xref: /openbsd-src/sys/dev/usb/if_mtw.c (revision c1a45aed656e7d5627c30c92421893a76f370ccb)
1 /*	$OpenBSD: if_mtw.c,v 1.5 2022/04/21 21:03:03 stsp Exp $	*/
2 /*
3  * Copyright (c) 2008-2010 Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2013-2014 Kevin Lo
5  * Copyright (c) 2021 James Hastings
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * MediaTek MT7601U 802.11b/g/n WLAN.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/kernel.h>
30 #include <sys/socket.h>
31 #include <sys/systm.h>
32 #include <sys/timeout.h>
33 #include <sys/conf.h>
34 #include <sys/device.h>
35 #include <sys/endian.h>
36 
37 #include <machine/intr.h>
38 
39 #if NBPFILTER > 0
40 #include <net/bpf.h>
41 #endif
42 #include <net/if.h>
43 #include <net/if_dl.h>
44 #include <net/if_media.h>
45 
46 #include <netinet/in.h>
47 #include <netinet/if_ether.h>
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_amrr.h>
51 #include <net80211/ieee80211_ra.h>
52 #include <net80211/ieee80211_radiotap.h>
53 
54 #include <dev/usb/usb.h>
55 #include <dev/usb/usbdi.h>
56 #include <dev/usb/usbdi_util.h>
57 #include <dev/usb/usbdevs.h>
58 
59 #include <dev/ic/mtwreg.h>
60 #include <dev/usb/if_mtwvar.h>
61 
62 #ifdef MTW_DEBUG
63 #define DPRINTF(x)	do { if (mtw_debug) printf x; } while (0)
64 #define DPRINTFN(n, x)	do { if (mtw_debug >= (n)) printf x; } while (0)
65 int mtw_debug = 0;
66 #else
67 #define DPRINTF(x)
68 #define DPRINTFN(n, x)
69 #endif
70 
71 #define USB_ID(v, p)	{ USB_VENDOR_##v, USB_PRODUCT_##v##_##p }
72 static const struct usb_devno mtw_devs[] = {
73 	USB_ID(ASUS,		USBN10V2),
74 	USB_ID(AZUREWAVE,	MT7601_1),
75 	USB_ID(AZUREWAVE,	MT7601_2),
76 	USB_ID(DLINK,		DWA127B1),
77 	USB_ID(EDIMAX,		EW7711UANV2),
78 	USB_ID(MEDIATEK,	MT7601_1),
79 	USB_ID(MEDIATEK,	MT7601_2),
80 	USB_ID(RALINK,		MT7601),
81 	USB_ID(RALINK,		MT7601_2),
82 	USB_ID(RALINK,		MT7601_3),
83 	USB_ID(RALINK,		MT7601_4),
84 	USB_ID(RALINK,		MT7601_5),
85 	USB_ID(XIAOMI,		MT7601U),
86 };
87 
88 int		mtw_match(struct device *, void *, void *);
89 void		mtw_attach(struct device *, struct device *, void *);
90 int		mtw_detach(struct device *, int);
91 void		mtw_attachhook(struct device *);
92 int		mtw_alloc_rx_ring(struct mtw_softc *, int);
93 void		mtw_free_rx_ring(struct mtw_softc *, int);
94 int		mtw_alloc_tx_ring(struct mtw_softc *, int);
95 void		mtw_free_tx_ring(struct mtw_softc *, int);
96 int		mtw_alloc_mcu_ring(struct mtw_softc *);
97 void		mtw_free_mcu_ring(struct mtw_softc *);
98 int		mtw_ucode_write(struct mtw_softc *, const uint8_t *,
99 		    uint32_t, uint32_t);
100 void		mtw_ucode_setup(struct mtw_softc *);
101 int		mtw_load_microcode(struct mtw_softc *);
102 int		mtw_reset(struct mtw_softc *);
103 int		mtw_read(struct mtw_softc *, uint16_t, uint32_t *);
104 int		mtw_read_cfg(struct mtw_softc *, uint16_t, uint32_t *);
105 int		mtw_read_region_1(struct mtw_softc *, uint16_t,
106 		    uint8_t *, int);
107 int		mtw_write_2(struct mtw_softc *, uint16_t, uint16_t);
108 int		mtw_write(struct mtw_softc *, uint16_t, uint32_t);
109 int		mtw_write_cfg(struct mtw_softc *, uint16_t, uint32_t);
110 int		mtw_write_ivb(struct mtw_softc *, const uint8_t *, uint16_t);
111 int		mtw_write_region_1(struct mtw_softc *, uint16_t,
112 		    uint8_t *, int);
113 int		mtw_set_region_4(struct mtw_softc *, uint16_t, uint32_t, int);
114 int		mtw_efuse_read_2(struct mtw_softc *, uint16_t, uint16_t *);
115 int		mtw_eeprom_read_2(struct mtw_softc *, uint16_t, uint16_t *);
116 int		mtw_rf_read(struct mtw_softc *, uint8_t, uint8_t, uint8_t *);
117 int		mtw_rf_write(struct mtw_softc *, uint8_t, uint8_t, uint8_t);
118 int		mtw_bbp_read(struct mtw_softc *, uint8_t, uint8_t *);
119 int		mtw_bbp_write(struct mtw_softc *, uint8_t, uint8_t);
120 int		mtw_usb_dma_read(struct mtw_softc *, uint32_t *);
121 int		mtw_usb_dma_write(struct mtw_softc *, uint32_t);
122 int		mtw_mcu_calibrate(struct mtw_softc *, int, uint32_t);
123 int		mtw_mcu_channel(struct mtw_softc *, uint32_t, uint32_t, uint32_t);
124 int		mtw_mcu_radio(struct mtw_softc *, int, uint32_t);
125 int		mtw_mcu_cmd(struct mtw_softc *, int, void *, int);
126 const char *	mtw_get_rf(int);
127 void		mtw_get_txpower(struct mtw_softc *);
128 int		mtw_read_eeprom(struct mtw_softc *);
129 struct		ieee80211_node *mtw_node_alloc(struct ieee80211com *);
130 int		mtw_media_change(struct ifnet *);
131 void		mtw_next_scan(void *);
132 void		mtw_task(void *);
133 void		mtw_do_async(struct mtw_softc *, void (*)(struct mtw_softc *,
134 		    void *), void *, int);
135 int		mtw_newstate(struct ieee80211com *, enum ieee80211_state, int);
136 void		mtw_newstate_cb(struct mtw_softc *, void *);
137 void		mtw_updateedca(struct ieee80211com *);
138 void		mtw_updateedca_cb(struct mtw_softc *, void *);
139 void		mtw_updateslot(struct ieee80211com *);
140 void		mtw_updateslot_cb(struct mtw_softc *, void *);
141 int		mtw_set_key(struct ieee80211com *, struct ieee80211_node *,
142 		    struct ieee80211_key *);
143 void		mtw_set_key_cb(struct mtw_softc *, void *);
144 void		mtw_delete_key(struct ieee80211com *, struct ieee80211_node *,
145 		    struct ieee80211_key *);
146 void		mtw_delete_key_cb(struct mtw_softc *, void *);
147 void		mtw_calibrate_to(void *);
148 void		mtw_calibrate_cb(struct mtw_softc *, void *);
149 void		mtw_newassoc(struct ieee80211com *, struct ieee80211_node *,
150 		    int);
151 void		mtw_rx_frame(struct mtw_softc *, uint8_t *, int,
152 		    struct mbuf_list *);
153 void		mtw_rxeof(struct usbd_xfer *, void *, usbd_status);
154 void		mtw_txeof(struct usbd_xfer *, void *, usbd_status);
155 int		mtw_tx(struct mtw_softc *, struct mbuf *,
156 		    struct ieee80211_node *);
157 void		mtw_start(struct ifnet *);
158 void		mtw_watchdog(struct ifnet *);
159 int		mtw_ioctl(struct ifnet *, u_long, caddr_t);
160 void		mtw_select_chan_group(struct mtw_softc *, int);
161 void		mt7601_set_agc(struct mtw_softc *, uint8_t);
162 void		mt7601_set_chan(struct mtw_softc *, u_int);
163 int		mtw_set_chan(struct mtw_softc *, struct ieee80211_channel *);
164 void		mtw_enable_tsf_sync(struct mtw_softc *);
165 void		mtw_abort_tsf_sync(struct mtw_softc *);
166 void		mtw_enable_mrr(struct mtw_softc *);
167 void		mtw_set_txrts(struct mtw_softc *);
168 void		mtw_set_txpreamble(struct mtw_softc *);
169 void		mtw_set_basicrates(struct mtw_softc *);
170 void		mtw_set_leds(struct mtw_softc *, uint16_t);
171 void		mtw_set_bssid(struct mtw_softc *, const uint8_t *);
172 void		mtw_set_macaddr(struct mtw_softc *, const uint8_t *);
173 #if NBPFILTER > 0
174 int8_t		mtw_rssi2dbm(struct mtw_softc *, uint8_t, uint8_t);
175 #endif
176 int		mt7601_bbp_init(struct mtw_softc *);
177 int		mt7601_rf_init(struct mtw_softc *);
178 int		mt7601_rf_setup(struct mtw_softc *);
179 int		mt7601_rf_temperature(struct mtw_softc *, int8_t *);
180 int		mt7601_r49_read(struct mtw_softc *, uint8_t, int8_t *);
181 int		mt7601_rxdc_cal(struct mtw_softc *);
182 int		mtw_wlan_enable(struct mtw_softc *, int);
183 int		mtw_txrx_enable(struct mtw_softc *);
184 int		mtw_init(struct ifnet *);
185 void		mtw_stop(struct ifnet *, int);
186 
187 struct cfdriver mtw_cd = {
188 	NULL, "mtw", DV_IFNET
189 };
190 
191 const struct cfattach mtw_ca = {
192 	sizeof (struct mtw_softc), mtw_match, mtw_attach, mtw_detach
193 };
194 
195 static const struct {
196 	uint32_t	reg;
197 	uint32_t	val;
198 } mt7601_def_mac[] = {
199 	MT7601_DEF_MAC
200 };
201 
202 static const struct {
203 	uint8_t		reg;
204 	uint8_t		val;
205 } mt7601_def_bbp[] = {
206 	MT7601_DEF_BBP
207 };
208 
209 static const struct {
210 	u_int		chan;
211 	uint8_t		r17, r18, r19, r20;
212 } mt7601_rf_chan[] = {
213 	MT7601_RF_CHAN
214 };
215 
216 static const struct {
217 	uint8_t		reg;
218 	uint8_t		val;
219 } mt7601_rf_bank0[] = {
220 	MT7601_BANK0_RF
221 },mt7601_rf_bank4[] = {
222 	MT7601_BANK4_RF
223 },mt7601_rf_bank5[] = {
224 	MT7601_BANK5_RF
225 };
226 
227 int
228 mtw_match(struct device *parent, void *match, void *aux)
229 {
230 	struct usb_attach_arg *uaa = aux;
231 
232 	if (uaa->iface == NULL || uaa->configno != 1)
233 		return UMATCH_NONE;
234 
235 	return (usb_lookup(mtw_devs, uaa->vendor, uaa->product) != NULL) ?
236 	    UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE;
237 }
238 
239 void
240 mtw_attach(struct device *parent, struct device *self, void *aux)
241 {
242 	struct mtw_softc *sc = (struct mtw_softc *)self;
243 	struct usb_attach_arg *uaa = aux;
244 	usb_interface_descriptor_t *id;
245 	usb_endpoint_descriptor_t *ed;
246 	int i, error, nrx, ntx, ntries;
247 	uint32_t ver;
248 
249 	sc->sc_udev = uaa->device;
250 	sc->sc_iface = uaa->iface;
251 
252 	/*
253 	 * Find all bulk endpoints.
254 	 */
255 	nrx = ntx = 0;
256 	id = usbd_get_interface_descriptor(sc->sc_iface);
257 	for (i = 0; i < id->bNumEndpoints; i++) {
258 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
259 		if (ed == NULL || UE_GET_XFERTYPE(ed->bmAttributes) != UE_BULK)
260 			continue;
261 
262 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) {
263 			sc->rxq[nrx].pipe_no = ed->bEndpointAddress;
264 			nrx++;
265 		} else if (ntx < 6) {
266 			if (ntx == 0)
267 				sc->txq[MTW_TXQ_MCU].pipe_no =
268 				    ed->bEndpointAddress;
269 			else
270 				sc->txq[ntx - 1].pipe_no =
271 				    ed->bEndpointAddress;
272 			ntx++;
273 		}
274 	}
275 	/* make sure we've got them all */
276 	if (nrx < 2 || ntx < 6) {
277 		printf("%s: missing endpoint\n", sc->sc_dev.dv_xname);
278 		return;
279 	}
280 
281 	/* wait for the chip to settle */
282 	for (ntries = 0; ntries < 100; ntries++) {
283 		if ((error = mtw_read(sc, MTW_ASIC_VER, &ver)) != 0)
284 			return;
285 		if (ver != 0 && ver != 0xffffffff)
286 			break;
287 		DPRINTF(("%08x ", ver));
288 		DELAY(10);
289 	}
290 	if (ntries == 100) {
291 		printf("%s: timeout waiting for NIC to initialize\n",
292 		    sc->sc_dev.dv_xname);
293 		return;
294 	}
295 
296 	sc->asic_ver = ver >> 16;
297 	sc->asic_rev = ver & 0xffff;
298 
299 	usb_init_task(&sc->sc_task, mtw_task, sc, USB_TASK_TYPE_GENERIC);
300 	timeout_set(&sc->scan_to, mtw_next_scan, sc);
301 	timeout_set(&sc->calib_to, mtw_calibrate_to, sc);
302 
303 	sc->amrr.amrr_min_success_threshold =  1;
304 	sc->amrr.amrr_max_success_threshold = 10;
305 
306 	config_mountroot(self, mtw_attachhook);
307 }
308 
309 int
310 mtw_detach(struct device *self, int flags)
311 {
312 	struct mtw_softc *sc = (struct mtw_softc *)self;
313 	struct ifnet *ifp = &sc->sc_ic.ic_if;
314 	int qid, s;
315 
316 	s = splusb();
317 
318 	if (timeout_initialized(&sc->scan_to))
319 		timeout_del(&sc->scan_to);
320 	if (timeout_initialized(&sc->calib_to))
321 		timeout_del(&sc->calib_to);
322 
323 	/* wait for all queued asynchronous commands to complete */
324 	usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
325 
326 	usbd_ref_wait(sc->sc_udev);
327 
328 	if (ifp->if_softc != NULL) {
329 		ifp->if_flags &= ~IFF_RUNNING;
330 		ifq_clr_oactive(&ifp->if_snd);
331 		ieee80211_ifdetach(ifp);
332 		if_detach(ifp);
333 	}
334 
335 	/* free rings and close pipes */
336 	mtw_free_mcu_ring(sc);
337 	for (qid = 0; qid < MTW_TXQ_COUNT; qid++)
338 		mtw_free_tx_ring(sc, qid);
339 	mtw_free_rx_ring(sc, 0);
340 	mtw_free_rx_ring(sc, 1);
341 
342 	splx(s);
343 	return 0;
344 }
345 
346 void
347 mtw_attachhook(struct device *self)
348 {
349 	struct mtw_softc *sc = (struct mtw_softc *)self;
350 	struct ieee80211com *ic = &sc->sc_ic;
351 	struct ifnet *ifp = &ic->ic_if;
352 	uint32_t tmp;
353 	int ntries, error, i;
354 
355 	if (usbd_is_dying(sc->sc_udev))
356 		return;
357 
358 	/* enable WLAN core */
359 	if ((error = mtw_wlan_enable(sc, 1)) != 0) {
360 		printf("%s: could not enable WLAN core\n",
361 		    sc->sc_dev.dv_xname);
362 		return;
363 	}
364 
365 	/* load firmware */
366 	if ((error = mtw_load_microcode(sc)) != 0) {
367 		printf("%s: could not load microcode\n",
368 		    sc->sc_dev.dv_xname);
369 		goto fail;
