1 /* $OpenBSD: softraid_crypto.c,v 1.130 2016/05/31 15:11:26 jsing Exp $ */ 2 /* 3 * Copyright (c) 2007 Marco Peereboom <marco@peereboom.us> 4 * Copyright (c) 2008 Hans-Joerg Hoexer <hshoexer@openbsd.org> 5 * Copyright (c) 2008 Damien Miller <djm@mindrot.org> 6 * Copyright (c) 2009 Joel Sing <jsing@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include "bio.h" 22 23 #include <sys/param.h> 24 #include <sys/systm.h> 25 #include <sys/buf.h> 26 #include <sys/device.h> 27 #include <sys/ioctl.h> 28 #include <sys/malloc.h> 29 #include <sys/pool.h> 30 #include <sys/kernel.h> 31 #include <sys/disk.h> 32 #include <sys/rwlock.h> 33 #include <sys/queue.h> 34 #include <sys/fcntl.h> 35 #include <sys/disklabel.h> 36 #include <sys/vnode.h> 37 #include <sys/mount.h> 38 #include <sys/sensors.h> 39 #include <sys/stat.h> 40 #include <sys/conf.h> 41 #include <sys/uio.h> 42 #include <sys/dkio.h> 43 44 #include <crypto/cryptodev.h> 45 #include <crypto/rijndael.h> 46 #include <crypto/md5.h> 47 #include <crypto/sha1.h> 48 #include <crypto/sha2.h> 49 #include <crypto/hmac.h> 50 51 #include <scsi/scsi_all.h> 52 #include <scsi/scsiconf.h> 53 #include <scsi/scsi_disk.h> 54 55 #include <dev/softraidvar.h> 56 57 /* 58 * The per-I/O data that we need to preallocate. We cannot afford to allow I/O 59 * to start failing when memory pressure kicks in. We can store this in the WU 60 * because we assert that only one ccb per WU will ever be active. 61 */ 62 struct sr_crypto_wu { 63 struct sr_workunit cr_wu; /* Must be first. */ 64 struct uio cr_uio; 65 struct iovec cr_iov; 66 struct cryptop *cr_crp; 67 struct cryptodesc *cr_descs; 68 void *cr_dmabuf; 69 }; 70 71 72 struct sr_crypto_wu *sr_crypto_prepare(struct sr_workunit *, int); 73 int sr_crypto_create_keys(struct sr_discipline *); 74 int sr_crypto_get_kdf(struct bioc_createraid *, 75 struct sr_discipline *); 76 int sr_crypto_decrypt(u_char *, u_char *, u_char *, size_t, int); 77 int sr_crypto_encrypt(u_char *, u_char *, u_char *, size_t, int); 78 int sr_crypto_decrypt_key(struct sr_discipline *); 79 int sr_crypto_change_maskkey(struct sr_discipline *, 80 struct sr_crypto_kdfinfo *, struct sr_crypto_kdfinfo *); 81 int sr_crypto_create(struct sr_discipline *, 82 struct bioc_createraid *, int, int64_t); 83 int sr_crypto_assemble(struct sr_discipline *, 84 struct bioc_createraid *, int, void *); 85 int sr_crypto_alloc_resources(struct sr_discipline *); 86 void sr_crypto_free_resources(struct sr_discipline *); 87 int sr_crypto_ioctl(struct sr_discipline *, 88 struct bioc_discipline *); 89 int sr_crypto_meta_opt_handler(struct sr_discipline *, 90 struct sr_meta_opt_hdr *); 91 int sr_crypto_write(struct cryptop *); 92 int sr_crypto_rw(struct sr_workunit *); 93 int sr_crypto_dev_rw(struct sr_workunit *, struct sr_crypto_wu *); 94 void sr_crypto_done(struct sr_workunit *); 95 int sr_crypto_read(struct cryptop *); 96 void sr_crypto_calculate_check_hmac_sha1(u_int8_t *, int, 97 u_int8_t *, int, u_char *); 98 void sr_crypto_hotplug(struct sr_discipline *, struct disk *, int); 99 100 #ifdef SR_DEBUG0 101 void sr_crypto_dumpkeys(struct sr_discipline *); 102 #endif 103 104 /* Discipline initialisation. */ 105 void 106 sr_crypto_discipline_init(struct sr_discipline *sd) 107 { 108 int i; 109 110 /* Fill out discipline members. */ 111 sd->sd_type = SR_MD_CRYPTO; 112 strlcpy(sd->sd_name, "CRYPTO", sizeof(sd->sd_name)); 113 sd->sd_capabilities = SR_CAP_SYSTEM_DISK | SR_CAP_AUTO_ASSEMBLE; 114 sd->sd_max_wu = SR_CRYPTO_NOWU; 115 116 for (i = 0; i < SR_CRYPTO_MAXKEYS; i++) 117 sd->mds.mdd_crypto.scr_sid[i] = (u_int64_t)-1; 118 119 /* Setup discipline specific function pointers. */ 120 sd->sd_alloc_resources = sr_crypto_alloc_resources; 121 sd->sd_assemble = sr_crypto_assemble; 122 sd->sd_create = sr_crypto_create; 123 sd->sd_free_resources = sr_crypto_free_resources; 124 sd->sd_ioctl_handler = sr_crypto_ioctl; 125 sd->sd_meta_opt_handler = sr_crypto_meta_opt_handler; 126 sd->sd_scsi_rw = sr_crypto_rw; 127 sd->sd_scsi_done = sr_crypto_done; 128 } 129 130 int 131 sr_crypto_create(struct sr_discipline *sd, struct bioc_createraid *bc, 132 int no_chunk, int64_t coerced_size) 133 { 134 struct sr_meta_opt_item *omi; 135 int rv = EINVAL; 136 137 if (no_chunk != 1) { 138 sr_error(sd->sd_sc, "%s requires exactly one chunk", 139 sd->sd_name); 140 goto done; 141 } 142 143 /* Create crypto optional metadata. */ 144 omi = malloc(sizeof(struct sr_meta_opt_item), M_DEVBUF, 145 M_WAITOK | M_ZERO); 146 omi->omi_som = malloc(sizeof(struct sr_meta_crypto), M_DEVBUF, 147 M_WAITOK | M_ZERO); 148 