xref: /openbsd-src/sys/dev/softraid_crypto.c (revision c7e8ea31cd41a963f06f0a8ba93948b06aa6b4a4)
1 /* $OpenBSD: softraid_crypto.c,v 1.137 2017/06/12 16:39:51 jsing Exp $ */
2 /*
3  * Copyright (c) 2007 Marco Peereboom <marco@peereboom.us>
4  * Copyright (c) 2008 Hans-Joerg Hoexer <hshoexer@openbsd.org>
5  * Copyright (c) 2008 Damien Miller <djm@mindrot.org>
6  * Copyright (c) 2009 Joel Sing <jsing@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 #include "bio.h"
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/buf.h>
26 #include <sys/device.h>
27 #include <sys/ioctl.h>
28 #include <sys/malloc.h>
29 #include <sys/pool.h>
30 #include <sys/kernel.h>
31 #include <sys/disk.h>
32 #include <sys/rwlock.h>
33 #include <sys/queue.h>
34 #include <sys/fcntl.h>
35 #include <sys/disklabel.h>
36 #include <sys/vnode.h>
37 #include <sys/mount.h>
38 #include <sys/sensors.h>
39 #include <sys/stat.h>
40 #include <sys/conf.h>
41 #include <sys/uio.h>
42 #include <sys/dkio.h>
43 
44 #include <crypto/cryptodev.h>
45 #include <crypto/rijndael.h>
46 #include <crypto/md5.h>
47 #include <crypto/sha1.h>
48 #include <crypto/sha2.h>
49 #include <crypto/hmac.h>
50 
51 #include <scsi/scsi_all.h>
52 #include <scsi/scsiconf.h>
53 #include <scsi/scsi_disk.h>
54 
55 #include <dev/softraidvar.h>
56 
57 /*
58  * The per-I/O data that we need to preallocate. We cannot afford to allow I/O
59  * to start failing when memory pressure kicks in. We can store this in the WU
60  * because we assert that only one ccb per WU will ever be active.
61  */
62 struct sr_crypto_wu {
63 	struct sr_workunit		 cr_wu;		/* Must be first. */
64 	struct uio			 cr_uio;
65 	struct iovec			 cr_iov;
66 	struct cryptop	 		*cr_crp;
67 	void				*cr_dmabuf;
68 };
69 
70 
71 struct sr_crypto_wu *sr_crypto_prepare(struct sr_workunit *, int);
72 int		sr_crypto_create_keys(struct sr_discipline *);
73 int		sr_crypto_get_kdf(struct bioc_createraid *,
74 		    struct sr_discipline *);
75 int		sr_crypto_decrypt(u_char *, u_char *, u_char *, size_t, int);
76 int		sr_crypto_encrypt(u_char *, u_char *, u_char *, size_t, int);
77 int		sr_crypto_decrypt_key(struct sr_discipline *);
78 int		sr_crypto_change_maskkey(struct sr_discipline *,
79 		    struct sr_crypto_kdfinfo *, struct sr_crypto_kdfinfo *);
80 int		sr_crypto_create(struct sr_discipline *,
81 		    struct bioc_createraid *, int, int64_t);
82 int		sr_crypto_assemble(struct sr_discipline *,
83 		    struct bioc_createraid *, int, void *);
84 int		sr_crypto_alloc_resources(struct sr_discipline *);
85 void		sr_crypto_free_resources(struct sr_discipline *);
86 int		sr_crypto_ioctl(struct sr_discipline *,
87 		    struct bioc_discipline *);
88 int		sr_crypto_meta_opt_handler(struct sr_discipline *,
89 		    struct sr_meta_opt_hdr *);
90 void		sr_crypto_write(struct cryptop *);
91 int		sr_crypto_rw(struct sr_workunit *);
92 int		sr_crypto_dev_rw(struct sr_workunit *, struct sr_crypto_wu *);
