier(sc);
1859 }
1860 
1861 static __inline uint8_t
1862 otus_reverse_bits(uint8_t v)
1863 {
1864 	v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
1865 	v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
1866 	v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
1867 	return v;
1868 }
1869 
1870 int
1871 otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c)
1872 {
1873 	uint8_t chansel, d0, d1;
1874 	uint16_t data;
1875 	int error;
1876 
1877 	d0 = 0;
1878 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1879 		chansel = (c->ic_freq - 4800) / 5;
1880 		if (chansel & 1)
1881 			d0 |= AR_BANK4_AMODE_REFSEL(2);
1882 		else
1883 			d0 |= AR_BANK4_AMODE_REFSEL(1);
1884 	} else {
1885 		d0 |= AR_BANK4_AMODE_REFSEL(2);
1886 		if (c->ic_freq == 2484) {	/* CH 14 */
1887 			d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ;
1888 			chansel = 10 + (c->ic_freq - 2274) / 5;
1889 		} else
1890 			chansel = 16 + (c->ic_freq - 2272) / 5;
1891 		chansel <<= 2;
1892 	}
1893 	d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP;
1894 	d1 = otus_reverse_bits(chansel);
1895 
1896 	/* Write bits 0-4 of d0 and d1. */
1897 	data = (d1 & 0x1f) << 5 | (d0 & 0x1f);
1898 	otus_write(sc, AR_PHY(44), data);
1899 	/* Write bits 5-7 of d0 and d1. */
1900 	data = (d1 >> 5) << 5 | (d0 >> 5);
1901 	otus_write(sc, AR_PHY(58), data);
1902 
1903 	if ((error = otus_write_barrier(sc)) == 0)
1904 		usbd_delay_ms(sc->sc_udev, 10);
1905 	return error;
1906 }
1907 
1908 void
1909 otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1910 {
1911 #define COEFF_SCALE_SHIFT	24
1912 	uint32_t exp, man;
1913 
1914 	/* exponent = 14 - floor(log2(coeff)) */
1915 	for (exp = 31; exp > 0; exp--)
1916 		if (coeff & (1 << exp))
1917 			break;
1918 	KASSERT(exp != 0);
1919 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
1920 
1921 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
1922 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1923 
1924 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1925 	*exponent = exp - 16;
1926 #undef COEFF_SCALE_SHIFT
1927 }
1928 
1929 int
1930 otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc)
1931 {
1932 	struct ieee80211com *ic = &sc->sc_ic;
1933 	struct ar_cmd_frequency cmd;
1934 	struct ar_rsp_frequency rsp;
1935 	const uint32_t *vals;
1936 	uint32_t coeff, exp, man, tmp;
1937 	uint8_t code;
1938 	int error, chan, i;
1939 
1940 	chan = ieee80211_chan2ieee(ic, c);
1941 	DPRINTF(("setting channel %d (%dMHz)\n", chan, c->ic_freq));
1942 
1943 	tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104;
1944 	otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp);
1945 	if ((error = otus_write_barrier(sc)) != 0)
1946 		return error;
1947 
1948 	/* Disable BB Heavy Clip. */
1949 	otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200);
1950 	if ((error = otus_write_barrier(sc)) != 0)
1951 		return error;
1952 
1953 	/* XXX Is that FREQ_START ? */
1954 	error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL);
1955 	if (error != 0)
1956 		return error;
1957 
1958 	/* Reprogram PHY and RF on channel band or bandwidth changes. */
1959 	if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) {
1960 		DPRINTF(("band switch\n"));
1961 
1962 		/* Cold/Warm reset BB/ADDA. */
1963 		otus_write(sc, 0x1d4004, sc->bb_reset ? 0x800 : 0x400);
1964 		if ((error = otus_write_barrier(sc)) != 0)
1965 			return error;
1966 		otus_write(sc, 0x1d4004, 0);
1967 		if ((error = otus_write_barrier(sc)) != 0)
1968 			return error;
1969 		sc->bb_reset = 0;
1970 