omi->omi_som->som_type = SR_OPT_CRYPTO; 149 omi->omi_som->som_length = sizeof(struct sr_meta_crypto); 150 SLIST_INSERT_HEAD(&sd->sd_meta_opt, omi, omi_link); 151 sd->mds.mdd_crypto.scr_meta = (struct sr_meta_crypto *)omi->omi_som; 152 sd->sd_meta->ssdi.ssd_opt_no++; 153 154 sd->mds.mdd_crypto.key_disk = NULL; 155 156 if (bc->bc_key_disk != NODEV) { 157 158 /* Create a key disk. */ 159 if (sr_crypto_get_kdf(bc, sd)) 160 goto done; 161 sd->mds.mdd_crypto.key_disk = 162 sr_crypto_create_key_disk(sd, bc->bc_key_disk); 163 if (sd->mds.mdd_crypto.key_disk == NULL) 164 goto done; 165 sd->sd_capabilities |= SR_CAP_AUTO_ASSEMBLE; 166 167 } else if (bc->bc_opaque_flags & BIOC_SOOUT) { 168 169 /* No hint available yet. */ 170 bc->bc_opaque_status = BIOC_SOINOUT_FAILED; 171 rv = EAGAIN; 172 goto done; 173 174 } else if (sr_crypto_get_kdf(bc, sd)) 175 goto done; 176 177 /* Passphrase volumes cannot be automatically assembled. */ 178 if (!(bc->bc_flags & BIOC_SCNOAUTOASSEMBLE) && bc->bc_key_disk == NODEV) 179 goto done; 180 181 sd->sd_meta->ssdi.ssd_size = coerced_size; 182 183 sr_crypto_create_keys(sd); 184 185 sd->sd_max_ccb_per_wu = no_chunk; 186 187 rv = 0; 188 done: 189 return (rv); 190 } 191 192 int 193 sr_crypto_assemble(struct sr_discipline *sd, struct bioc_createraid *bc, 194 int no_chunk, void *data) 195 { 196 int rv = EINVAL; 197 198 sd->mds.mdd_crypto.key_disk = NULL; 199 200 /* Crypto optional metadata must already exist... */ 201 if (sd->mds.mdd_crypto.scr_meta == NULL) 202 goto done; 203 204 if (data != NULL) { 205 /* Kernel already has mask key. */ 206 memcpy(sd->mds.mdd_crypto.scr_maskkey, data, 207 sizeof(sd->mds.mdd_crypto.scr_maskkey)); 208 } else if (bc->bc_key_disk != NODEV) { 209 /* Read the mask key from the key disk. */ 210 sd->mds.mdd_crypto.key_disk = 211 sr_crypto_read_key_disk(sd, bc->bc_key_disk); 212 if (sd->mds.mdd_crypto.key_disk == NULL) 213 goto done; 214 } else if (bc->bc_opaque_flags & BIOC_SOOUT) { 215 /* provide userland with kdf hint */ 216 if (bc->bc_opaque == NULL) 217 goto done; 218 219 if (sizeof(sd->mds.mdd_crypto.scr_meta->scm_kdfhint) < 220 bc->bc_opaque_size) 221 goto done; 222 223 if (copyout(sd->mds.mdd_crypto.scr_meta->scm_kdfhint, 224 bc->bc_opaque, bc->bc_opaque_size)) 225 goto done; 226 227 /* we're done */ 228 bc->bc_opaque_status = BIOC_SOINOUT_OK; 229 rv = EAGAIN; 230 goto done; 231 } else if (bc->bc_opaque_flags & BIOC_SOIN) { 232 /* get kdf with maskkey from userland */ 233 if (sr_crypto_get_kdf(bc, sd)) 234 goto done; 235 } else 236 goto done; 237 238 sd->sd_max_ccb_per_wu = sd->sd_meta->ssdi.ssd_chunk_no; 239 240 rv = 0; 241 done: 242 return (rv); 243 } 244 245 struct sr_crypto_wu * 246 sr_crypto_prepare(struct sr_workunit *wu, int encrypt) 247 { 248 struct scsi_xfer *xs = wu->swu_xs; 249 struct sr_discipline *sd = wu->swu_dis; 250 struct sr_crypto_wu *crwu; 251 struct cryptodesc *crd; 252 int flags, i, n; 253 daddr_t blkno; 254 u_int keyndx; 255 256 DNPRINTF(SR_D_DIS, "%s: sr_crypto_prepare wu %p encrypt %d\n", 257 DEVNAME(sd->sd_sc), wu, encrypt); 258 259 crwu = (struct sr_crypto_wu *)wu; 260 crwu->cr_uio.uio_iovcnt = 1; 261 crwu->cr_uio.uio_iov->iov_len = xs->datalen; 262 if (xs->flags & SCSI_DATA_OUT) { 263 crwu->cr_uio.uio_iov->iov_base = crwu->cr_dmabuf; 264 memcpy(crwu->cr_uio.uio_iov->iov_base, xs->data, xs->datalen); 265 } else 266 crwu->cr_uio.uio_iov->iov_base = xs->data; 267 268 blkno = wu->swu_blk_start; 269 n = xs->datalen >> DEV_BSHIFT; 270 271 /* 272 * We preallocated enough crypto descs for up to MAXPHYS of I/O. 273 * Since there may be less than that we need to tweak the linked list 274 * of crypto desc structures to be just long enough for our needs. 275 */ 276 crd = crwu->cr_descs; 277 for (i = 0; i < ((MAXPHYS >> DEV_BSHIFT) - n); i++) { 278 crd = crd->crd_next; 279 KASSERT(crd); 280 } 281 crwu->cr_crp->crp_desc = crd; 282 flags = (encrypt ? CRD_F_ENCRYPT : 0) | 283 CRD_F_IV_PRESENT | CRD_F_IV_EXPLICIT; 284 285 /* 286 * Select crypto session based on block number. 287 * 288 * XXX - this does not handle the case where the read/write spans 289 * across a different key blocks (e.g. 0.5TB boundary). Currently 290 * this is already broken by the use of scr_key[0] below. 