370 	}
371 
372 	mtw_usb_dma_read(sc, &tmp);
373 	mtw_usb_dma_write(sc, tmp | (MTW_USB_RX_EN | MTW_USB_TX_EN));
374 
375 	/* read MAC version */
376 	for (ntries = 0; ntries < 100; ntries++) {
377 		if ((error = mtw_read(sc, MTW_MAC_VER_ID, &tmp)) != 0)
378 			goto fail;
379 		if (tmp != 0 && tmp != 0xffffffff)
380 			break;
381 		DELAY(10);
382 	}
383 	if (ntries == 100) {
384 		printf("%s: failed reading MAC\n", sc->sc_dev.dv_xname);
385 		goto fail;
386 	}
387 
388 	sc->mac_ver = tmp >> 16;
389 	sc->mac_rev = tmp & 0xffff;
390 
391 	/* retrieve RF rev. no and various other things from EEPROM */
392 	mtw_read_eeprom(sc);
393 
394 	printf("%s: MAC/BBP MT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), "
395 	    "address %s\n", sc->sc_dev.dv_xname, sc->mac_ver,
396 	    sc->mac_rev, mtw_get_rf(sc->rf_rev), sc->ntxchains,
397 	    sc->nrxchains, ether_sprintf(ic->ic_myaddr));
398 
399 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
400 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
401 	ic->ic_state = IEEE80211_S_INIT;
402 
403 	/* set device capabilities */
404 	ic->ic_caps =
405 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
406 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
407 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
408 	    IEEE80211_C_WEP |		/* WEP */
409 	    IEEE80211_C_RSN;		/* WPA/RSN */
410 
411 	/* set supported .11b and .11g rates */
412 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
413 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
414 
415 	/* set supported .11b and .11g channels (1 through 14) */
416 	for (i = 1; i <= 14; i++) {
417 		ic->ic_channels[i].ic_freq =
418 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
419 		ic->ic_channels[i].ic_flags =
420 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
421 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
422 	}
423 
424 	ifp->if_softc = sc;
425 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
426 	ifp->if_ioctl = mtw_ioctl;
427 	ifp->if_start = mtw_start;
428 	ifp->if_watchdog = mtw_watchdog;
429 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
430 
431 	if_attach(ifp);
432 	ieee80211_ifattach(ifp);
433 	ic->ic_node_alloc = mtw_node_alloc;
434 	ic->ic_newassoc = mtw_newassoc;
435 	ic->ic_updateslot = mtw_updateslot;
436 	ic->ic_updateedca = mtw_updateedca;
437 	ic->ic_set_key = mtw_set_key;
438 	ic->ic_delete_key = mtw_delete_key;
439 
440 	/* override 802.11 state transition machine */
441 	sc->sc_newstate = ic->ic_newstate;
442 	ic->ic_newstate = mtw_newstate;
443 	ieee80211_media_init(ifp, mtw_media_change, ieee80211_media_status);
444 
445 #if NBPFILTER > 0
446 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
447 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
448 
449 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
450 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
451 	sc->sc_rxtap.wr_ihdr.it_present = htole32(MTW_RX_RADIOTAP_PRESENT);
452 
453 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
454 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
455 	sc->sc_txtap.wt_ihdr.it_present = htole32(MTW_TX_RADIOTAP_PRESENT);
456 #endif
457 fail:
458 	return;
459 }
460 
461 int
462 mtw_alloc_rx_ring(struct mtw_softc *sc, int qid)
463 {
464 	struct mtw_rx_ring *rxq = &sc->rxq[qid];
465 	int i, error;
466 
467 	if ((error = usbd_open_pipe(sc->sc_iface, rxq->pipe_no, 0,
468 	    &rxq->pipeh)) != 0)
469 		goto fail;
470 
471 	for (i = 0; i < MTW_RX_RING_COUNT; i++) {
472 		struct mtw_rx_data *data = &rxq->data[i];
473 
474 		data->sc = sc;	/* backpointer for callbacks */
475 
476 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
477 		if (data->xfer == NULL) {
478 			error = ENOMEM;
479 			goto fail;
480 		}
481 		data->buf = usbd_alloc_buffer(data->xfer, MTW_MAX_RXSZ);
482 		if (data->buf == NULL) {
483 			error = ENOMEM;
484 			goto fail;
485 		}
486 	}
487 	if (error != 0)
488 fail:		mtw_free_rx_ring(sc, 0);
489 	return error;
490 }
491 
492 void
493 mtw_free_rx_ring(struct mtw_softc *sc, int qid)
494 {
495 	struct mtw_rx_ring *rxq = &sc->rxq[qid];
496 	int i;
497 
498 	if (rxq->pipeh != NULL) {
499 		usbd_close_pipe(rxq->pipeh);
500 		rxq->pipeh = NULL;
501 	}
502 	for (i = 0; i < MTW_RX_RING_COUNT; i++) {
503 		if (rxq->data[i].xfer != NULL)
504 			usbd_free_xfer(rxq->data[i].xfer);
505 		rxq->data[i].xfer = NULL;
506 	}
507 }
508 
509 int
510 mtw_alloc_tx_ring(struct mtw_softc *sc, int qid)
511 {
512 	struct mtw_tx_ring *txq = &sc->txq[qid];
513 	int i, error;
514 	uint16_t txwisize;
515 
516 	txwisize = sizeof(struct mtw_txwi);
517 
518 	txq->cur = txq->queued = 0;
519 
520 	if ((error = usbd_open_pipe(sc->sc_iface, txq->pipe_no, 0,
521 	    &txq->pipeh)) != 0)
522 		goto fail;
523 
524 	for (i = 0; i < MTW_TX_RING_COUNT; i++) {
525 		struct mtw_tx_data *data = &txq->data[i];
526 
527 		data->sc = sc;	/* backpointer for callbacks */
528 		data->qid = qid;
529 
530 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
531 		if (data->xfer == NULL) {
532 			error = ENOMEM;
533 			goto fail;
534 		}
535 
536 		data->buf = usbd_alloc_buffer(data->xfer, MTW_MAX_TXSZ);
537 		if (data->buf == NULL) {
538 			error = ENOMEM;
539 			goto fail;
540 		}
541 
542 		/* zeroize the TXD + TXWI part */
543 		memset(data->buf, 0, MTW_MAX_TXSZ);
544 	}
545 	if (error != 0)
546 fail:		mtw_free_tx_ring(sc, qid);
547 	return error;
548 }
549 
550 void
551 mtw_free_tx_ring(struct mtw_softc *sc, int qid)
552 {
553 	struct mtw_tx_ring *txq = &sc->txq[qid];
554 	int i;
555 
556 	if (txq->pipeh != NULL) {
557 		usbd_close_pipe(txq->pipeh);
558 		txq->pipeh = NULL;
559 	}
560 	for (i = 0; i < MTW_TX_RING_COUNT; i++) {
561 		if (txq->data[i].xfer != NULL)
562 			usbd_free_xfer(txq->data[i].xfer);
563 		txq->data[i].xfer = NULL;
564 	}
565 }
566 
567 int
568 mtw_alloc_mcu_ring(struct mtw_softc *sc)
569 {
570 	struct mtw_tx_ring *ring = &sc->sc_mcu;
571 	struct mtw_tx_data *data = &ring->data[0];
572 	int error = 0;
573 
574 	ring->cur = ring->queued = 0;
575 
576 	data->sc = sc;	/* backpointer for callbacks */
577 	data->qid = 5;
578 
579 	data->xfer = usbd_alloc_xfer(sc->sc_udev);
580 	if (data->xfer == NULL) {
581 		error = ENOMEM;
582 		goto fail;
583 	}
584 
585 	data->buf = usbd_alloc_buffer(data->xfer, MTW_MAX_TXSZ);
586 	if (data->buf == NULL) {
587 		error = ENOMEM;
588 		goto fail;
589 	}
590 	/* zeroize the TXD */
591 	memset(data->buf, 0, 4);
592 
593 	if (error != 0)
594 fail:		mtw_free_mcu_ring(sc);
595 	return error;
596 
597 
598 }
599 void
600 mtw_free_mcu_ring(struct mtw_softc *sc)
601 {
602 	struct mtw_tx_ring *txq = &sc->sc_mcu;
603 
604 	if (txq->data[0].xfer != NULL)
605 		usbd_free_xfer(txq->data[0].xfer);
606 	txq->data[0].xfer = NULL;
607 }
608 
609 int
610 mtw_ucode_write(struct mtw_softc *sc, const uint8_t *fw, uint32_t len,
611     uint32_t offset)
612 {
613 	struct mtw_tx_ring *ring = &sc->txq[MTW_TXQ_MCU];
614 	struct usbd_xfer *xfer;
615 	struct mtw_txd *txd;
616 	uint8_t *buf;
617 	uint32_t blksz, sent, tmp, xferlen;
618 	int error;
619 
620 	blksz = 0x2000;
621 	if (sc->asic_ver == 0x7612 && offset >= 0x90000)
622 		blksz = 0x800; /* MT7612 ROM Patch */
623 
624 	xfer = usbd_alloc_xfer(sc->sc_udev);
625 	if (xfer == NULL) {
626 		error = ENOMEM;
627 		goto fail;
628 	}
629 	buf = usbd_alloc_buffer(xfer, blksz + 12);
630 	if (buf == NULL) {
631 		error = ENOMEM;
632 		goto fail;
633 	}
634 
635 	sent = 0;
636 	for (;;) {
637 		xferlen = min(len - sent, blksz);
638 		if (xferlen == 0)
639 			break;
640 
641 		txd = (struct mtw_txd *)buf;
642 		txd->len = htole16(xferlen);
643 		txd->flags = htole16(MTW_TXD_DATA | MTW_TXD_MCU);
644 
645 		memcpy(buf + sizeof(struct mtw_txd), fw + sent, xferlen);
646 		memset(buf + sizeof(struct mtw_txd) + xferlen, 0, MTW_DMA_PAD);
647 		mtw_write_cfg(sc, MTW_MCU_DMA_ADDR, offset + sent);
648 		mtw_write_cfg(sc, MTW_MCU_DMA_LEN, (xferlen << 16));
649 
650 		usbd_setup_xfer(xfer, ring->pipeh, NULL, buf,
651 		    xferlen + sizeof(struct mtw_txd) + MTW_DMA_PAD,
652 		    USBD_SHORT_XFER_OK | USBD_SYNCHRONOUS | USBD_NO_COPY,
653 		    MTW_TX_TIMEOUT, NULL);
654 		if ((error = usbd_transfer(xfer)) != 0)
655 			break;
656 
657 		mtw_read_cfg(sc, MTW_MCU_DMA_LEN, &tmp);
658 
659 		mtw_read(sc, MTW_MCU_FW_IDX, &tmp);
660 		mtw_write(sc, MTW_MCU_FW_IDX, tmp++);
661 
662 		sent += xferlen;
663 	}
664 fail:
665 	if (xfer != NULL) {
666 		usbd_free_xfer(xfer);
667 		xfer = NULL;
668 	}
669 	return error;
670 }
671 
672 void
673 mtw_ucode_setup(struct mtw_softc *sc)
674 {
675 	mtw_usb_dma_write(sc, (MTW_USB_TX_EN | MTW_USB_RX_EN));
676 	mtw_write(sc, MTW_FCE_PSE_CTRL, 1);
677 	mtw_write(sc, MTW_TX_CPU_FCE_BASE, 0x400230);
678 	mtw_write(sc, MTW_TX_CPU_FCE_MAX_COUNT, 1);
679 	mtw_write(sc, MTW_MCU_FW_IDX, 1);
680 	mtw_write(sc, MTW_FCE_PDMA, 0x44);
681 	mtw_write(sc, MTW_FCE_SKIP_FS, 3);
682 }
683 
684 int
685 mtw_load_microcode(struct mtw_softc *sc)
686 {
687 	const struct mtw_ucode_hdr *hdr;
688 	const struct mtw_ucode *fw;
689 	const char *fwname;
690 	u_char *ucode;
691 	size_t size;
692 	uint32_t tmp, iofs, dofs;
693 	int ntries, error;
694 	int dlen, ilen;
695 
696 	/* is firmware already running? */
697 	mtw_read_cfg(sc, MTW_MCU_DMA_ADDR, &tmp);
698 	if (tmp == MTW_MCU_READY)
699 		return 0;
700 
701 	/* open MCU pipe */
702 	if ((error = usbd_open_pipe(sc->sc_iface, sc->txq[MTW_TXQ_MCU].pipe_no,
703 	    0, &sc->txq[MTW_TXQ_MCU].pipeh)) != 0)
704 		return error;
705 
706 	if (sc->asic_ver == 0x7612) {
707 		fwname = "mtw-mt7662u_rom_patch";
708 
709 		if ((error = loadfirmware(fwname, &ucode, &size)) != 0) {
710 			printf("%s: failed loadfirmware of file %s (error %d)\n",
711 			    sc->sc_dev.dv_xname, fwname, error);
712 			return error;
713 		}
714 		fw = (const struct mtw_ucode *) ucode + 0x1e;
715 		ilen = size - 0x1e;
716 
717 		mtw_ucode_setup(sc);
718 
719 		if ((error = mtw_ucode_write(sc, fw->data, ilen, 0x90000)) != 0)
720 			goto fail;
721 
722 		mtw_read_cfg(sc, 0x0208, &tmp);
723 		mtw_usb_dma_write(sc, 0x00e41814);
724 		free(ucode, M_DEVBUF, size);
725 	}
726 
727 	fwname = "mtw-mt7601u";
728 	iofs = 0x40;
729 	dofs = 0;
730 	if (sc->asic_ver == 0x7612) {
731 		fwname = "mtw-mt7662u";
732 		iofs = 0x80040;
733 		dofs = 0x110800;
734 	} else if (sc->asic_ver == 0x7610) {
735 		fwname = "mtw-mt7610u";
736 		dofs = 0x80000;
737 	}
738 
739 	if ((error = loadfirmware(fwname, &ucode, &size)) != 0) {
740 		printf("%s: failed loadfirmware of file %s (error %d)\n",
741 		    sc->sc_dev.dv_xname, fwname, error);
742 		return error;
743 	}
744 
745 	if (size < sizeof(struct mtw_ucode_hdr)) {
746 		printf("%s: firmware header too short\n",
747 		    sc->sc_dev.dv_xname);
748 		goto fail;
749 	}
750 
751 	fw = (const struct mtw_ucode *) ucode;
752 	hdr = (const struct mtw_ucode_hdr *) &fw->hdr;
753 
754 	if (size < sizeof(struct mtw_ucode_hdr) + letoh32(hdr->ilm_len) +
755 	    letoh32(hdr->dlm_len)) {
756 		printf("%s: firmware payload too short\n",
757 		    sc->sc_dev.dv_xname);
758 		goto fail;
759 	}
760 
761 	ilen = le32toh(hdr->ilm_len) - MTW_MCU_IVB_LEN;
762 	dlen = le32toh(hdr->dlm_len);
763 
764 	if (ilen > size || dlen > size) {
765 		printf("%s: firmware payload too large\n",
766 		    sc->sc_dev.dv_xname);
767 		goto fail;
768 	}
769 
770 	mtw_write(sc, MTW_FCE_PDMA, 0);
771 	mtw_write(sc, MTW_FCE_PSE_CTRL, 0);
772 	mtw_ucode_setup(sc);
773 
774 	if ((error = mtw_ucode_write(sc, fw->data, ilen, iofs)) != 0)
775 		goto fail;
776 	if (dlen > 0 && dofs > 0) {
777 		if ((error = mtw_ucode_write(sc, fw->data + ilen,
778 		    dlen, dofs)) != 0)
779 			goto fail;
780 	}
781 
782 	/* write interrupt vectors */
783 	if (sc->asic_ver == 0x7612) {
784 		/* MT7612 */
785 		if ((error = mtw_ucode_write(sc, fw->ivb,
786 		    MTW_MCU_IVB_LEN, 0x80000)) != 0)
787 			goto fail;
788 		mtw_write_cfg(sc, MTW_MCU_DMA_ADDR, 0x00095000);