93 void		sr_crypto_done(struct sr_workunit *);
94 void		sr_crypto_read(struct cryptop *);
95 void		sr_crypto_calculate_check_hmac_sha1(u_int8_t *, int,
96 		   u_int8_t *, int, u_char *);
97 void		sr_crypto_hotplug(struct sr_discipline *, struct disk *, int);
98 
99 #ifdef SR_DEBUG0
100 void		 sr_crypto_dumpkeys(struct sr_discipline *);
101 #endif
102 
103 /* Discipline initialisation. */
104 void
105 sr_crypto_discipline_init(struct sr_discipline *sd)
106 {
107 	int i;
108 
109 	/* Fill out discipline members. */
110 	sd->sd_type = SR_MD_CRYPTO;
111 	strlcpy(sd->sd_name, "CRYPTO", sizeof(sd->sd_name));
112 	sd->sd_capabilities = SR_CAP_SYSTEM_DISK | SR_CAP_AUTO_ASSEMBLE;
113 	sd->sd_max_wu = SR_CRYPTO_NOWU;
114 
115 	for (i = 0; i < SR_CRYPTO_MAXKEYS; i++)
116 		sd->mds.mdd_crypto.scr_sid[i] = (u_int64_t)-1;
117 
118 	/* Setup discipline specific function pointers. */
119 	sd->sd_alloc_resources = sr_crypto_alloc_resources;
120 	sd->sd_assemble = sr_crypto_assemble;
121 	sd->sd_create = sr_crypto_create;
122 	sd->sd_free_resources = sr_crypto_free_resources;
123 	sd->sd_ioctl_handler = sr_crypto_ioctl;
124 	sd->sd_meta_opt_handler = sr_crypto_meta_opt_handler;
125 	sd->sd_scsi_rw = sr_crypto_rw;
126 	sd->sd_scsi_done = sr_crypto_done;
127 }
128 
129 int
130 sr_crypto_create(struct sr_discipline *sd, struct bioc_createraid *bc,
131     int no_chunk, int64_t coerced_size)
132 {
133 	struct sr_meta_opt_item	*omi;
134 	int			rv = EINVAL;
135 
136 	if (no_chunk != 1) {
137 		sr_error(sd->sd_sc, "%s requires exactly one chunk",
138 		    sd->sd_name);
139 		goto done;
140 	}
141 
142 	if (coerced_size > SR_CRYPTO_MAXSIZE) {
143 		sr_error(sd->sd_sc, "%s exceeds maximum size (%lli > %llu)",
144 		    sd->sd_name, coerced_size, SR_CRYPTO_MAXSIZE);
145 		goto done;
146 	}
147 
148 	/* Create crypto optional metadata. */
149 	omi = malloc(sizeof(struct sr_meta_opt_item), M_DEVBUF,
150 	    M_WAITOK | M_ZERO);
151 	omi->omi_som = malloc(sizeof(struct sr_meta_crypto), M_DEVBUF,
152 	    M_WAITOK | M_ZERO);
153 	omi->omi_som->som_type = SR_OPT_CRYPTO;
154 	omi->omi_som->som_length = sizeof(struct sr_meta_crypto);
155 	SLIST_INSERT_HEAD(&sd->sd_meta_opt, omi, omi_link);
156 	sd->mds.mdd_crypto.scr_meta = (struct sr_meta_crypto *)omi->omi_som;
157 	sd->sd_meta->ssdi.ssd_opt_no++;
158 
159 	sd->mds.mdd_crypto.key_disk = NULL;
160 
161 	if (bc->bc_key_disk != NODEV) {
162 
163 		/* Create a key disk. */
164 		if (sr_crypto_get_kdf(bc, sd))
165 			goto done;
166 		sd->mds.mdd_crypto.key_disk =
167 		    sr_crypto_create_key_disk(sd, bc->bc_key_disk);
168 		if (sd->mds.mdd_crypto.key_disk == NULL)
169 			goto done;
170 		sd->sd_capabilities |= SR_CAP_AUTO_ASSEMBLE;
171 
172 	} else if (bc->bc_opaque_flags & BIOC_SOOUT) {
173 
174 		/* No hint available yet. */
175 		bc->bc_opaque_status = BIOC_SOINOUT_FAILED;
176 		rv = EAGAIN;
177 		goto done;
178 
179 	} else if (sr_crypto_get_kdf(bc, sd))
180 		goto done;
181 