291 */ 292 keyndx = blkno >> SR_CRYPTO_KEY_BLKSHIFT; 293 crwu->cr_crp->crp_sid = sd->mds.mdd_crypto.scr_sid[keyndx]; 294 295 crwu->cr_crp->crp_opaque = crwu; 296 crwu->cr_crp->crp_ilen = xs->datalen; 297 crwu->cr_crp->crp_alloctype = M_DEVBUF; 298 crwu->cr_crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_NOQUEUE; 299 crwu->cr_crp->crp_buf = &crwu->cr_uio; 300 for (i = 0, crd = crwu->cr_crp->crp_desc; crd; 301 i++, blkno++, crd = crd->crd_next) { 302 crd->crd_skip = i << DEV_BSHIFT; 303 crd->crd_len = DEV_BSIZE; 304 crd->crd_inject = 0; 305 crd->crd_flags = flags; 306 crd->crd_alg = sd->mds.mdd_crypto.scr_alg; 307 crd->crd_klen = sd->mds.mdd_crypto.scr_klen; 308 crd->crd_key = sd->mds.mdd_crypto.scr_key[0]; 309 memcpy(crd->crd_iv, &blkno, sizeof(blkno)); 310 } 311 312 return (crwu); 313 } 314 315 int 316 sr_crypto_get_kdf(struct bioc_createraid *bc, struct sr_discipline *sd) 317 { 318 int rv = EINVAL; 319 struct sr_crypto_kdfinfo *kdfinfo; 320 321 if (!(bc->bc_opaque_flags & BIOC_SOIN)) 322 return (rv); 323 if (bc->bc_opaque == NULL) 324 return (rv); 325 if (bc->bc_opaque_size != sizeof(*kdfinfo)) 326 return (rv); 327 328 kdfinfo = malloc(bc->bc_opaque_size, M_DEVBUF, M_WAITOK | M_ZERO); 329 if (copyin(bc->bc_opaque, kdfinfo, bc->bc_opaque_size)) 330 goto out; 331 332 if (kdfinfo->len != bc->bc_opaque_size) 333 goto out; 334 335 /* copy KDF hint to disk meta data */ 336 if (kdfinfo->flags & SR_CRYPTOKDF_HINT) { 337 if (sizeof(sd->mds.mdd_crypto.scr_meta->scm_kdfhint) < 338 kdfinfo->genkdf.len) 339 goto out; 340 memcpy(sd->mds.mdd_crypto.scr_meta->scm_kdfhint, 341 &kdfinfo->genkdf, kdfinfo->genkdf.len); 342 } 343 344 /* copy mask key to run-time meta data */ 345 if ((kdfinfo->flags & SR_CRYPTOKDF_KEY)) { 346 if (sizeof(sd->mds.mdd_crypto.scr_maskkey) < 347 sizeof(kdfinfo->maskkey)) 348 goto out; 349 memcpy(sd->mds.mdd_crypto.scr_maskkey, &kdfinfo->maskkey, 350 sizeof(kdfinfo->maskkey)); 351 } 352 353 bc->bc_opaque_status = BIOC_SOINOUT_OK; 354 rv = 0; 355 out: 356 explicit_bzero(kdfinfo, bc->bc_opaque_size); 357 free(kdfinfo, M_DEVBUF, bc->bc_opaque_size); 358 359 return (rv); 360 } 361 362 int 363 sr_crypto_encrypt(u_char *p, u_char *c, u_char *key, size_t size, int alg) 364 { 365 rijndael_ctx ctx; 366 int i, rv = 1; 367 368 switch (alg) { 369 case SR_CRYPTOM_AES_ECB_256: 370 if (rijndael_set_key_enc_only(&ctx, key, 256) != 0) 371 goto out; 372 for (i = 0; i < size; i += RIJNDAEL128_BLOCK_LEN) 373 rijndael_encrypt(&ctx, &p[i], &c[i]); 374 rv = 0; 375 break; 376 default: 377 DNPRINTF(SR_D_DIS, "%s: unsupported encryption algorithm %d\n", 378 "softraid", alg); 379 rv = -1; 380 goto out; 381 } 382 383 out: 384 explicit_bzero(&ctx, sizeof(ctx)); 385 return (rv); 386 } 387 388 int 389 sr_crypto_decrypt(u_char *c, u_char *p, u_char *key, size_t size, int alg) 390 { 391 rijndael_ctx ctx; 392 int i, rv = 1; 393 394 switch (alg) { 395 case SR_CRYPTOM_AES_ECB_256: 396 if (rijndael_set_key(&ctx, key, 256) != 0) 397 goto out; 398 for (i = 0; i < size; i += RIJNDAEL128_BLOCK_LEN) 399 rijndael_decrypt(&ctx, &c[i], &p[i]); 400 rv = 0; 401 break; 402 default: 403 DNPRINTF(SR_D_DIS, "%s: unsupported encryption algorithm %d\n", 404 "softraid", alg); 405 rv = -1; 406 goto out; 407 } 408 409 out: 410 explicit_bzero(&ctx, sizeof(ctx)); 411 return (rv); 412 } 413 414 void 415 sr_crypto_calculate_check_hmac_sha1(u_int8_t *maskkey, int maskkey_size, 416 u_int8_t *key, int key_size, u_char *check_digest) 417 { 418 u_char check_key[SHA1_DIGEST_LENGTH]; 419 HMAC_SHA1_CTX hmacctx; 420 SHA1_CTX shactx; 421 422 bzero(check_key, sizeof(check_key)); 423 bzero(&hmacctx, sizeof(hmacctx)); 424 bzero(&shactx, sizeof(shactx)); 425 426 /* k = SHA1(mask_key) */ 427 SHA1Init(&shactx); 428 SHA1Update(&shactx, maskkey, maskkey_size); 429 SHA1Final(check_key, &shactx); 430 431 /* mac = HMAC_SHA1_k(unencrypted key) */ 432 HMAC_SHA1_Init(&hmacctx, check_key, sizeof(check_key)); 433 HMAC_SHA1_Update(&hmacctx, key, key_size); 434 HMAC_SHA1_Final(check_digest, &hmacctx); 435 436 explicit_bzero(check_key, sizeof(check_key)); 437 explicit_bzero(&hmacctx, sizeof(hmacctx)); 438 explicit_bzero(&shactx, sizeof(shactx)); 439 } 440 441 int 442 sr_crypto_decrypt_key(struct sr_discipline *sd) 443 { 444 u_char check_digest[SHA1_DIGEST_LENGTH]; 445 int rv = 1; 446 447 DNPRINTF(SR_D_DIS, "%s: sr_crypto_decrypt_key\n", DEVNAME(sd->sd_sc)); 448 449 if (sd->mds.mdd_crypto.scr_meta->scm_check_alg != SR_CRYPTOC_HMAC_SHA1) 450 goto out; 451 452 if (sr_crypto_decrypt((u_char *)sd->mds.mdd_crypto.scr_meta->scm_key, 453 (u_char *)sd->mds.mdd_crypto.scr_key, 454 sd->mds.mdd_crypto.scr_maskkey, sizeof(sd->mds.mdd_crypto.scr_key), 455 sd->mds.mdd_crypto.scr_meta->scm_mask_alg) == -1) 456 goto out; 457 458 #ifdef SR_DEBUG0 459 sr_crypto_dumpkeys(sd); 460 #endif 461 462 /* Check that the key decrypted properly. */ 463 sr_crypto_calculate_check_hmac_sha1(sd->mds.mdd_crypto.scr_maskkey, 464 