789 		mtw_write_ivb(sc, NULL, 0);
790 	} else {
791 		/* MT7601/MT7610 */
792 		if ((error = mtw_write_ivb(sc, fw->ivb,
793 		    MTW_MCU_IVB_LEN)) != 0)
794 			goto fail;
795 	}
796 
797 	/* wait until microcontroller is ready */
798 	usbd_delay_ms(sc->sc_udev, 10);
799 
800 	for (ntries = 0; ntries < 100; ntries++) {
801 		if ((error = mtw_read_cfg(sc, MTW_MCU_DMA_ADDR, &tmp)) != 0)
802 			return error;
803 		if (tmp & MTW_MCU_READY)
804 			break;
805 		usbd_delay_ms(sc->sc_udev, 100);
806 	}
807 
808 	if (ntries == 100) {
809 		printf("%s: timeout waiting for MCU to initialize\n",
810 		    sc->sc_dev.dv_xname);
811 		error = ETIMEDOUT;
812 	}
813 
814 	DPRINTF(("%s: loaded firmware ver %d.%d\n", sc->sc_dev.dv_xname,
815 	    le16toh(hdr->build_ver), le16toh(hdr->fw_ver)));
816 fail:
817 	free(ucode, M_DEVBUF, size);
818 	usbd_close_pipe(sc->txq[MTW_TXQ_MCU].pipeh);
819 	sc->txq[MTW_TXQ_MCU].pipeh = NULL;
820 	return error;
821 }
822 
823 int
824 mtw_reset(struct mtw_softc *sc)
825 {
826 	usb_device_request_t req;
827 
828 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
829 	req.bRequest = MTW_RESET;
830 	USETW(req.wValue, 1);
831 	USETW(req.wIndex, 0);
832 	USETW(req.wLength, 0);
833 	return usbd_do_request(sc->sc_udev, &req, NULL);
834 }
835 
836 int
837 mtw_read(struct mtw_softc *sc, uint16_t reg, uint32_t *val)
838 {
839 	uint32_t tmp;
840 	int error;
841 
842 	error = mtw_read_region_1(sc, reg,
843 	    (uint8_t *)&tmp, sizeof tmp);
844 	if (error == 0)
845 		*val = letoh32(tmp);
846 	else
847 		*val = 0xffffffff;
848 	return error;
849 }
850 
851 int
852 mtw_read_cfg(struct mtw_softc *sc, uint16_t reg, uint32_t *val)
853 {
854 	usb_device_request_t req;
855 	uint32_t tmp;
856 	int error;
857 
858 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
859 	req.bRequest = MTW_READ_CFG;
860 	USETW(req.wValue, 0);
861 	USETW(req.wIndex, reg);
862 	USETW(req.wLength, 4);
863 	error = usbd_do_request(sc->sc_udev, &req, &tmp);
864 
865 	if (error == 0)
866 		*val = letoh32(tmp);
867 	else
868 		*val = 0xffffffff;
869 	return error;
870 }
871 
872 int
873 mtw_read_region_1(struct mtw_softc *sc, uint16_t reg,
874     uint8_t *buf, int len)
875 {
876 	usb_device_request_t req;
877 
878 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
879 	req.bRequest = MTW_READ_REGION_1;
880 	USETW(req.wValue, 0);
881 	USETW(req.wIndex, reg);
882 	USETW(req.wLength, len);
883 	return usbd_do_request(sc->sc_udev, &req, buf);
884 }
885 
886 int
887 mtw_write_2(struct mtw_softc *sc, uint16_t reg, uint16_t val)
888 {
889 	usb_device_request_t req;
890 
891 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
892 	req.bRequest = MTW_WRITE_2;
893 	USETW(req.wValue, val);
894 	USETW(req.wIndex, reg);
895 	USETW(req.wLength, 0);
896 	return usbd_do_request(sc->sc_udev, &req, NULL);
897 }
898 
899 int
900 mtw_write(struct mtw_softc *sc, uint16_t reg, uint32_t val)
901 {
902 	int error;
903 
904 	if ((error = mtw_write_2(sc, reg, val & 0xffff)) == 0)
905 		error = mtw_write_2(sc, reg + 2, val >> 16);
906 	return error;
907 }
908 
909 int
910 mtw_write_cfg(struct mtw_softc *sc, uint16_t reg, uint32_t val)
911 {
912 	usb_device_request_t req;
913 	int error;
914 
915 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
916 	req.bRequest = MTW_WRITE_CFG;
917 	USETW(req.wValue, 0);
918 	USETW(req.wIndex, reg);
919 	USETW(req.wLength, 4);
920 	val = htole32(val);
921 	error = usbd_do_request(sc->sc_udev, &req, &val);
922 	return error;
923 }
924 
925 int
926 mtw_write_ivb(struct mtw_softc *sc, const uint8_t *buf, uint16_t len)
927 {
928 	usb_device_request_t req;
929 
930 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
931 	req.bRequest = MTW_RESET;
932 	USETW(req.wValue, 0x12);
933 	USETW(req.wIndex, 0);
934 	USETW(req.wLength, len);
935 	return usbd_do_request(sc->sc_udev, &req, (void *)buf);
936 }
937 
938 int
939 mtw_write_region_1(struct mtw_softc *sc, uint16_t reg,
940     uint8_t *buf, int len)
941 {
942 	usb_device_request_t req;
943 
944 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
945 	req.bRequest = MTW_WRITE_REGION_1;
946 	USETW(req.wValue, 0);
947 	USETW(req.wIndex, reg);
948 	USETW(req.wLength, len);
949 	return usbd_do_request(sc->sc_udev, &req, buf);
950 }
951 
952 int
953 mtw_set_region_4(struct mtw_softc *sc, uint16_t reg, uint32_t val, int count)
954 {
955 	int error = 0;
956 
957 	for (; count > 0 && error == 0; count--, reg += 4)
958 		error = mtw_write(sc, reg, val);
959 	return error;
960 }
961 
962 /* Read 16-bit from eFUSE ROM. */
963 int
964 mtw_efuse_read_2(struct mtw_softc *sc, uint16_t addr, uint16_t *val)
965 {
966 	uint32_t tmp;
967 	uint16_t reg;
968 	int error, ntries;
969 
970 	if ((error = mtw_read(sc, MTW_EFUSE_CTRL, &tmp)) != 0)
971 		return error;
972 
973 	addr *= 2;
974 	/*
975 	 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
976 	 * DATA0: 3 2 1 0
977 	 * DATA1: 7 6 5 4
978 	 * DATA2: B A 9 8
979 	 * DATA3: F E D C
980 	 */
981 	tmp &= ~(MTW_EFSROM_MODE_MASK | MTW_EFSROM_AIN_MASK);
982 	tmp |= (addr & ~0xf) << MTW_EFSROM_AIN_SHIFT | MTW_EFSROM_KICK;
983 	mtw_write(sc, MTW_EFUSE_CTRL, tmp);
984 	for (ntries = 0; ntries < 100; ntries++) {
985 		if ((error = mtw_read(sc, MTW_EFUSE_CTRL, &tmp)) != 0)
986 			return error;
987 		if (!(tmp & MTW_EFSROM_KICK))
988 			break;
989 		DELAY(2);
990 	}
991 	if (ntries == 100)
992 		return ETIMEDOUT;
993 
994 	if ((tmp & MTW_EFUSE_AOUT_MASK) == MTW_EFUSE_AOUT_MASK) {
995 		*val = 0xffff;	/* address not found */
996 		return 0;
997 	}
998 	/* determine to which 32-bit register our 16-bit word belongs */
999 	reg = MTW_EFUSE_DATA0 + (addr & 0xc);
1000 	if ((error = mtw_read(sc, reg, &tmp)) != 0)
1001 		return error;
1002 
1003 	*val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
1004 	return 0;
1005 }
1006 
1007 int
1008 mtw_eeprom_read_2(struct mtw_softc *sc, uint16_t addr, uint16_t *val)
1009 {
1010 	usb_device_request_t req;
1011 	uint16_t tmp;
1012 	int error;
1013 
1014 	addr *= 2;
1015 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1016 	req.bRequest = MTW_EEPROM_READ;
1017 	USETW(req.wValue, 0);
1018 	USETW(req.wIndex, addr);
1019 	USETW(req.wLength, sizeof tmp);
1020 	error = usbd_do_request(sc->sc_udev, &req, &tmp);
1021 	if (error == 0)
1022 		*val = letoh16(tmp);
1023 	else
1024 		*val = 0xffff;
1025 	return error;
1026 }
1027 
1028 static __inline int
1029 mtw_srom_read(struct mtw_softc *sc, uint16_t addr, uint16_t *val)
1030 {
1031 	/* either eFUSE ROM or EEPROM */
1032 	return sc->sc_srom_read(sc, addr, val);
1033 }
1034 
1035 int
1036 mtw_rf_read(struct mtw_softc *sc, uint8_t bank, uint8_t reg, uint8_t *val)
1037 {
1038 	uint32_t tmp;
1039 	int error, ntries, shift;
1040 
1041 	for (ntries = 0; ntries < 100; ntries++) {
1042 		if ((error = mtw_read(sc, MTW_RF_CSR, &tmp)) != 0)
1043 			return error;
1044 		if (!(tmp & MTW_RF_CSR_KICK))
1045 			break;
1046 	}
1047 	if (ntries == 100)
1048 		return ETIMEDOUT;
1049 
1050 	if (sc->mac_ver == 0x7601)
1051 		shift = MT7601_BANK_SHIFT;
1052 	else
1053 		shift = MT7610_BANK_SHIFT;
1054 
1055 	tmp = MTW_RF_CSR_KICK | (bank & 0xf) << shift | reg << 8;
1056 	if ((error = mtw_write(sc, MTW_RF_CSR, tmp)) != 0)
1057 		return error;
1058 
1059 	for (ntries = 0; ntries < 100; ntries++) {
1060 		if ((error = mtw_read(sc, MTW_RF_CSR, &tmp)) != 0)
1061 			return error;
1062 		if (!(tmp & MTW_RF_CSR_KICK))
1063 			break;
1064 	}
1065 	if (ntries == 100)
1066 		return ETIMEDOUT;
1067 
1068 	*val = tmp & 0xff;
1069 	return 0;
1070 }
1071 
1072 int
1073 mtw_rf_write(struct mtw_softc *sc, uint8_t bank, uint8_t reg, uint8_t val)
1074 {
1075 	uint32_t tmp;
1076 	int error, ntries, shift;
1077 
1078 	for (ntries = 0; ntries < 10; ntries++) {
1079 		if ((error = mtw_read(sc, MTW_RF_CSR, &tmp)) != 0)
1080 			return error;
1081 		if (!(tmp & MTW_RF_CSR_KICK))
1082 			break;
1083 	}
1084 	if (ntries == 10)
1085 		return ETIMEDOUT;
1086 
1087 	if (sc->mac_ver == 0x7601)
1088 		shift = MT7601_BANK_SHIFT;
1089 	else
1090 		shift = MT7610_BANK_SHIFT;
1091 
1092 	tmp = MTW_RF_CSR_WRITE | MTW_RF_CSR_KICK | (bank & 0xf) << shift |
1093 	    reg << 8 | val;
1094 	return mtw_write(sc, MTW_RF_CSR, tmp);
1095 }
1096 
1097 int
1098 mtw_bbp_read(struct mtw_softc *sc, uint8_t reg, uint8_t *val)
1099 {
1100 	uint32_t tmp;
1101 	int ntries, error;
1102 
1103 	for (ntries = 0; ntries < 10; ntries++) {
1104 		if ((error = mtw_read(sc, MTW_BBP_CSR, &tmp)) != 0)
1105 			return error;
1106 		if (!(tmp & MTW_BBP_CSR_KICK))
1107 			break;
1108 	}
1109 	if (ntries == 10)
1110 		return ETIMEDOUT;
1111 
1112 	tmp = MTW_BBP_CSR_READ | MTW_BBP_CSR_KICK | reg << MTW_BBP_ADDR_SHIFT;
1113 	if ((error = mtw_write(sc, MTW_BBP_CSR, tmp)) != 0)
1114 		return error;
1115 
1116 	for (ntries = 0; ntries < 10; ntries++) {
1117 		if ((error = mtw_read(sc, MTW_BBP_CSR, &tmp)) != 0)
1118 			return error;
1119 		if (!(tmp & MTW_BBP_CSR_KICK))
1120 			break;
1121 	}
1122 	if (ntries == 10)
1123 		return ETIMEDOUT;
1124 
1125 	*val = tmp & 0xff;
1126 	return 0;
1127 }
1128 
1129 int
1130 mtw_bbp_write(struct mtw_softc *sc, uint8_t reg, uint8_t val)
1131 {
1132 	uint32_t tmp;
1133 	int ntries, error;
1134 
1135 	for (ntries = 0; ntries < 10; ntries++) {
1136 		if ((error = mtw_read(sc, MTW_BBP_CSR, &tmp)) != 0)
1137 			return error;
1138 		if (!(tmp & MTW_BBP_CSR_KICK))
1139 			break;
1140 	}
1141 	if (ntries == 10)
1142 		return ETIMEDOUT;
1143 
1144 	tmp = MTW_BBP_CSR_KICK | reg << MTW_BBP_ADDR_SHIFT | val;
1145 	return mtw_write(sc, MTW_BBP_CSR, tmp);
1146 }
1147 
1148 int
1149 mtw_usb_dma_read(struct mtw_softc *sc, uint32_t *val)
1150 {
1151 	if (sc->asic_ver == 0x7612)
1152 		return mtw_read_cfg(sc, MTW_USB_U3DMA_CFG, val);
1153 	else
1154 		return mtw_read(sc, MTW_USB_DMA_CFG, val);
1155 }
1156 
1157 int
1158 mtw_usb_dma_write(struct mtw_softc *sc, uint32_t val)
1159 {
1160 	if (sc->asic_ver == 0x7612)
1161 		return mtw_write_cfg(sc, MTW_USB_U3DMA_CFG, val);
1162 	else
1163 		return mtw_write(sc, MTW_USB_DMA_CFG, val);
1164 }
1165 
1166 int
1167 mtw_mcu_calibrate(struct mtw_softc *sc, int func, uint32_t val)
1168 {
1169 	struct mtw_mcu_cmd_8 cmd;
1170 
1171 	cmd.func = htole32(func);
1172 	cmd.val = htole32(val);
1173 	return mtw_mcu_cmd(sc, 31, &cmd, sizeof(struct mtw_mcu_cmd_8));
1174 }
1175 
1176 int
1177 mtw_mcu_channel(struct mtw_softc *sc, uint32_t r1, uint32_t r2, uint32_t r4)
1178 {
1179 	struct mtw_mcu_cmd_16 cmd;
1180 
1181 	cmd.r1 = htole32(r1);
1182 	cmd.r2 = htole32(r2);
1183 	cmd.r3 = 0;
1184 	cmd.r4 = htole32(r4);
1185 	return mtw_mcu_cmd(sc, 30, &cmd, sizeof(struct mtw_mcu_cmd_16));
1186 }
1187 
1188 int
1189 mtw_mcu_radio(struct mtw_softc *sc, int func, uint32_t val)
1190 {
1191 	struct mtw_mcu_cmd_16 cmd;
1192 
1193 	cmd.r1 = htole32(func);
1194 	cmd.r2 = htole32(val);
1195 	cmd.r3 = 0;
1196 	cmd.r4 = 0;
1197 	return mtw_mcu_cmd(sc, 20, &cmd, sizeof(struct mtw_mcu_cmd_16));
1198 }
1199 
1200 int
1201 mtw_mcu_cmd(struct mtw_softc *sc, int cmd, void *buf, int len)
1202 {
1203 	struct mtw_tx_ring *ring = &sc->sc_mcu;
1204 	struct mtw_tx_data *data = &ring->data[0];
1205 	struct mtw_txd *txd;
1206 	int xferlen;
1207 
1208 	txd = (struct mtw_txd *)(data->buf);
1209 	txd->len = htole16(len);
1210 	txd->flags = htole16(MTW_TXD_CMD | MTW_TXD_MCU |
1211 	    (cmd & 0x1f) << MTW_TXD_CMD_SHIFT | (sc->cmd_seq & 0xf));
1212 
1213 	memcpy(&txd[1], buf, len);
1214 	memset(&txd[1] + len, 0, MTW_DMA_PAD);
1215 	xferlen = len + sizeof(struct mtw_txd) + MTW_DMA_PAD;
1216 
1217 	usbd_setup_xfer(data->xfer, sc->txq[MTW_TXQ_MCU].pipeh,
1218 	    NULL, data->buf, xferlen,
1219 	    USBD_SHORT_XFER_OK | USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS,
1220 	    MTW_TX_TIMEOUT, NULL);
1221 	return usbd_transfer(data->xfer);
1222 }
1223 
1224 /*
1225  * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
1226  * Used to adjust per-rate Tx power registers.