1971 		if ((error = otus_program_phy(sc, c)) != 0) {
1972 			printf("%s: could not program PHY\n",
1973 			    sc->sc_dev.dv_xname);
1974 			return error;
1975 		}
1976 
1977 		/* Select RF programming based on band. */
1978 		if (IEEE80211_IS_CHAN_5GHZ(c))
1979 			vals = ar5416_banks_vals_5ghz;
1980 		else
1981 			vals = ar5416_banks_vals_2ghz;
1982 		for (i = 0; i < nitems(ar5416_banks_regs); i++)
1983 			otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]);
1984 		if ((error = otus_write_barrier(sc)) != 0) {
1985 			printf("%s: could not program RF\n",
1986 			    sc->sc_dev.dv_xname);
1987 			return error;
1988 		}
1989 		code = AR_CMD_RF_INIT;
1990 	} else {
1991 		code = AR_CMD_FREQUENCY;
1992 	}
1993 
1994 	if ((error = otus_set_rf_bank4(sc, c)) != 0)
1995 		return error;
1996 
1997 	tmp = (sc->txmask == 0x5) ? 0x340 : 0x240;
1998 	otus_write(sc, AR_PHY_TURBO, tmp);
1999 	if ((error = otus_write_barrier(sc)) != 0)
2000 		return error;
2001 
2002 	/* Send firmware command to set channel. */
2003 	cmd.freq = htole32((uint32_t)c->ic_freq * 1000);
2004 	cmd.dynht2040 = htole32(0);
2005 	cmd.htena = htole32(1);
2006 	/* Set Delta Slope (exponent and mantissa). */
2007 	coeff = (100 << 24) / c->ic_freq;
2008 	otus_get_delta_slope(coeff, &exp, &man);
2009 	cmd.dsc_exp = htole32(exp);
2010 	cmd.dsc_man = htole32(man);
2011 	DPRINTF(("ds coeff=%u exp=%u man=%u\n", coeff, exp, man));
2012 	/* For Short GI, coeff is 9/10 that of normal coeff. */
2013 	coeff = (9 * coeff) / 10;
2014 	otus_get_delta_slope(coeff, &exp, &man);
2015 	cmd.dsc_shgi_exp = htole32(exp);
2016 	cmd.dsc_shgi_man = htole32(man);
2017 	DPRINTF(("ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man));
2018 	/* Set wait time for AGC and noise calibration (100 or 200ms). */
2019 	cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000);
2020 	DPRINTF(("%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY"));
2021 	error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp);
2022 	if (error != 0)
2023 		return error;
2024 	if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) {
2025 		DPRINTF(("status=0x%x\n", letoh32(rsp.status)));
2026 		/* Force cold reset on next channel. */
2027 		sc->bb_reset = 1;
2028 	}
2029 #ifdef OTUS_DEBUG
2030 	if (otus_debug) {
2031 		printf("calibration status=0x%x\n", letoh32(rsp.status));
2032 		for (i = 0; i < 2; i++) {	/* 2 Rx chains */
2033 			/* Sign-extend 9-bit NF values. */
2034 			printf("noisefloor chain %d=%d\n", i,
2035 			    (((int32_t)letoh32(rsp.nf[i])) << 4) >> 23);
2036 			printf("noisefloor ext chain %d=%d\n", i,
2037 			    ((int32_t)letoh32(rsp.nf_ext[i])) >> 23);
2038 		}
2039 	}
2040 #endif
2041 	sc->sc_curchan = c;
2042 	return 0;
2043 }
2044 
2045 #ifdef notyet
2046 int
2047 otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2048     struct ieee80211_key *k)
2049 {
2050 	struct otus_softc *sc = ic->ic_softc;
2051 	struct otus_cmd_key cmd;
2052 
2053 	/* Defer setting of WEP keys until interface is brought up. */
2054 	if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
2055 	    (IFF_UP | IFF_RUNNING))
2056 		return 0;
2057 
2058 	/* Do it in a process context. */
2059 	cmd.key = *k;
2060 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2061 	otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd);
2062 	return 0;
2063 }
2064 
2065 void
2066 otus_set_key_cb(struct otus_softc *sc, void *arg)
2067 {
2068 	struct otus_cmd_key *cmd = arg;
2069 	struct ieee80211_key *k = &cmd->key;
2070 	struct ar_cmd_ekey key;
2071 	uint16_t cipher;
2072 	int error;
2073 