sizeof(sd->mds.mdd_crypto.scr_maskkey), 465 (u_int8_t *)sd->mds.mdd_crypto.scr_key, 466 sizeof(sd->mds.mdd_crypto.scr_key), 467 check_digest); 468 if (memcmp(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac, 469 check_digest, sizeof(check_digest)) != 0) { 470 explicit_bzero(sd->mds.mdd_crypto.scr_key, 471 sizeof(sd->mds.mdd_crypto.scr_key)); 472 goto out; 473 } 474 475 rv = 0; /* Success */ 476 out: 477 /* we don't need the mask key anymore */ 478 explicit_bzero(&sd->mds.mdd_crypto.scr_maskkey, 479 sizeof(sd->mds.mdd_crypto.scr_maskkey)); 480 481 explicit_bzero(check_digest, sizeof(check_digest)); 482 483 return rv; 484 } 485 486 int 487 sr_crypto_create_keys(struct sr_discipline *sd) 488 { 489 490 DNPRINTF(SR_D_DIS, "%s: sr_crypto_create_keys\n", 491 DEVNAME(sd->sd_sc)); 492 493 if (AES_MAXKEYBYTES < sizeof(sd->mds.mdd_crypto.scr_maskkey)) 494 return (1); 495 496 /* XXX allow user to specify */ 497 sd->mds.mdd_crypto.scr_meta->scm_alg = SR_CRYPTOA_AES_XTS_256; 498 499 /* generate crypto keys */ 500 arc4random_buf(sd->mds.mdd_crypto.scr_key, 501 sizeof(sd->mds.mdd_crypto.scr_key)); 502 503 /* Mask the disk keys. */ 504 sd->mds.mdd_crypto.scr_meta->scm_mask_alg = SR_CRYPTOM_AES_ECB_256; 505 sr_crypto_encrypt((u_char *)sd->mds.mdd_crypto.scr_key, 506 (u_char *)sd->mds.mdd_crypto.scr_meta->scm_key, 507 sd->mds.mdd_crypto.scr_maskkey, sizeof(sd->mds.mdd_crypto.scr_key), 508 sd->mds.mdd_crypto.scr_meta->scm_mask_alg); 509 510 /* Prepare key decryption check code. */ 511 sd->mds.mdd_crypto.scr_meta->scm_check_alg = SR_CRYPTOC_HMAC_SHA1; 512 sr_crypto_calculate_check_hmac_sha1(sd->mds.mdd_crypto.scr_maskkey, 513 sizeof(sd->mds.mdd_crypto.scr_maskkey), 514 (u_int8_t *)sd->mds.mdd_crypto.scr_key, 515 sizeof(sd->mds.mdd_crypto.scr_key), 516 sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac); 517 518 /* Erase the plaintext disk keys */ 519 explicit_bzero(sd->mds.mdd_crypto.scr_key, 520 sizeof(sd->mds.mdd_crypto.scr_key)); 521 522 #ifdef SR_DEBUG0 523 sr_crypto_dumpkeys(sd); 524 #endif 525 526 sd->mds.mdd_crypto.scr_meta->scm_flags = SR_CRYPTOF_KEY | 527 SR_CRYPTOF_KDFHINT; 528 529 return (0); 530 } 531 532 int 533 sr_crypto_change_maskkey(struct sr_discipline *sd, 534 struct sr_crypto_kdfinfo *kdfinfo1, struct sr_crypto_kdfinfo *kdfinfo2) 535 { 536 u_char check_digest[SHA1_DIGEST_LENGTH]; 537 u_char *c, *p = NULL; 538 size_t ksz; 539 int rv = 1; 540 541 DNPRINTF(SR_D_DIS, "%s: sr_crypto_change_maskkey\n", 542 DEVNAME(sd->sd_sc)); 543 544 if (sd->mds.mdd_crypto.scr_meta->scm_check_alg != SR_CRYPTOC_HMAC_SHA1) 545 goto out; 546 547 c = (u_char *)sd->mds.mdd_crypto.scr_meta->scm_key; 548 ksz = sizeof(sd->mds.mdd_crypto.scr_key); 549 p = malloc(ksz, M_DEVBUF, M_WAITOK | M_CANFAIL | M_ZERO); 550 if (p == NULL) 551 goto out; 552 553 if (sr_crypto_decrypt(c, p, kdfinfo1->maskkey, ksz, 554 sd->mds.mdd_crypto.scr_meta->scm_mask_alg) == -1) 555 goto out; 556 557 #ifdef SR_DEBUG0 558 sr_crypto_dumpkeys(sd); 559 #endif 560 561 sr_crypto_calculate_check_hmac_sha1(kdfinfo1->maskkey, 562 sizeof(kdfinfo1->maskkey), p, ksz, check_digest); 563 if (memcmp(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac, 564 check_digest, sizeof(check_digest)) != 0) { 565 sr_error(sd->sd_sc, "incorrect key or passphrase"); 566 rv = EPERM; 567 goto out; 568 } 569 570 /* Mask the disk keys. */ 571 c = (u_char *)sd->mds.mdd_crypto.scr_meta->scm_key; 572 if (sr_crypto_encrypt(p, c, kdfinfo2->maskkey, ksz, 573 sd->mds.mdd_crypto.scr_meta->scm_mask_alg) == -1) 574 goto out; 575 576 /* Prepare key decryption check code. */ 577 sd->mds.mdd_crypto.scr_meta->scm_check_alg = SR_CRYPTOC_HMAC_SHA1; 578 sr_crypto_calculate_check_hmac_sha1(kdfinfo2->maskkey, 579 sizeof(kdfinfo2->maskkey), (u_int8_t *)sd->mds.mdd_crypto.scr_key, 580 sizeof(sd->mds.mdd_crypto.scr_key), check_digest); 581 582 /* Copy new encrypted key and HMAC to metadata. */ 583 memcpy(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac, check_digest, 584 sizeof(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac)); 585 586 rv = 0; /* Success */ 587 588 out: 589 if (p) { 590 explicit_bzero(p, ksz); 591 free(p, M_DEVBUF, ksz); 592 } 593 594 explicit_bzero(check_digest, sizeof(check_digest)); 595 explicit_bzero(&kdfinfo1->maskkey, sizeof(kdfinfo1->maskkey)); 596 explicit_bzero(&kdfinfo2->maskkey, sizeof(kdfinfo2->maskkey)); 597 598 return (rv); 599 } 600 601 struct sr_chunk * 602 sr_crypto_create_key_disk(struct sr_discipline *sd, dev_t dev) 603 { 604 struct sr_softc *sc = sd->sd_sc; 605 struct sr_discipline *fakesd = NULL; 606 struct sr_metadata *sm = NULL; 607 struct sr_meta_chunk *km; 608 struct sr_meta_opt_item *omi = NULL; 609 struct sr_meta_keydisk *skm; 610 struct sr_chunk *key_disk = NULL; 611 struct disklabel label; 612 struct vnode *vn; 613 char devname[32]; 614 int c, part, open = 0; 615 616 /* 617 * Create a metadata structure on the key disk and store 618 * keying material in the optional metadata. 