1227  */
1228 static __inline uint32_t
1229 b4inc(uint32_t b32, int8_t delta)
1230 {
1231 	int8_t i, b4;
1232 
1233 	for (i = 0; i < 8; i++) {
1234 		b4 = b32 & 0xf;
1235 		b4 += delta;
1236 		if (b4 < 0)
1237 			b4 = 0;
1238 		else if (b4 > 0xf)
1239 			b4 = 0xf;
1240 		b32 = b32 >> 4 | b4 << 28;
1241 	}
1242 	return b32;
1243 }
1244 
1245 const char *
1246 mtw_get_rf(int rev)
1247 {
1248 	switch (rev) {
1249 	case MT7601_RF_7601:	return "MT7601";
1250 	case MT7610_RF_7610:	return "MT7610";
1251 	case MT7612_RF_7612:	return "MT7612";
1252 	}
1253 	return "unknown";
1254 }
1255 
1256 void
1257 mtw_get_txpower(struct mtw_softc *sc)
1258 {
1259 	uint16_t val;
1260 	int i;
1261 
1262 	/* Read power settings for 2GHz channels. */
1263 	for (i = 0; i < 14; i += 2) {
1264 		mtw_srom_read(sc, MTW_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
1265 		sc->txpow1[i + 0] = (int8_t)(val & 0xff);
1266 		sc->txpow1[i + 1] = (int8_t)(val >> 8);
1267 		mtw_srom_read(sc, MTW_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
1268 		sc->txpow2[i + 0] = (int8_t)(val & 0xff);
1269 		sc->txpow2[i + 1] = (int8_t)(val >> 8);
1270 	}
1271 	/* Fix broken Tx power entries. */
1272 	for (i = 0; i < 14; i++) {
1273 		if (sc->txpow1[i] < 0 || sc->txpow1[i] > 27)
1274 			sc->txpow1[i] = 5;
1275 		if (sc->txpow2[i] < 0 || sc->txpow2[i] > 27)
1276 			sc->txpow2[i] = 5;
1277 		DPRINTF(("chan %d: power1=%d, power2=%d\n",
1278 		    mt7601_rf_chan[i].chan, sc->txpow1[i], sc->txpow2[i]));
1279 	}
1280 #if 0
1281 	/* Read power settings for 5GHz channels. */
1282 	for (i = 0; i < 40; i += 2) {
1283 		mtw_srom_read(sc, MTW_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
1284 		sc->txpow1[i + 14] = (int8_t)(val & 0xff);
1285 		sc->txpow1[i + 15] = (int8_t)(val >> 8);
1286 
1287 		mtw_srom_read(sc, MTW_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
1288 		sc->txpow2[i + 14] = (int8_t)(val & 0xff);
1289 		sc->txpow2[i + 15] = (int8_t)(val >> 8);
1290 	}
1291 	/* Fix broken Tx power entries. */
1292 	for (i = 0; i < 40; i++ ) {
1293 		if (sc->mac_ver != 0x5592) {
1294 			if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
1295 				sc->txpow1[14 + i] = 5;
1296 			if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
1297 				sc->txpow2[14 + i] = 5;
1298 		}
1299 		DPRINTF(("chan %d: power1=%d, power2=%d\n",
1300 		    mt7601_rf_chan[14 + i].chan, sc->txpow1[14 + i],
1301 		    sc->txpow2[14 + i]));
1302 	}
1303 #endif
1304 }
1305 
1306 int
1307 mtw_read_eeprom(struct mtw_softc *sc)
1308 {
1309 	struct ieee80211com *ic = &sc->sc_ic;
1310 	int8_t delta_2ghz, delta_5ghz;
1311 	uint16_t val;
1312 	int ridx, ant;
1313 
1314 	sc->sc_srom_read = mtw_efuse_read_2;
1315 
1316 	/* read RF information */
1317 	mtw_srom_read(sc, MTW_EEPROM_CHIPID, &val);
1318 	sc->rf_rev = val;
1319 	mtw_srom_read(sc, MTW_EEPROM_ANTENNA, &val);
1320 	sc->ntxchains = (val >> 4) & 0xf;
1321 	sc->nrxchains = val & 0xf;
1322 	DPRINTF(("EEPROM RF rev=0x%02x chains=%dT%dR\n",
1323 	    sc->rf_rev, sc->ntxchains, sc->nrxchains));
1324 
1325 	/* read ROM version */
1326 	mtw_srom_read(sc, MTW_EEPROM_VERSION, &val);
1327 	DPRINTF(("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8));
1328 
1329 	/* read MAC address */
1330 	mtw_srom_read(sc, MTW_EEPROM_MAC01, &val);
1331 	ic->ic_myaddr[0] = val & 0xff;
1332 	ic->ic_myaddr[1] = val >> 8;
1333 	mtw_srom_read(sc, MTW_EEPROM_MAC23, &val);
1334 	ic->ic_myaddr[2] = val & 0xff;
1335 	ic->ic_myaddr[3] = val >> 8;
1336 	mtw_srom_read(sc, MTW_EEPROM_MAC45, &val);
1337 	ic->ic_myaddr[4] = val & 0xff;
1338 	ic->ic_myaddr[5] = val >> 8;
1339 #if 0
1340 	printf("eFUSE ROM\n00: ");
1341 	for (int i = 0; i < 256; i++) {
1342 		if (((i % 8) == 0) && i > 0)
1343 			printf("\n%02x: ", i);
1344 		mtw_srom_read(sc, i, &val);
1345 		printf(" %04x", val);
1346 	}
1347 	printf("\n");
1348 #endif
1349 	/* check if RF supports automatic Tx access gain control */
1350 	mtw_srom_read(sc, MTW_EEPROM_CONFIG, &val);
1351 	DPRINTF(("EEPROM CFG 0x%04x\n", val));
1352 	if ((val & 0xff) != 0xff) {
1353 		sc->ext_5ghz_lna = (val >> 3) & 1;
1354 		sc->ext_2ghz_lna = (val >> 2) & 1;
1355 		/* check if RF supports automatic Tx access gain control */
1356 		sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
1357 		/* check if we have a hardware radio switch */
1358 		sc->rfswitch = val & 1;
1359 	}
1360 
1361 	/* read RF frequency offset from EEPROM */
1362 	mtw_srom_read(sc, MTW_EEPROM_FREQ_OFFSET, &val);
1363 	if ((val & 0xff) != 0xff)
1364 		sc->rf_freq_offset = val;
1365 	else
1366 		sc->rf_freq_offset = 0;
1367 	DPRINTF(("frequency offset 0x%x\n", sc->rf_freq_offset));
1368 
1369 	/* Read Tx power settings. */
1370 	mtw_get_txpower(sc);
1371 
1372 	/* read Tx power compensation for each Tx rate */
1373 	mtw_srom_read(sc, MTW_EEPROM_DELTAPWR, &val);
1374 	delta_2ghz = delta_5ghz = 0;
1375 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1376 		delta_2ghz = val & 0xf;
1377 		if (!(val & 0x40))	/* negative number */
1378 			delta_2ghz = -delta_2ghz;
1379 	}
1380 	val >>= 8;
1381 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1382 		delta_5ghz = val & 0xf;
1383 		if (!(val & 0x40))	/* negative number */
1384 			delta_5ghz = -delta_5ghz;
1385 	}
1386 	DPRINTF(("power compensation=%d (2GHz), %d (5GHz)\n",
1387 	    delta_2ghz, delta_5ghz));
1388 
1389 	for (ridx = 0; ridx < 5; ridx++) {
1390 		uint32_t reg;
1391 
1392 		mtw_srom_read(sc, MTW_EEPROM_RPWR + ridx * 2, &val);
1393 		reg = val;
1394 		mtw_srom_read(sc, MTW_EEPROM_RPWR + ridx * 2 + 1, &val);
1395 		reg |= (uint32_t)val << 16;
1396 
1397 		sc->txpow20mhz[ridx] = reg;
1398 		sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
1399 		sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
1400 
1401 		DPRINTF(("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
1402 		    "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
1403 		    sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]));
1404 	}
1405 
1406 	/* read RSSI offsets and LNA gains from EEPROM */
1407 	val = 0;
1408 	mtw_srom_read(sc, MTW_EEPROM_RSSI1_2GHZ, &val);
1409 	sc->rssi_2ghz[0] = val & 0xff;	/* Ant A */
1410 	sc->rssi_2ghz[1] = val >> 8;	/* Ant B */
1411 	mtw_srom_read(sc, MTW_EEPROM_RSSI2_2GHZ, &val);
1412 	/*
1413 	 * On RT3070 chips (limited to 2 Rx chains), this ROM
1414 	 * field contains the Tx mixer gain for the 2GHz band.
1415 	 */
1416 	if ((val & 0xff) != 0xff)
1417 		sc->txmixgain_2ghz = val & 0x7;
1418 	DPRINTF(("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz));
1419 	sc->lna[2] = val >> 8;		/* channel group 2 */
1420 	mtw_srom_read(sc, MTW_EEPROM_RSSI1_5GHZ, &val);
1421 	sc->rssi_5ghz[0] = val & 0xff;	/* Ant A */
1422 	sc->rssi_5ghz[1] = val >> 8;	/* Ant B */
1423 	mtw_srom_read(sc, MTW_EEPROM_RSSI2_5GHZ, &val);
1424 	sc->rssi_5ghz[2] = val & 0xff;	/* Ant C */
1425 
1426 	sc->lna[3] = val >> 8;		/* channel group 3 */
1427 
1428 	mtw_srom_read(sc, MTW_EEPROM_LNA, &val);
1429 	sc->lna[0] = val & 0xff;	/* channel group 0 */
1430 	sc->lna[1] = val >> 8;		/* channel group 1 */
1431 	DPRINTF(("LNA0 0x%x\n", sc->lna[0]));
1432 
1433 	/* fix broken 5GHz LNA entries */
1434 	if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
1435 		DPRINTF(("invalid LNA for channel group %d\n", 2));
1436 		sc->lna[2] = sc->lna[1];
1437 	}
1438 	if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
1439 		DPRINTF(("invalid LNA for channel group %d\n", 3));
1440 		sc->lna[3] = sc->lna[1];
1441 	}
1442 
1443 	/* fix broken RSSI offset entries */
1444 	for (ant = 0; ant < 3; ant++) {
1445 		if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
1446 			DPRINTF(("invalid RSSI%d offset: %d (2GHz)\n",
1447 			    ant + 1, sc->rssi_2ghz[ant]));
1448 			sc->rssi_2ghz[ant] = 0;
1449 		}
1450 		if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
1451 			DPRINTF(("invalid RSSI%d offset: %d (5GHz)\n",
1452 			    ant + 1, sc->rssi_5ghz[ant]));
1453 			sc->rssi_5ghz[ant] = 0;
1454 		}
1455 	}
1456 	return 0;
1457 }
1458 
1459 struct ieee80211_node *
1460 mtw_node_alloc(struct ieee80211com *ic)
1461 {
1462 	struct mtw_node *mn;
1463 
1464 	mn = malloc(sizeof (struct mtw_node), M_USBDEV, M_NOWAIT | M_ZERO);
1465 	return (struct ieee80211_node *)mn;
1466 }
1467 
1468 int
1469 mtw_media_change(struct ifnet *ifp)
1470 {
1471 	struct mtw_softc *sc = ifp->if_softc;
1472 	struct ieee80211com *ic = &sc->sc_ic;
1473 	uint8_t rate, ridx;
1474 	int error;
1475 
1476 	error = ieee80211_media_change(ifp);
1477 	if (error != ENETRESET)
1478 		return error;
1479 
1480 	if (ic->ic_fixed_rate != -1) {
1481 		rate = ic->ic_sup_rates[ic->ic_curmode].
1482 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1483 		for (ridx = 0; ridx <= MTW_RIDX_MAX; ridx++)
1484 			if (rt2860_rates[ridx].rate == rate)
1485 				break;
1486 		sc->fixed_ridx = ridx;
1487 	}
1488 
1489 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1490 	    (IFF_UP | IFF_RUNNING)) {
1491 		mtw_stop(ifp, 0);
1492 		error = mtw_init(ifp);
1493 	}
1494 	return error;
1495 }
1496 
1497 void
1498 mtw_next_scan(void *arg)
1499 {
1500 	struct mtw_softc *sc = arg;
1501 	int s;
1502 
1503 	if (usbd_is_dying(sc->sc_udev))
1504 		return;
1505 
1506 	usbd_ref_incr(sc->sc_udev);
1507 
1508 	s = splnet();
1509 	if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
1510 		ieee80211_next_scan(&sc->sc_ic.ic_if);
1511 	splx(s);
1512 
1513 	usbd_ref_decr(sc->sc_udev);
1514 }
1515 
1516 void
1517 mtw_task(void *arg)
1518 {
1519 	struct mtw_softc *sc = arg;
1520 	struct mtw_host_cmd_ring *ring = &sc->cmdq;
1521 	struct mtw_host_cmd *cmd;
1522 	int s;
1523 
1524 	if (usbd_is_dying(sc->sc_udev))
1525 		return;
1526 
1527 	/* process host commands */
1528 	s = splusb();
1529 	while (ring->next != ring->cur) {
1530 		cmd = &ring->cmd[ring->next];
1531 		splx(s);
1532 		/* callback */
1533 		cmd->cb(sc, cmd->data);
1534 		s = splusb();
1535 		ring->queued--;
1536 		ring->next = (ring->next + 1) % MTW_HOST_CMD_RING_COUNT;
1537 	}
1538 	splx(s);
1539 }
1540 
1541 void
1542 mtw_do_async(struct mtw_softc *sc, void (*cb)(struct mtw_softc *, void *),
1543     void *arg, int len)
1544 {
1545 	struct mtw_host_cmd_ring *ring = &sc->cmdq;
1546 	struct mtw_host_cmd *cmd;
1547 	int s;
1548 
1549 	if (usbd_is_dying(sc->sc_udev))
1550 		return;
1551 
1552 	s = splusb();
1553 	cmd = &ring->cmd[ring->cur];
1554 	cmd->cb = cb;
1555 	KASSERT(len <= sizeof (cmd->data));
1556 	memcpy(cmd->data, arg, len);
1557 	ring->cur = (ring->cur + 1) % MTW_HOST_CMD_RING_COUNT;
1558 
1559 	/* if there is no pending command already, schedule a task */
1560 	if (++ring->queued == 1)
1561 		usb_add_task(sc->sc_udev, &sc->sc_task);
1562 	splx(s);
1563 }
1564 
1565 int
1566 mtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1567 {
1568 	struct mtw_softc *sc = ic->ic_softc;
1569 	struct mtw_cmd_newstate cmd;
1570 
1571 	/* do it in a process context */
1572 	cmd.state = nstate;
1573 	cmd.arg = arg;
1574 	mtw_do_async(sc, mtw_newstate_cb, &cmd, sizeof cmd);
1575 	return 0;
1576 }
1577 
1578 void
1579 mtw_newstate_cb(struct mtw_softc *sc, void *arg)
1580 {
1581 	struct mtw_cmd_newstate *cmd = arg;
1582 	struct ieee80211com *ic = &sc->sc_ic;
1583 	enum ieee80211_state ostate;
1584 	struct ieee80211_node *ni;
1585 	uint32_t sta[3];
1586 	uint8_t wcid;
1587 	int s;
1588 
1589 	s = splnet();
1590 	ostate = ic->ic_state;
1591 
1592 	if (ostate == IEEE80211_S_RUN) {
1593 		/* turn link LED on */
1594 		mtw_set_leds(sc, MTW_LED_MODE_ON);
1595 	}
1596 
1597 	switch (cmd->state) {
1598 	case IEEE80211_S_INIT:
1599 		if (ostate == IEEE80211_S_RUN) {
1600 			/* abort TSF synchronization */
1601 			mtw_abort_tsf_sync(sc);
1602 		}
1603 		break;
1604 
1605 	case IEEE80211_S_SCAN:
1606 		mtw_set_chan(sc, ic->ic_bss->ni_chan);
1607 		if (!usbd_is_dying(sc->sc_udev))
1608 			timeout_add_msec(&sc->scan_to, 200);
1609 		break;
1610 
1611 	case IEEE80211_S_AUTH:
1612 	case IEEE80211_S_ASSOC:
1613 		mtw_set_chan(sc, ic->ic_bss->ni_chan);
1614 		break;
1615 
1616 	case IEEE80211_S_RUN:
1617 		mtw_set_chan(sc, ic->ic_bss->ni_chan);
1618 
1619 		ni = ic->ic_bss;
1620 
1621 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1622 			mtw_updateslot(ic);
1623 			mtw_enable_mrr(sc);
1624 			mtw_set_txpreamble(sc);
1625 			mtw_set_basicrates(sc);
1626 			mtw_set_bssid(sc, ni->ni_bssid);
1627 		}
1628 		if (ic->ic_opmode == IEEE80211_M_STA) {
1629 			/* add BSS entry to the WCID table */
1630 			wcid = MTW_AID2WCID(ni->ni_associd);
1631 			mtw_write_region_1(sc, MTW_WCID_ENTRY(wcid),
1632 			    ni->ni_macaddr, IEEE80211_ADDR_LEN);
1633 
1634 			/* fake a join to init the tx rate */
1635 			mtw_newassoc(ic, ni, 1);
1636 		}
1637 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1638 			mtw_enable_tsf_sync(sc);
1639 
1640 			/* clear statistic registers used by AMRR */
1641 			mtw_read_region_1(sc, MTW_TX_STA_CNT0,
1642 			    (uint8_t *)sta, sizeof sta);
1643 			/* start calibration timer */
1644 			if (!usbd_is_dying(sc->sc_udev))
1645 				timeout_add_sec(&sc->calib_to, 1);
1646 		}
1647 
1648 		/* turn link LED on */
1649 		mtw_set_leds(sc, MTW_LED_MODE_BLINK_TX);
1650 		break;
1651 	}
1652 	(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
1653 	splx(s);
1654 }
1655 
1656 void
1657 mtw_updateedca(struct ieee80211com *ic)
1658 {
1659 	/* do it in a process context */
1660 	mtw_do_async(ic->ic_softc, mtw_updateedca_cb, NULL, 0);
1661 }
1662 
1663 /* ARGSUSED */
1664 void
1665 mtw_updateedca_cb(struct mtw_softc *sc, void *arg)
1666 {
1667 	struct ieee80211com *ic = &sc->sc_ic;
1668 	int s, aci;
1669 
1670 	s = splnet();
1671 	/* update MAC TX configuration registers */
1672 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
1673 		mtw_write(sc, MTW_EDCA_AC_CFG(aci),
1674 		    ic->ic_edca_ac[aci].ac_ecwmax << 16 |
1675 		    ic->ic_edca_ac[aci].ac_ecwmin << 12 |
1676 		    ic->ic_edca_ac[aci].ac_aifsn  <<  8 |
1677 		    ic->ic_edca_ac[aci].ac_txoplimit);
1678 	}
1679 
1680 	/* update SCH/DMA registers too */
1681 	mtw_write(sc, MTW_WMM_AIFSN_CFG,
1682 	    ic->ic_edca_ac[EDCA_AC_VO].ac_aifsn  << 12 |
1683 	    ic->ic_edca_ac[EDCA_AC_VI].ac_aifsn  <<  8 |
1684 	    ic->ic_edca_ac[EDCA_AC_BK].ac_aifsn  <<  4 |
1685 	    ic->ic_edca_ac[EDCA_AC_BE].ac_aifsn);
1686 	mtw_write(sc, MTW_WMM_CWMIN_CFG,
1687 	    ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmin << 12 |
1688 	    ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmin <<  8 |
1689 	    ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmin <<  4 |
1690 	    ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmin);
1691 	mtw_write(sc, MTW_WMM_CWMAX_CFG,
1692 	    ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmax << 12 |
1693 	    ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmax <<  8 |
1694 	    ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmax <<  4 |
1695 	    ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmax);
1696 	mtw_write(sc, MTW_WMM_TXOP0_CFG,
1697 	    ic->ic_edca_ac[EDCA_AC_BK].ac_txoplimit << 16 |
1698 	    ic->ic_edca_ac[EDCA_AC_BE].ac_txoplimit);
1699 	mtw_write(sc, MTW_WMM_TXOP1_CFG,
1700 	    ic->ic_edca_ac[EDCA_AC_VO].ac_txoplimit << 16 |
1701 	    ic->ic_edca_ac[EDCA_AC_VI].ac_txoplimit);
1702 	splx(s);
1703 }
1704 
1705 void
1706 mtw_updateslot(struct ieee80211com *ic)
1707 {
1708 	/* do it in a process context */
1709 	mtw_do_async(ic->ic_softc, mtw_updateslot_cb, NULL, 0);
1710 }
1711 
1712 /* ARGSUSED */
1713 void
1714 mtw_updateslot_cb(struct mtw_softc *sc, void *arg)
1715 {
1716 	uint32_t tmp;
1717 
1718 	mtw_read(sc, MTW_BKOFF_SLOT_CFG, &tmp);
1719 	tmp &= ~0xff;
1720 	tmp |= (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ?