182 	/* Passphrase volumes cannot be automatically assembled. */
183 	if (!(bc->bc_flags & BIOC_SCNOAUTOASSEMBLE) && bc->bc_key_disk == NODEV)
184 		goto done;
185 
186 	sd->sd_meta->ssdi.ssd_size = coerced_size;
187 
188 	sr_crypto_create_keys(sd);
189 
190 	sd->sd_max_ccb_per_wu = no_chunk;
191 
192 	rv = 0;
193 done:
194 	return (rv);
195 }
196 
197 int
198 sr_crypto_assemble(struct sr_discipline *sd, struct bioc_createraid *bc,
199     int no_chunk, void *data)
200 {
201 	int	rv = EINVAL;
202 
203 	sd->mds.mdd_crypto.key_disk = NULL;
204 
205 	/* Crypto optional metadata must already exist... */
206 	if (sd->mds.mdd_crypto.scr_meta == NULL)
207 		goto done;
208 
209 	if (data != NULL) {
210 		/* Kernel already has mask key. */
211 		memcpy(sd->mds.mdd_crypto.scr_maskkey, data,
212 		    sizeof(sd->mds.mdd_crypto.scr_maskkey));
213 	} else if (bc->bc_key_disk != NODEV) {
214 		/* Read the mask key from the key disk. */
215 		sd->mds.mdd_crypto.key_disk =
216 		    sr_crypto_read_key_disk(sd, bc->bc_key_disk);
217 		if (sd->mds.mdd_crypto.key_disk == NULL)
218 			goto done;
219 	} else if (bc->bc_opaque_flags & BIOC_SOOUT) {
220 		/* provide userland with kdf hint */
221 		if (bc->bc_opaque == NULL)
222 			goto done;
223 
224 		if (sizeof(sd->mds.mdd_crypto.scr_meta->scm_kdfhint) <
225 		    bc->bc_opaque_size)
226 			goto done;
227 
228 		if (copyout(sd->mds.mdd_crypto.scr_meta->scm_kdfhint,
229 		    bc->bc_opaque, bc->bc_opaque_size))
230 			goto done;
231 
232 		/* we're done */
233 		bc->bc_opaque_status = BIOC_SOINOUT_OK;
234 		rv = EAGAIN;
235 		goto done;
236 	} else if (bc->bc_opaque_flags & BIOC_SOIN) {
237 		/* get kdf with maskkey from userland */
238 		if (sr_crypto_get_kdf(bc, sd))
239 			goto done;
240 	} else
241 		goto done;
242 
243 	sd->sd_max_ccb_per_wu = sd->sd_meta->ssdi.ssd_chunk_no;
244 
245 	rv = 0;
246 done:
247 	return (rv);
248 }
249 
250 struct sr_crypto_wu *
251 sr_crypto_prepare(struct sr_workunit *wu, int encrypt)
252 {
253 	struct scsi_xfer	*xs = wu->swu_xs;
254 	struct sr_discipline	*sd = wu->swu_dis;
255 	struct sr_crypto_wu	*crwu;
256 	struct cryptodesc	*crd;
257 	int			flags, i, n;
258 	daddr_t			blkno;
259 	u_int			keyndx;
260 
261 	DNPRINTF(SR_D_DIS, "%s: sr_crypto_prepare wu %p encrypt %d\n",
262 	    DEVNAME(sd->sd_sc), wu, encrypt);
263 
264 	crwu = (struct sr_crypto_wu *)wu;
265 	crwu->cr_uio.uio_iovcnt = 1;
266 	crwu->cr_uio.uio_iov->iov_len = xs->datalen;
267 	if (xs->flags & SCSI_DATA_OUT) {
268 		crwu->cr_uio.uio_iov->iov_base = crwu->cr_dmabuf;
269 		memcpy(crwu->cr_uio.uio_iov->iov_base, xs->data, xs->datalen);
270 	} else
271 		crwu->cr_uio.uio_iov->iov_base = xs->data;
272 
273 	blkno = wu->swu_blk_start;
274 	n = xs->datalen >> DEV_BSHIFT;
275 
276 	/*
277 	 * We preallocated enough crypto descs for up to MAXPHYS of I/O.
278 	 * Since there may be less than that we need to tweak the amount
279 	 * of crypto desc structures to be just long enough for our needs.