619 */ 620 621 sr_meta_getdevname(sc, dev, devname, sizeof(devname)); 622 623 /* Make sure chunk is not already in use. */ 624 c = sr_chunk_in_use(sc, dev); 625 if (c != BIOC_SDINVALID && c != BIOC_SDOFFLINE) { 626 sr_error(sc, "%s is already in use", devname); 627 goto done; 628 } 629 630 /* Open device. */ 631 if (bdevvp(dev, &vn)) { 632 sr_error(sc, "cannot open key disk %s", devname); 633 goto done; 634 } 635 if (VOP_OPEN(vn, FREAD | FWRITE, NOCRED, curproc)) { 636 DNPRINTF(SR_D_META,"%s: sr_crypto_create_key_disk cannot " 637 "open %s\n", DEVNAME(sc), devname); 638 vput(vn); 639 goto done; 640 } 641 open = 1; /* close dev on error */ 642 643 /* Get partition details. */ 644 part = DISKPART(dev); 645 if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, 646 FREAD, NOCRED, curproc)) { 647 DNPRINTF(SR_D_META, "%s: sr_crypto_create_key_disk ioctl " 648 "failed\n", DEVNAME(sc)); 649 goto done; 650 } 651 if (label.d_partitions[part].p_fstype != FS_RAID) { 652 sr_error(sc, "%s partition not of type RAID (%d)", 653 devname, label.d_partitions[part].p_fstype); 654 goto done; 655 } 656 657 /* 658 * Create and populate chunk metadata. 659 */ 660 661 key_disk = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_WAITOK | M_ZERO); 662 km = &key_disk->src_meta; 663 664 key_disk->src_dev_mm = dev; 665 key_disk->src_vn = vn; 666 strlcpy(key_disk->src_devname, devname, sizeof(km->scmi.scm_devname)); 667 key_disk->src_size = 0; 668 669 km->scmi.scm_volid = sd->sd_meta->ssdi.ssd_level; 670 km->scmi.scm_chunk_id = 0; 671 km->scmi.scm_size = 0; 672 km->scmi.scm_coerced_size = 0; 673 strlcpy(km->scmi.scm_devname, devname, sizeof(km->scmi.scm_devname)); 674 memcpy(&km->scmi.scm_uuid, &sd->sd_meta->ssdi.ssd_uuid, 675 sizeof(struct sr_uuid)); 676 677 sr_checksum(sc, km, &km->scm_checksum, 678 sizeof(struct sr_meta_chunk_invariant)); 679 680 km->scm_status = BIOC_SDONLINE; 681 682 /* 683 * Create and populate our own discipline and metadata. 684 */ 685 686 sm = malloc(sizeof(struct sr_metadata), M_DEVBUF, M_WAITOK | M_ZERO); 687 sm->ssdi.ssd_magic = SR_MAGIC; 688 sm->ssdi.ssd_version = SR_META_VERSION; 689 sm->ssd_ondisk = 0; 690 sm->ssdi.ssd_vol_flags = 0; 691 memcpy(&sm->ssdi.ssd_uuid, &sd->sd_meta->ssdi.ssd_uuid, 692 sizeof(struct sr_uuid)); 693 sm->ssdi.ssd_chunk_no = 1; 694 sm->ssdi.ssd_volid = SR_KEYDISK_VOLID; 695 sm->ssdi.ssd_level = SR_KEYDISK_LEVEL; 696 sm->ssdi.ssd_size = 0; 697 strlcpy(sm->ssdi.ssd_vendor, "OPENBSD", sizeof(sm->ssdi.ssd_vendor)); 698 snprintf(sm->ssdi.ssd_product, sizeof(sm->ssdi.ssd_product), 699 "SR %s", "KEYDISK"); 700 snprintf(sm->ssdi.ssd_revision, sizeof(sm->ssdi.ssd_revision), 701 "%03d", SR_META_VERSION); 702 703 fakesd = malloc(sizeof(struct sr_discipline), M_DEVBUF, 704 M_WAITOK | M_ZERO); 705 fakesd->sd_sc = sd->sd_sc; 706 fakesd->sd_meta = sm; 707 fakesd->sd_meta_type = SR_META_F_NATIVE; 708 fakesd->sd_vol_status = BIOC_SVONLINE; 709 strlcpy(fakesd->sd_name, "KEYDISK", sizeof(fakesd->sd_name)); 710 SLIST_INIT(&fakesd->sd_meta_opt); 711 712 /* Add chunk to volume. */ 713 fakesd->sd_vol.sv_chunks = malloc(sizeof(struct sr_chunk *), M_DEVBUF, 714 M_WAITOK | M_ZERO); 715 fakesd->sd_vol.sv_chunks[0] = key_disk; 716 SLIST_INIT(&fakesd->sd_vol.sv_chunk_list); 717 SLIST_INSERT_HEAD(&fakesd->sd_vol.sv_chunk_list, key_disk, src_link); 718 719 /* Generate mask key. */ 720 arc4random_buf(sd->mds.mdd_crypto.scr_maskkey, 721 sizeof(sd->mds.mdd_crypto.scr_maskkey)); 722 723 /* Copy mask key to optional metadata area. */ 724 omi = malloc(sizeof(struct sr_meta_opt_item), M_DEVBUF, 725 M_WAITOK | M_ZERO); 726 omi->omi_som = malloc(sizeof(struct sr_meta_keydisk), M_DEVBUF, 727 M_WAITOK | M_ZERO); 728 omi->omi_som->som_type = SR_OPT_KEYDISK; 729 omi->omi_som->som_length = sizeof(struct sr_meta_keydisk); 730 skm = (struct sr_meta_keydisk *)omi->omi_som; 731 memcpy(&skm->skm_maskkey, sd->mds.mdd_crypto.scr_maskkey, 732 sizeof(skm->skm_maskkey)); 733 SLIST_INSERT_HEAD(&fakesd->sd_meta_opt, omi, omi_link); 734 fakesd->sd_meta->ssdi.ssd_opt_no++; 735 736 /* Save metadata. */ 737 if (sr_meta_save(fakesd, SR_META_DIRTY)) { 738 sr_error(sc, "could not save metadata to %s", devname); 739 goto fail; 740 } 741 742 