1721 	    IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT;
1722 	mtw_write(sc, MTW_BKOFF_SLOT_CFG, tmp);
1723 }
1724 
1725 int
1726 mtw_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1727     struct ieee80211_key *k)
1728 {
1729 	struct mtw_softc *sc = ic->ic_softc;
1730 	struct mtw_cmd_key cmd;
1731 
1732 	/* defer setting of WEP keys until interface is brought up */
1733 	if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
1734 	    (IFF_UP | IFF_RUNNING))
1735 		return 0;
1736 
1737 	/* do it in a process context */
1738 	cmd.key = *k;
1739 	cmd.ni = ni;
1740 	mtw_do_async(sc, mtw_set_key_cb, &cmd, sizeof cmd);
1741 	sc->sc_key_tasks++;
1742 	return EBUSY;
1743 }
1744 
1745 void
1746 mtw_set_key_cb(struct mtw_softc *sc, void *arg)
1747 {
1748 	struct ieee80211com *ic = &sc->sc_ic;
1749 	struct mtw_cmd_key *cmd = arg;
1750 	struct ieee80211_key *k = &cmd->key;
1751 	uint32_t attr;
1752 	uint16_t base;
1753 	uint8_t mode, wcid, iv[8];
1754 
1755 	sc->sc_key_tasks--;
1756 
1757 	/* map net80211 cipher to RT2860 security mode */
1758 	switch (k->k_cipher) {
1759 	case IEEE80211_CIPHER_WEP40:
1760 		mode = MTW_MODE_WEP40;
1761 		break;
1762 	case IEEE80211_CIPHER_WEP104:
1763 		mode = MTW_MODE_WEP104;
1764 		break;
1765 	case IEEE80211_CIPHER_TKIP:
1766 		mode = MTW_MODE_TKIP;
1767 		break;
1768 	case IEEE80211_CIPHER_CCMP:
1769 		mode = MTW_MODE_AES_CCMP;
1770 		break;
1771 	default:
1772 		if (cmd->ni != NULL) {
1773 			IEEE80211_SEND_MGMT(ic, cmd->ni,
1774 			    IEEE80211_FC0_SUBTYPE_DEAUTH,
1775 			    IEEE80211_REASON_AUTH_LEAVE);
1776 		}
1777 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1778 		return;
1779 	}
1780 
1781 	if (k->k_flags & IEEE80211_KEY_GROUP) {
1782 		wcid = 0;	/* NB: update WCID0 for group keys */
1783 		base = MTW_SKEY(0, k->k_id);
1784 	} else {
1785 		wcid = (cmd->ni != NULL) ? MTW_AID2WCID(cmd->ni->ni_associd) : 0;
1786 		base = MTW_PKEY(wcid);
1787 	}
1788 
1789 	if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
1790 		mtw_write_region_1(sc, base, k->k_key, 16);
1791 		mtw_write_region_1(sc, base + 16, &k->k_key[24], 8);
1792 		mtw_write_region_1(sc, base + 24, &k->k_key[16], 8);
1793 	} else {
1794 		/* roundup len to 16-bit: XXX fix write_region_1() instead */
1795 		mtw_write_region_1(sc, base, k->k_key, (k->k_len + 1) & ~1);
1796 	}
1797 
1798 	if (!(k->k_flags & IEEE80211_KEY_GROUP) ||
1799 	    (k->k_flags & IEEE80211_KEY_TX)) {
1800 		/* set initial packet number in IV+EIV */
1801 		if (k->k_cipher == IEEE80211_CIPHER_WEP40 ||
1802 		    k->k_cipher == IEEE80211_CIPHER_WEP104) {
1803 			memset(iv, 0, sizeof iv);
1804 			iv[3] = sc->sc_ic.ic_def_txkey << 6;
1805 		} else {
1806 			if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
1807 				iv[0] = k->k_tsc >> 8;
1808 				iv[1] = (iv[0] | 0x20) & 0x7f;
1809 				iv[2] = k->k_tsc;
1810 			} else /* CCMP */ {
1811 				iv[0] = k->k_tsc;
1812 				iv[1] = k->k_tsc >> 8;
1813 				iv[2] = 0;
1814 			}
1815 			iv[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
1816 			iv[4] = k->k_tsc >> 16;
1817 			iv[5] = k->k_tsc >> 24;
1818 			iv[6] = k->k_tsc >> 32;
1819 			iv[7] = k->k_tsc >> 40;
1820 		}
1821 		mtw_write_region_1(sc, MTW_IVEIV(wcid), iv, 8);
1822 	}
1823 
1824 	if (k->k_flags & IEEE80211_KEY_GROUP) {
1825 		/* install group key */
1826 		mtw_read(sc, MTW_SKEY_MODE_0_7, &attr);
1827 		attr &= ~(0xf << (k->k_id * 4));
1828 		attr |= mode << (k->k_id * 4);
1829 		mtw_write(sc, MTW_SKEY_MODE_0_7, attr);
1830 
1831 		if (k->k_cipher & (IEEE80211_CIPHER_WEP104 |
1832 		    IEEE80211_CIPHER_WEP40)) {
1833 			mtw_read(sc, MTW_WCID_ATTR(wcid + 1), &attr);
1834 			attr = (attr & ~0xf) | (mode << 1);
1835 			mtw_write(sc, MTW_WCID_ATTR(wcid + 1), attr);
1836 
1837 			mtw_set_region_4(sc, MTW_IVEIV(0), 0, 4);
1838 
1839 			mtw_read(sc, MTW_WCID_ATTR(wcid), &attr);
1840 			attr = (attr & ~0xf) | (mode << 1);
1841 			mtw_write(sc, MTW_WCID_ATTR(wcid), attr);
1842 		}
1843 	} else {
1844 		/* install pairwise key */
1845 		mtw_read(sc, MTW_WCID_ATTR(wcid), &attr);
1846 		attr = (attr & ~0xf) | (mode << 1) | MTW_RX_PKEY_EN;
1847 		mtw_write(sc, MTW_WCID_ATTR(wcid), attr);
1848 	}
1849 
1850 	if (sc->sc_key_tasks == 0) {
1851 		if (cmd->ni != NULL)
1852 			cmd->ni->ni_port_valid = 1;
1853 		ieee80211_set_link_state(ic, LINK_STATE_UP);
1854 	}
1855 }
1856 
1857 void
1858 mtw_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1859     struct ieee80211_key *k)
1860 {
1861 	struct mtw_softc *sc = ic->ic_softc;
1862 	struct mtw_cmd_key cmd;
1863 
1864 	if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
1865 	    ic->ic_state != IEEE80211_S_RUN)
1866 		return;	/* nothing to do */
1867 
1868 	/* do it in a process context */
1869 	cmd.key = *k;
1870 	cmd.ni = ni;
1871 	mtw_do_async(sc, mtw_delete_key_cb, &cmd, sizeof cmd);
1872 }
1873 
1874 void
1875 mtw_delete_key_cb(struct mtw_softc *sc, void *arg)
1876 {
1877 	struct mtw_cmd_key *cmd = arg;
1878 	struct ieee80211_key *k = &cmd->key;
1879 	uint32_t attr;
1880 	uint8_t wcid;
1881 
1882 	if (k->k_flags & IEEE80211_KEY_GROUP) {
1883 		/* remove group key */
1884 		mtw_read(sc, MTW_SKEY_MODE_0_7, &attr);
1885 		attr &= ~(0xf << (k->k_id * 4));
1886 		mtw_write(sc, MTW_SKEY_MODE_0_7, attr);
1887 
1888 	} else {
1889 		/* remove pairwise key */
1890 		wcid = (cmd->ni != NULL) ? MTW_AID2WCID(cmd->ni->ni_associd) : 0;
1891 		mtw_read(sc, MTW_WCID_ATTR(wcid), &attr);
1892 		attr &= ~0xf;
1893 		mtw_write(sc, MTW_WCID_ATTR(wcid), attr);
1894 	}
1895 }
1896 
1897 void
1898 mtw_calibrate_to(void *arg)
1899 {
1900 	/* do it in a process context */
1901 	mtw_do_async(arg, mtw_calibrate_cb, NULL, 0);
1902 	/* next timeout will be rescheduled in the calibration task */
1903 }
1904 
1905 /* ARGSUSED */
1906 void
1907 mtw_calibrate_cb(struct mtw_softc *sc, void *arg)
1908 {
1909 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1910 	uint32_t sta[3];
1911 	int s, error;
1912 
1913 	/* read statistic counters (clear on read) and update AMRR state */
1914 	error = mtw_read_region_1(sc, MTW_TX_STA_CNT0, (uint8_t *)sta,
1915 	    sizeof sta);
1916 	if (error != 0)
1917 		goto skip;
1918 
1919 	DPRINTF(("retrycnt=%d txcnt=%d failcnt=%d\n",
1920 	    letoh32(sta[1]) >> 16, letoh32(sta[1]) & 0xffff,
1921 	    letoh32(sta[0]) & 0xffff));
1922 
1923 	s = splnet();
1924 	/* count failed TX as errors */
1925 	ifp->if_oerrors += letoh32(sta[0]) & 0xffff;
1926 
1927 	sc->amn.amn_retrycnt =
1928 	    (letoh32(sta[0]) & 0xffff) +	/* failed TX count */
1929 	    (letoh32(sta[1]) >> 16);		/* TX retransmission count */
1930 
1931 	sc->amn.amn_txcnt =
1932 	    sc->amn.amn_retrycnt +
1933 	    (letoh32(sta[1]) & 0xffff);		/* successful TX count */
1934 
1935 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
1936 
1937 	splx(s);
1938 skip:
1939 	if (!usbd_is_dying(sc->sc_udev))
1940 		timeout_add_sec(&sc->calib_to, 1);
1941 }
1942 
1943 void
1944 mtw_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
1945 {
1946 	struct mtw_softc *sc = ic->ic_softc;
1947 	struct mtw_node *mn = (void *)ni;
1948 	struct ieee80211_rateset *rs = &ni->ni_rates;
1949 	uint8_t rate;
1950 	int ridx, i, j;
1951 
1952 	DPRINTF(("new assoc isnew=%d addr=%s\n",
1953 	    isnew, ether_sprintf(ni->ni_macaddr)));
1954 
1955 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
1956 
1957 	/* start at lowest available bit-rate, AMRR will raise */
1958 	ni->ni_txrate = 0;
1959 
1960 	for (i = 0; i < rs->rs_nrates; i++) {
1961 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
1962 		/* convert 802.11 rate to hardware rate index */
1963 		for (ridx = 0; ridx < MTW_RIDX_MAX; ridx++)
1964 			if (rt2860_rates[ridx].rate == rate)
1965 				break;
1966 		mn->ridx[i] = ridx;
1967 		/* determine rate of control response frames */
1968 		for (j = i; j >= 0; j--) {
1969 			if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
1970 			    rt2860_rates[mn->ridx[i]].phy ==
1971 			    rt2860_rates[mn->ridx[j]].phy)
1972 				break;
1973 		}
1974 		if (j >= 0) {
1975 			mn->ctl_ridx[i] = mn->ridx[j];
1976 		} else {
1977 			/* no basic rate found, use mandatory one */
1978 			mn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
1979 		}
1980 		DPRINTF(("rate=0x%02x ridx=%d ctl_ridx=%d\n",
1981 		    rs->rs_rates[i], mn->ridx[i], mn->ctl_ridx[i]));
1982 	}
1983 }
1984 
1985 /*
1986  * Return the Rx chain with the highest RSSI for a given frame.
1987  */
1988 static __inline uint8_t
1989 mtw_maxrssi_chain(struct mtw_softc *sc, const struct mtw_rxwi *rxwi)
1990 {
1991 	uint8_t rxchain = 0;
1992 
1993 	if (sc->nrxchains > 1) {
1994 		if (rxwi->rssi[1] > rxwi->rssi[rxchain])
1995 			rxchain = 1;
1996 	}
1997 	return rxchain;
1998 }
1999 
2000 void
2001 mtw_rx_frame(struct mtw_softc *sc, uint8_t *buf, int dmalen,
2002     struct mbuf_list *ml)
2003 {
2004 	struct ieee80211com *ic = &sc->sc_ic;
2005 	struct ifnet *ifp = &ic->ic_if;
2006 	struct ieee80211_frame *wh;
2007 	struct ieee80211_rxinfo rxi;
2008 	struct ieee80211_node *ni;
2009 	struct mtw_rxwi *rxwi;
2010 	struct mbuf *m;
2011 	uint32_t flags;
2012 	uint16_t len;
2013 #if NBPFILTER > 0
2014 	uint16_t phy;
2015 #endif
2016 	uint16_t rxwisize;
2017 	uint8_t ant, rssi;
2018 	int s;
2019 
2020 	/* Rx Wireless Information */
2021 	rxwi = (struct mtw_rxwi *)(buf);
2022 	rxwisize = sizeof(struct mtw_rxwi);
2023 	len = letoh16(rxwi->len) & 0xfff;
2024 
2025 	if (__predict_false(len > dmalen)) {
2026 		DPRINTF(("bad RXWI length %u > %u\n", len, dmalen));
2027 		return;
2028 	}
2029 	if (len > MCLBYTES) {
2030 		DPRINTF(("frame too large (length=%d)\n", len));
2031 		ifp->if_ierrors++;
2032 		return;
2033 	}
2034 
2035 	flags = letoh32(rxwi->flags);
2036 	if (__predict_false(flags & (MTW_RX_CRCERR | MTW_RX_ICVERR))) {
2037 		ifp->if_ierrors++;
2038 		return;
2039 	}
2040 	if (__predict_false((flags & MTW_RX_MICERR))) {
2041 		/* report MIC failures to net80211 for TKIP */
2042 		ic->ic_stats.is_rx_locmicfail++;
2043 		ieee80211_michael_mic_failure(ic, 0/* XXX */);
2044 		ifp->if_ierrors++;
2045 		return;
2046 	}
2047 
2048 	wh = (struct ieee80211_frame *)(buf + rxwisize);
2049 	memset(&rxi, 0, sizeof(rxi));
2050 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2051 		wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
2052 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
2053 	}
2054 
2055 	if (flags & MTW_RX_L2PAD) {
2056 		u_int hdrlen = ieee80211_get_hdrlen(wh);
2057 		memmove((caddr_t)wh + 2, wh, hdrlen);
2058 		wh = (struct ieee80211_frame *)((caddr_t)wh + 2);
2059 	}
2060 
2061 	/* could use m_devget but net80211 wants contig mgmt frames */
2062 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2063 	if (__predict_false(m == NULL)) {
2064 		ifp->if_ierrors++;
2065 		return;
2066 	}
2067 	if (len > MHLEN) {
2068 		MCLGET(m, M_DONTWAIT);
2069 		if (__predict_false(!(m->m_flags & M_EXT))) {
2070 			ifp->if_ierrors++;
2071 			m_freem(m);
2072 			return;
2073 		}
2074 	}
2075 	/* finalize mbuf */
2076 	memcpy(mtod(m, caddr_t), wh, len);
2077 	m->m_pkthdr.len = m->m_len = len;
2078 
2079 	ant = mtw_maxrssi_chain(sc, rxwi);
2080 	rssi = rxwi->rssi[ant];
2081 
2082 #if NBPFILTER > 0
2083 	if (__predict_false(sc->sc_drvbpf != NULL)) {
2084 		struct mtw_rx_radiotap_header *tap = &sc->sc_rxtap;
2085 		struct mbuf mb;
2086 
2087 		tap->wr_flags = 0;
2088 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2089 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2090 		tap->wr_antsignal = rssi;
2091 		tap->wr_antenna = ant;