2074 	memset(&key, 0, sizeof key);
2075 	if (k->k_flags & IEEE80211_KEY_GROUP) {
2076 		key.uid = htole16(k->k_id);
2077 		IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr);
2078 		key.macaddr[0] |= 0x80;
2079 	} else {
2080 		key.uid = htole16(OTUS_UID(cmd->associd));
2081 		IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr);
2082 	}
2083 	key.kix = htole16(0);
2084 	/* Map net80211 cipher to hardware. */
2085 	switch (k->k_cipher) {
2086 	case IEEE80211_CIPHER_WEP40:
2087 		cipher = AR_CIPHER_WEP64;
2088 		break;
2089 	case IEEE80211_CIPHER_WEP104:
2090 		cipher = AR_CIPHER_WEP128;
2091 		break;
2092 	case IEEE80211_CIPHER_TKIP:
2093 		cipher = AR_CIPHER_TKIP;
2094 		break;
2095 	case IEEE80211_CIPHER_CCMP:
2096 		cipher = AR_CIPHER_AES;
2097 		break;
2098 	default:
2099 		return;
2100 	}
2101 	key.cipher = htole16(cipher);
2102 	memcpy(key.key, k->k_key, MIN(k->k_len, 16));
2103 	error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2104 	if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP)
2105 		return;
2106 
2107 	/* TKIP: set Tx/Rx MIC Key. */
2108 	key.kix = htole16(1);
2109 	memcpy(key.key, k->k_key + 16, 16);
2110 	(void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2111 }
2112 
2113 void
2114 otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2115     struct ieee80211_key *k)
2116 {
2117 	struct otus_softc *sc = ic->ic_softc;
2118 	struct otus_cmd_key cmd;
2119 
2120 	if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
2121 	    ic->ic_state != IEEE80211_S_RUN)
2122 		return;	/* Nothing to do. */
2123 
2124 	/* Do it in a process context. */
2125 	cmd.key = *k;
2126 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2127 	otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd);
2128 }
2129 
2130 void
2131 otus_delete_key_cb(struct otus_softc *sc, void *arg)
2132 {
2133 	struct otus_cmd_key *cmd = arg;
2134 	struct ieee80211_key *k = &cmd->key;
2135 	uint32_t uid;
2136 
2137 	if (k->k_flags & IEEE80211_KEY_GROUP)
2138 		uid = htole32(k->k_id);
2139 	else
2140 		uid = htole32(OTUS_UID(cmd->associd));
2141 	(void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL);
2142 }
2143 #endif
2144 
2145 void
2146 otus_calibrate_to(void *arg)
2147 {
2148 	struct otus_softc *sc = arg;
2149 	struct ieee80211com *ic = &sc->sc_ic;
2150 	struct ieee80211_node *ni;
2151 	int s;
2152 
2153 	if (usbd_is_dying(sc->sc_udev))
2154 		return;
2155 
2156 	usbd_ref_incr(sc->sc_udev);
2157 
2158 	s = splnet();
2159 	ni = ic->ic_bss;
2160 	ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn);
2161 	splx(s);
2162 
2163 	if (!usbd_is_dying(sc->sc_udev))
2164 		timeout_add_sec(&sc->calib_to, 1);
2165 
2166 	usbd_ref_decr(sc->sc_udev);
2167 }
2168 
2169 int
2170 otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid)
2171 {
2172 	otus_write(sc, AR_MAC_REG_BSSID_L,
2173 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2174 	otus_write(sc, AR_MAC_REG_BSSID_H,
2175 	    bssid[4] | bssid[5] << 8);
2176 	return otus_write_barrier(sc);
2177 }
2178 
2179 int
2180 otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr)
2181 {
2182 	otus_write(sc, AR_MAC_REG_MAC_ADDR_L,
2183 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2184 	otus_write(sc, AR_MAC_REG_MAC_ADDR_H,
2185 	    addr[4] | addr[5] << 8);
2186 	return otus_write_barrier(sc);
2187 }
2188 
2189 /* Default single-LED. */
2190 void
2191 otus_led_newstate_type1(struct otus_softc *sc)
2192 {
2193 	/* TBD */
2194 }
2195 
2196 /* NETGEAR, dual-LED. */
2197 void
2198 otus_led_newstate_type2(struct otus_softc *sc)
2199 {
2200 	/* TBD */