goto done; 743 744 fail: 745 free(key_disk, M_DEVBUF, sizeof(struct sr_chunk)); 746 key_disk = NULL; 747 748 done: 749 free(omi, M_DEVBUF, sizeof(struct sr_meta_opt_item)); 750 if (fakesd && fakesd->sd_vol.sv_chunks) 751 free(fakesd->sd_vol.sv_chunks, M_DEVBUF, 752 sizeof(struct sr_chunk *)); 753 free(fakesd, M_DEVBUF, sizeof(struct sr_discipline)); 754 free(sm, M_DEVBUF, sizeof(struct sr_metadata)); 755 if (open) { 756 VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, curproc); 757 vput(vn); 758 } 759 760 return key_disk; 761 } 762 763 struct sr_chunk * 764 sr_crypto_read_key_disk(struct sr_discipline *sd, dev_t dev) 765 { 766 struct sr_softc *sc = sd->sd_sc; 767 struct sr_metadata *sm = NULL; 768 struct sr_meta_opt_item *omi, *omi_next; 769 struct sr_meta_opt_hdr *omh; 770 struct sr_meta_keydisk *skm; 771 struct sr_meta_opt_head som; 772 struct sr_chunk *key_disk = NULL; 773 struct disklabel label; 774 struct vnode *vn = NULL; 775 char devname[32]; 776 int c, part, open = 0; 777 778 /* 779 * Load a key disk and load keying material into memory. 780 */ 781 782 SLIST_INIT(&som); 783 784 sr_meta_getdevname(sc, dev, devname, sizeof(devname)); 785 786 /* Make sure chunk is not already in use. */ 787 c = sr_chunk_in_use(sc, dev); 788 if (c != BIOC_SDINVALID && c != BIOC_SDOFFLINE) { 789 sr_error(sc, "%s is already in use", devname); 790 goto done; 791 } 792 793 /* Open device. */ 794 if (bdevvp(dev, &vn)) { 795 sr_error(sc, "cannot open key disk %s", devname); 796 goto done; 797 } 798 if (VOP_OPEN(vn, FREAD, NOCRED, curproc)) { 799 DNPRINTF(SR_D_META,"%s: sr_crypto_read_key_disk cannot " 800 "open %s\n", DEVNAME(sc), devname); 801 vput(vn); 802 goto done; 803 } 804 open = 1; /* close dev on error */ 805 806 /* Get partition details. */ 807 part = DISKPART(dev); 808 if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD, 809 NOCRED, curproc)) { 810 DNPRINTF(SR_D_META, "%s: sr_crypto_read_key_disk ioctl " 811 "failed\n", DEVNAME(sc)); 812 goto done; 813 } 814 if (label.d_partitions[part].p_fstype != FS_RAID) { 815 sr_error(sc, "%s partition not of type RAID (%d)", 816 devname, label.d_partitions[part].p_fstype); 817 goto done; 818 } 819 820 /* 821 * Read and validate key disk metadata. 822 */ 823 sm = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_WAITOK | M_ZERO); 824 if (sr_meta_native_read(sd, dev, sm, NULL)) { 825 sr_error(sc, "native bootprobe could not read native metadata"); 826 goto done; 827 } 828 829 if (sr_meta_validate(sd, dev, sm, NULL)) { 830 DNPRINTF(SR_D_META, "%s: invalid metadata\n", 831 DEVNAME(sc)); 832 goto done; 833 } 834 835 /* Make sure this is a key disk. */ 836 if (sm->ssdi.ssd_level != SR_KEYDISK_LEVEL) { 837 sr_error(sc, "%s is not a key disk", devname); 838 goto done; 839 } 840 841 /* Construct key disk chunk. */ 842 key_disk = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_WAITOK | M_ZERO); 843 key_disk->src_dev_mm = dev; 844 key_disk->src_vn = vn; 845 key_disk->src_size = 0; 846 847 memcpy(&key_disk->src_meta, (struct sr_meta_chunk *)(sm + 1), 848 sizeof(key_disk->src_meta)); 849 850 /* Read mask key from optional metadata. */ 851 sr_meta_opt_load(sc, sm, &som); 852 SLIST_FOREACH(omi, &som, omi_link) { 853 omh = omi->omi_som; 854 if (omh->som_type == SR_OPT_KEYDISK) { 855 skm = (struct sr_meta_keydisk *)omh; 856 memcpy(sd->mds.mdd_crypto.scr_maskkey, &skm->skm_maskkey, 857 sizeof(sd->mds.mdd_crypto.scr_maskkey)); 858 } else if (omh->som_type == SR_OPT_CRYPTO) { 859 /* Original keydisk format with key in crypto area. */ 860 memcpy(sd->mds.mdd_crypto.scr_maskkey, 861 omh + sizeof(struct sr_meta_opt_hdr), 862 sizeof(sd->mds.mdd_crypto.scr_maskkey)); 863 } 864 } 865 866 open = 0; 867 868 done: 869 for (omi = SLIST_FIRST(&som); omi != NULL; omi = omi_next) { 870 omi_next = SLIST_NEXT(omi, omi_link); 871 free(omi->omi_som, M_DEVBUF, 0); 872 free(omi, M_DEVBUF, 0); 873 } 874 875 free(sm, M_DEVBUF, SR_META_SIZE * DEV_BSIZE); 876 877 if (vn && open) { 878 VOP_CLOSE(vn, FREAD, NOCRED, curproc); 879 vput(vn); 880 } 881 882 return key_disk; 883 } 884 885 int 886 sr_crypto_alloc_resources(struct sr_discipline *sd) 887 { 888 struct sr_workunit *wu; 889 struct sr_crypto_wu *crwu; 890 struct cryptoini cri; 891 u_int num_keys, i; 892 893 DNPRINTF(SR_D_DIS, "%s: sr_crypto_alloc_resources\n", 894 DEVNAME(sd->sd_sc)); 895 896 sd->mds.mdd_crypto.scr_alg = CRYPTO_AES_XTS; 897 switch (sd->mds.mdd_crypto.scr_meta->scm_alg) { 898 case SR_CRYPTOA_AES_XTS_128: 899 sd->mds.mdd_crypto.scr_klen = 256; 900 break; 901 case SR_CRYPTOA_AES_XTS_256: 902 sd->mds.mdd_crypto.scr_klen = 512; 903 break; 904 default: 905 sr_error(sd->sd_sc, "unknown crypto algorithm"); 906 return (EINVAL); 907 } 908 909 for (i = 0; i < SR_CRYPTO_MAXKEYS; i++) 910 sd->mds.mdd_crypto.scr_sid[i] = (u_int64_t)-1; 911 912 if (sr_wu_alloc(sd, sizeof(struct sr_crypto_wu))) { 913 sr_error(sd->sd_sc, "unable to allocate work units"); 914 return (ENOMEM); 915 } 916 if (sr_ccb_alloc(sd)) { 917 sr_error(sd->sd_sc, "unable to allocate CCBs"); 918 return (ENOMEM); 919 } 920 if (sr_crypto_decrypt_key(sd)) { 921 sr_error(sd->sd_sc, "incorrect key or passphrase"); 922 return (EPERM); 923 } 924 925 /* 926 * For each work unit allocate the uio, iovec and crypto structures. 