2092 		tap->wr_dbm_antsignal = mtw_rssi2dbm(sc, rssi, ant);
2093 		tap->wr_rate = 2;	/* in case it can't be found below */
2094 		phy = letoh16(rxwi->phy);
2095 		switch (phy & MTW_PHY_MODE) {
2096 		case MTW_PHY_CCK:
2097 			switch ((phy & MTW_PHY_MCS) & ~MTW_PHY_SHPRE) {
2098 			case 0:	tap->wr_rate =   2; break;
2099 			case 1:	tap->wr_rate =   4; break;
2100 			case 2:	tap->wr_rate =  11; break;
2101 			case 3:	tap->wr_rate =  22; break;
2102 			}
2103 			if (phy & MTW_PHY_SHPRE)
2104 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2105 			break;
2106 		case MTW_PHY_OFDM:
2107 			switch (phy & MTW_PHY_MCS) {
2108 			case 0:	tap->wr_rate =  12; break;
2109 			case 1:	tap->wr_rate =  18; break;
2110 			case 2:	tap->wr_rate =  24; break;
2111 			case 3:	tap->wr_rate =  36; break;
2112 			case 4:	tap->wr_rate =  48; break;
2113 			case 5:	tap->wr_rate =  72; break;
2114 			case 6:	tap->wr_rate =  96; break;
2115 			case 7:	tap->wr_rate = 108; break;
2116 			}
2117 			break;
2118 		}
2119 		mb.m_data = (caddr_t)tap;
2120 		mb.m_len = sc->sc_rxtap_len;
2121 		mb.m_next = m;
2122 		mb.m_nextpkt = NULL;
2123 		mb.m_type = 0;
2124 		mb.m_flags = 0;
2125 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
2126 	}
2127 #endif
2128 
2129 	s = splnet();
2130 	ni = ieee80211_find_rxnode(ic, wh);
2131 	rxi.rxi_rssi = rssi;
2132 	ieee80211_inputm(ifp, m, ni, &rxi, ml);
2133 
2134 	/* node is no longer needed */
2135 	ieee80211_release_node(ic, ni);
2136 	splx(s);
2137 }
2138 
2139 void
2140 mtw_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
2141 {
2142 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
2143 	struct mtw_rx_data *data = priv;
2144 	struct mtw_softc *sc = data->sc;
2145 	uint8_t *buf;
2146 	uint32_t dmalen;
2147 	int xferlen;
2148 
2149 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
2150 		DPRINTF(("RX status=%d\n", status));
2151 		if (status == USBD_STALLED)
2152 			usbd_clear_endpoint_stall_async(sc->rxq[0].pipeh);
2153 		if (status != USBD_CANCELLED)
2154 			goto skip;
2155 		return;
2156 	}
2157 
2158 	usbd_get_xfer_status(xfer, NULL, NULL, &xferlen, NULL);
2159 
2160 	if (__predict_false(xferlen < sizeof(uint32_t) +
2161 	    sizeof (struct mtw_rxwi) + sizeof(struct mtw_rxd))) {
2162 		DPRINTF(("RX xfer too short %d\n", xferlen));
2163 		goto skip;
2164 	}
2165 
2166 	/* HW can aggregate multiple 802.11 frames in a single USB xfer */
2167 	buf = data->buf;
2168 	while (xferlen > 8) {
2169 		dmalen = letoh32(*(uint32_t *)buf) & MTW_RXD_LEN;
2170 		if (__predict_false(dmalen == 0 || (dmalen & 3) != 0)) {
2171 			DPRINTF(("bad DMA length %u\n", dmalen));
2172 			break;
2173 		}
2174 		if (__predict_false(dmalen + 8 > xferlen)) {
2175 			DPRINTF(("bad DMA length %u > %d\n",
2176 			    dmalen + 8, xferlen));
2177 			break;
2178 		}
2179 		mtw_rx_frame(sc, buf + sizeof(struct mtw_rxd), dmalen, &ml);
2180 		buf += dmalen + 8;
2181 		xferlen -= dmalen + 8;
2182 	}
2183 	if_input(&sc->sc_ic.ic_if, &ml);
2184 
2185 skip:	/* setup a new transfer */
2186 	usbd_setup_xfer(xfer, sc->rxq[0].pipeh, data, data->buf, MTW_MAX_RXSZ,
2187 	    USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, mtw_rxeof);
2188 	(void)usbd_transfer(data->xfer);
2189 }
2190 
2191 void
2192 mtw_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
2193 {
2194 	struct mtw_tx_data *data = priv;
2195 	struct mtw_softc *sc = data->sc;
2196 	struct mtw_tx_ring *txq = &sc->txq[data->qid];
2197 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2198 	int s;
2199 
2200 	if (usbd_is_dying(sc->sc_udev))
2201 		return;
2202 
2203 	s = splnet();
2204 	txq->queued--;
2205 	sc->qfullmsk &= ~(1 << data->qid);
2206 
2207 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
2208 		DPRINTF(("TX status=%d\n", status));
2209 		if (status == USBD_STALLED)
2210 			usbd_clear_endpoint_stall_async(txq->pipeh);
2211 		ifp->if_oerrors++;
2212 		splx(s);
2213 		return;
2214 	}
2215 
2216 	sc->sc_tx_timer = 0;
2217 
2218 	if (ifq_is_oactive(&ifp->if_snd)) {
2219 		ifq_clr_oactive(&ifp->if_snd);
2220 		mtw_start(ifp);
2221 	}
2222 
2223 	splx(s);
2224 }
2225 
2226 int
2227 mtw_tx(struct mtw_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2228 {
2229 	struct ieee80211com *ic = &sc->sc_ic;
2230 	struct mtw_node *mn = (void *)ni;
2231 	struct ieee80211_frame *wh;
2232 	struct mtw_tx_ring *ring;
2233 	struct mtw_tx_data *data;
2234 	struct mtw_txd *txd;
2235 	struct mtw_txwi *txwi;
2236 	uint16_t qos, dur;
2237 	uint16_t txwisize;
2238 	uint8_t type, mcs, tid, qid;
2239 	int error, hasqos, ridx, ctl_ridx, xferlen;
2240 
2241 	wh = mtod(m, struct ieee80211_frame *);
2242 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2243 
2244 	/* select queue */
2245 	if ((hasqos = ieee80211_has_qos(wh))) {
2246 		qos = ieee80211_get_qos(wh);
2247 		tid = qos & IEEE80211_QOS_TID;
2248 		qid = ieee80211_up_to_ac(ic, tid);
2249 	} else {
2250 		qos = 0;
2251 		tid = 0;
2252 		qid = EDCA_AC_BE;
2253 	}
2254 
2255 	/* management frames go to MCU queue */
2256 	if (type == IEEE80211_FC0_TYPE_MGT)
2257 		qid = MTW_TXQ_MCU;
2258 
2259 	ring = &sc->txq[qid];
2260 	data = &ring->data[ring->cur];
2261 
2262 	/* pickup a rate index */
2263 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2264 	    type != IEEE80211_FC0_TYPE_DATA) {
2265 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2266 		    MTW_RIDX_OFDM6 : MTW_RIDX_CCK1;
2267 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
2268 	} else if (ic->ic_fixed_rate != -1) {
2269 		ridx = sc->fixed_ridx;
2270 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
2271 	} else {
2272 		ridx = mn->ridx[ni->ni_txrate];
2273 		ctl_ridx = mn->ctl_ridx[ni->ni_txrate];
2274 	}
2275 
2276 	txwisize = sizeof(struct mtw_txwi);
2277 	xferlen = txwisize + m->m_pkthdr.len;
2278 
2279 	/* roundup to 32-bit alignment */
2280 	xferlen = (xferlen + 3) & ~3;
2281 
2282 	/* setup TX descriptor */
2283 	txd = (struct mtw_txd *)data->buf;
2284 	txd->flags = htole16(MTW_TXD_DATA | MTW_TXD_80211 |
2285 	    MTW_TXD_WLAN | MTW_TXD_QSEL_EDCA);
2286 
2287 	if (type != IEEE80211_FC0_TYPE_DATA)
2288 		txd->flags |= htole16(MTW_TXD_WIV);
2289 	txd->len = htole16(xferlen);
2290 	xferlen += sizeof(struct mtw_txd);
2291 
2292 	/* get MCS code from rate index */
2293 	mcs = rt2860_rates[ridx].mcs;
2294 
2295 	/* setup TX Wireless Information */
2296 	txwi = (struct mtw_txwi *)(txd + 1);
2297 	txwi->flags = 0;
2298 	txwi->xflags = hasqos ? 0 : MTW_TX_NSEQ;
2299 	txwi->wcid = (type == IEEE80211_FC0_TYPE_DATA) ?
2300 	    MTW_AID2WCID(ni->ni_associd) : 0xff;
2301 	txwi->len = htole16(m->m_pkthdr.len);
2302 	txwi->txop = MTW_TX_TXOP_BACKOFF;
2303 
2304 	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
2305 		txwi->phy = htole16(MTW_PHY_CCK);
2306 		if (ridx != MTW_RIDX_CCK1 &&
2307 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2308 			mcs |= MTW_PHY_SHPRE;
2309 	} else if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
2310 		txwi->phy = htole16(MTW_PHY_OFDM);
2311 	txwi->phy |= htole16(mcs);
2312 
2313 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2314 	    (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
2315 	     IEEE80211_QOS_ACK_POLICY_NOACK)) {
2316 		txwi->xflags |= MTW_TX_ACK;
2317 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2318 			dur = rt2860_rates[ctl_ridx].sp_ack_dur;
2319 		else
2320 			dur = rt2860_rates[ctl_ridx].lp_ack_dur;
2321 		*(uint16_t *)wh->i_dur = htole16(dur);
2322 	}
2323 
2324 #if NBPFILTER > 0
2325 	if (__predict_false(sc->sc_drvbpf != NULL)) {
2326 		struct mtw_tx_radiotap_header *tap = &sc->sc_txtap;
2327 		struct mbuf mb;
2328 
2329 		tap->wt_flags = 0;
2330 		tap->wt_rate = rt2860_rates[ridx].rate;
2331 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
2332 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
2333 		if (mcs & MTW_PHY_SHPRE)
2334 			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2335 
2336 		mb.m_data = (caddr_t)tap;
2337 		mb.m_len = sc->sc_txtap_len;
2338 		mb.m_next = m;
2339 		mb.m_nextpkt = NULL;
2340 		mb.m_type = 0;
2341 		mb.m_flags = 0;
2342 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
2343 	}
2344 #endif
2345 	/* copy payload */
2346 	m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)txwi + txwisize);
2347 	m_freem(m);
2348 
2349 	/* 4-byte pad */
2350 	memset(data->buf + xferlen, 0, MTW_DMA_PAD);
2351 	xferlen += MTW_DMA_PAD;
2352 
2353 	usbd_setup_xfer(data->xfer, ring->pipeh, data, data->buf,
2354 	    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2355 	    MTW_TX_TIMEOUT, mtw_txeof);
2356 	error = usbd_transfer(data->xfer);
2357 	if (__predict_false(error != USBD_IN_PROGRESS && error != 0))
2358 		return error;
2359 
2360 	ieee80211_release_node(ic, ni);
2361 
2362 	ring->cur = (ring->cur + 1) % MTW_TX_RING_COUNT;
2363 	if (++ring->queued >= MTW_TX_RING_COUNT)
2364 		sc->qfullmsk |= 1 << qid;
2365 	return 0;
2366 }
2367 
2368 void
2369 mtw_start(struct ifnet *ifp)
2370 {
2371 	struct mtw_softc *sc = ifp->if_softc;
2372 	struct ieee80211com *ic = &sc->sc_ic;
2373 	struct ieee80211_node *ni;
2374 	struct mbuf *m;
2375 
2376 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
2377 		return;
2378 
2379 	for (;;) {
2380 		if (sc->qfullmsk != 0) {
2381 			ifq_set_oactive(&ifp->if_snd);
2382 			break;
2383 		}
2384 
2385 		/* send pending management frames first */
2386 		m = mq_dequeue(&ic->ic_mgtq);
2387 		if (m != NULL) {
2388 			ni = m->m_pkthdr.ph_cookie;
2389 			goto sendit;
2390 		}
2391 		if (ic->ic_state != IEEE80211_S_RUN)
2392 			break;
2393 
2394 		/* encapsulate and send data frames */
2395 		m = ifq_dequeue(&ifp->if_snd);
2396 		if (m == NULL)
2397 			break;
2398 #if NBPFILTER > 0
2399 		if (ifp->if_bpf != NULL)
2400 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
2401 #endif
2402 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
2403 			continue;
2404 sendit:
2405 #if NBPFILTER > 0
2406 		if (ic->ic_rawbpf != NULL)
2407 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
2408 #endif
2409 		if (mtw_tx(sc, m, ni) != 0) {
2410 			ieee80211_release_node(ic, ni);
2411 			ifp->if_oerrors++;
2412 			continue;
2413 		}
2414 
2415 		sc->sc_tx_timer = 5;
2416 		ifp->if_timer = 1;
2417 	}
2418 }
2419 
2420 void
2421 mtw_watchdog(struct ifnet *ifp)
2422 {
2423 	struct mtw_softc *sc = ifp->if_softc;
2424 
2425 	ifp->if_timer = 0;
2426 
2427 	if (sc->sc_tx_timer > 0) {
2428 		if (--sc->sc_tx_timer == 0) {
2429 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2430 			/* mtw_init(ifp); XXX needs a process context! */
2431 			ifp->if_oerrors++;
2432 			return;
2433 		}
2434 		ifp->if_timer = 1;
2435 	}
2436 
2437 	ieee80211_watchdog(ifp);
2438 }
2439 
2440 int
2441 mtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2442 {
2443 	struct mtw_softc *sc = ifp->if_softc;
2444 	struct ieee80211com *ic = &sc->sc_ic;
2445 	int s, error = 0;
2446 
2447 	if (usbd_is_dying(sc->sc_udev))
2448 		return ENXIO;
2449 
2450 	usbd_ref_incr(sc->sc_udev);
2451 
2452 	s = splnet();
2453 
2454 	switch (cmd) {
2455 	case SIOCSIFADDR:
2456 		ifp->if_flags |= IFF_UP;
2457 		/* FALLTHROUGH */
2458 	case SIOCSIFFLAGS:
2459 		if (ifp->if_flags & IFF_UP) {
2460 			if (!(ifp->if_flags & IFF_RUNNING))
2461 				mtw_init(ifp);
2462 		} else {
2463 			if (ifp->if_flags & IFF_RUNNING)
2464 				mtw_stop(ifp, 1);
2465 		}
2466 		break;
2467 
2468 	case SIOCS80211CHANNEL:
2469 		/*
2470 		 * This allows for fast channel switching in monitor mode
2471 		 * (used by kismet).