2201 }
2202 
2203 /* NETGEAR, single-LED/3 colors (blue, red, purple.) */
2204 void
2205 otus_led_newstate_type3(struct otus_softc *sc)
2206 {
2207 	struct ieee80211com *ic = &sc->sc_ic;
2208 	uint32_t state = sc->led_state;
2209 
2210 	if (ic->ic_state == IEEE80211_S_INIT) {
2211 		state = 0;	/* LED off. */
2212 	} else if (ic->ic_state == IEEE80211_S_RUN) {
2213 		/* Associated, LED always on. */
2214 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2215 			state = AR_LED0_ON;	/* 2GHz=>Red. */
2216 		else
2217 			state = AR_LED1_ON;	/* 5GHz=>Blue. */
2218 	} else {
2219 		/* Scanning, blink LED. */
2220 		state ^= AR_LED0_ON | AR_LED1_ON;
2221 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2222 			state &= ~AR_LED1_ON;
2223 		else
2224 			state &= ~AR_LED0_ON;
2225 	}
2226 	if (state != sc->led_state) {
2227 		otus_write(sc, 0x1d0104, state);
2228 		if (otus_write_barrier(sc) == 0)
2229 			sc->led_state = state;
2230 	}
2231 }
2232 
2233 int
2234 otus_init(struct ifnet *ifp)
2235 {
2236 	struct otus_softc *sc = ifp->if_softc;
2237 	struct ieee80211com *ic = &sc->sc_ic;
2238 	int error;
2239 
2240 	/* Init host command ring. */
2241 	sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
2242 
2243 	if ((error = otus_init_mac(sc)) != 0) {
2244 		printf("%s: could not initialize MAC\n", sc->sc_dev.dv_xname);
2245 		return error;
2246 	}
2247 
2248 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2249 	(void)otus_set_macaddr(sc, ic->ic_myaddr);
2250 
2251 	switch (ic->ic_opmode) {
2252 #ifdef notyet
2253 #ifndef IEEE80211_STA_ONLY
2254 	case IEEE80211_M_HOSTAP:
2255 		otus_write(sc, 0x1c3700, 0x0f0000a1);
2256 		otus_write(sc, 0x1c3c40, 0x1);
2257 		break;
2258 	case IEEE80211_M_IBSS:
2259 		otus_write(sc, 0x1c3700, 0x0f000000);
2260 		otus_write(sc, 0x1c3c40, 0x1);
2261 		break;
2262 #endif
2263 #endif
2264 	case IEEE80211_M_STA:
2265 		otus_write(sc, 0x1c3700, 0x0f000002);
2266 		otus_write(sc, 0x1c3c40, 0x1);
2267 		break;
2268 	default:
2269 		break;
2270 	}
2271 	otus_write(sc, AR_MAC_REG_SNIFFER,
2272 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 0x2000001 : 0x2000000);
2273 	(void)otus_write_barrier(sc);
2274 
2275 	sc->bb_reset = 1;	/* Force cold reset. */
2276 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2277 	if ((error = otus_set_chan(sc, ic->ic_ibss_chan, 0)) != 0) {
2278 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
2279 		return error;
2280 	}
2281 
2282 	/* Start Rx. */
2283 	otus_write(sc, 0x1c3d30, 0x100);
2284 	(void)otus_write_barrier(sc);
2285 
2286 	ifp->if_flags |= IFF_RUNNING;
2287 	ifq_clr_oactive(&ifp->if_snd);
2288 
2289 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2290 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2291 	else
2292 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2293 
2294 	return 0;
2295 }
2296 
2297 void
2298 otus_stop(struct ifnet *ifp)
2299 {
2300 	struct otus_softc *sc = ifp->if_softc;
2301 	struct ieee80211com *ic = &sc->sc_ic;
2302 	int s;
2303 
2304 	sc->sc_tx_timer = 0;
2305 	ifp->if_timer = 0;
2306 	ifp->if_flags &= ~IFF_RUNNING;
2307 	ifq_clr_oactive(&ifp->if_snd);
2308 
2309 	timeout_del(&sc->scan_to);
2310 	timeout_del(&sc->calib_to);
2311 
2312 	s = splusb();
2313 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2314 	/* Wait for all queued asynchronous commands to complete. */
2315 	usb_wait_task(sc->sc_udev, &sc->sc_task);
2316 	splx(s);
2317 
2318 	/* Stop Rx. */
2319 	otus_write(sc, 0x1c3d30, 0);
2320 	(void)otus_write_barrier(sc);
2321 
2322 	sc->tx_queued = 0;
2323 }
2324