927 * These have to be allocated now because during runtime we cannot 928 * fail an allocation without failing the I/O (which can cause real 929 * problems). 930 */ 931 TAILQ_FOREACH(wu, &sd->sd_wu, swu_next) { 932 crwu = (struct sr_crypto_wu *)wu; 933 crwu->cr_uio.uio_iov = &crwu->cr_iov; 934 crwu->cr_dmabuf = dma_alloc(MAXPHYS, PR_WAITOK); 935 crwu->cr_crp = crypto_getreq(MAXPHYS >> DEV_BSHIFT); 936 if (crwu->cr_crp == NULL) 937 return (ENOMEM); 938 crwu->cr_descs = crwu->cr_crp->crp_desc; 939 } 940 941 memset(&cri, 0, sizeof(cri)); 942 cri.cri_alg = sd->mds.mdd_crypto.scr_alg; 943 cri.cri_klen = sd->mds.mdd_crypto.scr_klen; 944 945 /* Allocate a session for every 2^SR_CRYPTO_KEY_BLKSHIFT blocks. */ 946 num_keys = sd->sd_meta->ssdi.ssd_size >> SR_CRYPTO_KEY_BLKSHIFT; 947 if (num_keys >= SR_CRYPTO_MAXKEYS) 948 return (EFBIG); 949 for (i = 0; i <= num_keys; i++) { 950 cri.cri_key = sd->mds.mdd_crypto.scr_key[i]; 951 if (crypto_newsession(&sd->mds.mdd_crypto.scr_sid[i], 952 &cri, 0) != 0) { 953 for (i = 0; 954 sd->mds.mdd_crypto.scr_sid[i] != (u_int64_t)-1; 955 i++) { 956 crypto_freesession( 957 sd->mds.mdd_crypto.scr_sid[i]); 958 sd->mds.mdd_crypto.scr_sid[i] = (u_int64_t)-1; 959 } 960 return (EINVAL); 961 } 962 } 963 964 sr_hotplug_register(sd, sr_crypto_hotplug); 965 966 return (0); 967 } 968 969 void 970 sr_crypto_free_resources(struct sr_discipline *sd) 971 { 972 struct sr_workunit *wu; 973 struct sr_crypto_wu *crwu; 974 u_int i; 975 976 DNPRINTF(SR_D_DIS, "%s: sr_crypto_free_resources\n", 977 DEVNAME(sd->sd_sc)); 978 979 if (sd->mds.mdd_crypto.key_disk != NULL) { 980 explicit_bzero(sd->mds.mdd_crypto.key_disk, 981 sizeof(*sd->mds.mdd_crypto.key_disk)); 982 free(sd->mds.mdd_crypto.key_disk, M_DEVBUF, 983 sizeof(*sd->mds.mdd_crypto.key_disk)); 984 } 985 986 sr_hotplug_unregister(sd, sr_crypto_hotplug); 987 988 for (i = 0; sd->mds.mdd_crypto.scr_sid[i] != (u_int64_t)-1; i++) { 989 crypto_freesession(sd->mds.mdd_crypto.scr_sid[i]); 990 sd->mds.mdd_crypto.scr_sid[i] = (u_int64_t)-1; 991 } 992 993 TAILQ_FOREACH(wu, &sd->sd_wu, swu_next) { 994 crwu = (struct sr_crypto_wu *)wu; 995 if (crwu->cr_dmabuf) 996 dma_free(crwu->cr_dmabuf, MAXPHYS); 997 if (crwu->cr_crp) { 998 crwu->cr_crp->crp_desc = crwu->cr_descs; 999 crypto_freereq(crwu->cr_crp); 1000 } 1001 } 1002 1003 sr_wu_free(sd); 1004 sr_ccb_free(sd); 1005 } 1006 1007 int 1008 sr_crypto_ioctl(struct sr_discipline *sd, struct bioc_discipline *bd) 1009 { 1010 struct sr_crypto_kdfpair kdfpair; 1011 struct sr_crypto_kdfinfo kdfinfo1, kdfinfo2; 1012 int size, rv = 1; 1013 1014 DNPRINTF(SR_D_IOCTL, "%s: sr_crypto_ioctl %u\n", 1015 DEVNAME(sd->sd_sc), bd->bd_cmd); 1016 1017 switch (bd->bd_cmd) { 1018 case SR_IOCTL_GET_KDFHINT: 1019 1020 /* Get KDF hint for userland. */ 1021 size = sizeof(sd->mds.mdd_crypto.scr_meta->scm_kdfhint); 1022 if (bd->bd_data == NULL || bd->bd_size > size) 1023 goto bad; 1024 if (copyout(sd->mds.mdd_crypto.scr_meta->scm_kdfhint, 1025 bd->bd_data, bd->bd_size)) 1026 goto bad; 1027 1028 rv = 0; 1029 1030 break; 1031 1032 case SR_IOCTL_CHANGE_PASSPHRASE: 1033 1034 /* Attempt to change passphrase. */ 1035 1036 size = sizeof(kdfpair); 1037 if (bd->bd_data == NULL || bd->bd_size > size) 1038 goto bad; 1039 if (copyin(bd->bd_data, &kdfpair, size)) 1040 goto bad; 1041 1042 size = sizeof(kdfinfo1); 1043 if (kdfpair.kdfinfo1 == NULL || kdfpair.kdfsize1 > size) 1044 goto bad; 1045 if (copyin(kdfpair.kdfinfo1, &kdfinfo1, size)) 1046 goto bad; 1047 1048 size = sizeof(kdfinfo2); 1049 if (kdfpair.kdfinfo2 == NULL || kdfpair.kdfsize2 > size) 1050 goto bad; 1051 if (copyin(kdfpair.kdfinfo2, &kdfinfo2, size)) 1052 goto bad; 1053 1054 if (sr_crypto_change_maskkey(sd, &kdfinfo1, &kdfinfo2)) 1055 goto bad; 1056 1057 /* Save metadata to disk. */ 1058 rv = sr_meta_save(sd, SR_META_DIRTY); 1059 1060 break; 1061 } 1062 1063 bad: 1064 explicit_bzero(&kdfpair, sizeof(kdfpair)); 