2472 		 */
2473 		error = ieee80211_ioctl(ifp, cmd, data);
2474 		if (error == ENETRESET &&
2475 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2476 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2477 			    (IFF_UP | IFF_RUNNING))
2478 				mtw_set_chan(sc, ic->ic_ibss_chan);
2479 			error = 0;
2480 		}
2481 		break;
2482 
2483 	default:
2484 		error = ieee80211_ioctl(ifp, cmd, data);
2485 	}
2486 
2487 	if (error == ENETRESET) {
2488 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2489 		    (IFF_UP | IFF_RUNNING)) {
2490 			mtw_stop(ifp, 0);
2491 			error = mtw_init(ifp);
2492 		} else
2493 			error = 0;
2494 	}
2495 	splx(s);
2496 
2497 	usbd_ref_decr(sc->sc_udev);
2498 
2499 	return error;
2500 }
2501 
2502 void
2503 mtw_select_chan_group(struct mtw_softc *sc, int group)
2504 {
2505 	uint32_t tmp;
2506 	uint8_t bbp;
2507 
2508 	/* Tx band 20MHz 2G */
2509 	mtw_read(sc, MTW_TX_BAND_CFG, &tmp);
2510 	tmp &= ~(MTW_TX_BAND_SEL_2G | MTW_TX_BAND_SEL_5G |
2511 	    MTW_TX_BAND_UPPER_40M);
2512 	tmp |= (group == 0) ? MTW_TX_BAND_SEL_2G : MTW_TX_BAND_SEL_5G;
2513 	mtw_write(sc, MTW_TX_BAND_CFG, tmp);
2514 
2515 	/* select 20 MHz bandwidth */
2516 	mtw_bbp_read(sc, 4, &bbp);
2517 	bbp &= ~0x18;
2518 	bbp |= 0x40;
2519 	mtw_bbp_write(sc, 4, bbp);
2520 
2521 	/* calibrate BBP */
2522 	mtw_bbp_write(sc, 69, 0x12);
2523 	mtw_bbp_write(sc, 91, 0x07);
2524 	mtw_bbp_write(sc, 195, 0x23);
2525 	mtw_bbp_write(sc, 196, 0x17);
2526 	mtw_bbp_write(sc, 195, 0x24);
2527 	mtw_bbp_write(sc, 196, 0x06);
2528 	mtw_bbp_write(sc, 195, 0x81);
2529 	mtw_bbp_write(sc, 196, 0x12);
2530 	mtw_bbp_write(sc, 195, 0x83);
2531 	mtw_bbp_write(sc, 196, 0x17);
2532 	mtw_rf_write(sc, 5, 8, 0x00);
2533 	mtw_mcu_calibrate(sc, 0x6, 0x10001);
2534 
2535 	/* set initial AGC value */
2536 	mt7601_set_agc(sc, 0x14);
2537 }
2538 
2539 void
2540 mt7601_set_agc(struct mtw_softc *sc, uint8_t agc)
2541 {
2542 	uint8_t bbp;
2543 
2544 	mtw_bbp_write(sc, 66, agc);
2545 	mtw_bbp_write(sc, 195, 0x87);
2546 	bbp = (agc & 0xf0) | 0x08;
2547 	mtw_bbp_write(sc, 196, bbp);
2548 }
2549 
2550 void
2551 mt7601_set_chan(struct mtw_softc *sc, u_int chan)
2552 {
2553 	uint32_t tmp;
2554 	uint8_t bbp, rf, txpow1;
2555 	int i;
2556 
2557 	/* find the settings for this channel */
2558 	for (i = 0; mt7601_rf_chan[i].chan != chan; i++)
2559 
2560 	mtw_rf_write(sc, 0, 17, mt7601_rf_chan[i].r17);
2561 	mtw_rf_write(sc, 0, 18, mt7601_rf_chan[i].r18);
2562 	mtw_rf_write(sc, 0, 19, mt7601_rf_chan[i].r19);
2563 	mtw_rf_write(sc, 0, 20, mt7601_rf_chan[i].r20);
2564 
2565 	/* use Tx power values from EEPROM */
2566 	txpow1 = sc->txpow1[i];
2567 
2568 	/* Tx automatic level control */
2569 	mtw_read(sc, MTW_TX_ALC_CFG0, &tmp);
2570 	tmp &= ~0x3f3f;
2571 	tmp |= (txpow1 & 0x3f);
2572 	mtw_write(sc, MTW_TX_ALC_CFG0, tmp);
2573 
2574 	/* LNA */
2575 	mtw_bbp_write(sc, 62, 0x37 - sc->lna[0]);
2576 	mtw_bbp_write(sc, 63, 0x37 - sc->lna[0]);
2577 	mtw_bbp_write(sc, 64, 0x37 - sc->lna[0]);
2578 
2579 	/* VCO calibration */
2580 	mtw_rf_write(sc, 0, 4, 0x0a);
2581 	mtw_rf_write(sc, 0, 5, 0x20);
2582 	mtw_rf_read(sc, 0, 4, &rf);
2583 	mtw_rf_write(sc, 0, 4, rf | 0x80);
2584 
2585 	/* select 20 MHz bandwidth */
2586 	mtw_bbp_read(sc, 4, &bbp);
2587 	bbp &= ~0x18;
2588 	bbp |= 0x40;
2589 	mtw_bbp_write(sc, 4, bbp);
2590 	mtw_bbp_write(sc, 178, 0xff);
2591 }
2592 
2593 int
2594 mtw_set_chan(struct mtw_softc *sc, struct ieee80211_channel *c)
2595 {
2596 	struct ieee80211com *ic = &sc->sc_ic;
2597 	u_int chan, group;
2598 
2599 	chan = ieee80211_chan2ieee(ic, c);
2600 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2601 		return EINVAL;
2602 
2603 	/* determine channel group */
2604 	if (chan <= 14)
2605 		group = 0;
2606 	else if (chan <= 64)
2607 		group = 1;
2608 	else if (chan <= 128)
2609 		group = 2;
2610 	else
2611 		group = 3;
2612 
2613 	if (group != sc->sc_chan_group || !sc->sc_bw_calibrated)
2614 		mtw_select_chan_group(sc, group);
2615 
2616 	sc->sc_chan_group = group;
2617 
2618 	/* chipset specific */
2619 	if (sc->mac_ver == 0x7601)
2620 		mt7601_set_chan(sc, chan);
2621 
2622 	DELAY(1000);
2623 	return 0;
2624 }
2625 
2626 void
2627 mtw_enable_tsf_sync(struct mtw_softc *sc)
2628 {
2629 	struct ieee80211com *ic = &sc->sc_ic;
2630 	uint32_t tmp;
2631 
2632 	mtw_read(sc, MTW_BCN_TIME_CFG, &tmp);
2633 	tmp &= ~0x1fffff;
2634 	tmp |= ic->ic_bss->ni_intval * 16;
2635 	tmp |= MTW_TSF_TIMER_EN | MTW_TBTT_TIMER_EN;
2636 
2637 	/* local TSF is always updated with remote TSF on beacon reception */
2638 	tmp |= 1 << MTW_TSF_SYNC_MODE_SHIFT;
2639 	mtw_write(sc, MTW_BCN_TIME_CFG, tmp);
2640 }
2641 
2642 void
2643 mtw_abort_tsf_sync(struct mtw_softc *sc)
2644 {
2645 	uint32_t tmp;
2646 
2647 	mtw_read(sc, MTW_BCN_TIME_CFG, &tmp);
2648 	tmp &= ~(MTW_BCN_TX_EN | MTW_TSF_TIMER_EN | MTW_TBTT_TIMER_EN);
2649 	mtw_write(sc, MTW_BCN_TIME_CFG, tmp);
2650 }
2651 
2652 void
2653 mtw_enable_mrr(struct mtw_softc *sc)
2654 {
2655 #define CCK(mcs)	(mcs)
2656 #define OFDM(mcs)	(1 << 3 | (mcs))
2657 	mtw_write(sc, MTW_LG_FBK_CFG0,
2658 	    OFDM(6) << 28 |	/* 54->48 */
2659 	    OFDM(5) << 24 |	/* 48->36 */
2660 	    OFDM(4) << 20 |	/* 36->24 */
2661 	    OFDM(3) << 16 |	/* 24->18 */
2662 	    OFDM(2) << 12 |	/* 18->12 */
2663 	    OFDM(1) <<  8 |	/* 12-> 9 */
2664 	    OFDM(0) <<  4 |	/*  9-> 6 */
2665 	    OFDM(0));		/*  6-> 6 */
2666 
2667 	mtw_write(sc, MTW_LG_FBK_CFG1,
2668 	    CCK(2) << 12 |	/* 11->5.5 */
2669 	    CCK(1) <<  8 |	/* 5.5-> 2 */
2670 	    CCK(0) <<  4 |	/*   2-> 1 */
2671 	    CCK(0));		/*   1-> 1 */
2672 #undef OFDM
2673 #undef CCK
2674 }
2675 
2676 void
2677 mtw_set_txrts(struct mtw_softc *sc)
2678 {
2679 	uint32_t tmp;
2680 
2681 	/* set RTS threshold */
2682 	mtw_read(sc, MTW_TX_RTS_CFG, &tmp);
2683 	tmp &= ~0xffff00;
2684 	tmp |= 0x1000 << MTW_RTS_THRES_SHIFT;
2685 	mtw_write(sc, MTW_TX_RTS_CFG, tmp);
2686 }
2687 
2688 void
2689 mtw_set_txpreamble(struct mtw_softc *sc)
2690 {
2691 	uint32_t tmp;
2692 
2693 	mtw_read(sc, MTW_AUTO_RSP_CFG, &tmp);
2694 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2695 		tmp |= MTW_CCK_SHORT_EN;
2696 	else
2697 		tmp &= ~MTW_CCK_SHORT_EN;
2698 	mtw_write(sc, MTW_AUTO_RSP_CFG, tmp);
2699 }
2700 
2701 void
2702 mtw_set_basicrates(struct mtw_softc *sc)
2703 {
2704 	struct ieee80211com *ic = &sc->sc_ic;
2705 
2706 	/* set basic rates mask */
2707 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2708 		mtw_write(sc, MTW_LEGACY_BASIC_RATE, 0x003);
2709 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2710 		mtw_write(sc, MTW_LEGACY_BASIC_RATE, 0x150);
2711 	else	/* 11g */
2712 		mtw_write(sc, MTW_LEGACY_BASIC_RATE, 0x17f);
2713 }
2714 
2715 void
2716 mtw_set_leds(struct mtw_softc *sc, uint16_t which)
2717 {
2718 	struct mtw_mcu_cmd_8 cmd;
2719 
2720 	cmd.func = htole32(0x1);
2721 	cmd.val = htole32(which);
2722 	mtw_mcu_cmd(sc, 16, &cmd, sizeof(struct mtw_mcu_cmd_8));
2723 }
2724 
2725 void
2726 mtw_set_bssid(struct mtw_softc *sc, const uint8_t *bssid)
2727 {
2728 	mtw_write(sc, MTW_MAC_BSSID_DW0,
2729 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2730 	mtw_write(sc, MTW_MAC_BSSID_DW1,
2731 	    bssid[4] | bssid[5] << 8);
2732 }
2733 
2734 void
2735 mtw_set_macaddr(struct mtw_softc *sc, const uint8_t *addr)
2736 {
2737 	mtw_write(sc, MTW_MAC_ADDR_DW0,
2738 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2739 	mtw_write(sc, MTW_MAC_ADDR_DW1,
2740 	    addr[4] | addr[5] << 8 | 0xff << 16);
2741 }
2742 
2743 #if NBPFILTER > 0
2744 int8_t
2745 mtw_rssi2dbm(struct mtw_softc *sc, uint8_t rssi, uint8_t rxchain)
2746 {
2747 	struct ieee80211com *ic = &sc->sc_ic;
2748 	struct ieee80211_channel *c = ic->ic_ibss_chan;
2749 	int delta;
2750 
2751 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2752 		u_int chan = ieee80211_chan2ieee(ic, c);
2753 		delta = sc->rssi_5ghz[rxchain];
2754 
2755 		/* determine channel group */
2756 		if (chan <= 64)
2757 			delta -= sc->lna[1];
2758 		else if (chan <= 128)
2759 			delta -= sc->lna[2];
2760 		else
2761 			delta -= sc->lna[3];
2762 	} else
2763 		delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
2764 
2765 	return -12 - delta - rssi;
2766 }
2767 #endif
2768 
2769 int
2770 mt7601_bbp_init(struct mtw_softc *sc)
2771 {
2772 	uint8_t bbp;
2773 	int i, error, ntries;
2774 
2775 	/* wait for BBP to wake up */
2776 	for (ntries = 0; ntries < 20; ntries++) {
2777 		if ((error = mtw_bbp_read(sc, 0, &bbp)) != 0)
2778 			return error;
2779 		if (bbp != 0 && bbp != 0xff)
2780 			break;
2781 	}
2782 
2783 	if (ntries == 20)
2784 		return ETIMEDOUT;
2785 
2786 	mtw_bbp_read(sc, 3, &bbp);
2787 	mtw_bbp_write(sc, 3, 0);
2788 	mtw_bbp_read(sc, 105, &bbp);
2789 	mtw_bbp_write(sc, 105, 0);
2790 
2791 	/* initialize BBP registers to default values */
2792 	for (i = 0; i < nitems(mt7601_def_bbp); i++) {
2793 		if ((error = mtw_bbp_write(sc, mt7601_def_bbp[i].reg,
2794 		    mt7601_def_bbp[i].val)) != 0)
2795 			return error;
2796 	}
2797 
2798 	sc->sc_bw_calibrated = 0;
2799 
2800 	return 0;
2801 }
2802 
2803 int
2804 mt7601_rf_init(struct mtw_softc *sc)
2805 {
2806 	int i, error;
2807 
2808 	/* RF bank 0 */
2809 	for (i = 0; i < nitems(mt7601_rf_bank0); i++) {
2810 		error = mtw_rf_write(sc, 0, mt7601_rf_bank0[i].reg,
2811 		    mt7601_rf_bank0[i].val);
2812 		if (error != 0)
2813 			return error;
2814 	}
2815 	/* RF bank 4 */
2816 	for (i = 0; i < nitems(mt7601_rf_bank4); i++) {
2817 		error = mtw_rf_write(sc, 4, mt7601_rf_bank4[i].reg,
2818 		    mt7601_rf_bank4[i].val);
2819 		if (error != 0)
2820 			return error;
2821 	}
2822 	/* RF bank 5 */
2823 	for (i = 0; i < nitems(mt7601_rf_bank5); i++) {
2824 		error = mtw_rf_write(sc, 5, mt7601_rf_bank5[i].reg,
2825 		    mt7601_rf_bank5[i].val);
2826 		if (error != 0)
2827 			return error;
2828 	}
2829 	return 0;
2830 }
2831 
2832 int
2833 mt7601_rf_setup(struct mtw_softc *sc)
2834 {
2835 	uint32_t tmp;
2836 	uint8_t rf;
2837 	int error;
2838 
2839 	if (sc->sc_rf_calibrated)
2840 		return 0;
2841 
2842 	/* init RF registers */
2843 	if ((error = mt7601_rf_init(sc)) != 0)
2844 		return error;
2845 
2846 	/* init frequency offset */
2847 	mtw_rf_write(sc, 0, 12, sc->rf_freq_offset);
2848 	mtw_rf_read(sc, 0, 12, &rf);
2849 
2850 	/* read temperature */
2851 	mt7601_rf_temperature(sc, &rf);
2852 	sc->bbp_temp = rf;
2853 	DPRINTF(("BBP temp 0x%x ", rf));
2854 
2855 	mtw_rf_read(sc, 0, 7, &rf);
2856 	if ((error = mtw_mcu_calibrate(sc, 0x1, 0)) != 0)
2857 		return error;
2858 	usbd_delay_ms(sc->sc_udev, 100);
2859 	mtw_rf_read(sc, 0, 7, &rf);
2860 
2861 	/* Calibrate VCO RF 0/4 */
2862 	mtw_rf_write(sc, 0, 4, 0x0a);
2863 	mtw_rf_write(sc, 0, 4, 0x20);
2864 	mtw_rf_read(sc, 0, 4, &rf);
2865 	mtw_rf_write(sc, 0, 4, rf | 0x80);
2866 
2867 	if ((error = mtw_mcu_calibrate(sc, 0x9, 0)) != 0)
2868 		return error;
2869 	if ((error = mt7601_rxdc_cal(sc)) != 0)
2870 		return error;
2871 	if ((error = mtw_mcu_calibrate(sc, 0x6, 1)) != 0)
2872 		return error;
2873 	if ((error = mtw_mcu_calibrate(sc, 0x6, 0)) != 0)
2874 		return error;
2875 	if ((error = mtw_mcu_calibrate(sc, 0x4, 0)) != 0)
2876 		return error;
2877 	if ((error = mtw_mcu_calibrate(sc, 0x5, 0)) != 0)
2878 		return error;
2879 
2880 	mtw_read(sc, MTW_LDO_CFG0, &tmp);
2881 	tmp &= ~(1 << 4);
2882 	tmp |= (1 << 2);
2883 	mtw_write(sc, MTW_LDO_CFG0, tmp);
2884 
2885 	if ((error = mtw_mcu_calibrate(sc, 0x8, 0)) != 0)
2886 		return error;
2887 	if ((error = mt7601_rxdc_cal(sc)) != 0)
2888 		return error;
2889 
2890 	sc->sc_rf_calibrated = 1;
2891 	return 0;
2892 }
2893 
2894 int
2895 mt7601_rf_temperature(struct mtw_softc *sc, int8_t *val)
2896 {
2897 	uint32_t rfb, rfs;
2898 	uint8_t bbp;
2899 	int ntries;
2900 
2901 	mtw_read(sc, MTW_RF_BYPASS0, &rfb);
2902 	mtw_read(sc, MTW_RF_SETTING0, &rfs);
2903 	mtw_write(sc, MTW_RF_BYPASS0, 0);
2904 	mtw_write(sc, MTW_RF_SETTING0, 0x10);
2905 	mtw_write(sc, MTW_RF_BYPASS0, 0x10);
2906 
2907 	mtw_bbp_read(sc, 47, &bbp);
2908 	bbp &= ~0x7f;
2909 	bbp |= 0x10;
2910 	mtw_bbp_write(sc, 47, bbp);
2911 
2912 	mtw_bbp_write(sc, 22, 0x40);
2913 
2914 	for (ntries = 0; ntries < 10; ntries++) {
2915 		mtw_bbp_read(sc, 47, &bbp);
2916 		if ((bbp & 0x10) == 0)
2917 			break;
2918 	}
2919 	if (ntries == 10)
2920 		return ETIMEDOUT;
2921 
2922 	mt7601_r49_read(sc, MT7601_R47_TEMP, val);
2923 
2924 	mtw_bbp_write(sc, 22, 0);
2925 
2926 	mtw_bbp_read(sc, 21, &bbp);
2927 	bbp |= 0x02;
2928 	mtw_bbp_write(sc, 21, bbp);
2929 	bbp &= ~0x02;
2930 	mtw_bbp_write(sc, 21, bbp);
2931 
2932 	mtw_write(sc, MTW_RF_BYPASS0, 0);
2933 	mtw_write(sc, MTW_RF_SETTING0, rfs);
2934 	mtw_write(sc, MTW_RF_BYPASS0, rfb);
2935 	return 0;
2936 }
2937 
2938 int
2939 mt7601_r49_read(struct mtw_softc *sc, uint8_t flag, int8_t *val)
2940 {
2941 	uint8_t bbp;
2942 
2943 	mtw_bbp_read(sc, 47, &bbp);
2944 	bbp = 0x90;
2945 	mtw_bbp_write(sc, 47, bbp);
2946 	bbp &= ~0x0f;
2947 	bbp |= flag;
2948 	mtw_bbp_write(sc, 47, bbp);
2949 	return mtw_bbp_read(sc, 49, val);
2950 }
2951 
2952 int
2953 mt7601_rxdc_cal(struct mtw_softc *sc)
2954 {
2955 	uint32_t tmp;
2956 	uint8_t bbp;
2957 	int ntries;
2958 
2959 	mtw_read(sc, MTW_MAC_SYS_CTRL, &tmp);
2960 	mtw_write(sc, MTW_MAC_SYS_CTRL, MTW_MAC_RX_EN);
2961 	mtw_bbp_write(sc, 158, 0x8d);
2962 	mtw_bbp_write(sc, 159, 0xfc);
2963 	mtw_bbp_write(sc, 158, 0x8c);
2964 	mtw_bbp_write(sc, 159, 0x4c);
2965 
2966 	for (ntries = 0; ntries < 20; ntries++) {
2967 		DELAY(300);
2968 		mtw_bbp_write(sc, 158, 0x8c);
2969 		mtw_bbp_read(sc, 159, &bbp);
2970 		if (bbp == 0x0c)
2971 			break;
2972 	}
2973 
2974 	if (ntries == 20)
2975 		return ETIMEDOUT;
2976 
2977 	mtw_write(sc, MTW_MAC_SYS_CTRL, 0);
2978 	mtw_bbp_write(sc, 158, 0x8d);
2979 	mtw_bbp_write(sc, 159, 0xe0);
2980 	mtw_write(sc, MTW_MAC_SYS_CTRL, tmp);
2981 	return 0;
2982 }
2983 
2984 int
2985 mtw_wlan_enable(struct mtw_softc *sc, int enable)
2986 {
2987 	uint32_t tmp;
2988 	int error = 0;
2989 
2990 	if (enable) {
2991 		mtw_read(sc, MTW_WLAN_CTRL, &tmp);
2992 		if (sc->asic_ver == 0x7612)
2993 			tmp &= ~0xfffff000;
2994 
2995 		tmp &= ~MTW_WLAN_CLK_EN;
2996 		tmp |= MTW_WLAN_EN;
2997 		mtw_write(sc, MTW_WLAN_CTRL, tmp);
2998 		usbd_delay_ms(sc->sc_udev, 2);
2999 
3000 		tmp |= MTW_WLAN_CLK_EN;
3001 		if (sc->asic_ver == 0x7612) {
3002 			tmp |= (MTW_WLAN_RESET | MTW_WLAN_RESET_RF);
3003 		}
3004 		mtw_write(sc, MTW_WLAN_CTRL, tmp);
3005 		usbd_delay_ms(sc->sc_udev, 2);
3006 
3007 		mtw_read(sc, MTW_OSC_CTRL, &tmp);
3008 		tmp |= MTW_OSC_EN;
3009 		mtw_write(sc, MTW_OSC_CTRL, tmp);
3010 		tmp |= MTW_OSC_CAL_REQ;
3011 		mtw_write(sc, MTW_OSC_CTRL, tmp);
3012 	} else {
3013 		mtw_read(sc, MTW_WLAN_CTRL, &tmp);
3014 		tmp &= ~(MTW_WLAN_CLK_EN | MTW_WLAN_EN);
3015 		mtw_write(sc, MTW_WLAN_CTRL, tmp);
3016 
3017 		mtw_read(sc, MTW_OSC_CTRL, &tmp);
3018 		tmp &= ~MTW_OSC_EN;
3019 		mtw_write(sc, MTW_OSC_CTRL, tmp);
3020 	}
3021 	return error;
3022 }
3023 
3024 int
3025 mtw_txrx_enable(struct mtw_softc *sc)
3026 {
3027 	uint32_t tmp;
3028 	int error, ntries;
3029 
3030 	mtw_write(sc, MTW_MAC_SYS_CTRL, MTW_MAC_TX_EN);
3031 	for (ntries = 0; ntries < 200; ntries++) {
3032 		if ((error = mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp)) != 0)
3033 			return error;
3034 		if ((tmp & (MTW_TX_DMA_BUSY | MTW_RX_DMA_BUSY)) == 0)
3035 			break;
3036 		DELAY(1000);
3037 	}
3038 	if (ntries == 200)
3039 		return ETIMEDOUT;
3040 
3041 	DELAY(50);
3042 
3043 	tmp |= MTW_RX_DMA_EN | MTW_TX_DMA_EN | MTW_TX_WB_DDONE;
3044 	mtw_write(sc, MTW_WPDMA_GLO_CFG, tmp);
3045 
3046 	/* enable Rx bulk aggregation (set timeout and limit) */
3047 	tmp = MTW_USB_TX_EN | MTW_USB_RX_EN | MTW_USB_RX_AGG_EN |
3048 	   MTW_USB_RX_AGG_TO(128) | MTW_USB_RX_AGG_LMT(2);
3049 	mtw_write(sc, MTW_USB_DMA_CFG, tmp);
3050 
3051 	/* set Rx filter */
3052 	tmp = MTW_DROP_CRC_ERR | MTW_DROP_PHY_ERR;
3053 	if (sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) {
3054 		tmp |= MTW_DROP_UC_NOME | MTW_DROP_DUPL |
3055 		    MTW_DROP_CTS | MTW_DROP_BA | MTW_DROP_ACK |
3056 		    MTW_DROP_VER_ERR | MTW_DROP_CTRL_RSV |
3057 		    MTW_DROP_CFACK | MTW_DROP_CFEND;
3058 		if (sc->sc_ic.ic_opmode == IEEE80211_M_STA)
3059 			tmp |= MTW_DROP_RTS | MTW_DROP_PSPOLL;
3060 	}
3061 	mtw_write(sc, MTW_RX_FILTR_CFG, tmp);
3062 
3063 	mtw_write(sc, MTW_MAC_SYS_CTRL,
3064 	    MTW_MAC_RX_EN | MTW_MAC_TX_EN);
3065 	return 0;
3066 }
3067 
3068 int
3069 mtw_init(struct ifnet *ifp)
3070 {
3071 	struct mtw_softc *sc = ifp->if_softc;
3072 	struct ieee80211com *ic = &sc->sc_ic;
3073 	uint32_t tmp;
3074 	int i, error, ridx, ntries, qid;
3075 
3076 	if (usbd_is_dying(sc->sc_udev))
3077 		return ENXIO;
3078 
3079 	/* init Tx rings (4 EDCAs, 1 HCCA, 1 MGMT) */
3080 	for (qid = 0; qid < MTW_TXQ_COUNT; qid++) {
3081 		if ((error = mtw_alloc_tx_ring(sc, qid)) != 0)
3082 			goto fail;
3083 	}
3084 
3085 	/* init Rx ring */
3086 	if ((error = mtw_alloc_rx_ring(sc, 0)) != 0)
3087 		goto fail;
3088 
3089 	/* init MCU Tx ring */
3090 	if ((error = mtw_alloc_mcu_ring(sc)) != 0)
3091 		goto fail;
3092 
3093 	/* init host command ring */
3094 	sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
3095 
3096 	for (ntries = 0; ntries < 100; ntries++) {
3097 		if ((error = mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp)) != 0)
3098 			goto fail;
3099 		if ((tmp & (MTW_TX_DMA_BUSY | MTW_RX_DMA_BUSY)) == 0)
3100 			break;
3101 		DELAY(1000);
3102 	}
3103 	if (ntries == 100) {
3104 		printf("%s: timeout waiting for DMA engine\n",
3105 		    sc->sc_dev.dv_xname);
3106 		error = ETIMEDOUT;
3107 		goto fail;
3108 	}
3109 	tmp &= 0xff0;
3110 	tmp |= MTW_TX_WB_DDONE;
3111 	mtw_write(sc, MTW_WPDMA_GLO_CFG, tmp);
3112 
3113 	/* reset MAC and baseband */
3114 	mtw_write(sc, MTW_MAC_SYS_CTRL, MTW_BBP_HRST | MTW_MAC_SRST);
3115 	mtw_write(sc, MTW_USB_DMA_CFG, 0);
3116 	mtw_write(sc, MTW_MAC_SYS_CTRL, 0);
3117 
3118 	/* init MAC values */
3119 	if (sc->mac_ver == 0x7601) {
3120 		for (i = 0; i < nitems(mt7601_def_mac); i++)
3121 			mtw_write(sc, mt7601_def_mac[i].reg,
3122 			    mt7601_def_mac[i].val);
3123 	}
3124 
3125 	/* wait while MAC is busy */
3126 	for (ntries = 0; ntries < 100; ntries++) {
3127 		if ((error = mtw_read(sc, MTW_MAC_STATUS_REG, &tmp)) != 0)
3128 			goto fail;
3129 		if (!(tmp & (MTW_RX_STATUS_BUSY | MTW_TX_STATUS_BUSY)))
3130 			break;
3131 		DELAY(1000);
3132 	}
3133 	if (ntries == 100) {
3134 		error = ETIMEDOUT;
3135 		goto fail;
3136 	}
3137 
3138 	/* set MAC address */
3139 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
3140 	mtw_set_macaddr(sc, ic->ic_myaddr);
3141 
3142 	/* clear WCID attribute table */
3143 	mtw_set_region_4(sc, MTW_WCID_ATTR(0), 1, 8 * 32);
3144 
3145 	mtw_write(sc, 0x1648, 0x00830083);
3146 	mtw_read(sc, MTW_FCE_L2_STUFF, &tmp);
3147 	tmp &= ~MTW_L2S_WR_MPDU_LEN_EN;
3148 	mtw_write(sc, MTW_FCE_L2_STUFF, tmp);
3149 
3150 	/* RTS config */
3151 	mtw_set_txrts(sc);
3152 
3153 	/* clear Host to MCU mailbox */
3154 	mtw_write(sc, MTW_BBP_CSR, 0);
3155 	mtw_write(sc, MTW_H2M_MAILBOX, 0);
3156 
3157 	/* clear RX WCID search table */
3158 	mtw_set_region_4(sc, MTW_WCID_ENTRY(0), 0xffffffff, 512);
3159 
3160 	/* abort TSF synchronization */
3161 	mtw_abort_tsf_sync(sc);
3162 
3163 	mtw_read(sc, MTW_US_CYC_CNT, &tmp);
3164 	tmp = (tmp & ~0xff);
3165 	if (sc->mac_ver == 0x7601)
3166 		tmp |= 0x1e;
3167 	mtw_write(sc, MTW_US_CYC_CNT, tmp);
3168 
3169 	/* clear shared key table */
3170 	mtw_set_region_4(sc, MTW_SKEY(0, 0), 0, 8 * 32);
3171 
3172 	/* clear IV/EIV table */
3173 	mtw_set_region_4(sc, MTW_IVEIV(0), 0, 8 * 32);
3174 
3175 	/* clear shared key mode */
3176 	mtw_write(sc, MTW_SKEY_MODE_0_7, 0);
3177 	mtw_write(sc, MTW_SKEY_MODE_8_15, 0);
3178 
3179 	/* txop truncation */
3180 	mtw_write(sc, MTW_TXOP_CTRL_CFG, 0x0000583f);
3181 
3182 	/* init Tx power for all Tx rates */
3183 	for (ridx = 0; ridx < 5; ridx++) {
3184 		if (sc->txpow20mhz[ridx] == 0xffffffff)
3185 			continue;
3186 		mtw_write(sc, MTW_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
3187 	}
3188 	mtw_write(sc, MTW_TX_PWR_CFG7, 0);
3189 	mtw_write(sc, MTW_TX_PWR_CFG9, 0);
3190 
3191 	mtw_read(sc, MTW_CMB_CTRL, &tmp);
3192 	tmp &= ~(1 << 18 | 1 << 14);
3193 	mtw_write(sc, MTW_CMB_CTRL, tmp);
3194 
3195 	/* clear USB DMA */
3196 	mtw_write(sc, MTW_USB_DMA_CFG, MTW_USB_TX_EN | MTW_USB_RX_EN |
3197 	    MTW_USB_RX_AGG_EN | MTW_USB_TX_CLEAR | MTW_USB_TXOP_HALT |
3198 	    MTW_USB_RX_WL_DROP);
3199 	usbd_delay_ms(sc->sc_udev, 50);
3200 	mtw_read(sc, MTW_USB_DMA_CFG, &tmp);
3201 	tmp &= ~(MTW_USB_TX_CLEAR | MTW_USB_TXOP_HALT |
3202 	    MTW_USB_RX_WL_DROP);
3203 	mtw_write(sc, MTW_USB_DMA_CFG, tmp);
3204 
3205 	/* enable radio */
3206 	mtw_mcu_radio(sc, 0x31, 0);
3207 
3208 	/* init RF registers */
3209 	if (sc->mac_ver == 0x7601)
3210 		mt7601_rf_init(sc);
3211 
3212 	/* init baseband registers */
3213 	if (sc->mac_ver == 0x7601)
3214 		error = mt7601_bbp_init(sc);
3215 
3216 	if (error != 0) {
3217 		printf("%s: could not initialize BBP\n", sc->sc_dev.dv_xname);
3218 		goto fail;
3219 	}
3220 
3221 	/* setup and calibrate RF */
3222 	if (sc->mac_ver == 0x7601)
3223 		error = mt7601_rf_setup(sc);
3224 
3225 	if (error != 0) {
3226 		printf("%s: could not initialize RF\n", sc->sc_dev.dv_xname);
3227 		goto fail;
3228 	}
3229 
3230 	/* select default channel */
3231 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
3232 	mtw_set_chan(sc, ic->ic_ibss_chan);
3233 
3234 	for (i = 0; i < MTW_RX_RING_COUNT; i++) {
3235 		struct mtw_rx_data *data = &sc->rxq[MTW_RXQ_WLAN].data[i];
3236 
3237 		usbd_setup_xfer(data->xfer, sc->rxq[MTW_RXQ_WLAN].pipeh,
3238 		    data, data->buf,
3239 		    MTW_MAX_RXSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
3240 		    USBD_NO_TIMEOUT, mtw_rxeof);
3241 		error = usbd_transfer(data->xfer);
3242 		if (error != 0 && error != USBD_IN_PROGRESS)
3243 			goto fail;
3244 	}
3245 
3246 	if ((error = mtw_txrx_enable(sc)) != 0)
3247 		goto fail;
3248 
3249 	/* init LEDs */
3250 	mtw_set_leds(sc, MTW_LED_MODE_ON);
3251 
3252 	ifp->if_flags |= IFF_RUNNING;
3253 	ifq_clr_oactive(&ifp->if_snd);
3254 
3255 	if (ic->ic_flags & IEEE80211_F_WEPON) {
3256 		/* install WEP keys */
3257 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
3258 			if (ic->ic_nw_keys[i].k_cipher != IEEE80211_CIPHER_NONE)
3259 				(void)mtw_set_key(ic, NULL, &ic->ic_nw_keys[i]);
3260 		}
3261 	}
3262 
3263 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3264 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3265 	else
3266 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3267 
3268 	if (error != 0)
3269 fail:	    mtw_stop(ifp, 1);
3270 	return error;
3271 }
3272 
3273 void
3274 mtw_stop(struct ifnet *ifp, int disable)
3275 {
3276 	struct mtw_softc *sc = ifp->if_softc;
3277 	struct ieee80211com *ic = &sc->sc_ic;
3278 	uint32_t tmp;
3279 	int s, ntries, error, qid;
3280 
3281 	if (ifp->if_flags & IFF_RUNNING)
3282 		mtw_set_leds(sc, MTW_LED_MODE_ON);
3283 
3284 	sc->sc_tx_timer = 0;
3285 	ifp->if_timer = 0;
3286 	ifp->if_flags &= ~IFF_RUNNING;
3287 	ifq_clr_oactive(&ifp->if_snd);
3288 
3289 	timeout_del(&sc->scan_to);
3290 	timeout_del(&sc->calib_to);
3291 
3292 	s = splusb();
3293 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3294 	/* wait for all queued asynchronous commands to complete */
3295 	usb_wait_task(sc->sc_udev, &sc->sc_task);
3296 	splx(s);
3297 
3298 	/* Disable Tx/Rx DMA. */
3299 	mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp);
3300 	tmp &= ~(MTW_RX_DMA_EN | MTW_TX_DMA_EN);
3301 	mtw_write(sc, MTW_WPDMA_GLO_CFG, tmp);
3302 	mtw_usb_dma_write(sc, 0);
3303 
3304 	for (ntries = 0; ntries < 100; ntries++) {
3305 		if (mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp) != 0)
3306 			break;
3307 		if ((tmp & (MTW_TX_DMA_BUSY | MTW_RX_DMA_BUSY)) == 0)
3308 			break;
3309 		DELAY(10);
3310 	}
3311 	if (ntries == 100) {
3312 		printf("%s: timeout waiting for DMA engine\n",
3313 		    sc->sc_dev.dv_xname);
3314 	}
3315 
3316 	/* stop MAC Tx/Rx */
3317 	mtw_read(sc, MTW_MAC_SYS_CTRL, &tmp);
3318 	tmp &= ~(MTW_MAC_RX_EN | MTW_MAC_TX_EN);
3319 	mtw_write(sc, MTW_MAC_SYS_CTRL, tmp);
3320 
3321 	/* disable RTS retry */
3322 	mtw_read(sc, MTW_TX_RTS_CFG, &tmp);
3323 	tmp &= ~0xff;
3324 	mtw_write(sc, MTW_TX_RTS_CFG, tmp);
3325 
3326 	/* US_CYC_CFG */
3327 	mtw_read(sc, MTW_US_CYC_CNT, &tmp);
3328 	tmp = (tmp & ~0xff);
3329 	mtw_write(sc, MTW_US_CYC_CNT, tmp);
3330 
3331 	/* stop PBF */
3332 	mtw_read(sc, MTW_PBF_CFG, &tmp);
3333 	tmp &= ~0x3;
3334 	mtw_write(sc, MTW_PBF_CFG, tmp);
3335 
3336 	/* wait for pending Tx to complete */
3337 	for (ntries = 0; ntries < 100; ntries++) {
3338 		if ((error = mtw_read(sc, MTW_TXRXQ_PCNT, &tmp)) != 0)
3339 			break;
3340 		if ((tmp & MTW_TX2Q_PCNT_MASK) == 0)
3341 			break;
3342 	}
3343 	DELAY(1000);
3344 
3345 	/* delete keys */
3346 	for (qid = 0; qid < 4; qid++) {
3347 		mtw_read(sc, MTW_SKEY_MODE_0_7, &tmp);
3348 		tmp &= ~(0xf << qid * 4);
3349 		mtw_write(sc, MTW_SKEY_MODE_0_7, tmp);
3350 	}
3351 
3352 	if (disable) {
3353 		/* disable radio */
3354 		error = mtw_mcu_radio(sc, 0x30, 0x1);
3355 		usbd_delay_ms(sc->sc_udev, 10);
3356 	}
3357 
3358 	/* free Tx and Rx rings */
3359 	sc->qfullmsk = 0;
3360 	mtw_free_mcu_ring(sc);
3361 	for (qid = 0; qid < MTW_TXQ_COUNT; qid++)
3362 		mtw_free_tx_ring(sc, qid);
3363 	mtw_free_rx_ring(sc, 0);
3364 }
3365