1065 explicit_bzero(&kdfinfo1, sizeof(kdfinfo1)); 1066 explicit_bzero(&kdfinfo2, sizeof(kdfinfo2)); 1067 1068 return (rv); 1069 } 1070 1071 int 1072 sr_crypto_meta_opt_handler(struct sr_discipline *sd, struct sr_meta_opt_hdr *om) 1073 { 1074 int rv = EINVAL; 1075 1076 if (om->som_type == SR_OPT_CRYPTO) { 1077 sd->mds.mdd_crypto.scr_meta = (struct sr_meta_crypto *)om; 1078 rv = 0; 1079 } 1080 1081 return (rv); 1082 } 1083 1084 int 1085 sr_crypto_rw(struct sr_workunit *wu) 1086 { 1087 struct sr_crypto_wu *crwu; 1088 daddr_t blkno; 1089 int rv = 0; 1090 1091 DNPRINTF(SR_D_DIS, "%s: sr_crypto_rw wu %p\n", 1092 DEVNAME(wu->swu_dis->sd_sc), wu); 1093 1094 if (sr_validate_io(wu, &blkno, "sr_crypto_rw")) 1095 return (1); 1096 1097 if (wu->swu_xs->flags & SCSI_DATA_OUT) { 1098 crwu = sr_crypto_prepare(wu, 1); 1099 crwu->cr_crp->crp_callback = sr_crypto_write; 1100 rv = crypto_dispatch(crwu->cr_crp); 1101 if (rv == 0) 1102 rv = crwu->cr_crp->crp_etype; 1103 } else 1104 rv = sr_crypto_dev_rw(wu, NULL); 1105 1106 return (rv); 1107 } 1108 1109 int 1110 sr_crypto_write(struct cryptop *crp) 1111 { 1112 struct sr_crypto_wu *crwu = crp->crp_opaque; 1113 struct sr_workunit *wu = &crwu->cr_wu; 1114 int s; 1115 1116 DNPRINTF(SR_D_INTR, "%s: sr_crypto_write: wu %p xs: %p\n", 1117 DEVNAME(wu->swu_dis->sd_sc), wu, wu->swu_xs); 1118 1119 if (crp->crp_etype) { 1120 /* fail io */ 1121 wu->swu_xs->error = XS_DRIVER_STUFFUP; 1122 s = splbio(); 1123 sr_scsi_done(wu->swu_dis, wu->swu_xs); 1124 splx(s); 1125 } 1126 1127 return (sr_crypto_dev_rw(wu, crwu)); 1128 } 1129 1130 int 1131 sr_crypto_dev_rw(struct sr_workunit *wu, struct sr_crypto_wu *crwu) 1132 { 1133 struct sr_discipline *sd = wu->swu_dis; 1134 struct scsi_xfer *xs = wu->swu_xs; 1135 struct sr_ccb *ccb; 1136 struct uio *uio; 1137 daddr_t blkno; 1138 1139 blkno = wu->swu_blk_start; 1140 1141 ccb = sr_ccb_rw(sd, 0, blkno, xs->datalen, xs->data, xs->flags, 0); 1142 if (!ccb) { 1143 /* should never happen but handle more gracefully */ 1144 printf("%s: %s: too many ccbs queued\n", 1145 DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname); 1146 goto bad; 1147 } 1148 if (!ISSET(xs->flags, SCSI_DATA_IN)) { 1149 uio = crwu->cr_crp->crp_buf; 1150 ccb->ccb_buf.b_data = uio->uio_iov->iov_base; 1151 ccb->ccb_opaque = crwu; 1152 } 1153 sr_wu_enqueue_ccb(wu, ccb); 1154 sr_schedule_wu(wu); 1155 1156 return (0); 1157 1158 bad: 1159 /* wu is unwound by sr_wu_put */ 1160 if (crwu) 1161 crwu->cr_crp->crp_etype = EINVAL; 1162 return (1); 1163 } 1164 1165 void 1166 sr_crypto_done(struct sr_workunit *wu) 1167 { 1168 struct scsi_xfer *xs = wu->swu_xs; 1169 struct sr_crypto_wu *crwu; 1170 int s; 1171 1172 /* If this was a successful read, initiate decryption of the data. */ 1173 if (ISSET(xs->flags, SCSI_DATA_IN) && xs->error == XS_NOERROR) { 1174 crwu = sr_crypto_prepare(wu, 0); 1175 crwu->cr_crp->crp_callback = sr_crypto_read; 1176 DNPRINTF(SR_D_INTR, "%s: sr_crypto_done: crypto_dispatch %p\n", 1177 DEVNAME(wu->swu_dis->sd_sc), crwu->cr_crp); 1178 crypto_dispatch(crwu->cr_crp); 1179 return; 1180 } 1181 1182 s = splbio(); 1183 sr_scsi_done(wu->swu_dis, wu->swu_xs); 1184 splx(s); 1185 } 1186 1187 int 1188 sr_crypto_read(struct cryptop *crp) 1189 { 1190 struct sr_crypto_wu *crwu = crp->crp_opaque; 1191 struct sr_workunit *wu = &crwu->cr_wu; 1192 int s; 1193 1194 DNPRINTF(SR_D_INTR, "%s: sr_crypto_read: wu %p xs: %p\n", 1195 DEVNAME(wu->swu_dis->sd_sc), wu, wu->swu_xs); 1196 1197 if (crp->crp_etype) 1198 wu->swu_xs->error = XS_DRIVER_STUFFUP; 1199 1200 s = splbio(); 1201 sr_scsi_done(wu->swu_dis, wu->swu_xs); 1202 splx(s); 1203 1204 return (0); 1205 } 1206 1207 void 1208 sr_crypto_hotplug(struct sr_discipline *sd, struct disk *diskp, int action) 1209 { 1210 DNPRINTF(SR_D_MISC, "%s: sr_crypto_hotplug: %s %d\n", 1211 DEVNAME(sd->sd_sc), diskp->dk_name, action); 1212 } 1213 1214 #ifdef SR_DEBUG0 1215 void 1216 sr_crypto_dumpkeys(struct sr_discipline *sd) 1217 { 1218 int i, j; 1219 1220 printf("sr_crypto_dumpkeys:\n"); 1221 for (i = 0; i < SR_CRYPTO_MAXKEYS; i++) { 1222 printf("\tscm_key[%d]: 0x", i); 1223 for (j = 0; j < SR_CRYPTO_KEYBYTES; j++) { 1224 printf("%02x", 1225 sd->mds.mdd_crypto.scr_meta->scm_key[i][j]); 1226 } 1227 printf("\n"); 1228 } 1229 printf("sr_crypto_dumpkeys: runtime data keys:\n"); 1230 for (i = 0; i < SR_CRYPTO_MAXKEYS; i++) { 1231 printf("\tscr_key[%d]: 0x", i); 1232 for (j = 0; j < SR_CRYPTO_KEYBYTES; j++) { 1233 printf("%02x", 1234 sd->mds.mdd_crypto.scr_key[i][j]); 1235 } 1236 printf("\n"); 1237 } 1238 } 1239 #endif /* SR_DEBUG */ 1240