280 	 */
281 	KASSERT(crwu->cr_crp->crp_ndescalloc >= n);
282 	crwu->cr_crp->crp_ndesc = n;
283 	flags = (encrypt ? CRD_F_ENCRYPT : 0) |
284 	    CRD_F_IV_PRESENT | CRD_F_IV_EXPLICIT;
285 
286 	/*
287 	 * Select crypto session based on block number.
288 	 *
289 	 * XXX - this does not handle the case where the read/write spans
290 	 * across a different key blocks (e.g. 0.5TB boundary). Currently
291 	 * this is already broken by the use of scr_key[0] below.
292 	 */
293 	keyndx = blkno >> SR_CRYPTO_KEY_BLKSHIFT;
294 	crwu->cr_crp->crp_sid = sd->mds.mdd_crypto.scr_sid[keyndx];
295 
296 	crwu->cr_crp->crp_opaque = crwu;
297 	crwu->cr_crp->crp_ilen = xs->datalen;
298 	crwu->cr_crp->crp_alloctype = M_DEVBUF;
299 	crwu->cr_crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_NOQUEUE;
300 	crwu->cr_crp->crp_buf = &crwu->cr_uio;
301 	for (i = 0; i < crwu->cr_crp->crp_ndesc; i++, blkno++) {
302 		crd = &crwu->cr_crp->crp_desc[i];
303 		crd->crd_skip = i << DEV_BSHIFT;
304 		crd->crd_len = DEV_BSIZE;
305 		crd->crd_inject = 0;
306 		crd->crd_flags = flags;
307 		crd->crd_alg = sd->mds.mdd_crypto.scr_alg;
308 		crd->crd_klen = sd->mds.mdd_crypto.scr_klen;
309 		crd->crd_key = sd->mds.mdd_crypto.scr_key[0];
310 		memcpy(crd->crd_iv, &blkno, sizeof(blkno));
311 	}
312 
313 	return (crwu);
314 }
315 
316 int
317 sr_crypto_get_kdf(struct bioc_createraid *bc, struct sr_discipline *sd)
318 {
319 	int			rv = EINVAL;
320 	struct sr_crypto_kdfinfo *kdfinfo;
321 
322 	if (!(bc->bc_opaque_flags & BIOC_SOIN))
323 		return (rv);
324 	if (bc->bc_opaque == NULL)
325 		return (rv);
326 	if (bc->bc_opaque_size != sizeof(*kdfinfo))
327 		return (rv);
328 
329 	kdfinfo = malloc(bc->bc_opaque_size, M_DEVBUF, M_WAITOK | M_ZERO);
330 	if (copyin(bc->bc_opaque, kdfinfo, bc->bc_opaque_size))
331 		goto out;
332 
333 	if (kdfinfo->len != bc->bc_opaque_size)
334 		goto out;
335 
336 	/* copy KDF hint to disk meta data */
337 	if (kdfinfo->flags & SR_CRYPTOKDF_HINT) {
338 		if (sizeof(sd->mds.mdd_crypto.scr_meta->scm_kdfhint) <
339 		    kdfinfo->genkdf.len)
340 			goto out;
341 		memcpy(sd->mds.mdd_crypto.scr_meta->scm_kdfhint,
342 		    &kdfinfo->genkdf, kdfinfo->genkdf.len);
343 	}
344 
345 	/* copy mask key to run-time meta data */
346 	if ((kdfinfo->flags & SR_CRYPTOKDF_KEY)) {
347 		if (sizeof(sd->mds.mdd_crypto.scr_maskkey) <
348 		    sizeof(kdfinfo->maskkey))
349 			goto out;
350 		memcpy(sd->mds.mdd_crypto.scr_maskkey, &kdfinfo->maskkey,
351 		    sizeof(kdfinfo->maskkey));
352 	}
353 
354 	bc->bc_opaque_status = BIOC_SOINOUT_OK;
355 	rv = 0;
356 out:
357 	explicit_bzero(kdfinfo, bc->bc_opaque_size);
358 	free(kdfinfo, M_DEVBUF, bc->bc_opaque_size);
359 
360 	return (rv);
361 }
362 
363 int
364 sr_crypto_encrypt(u_char *p, u_char *c, u_char *key, size_t size, int alg)
365 {
366 	rijndael_ctx		ctx;
367 	int			i, rv = 1;
368 
369 	switch (alg) {
370 	case SR_CRYPTOM_AES_ECB_256:
371 		if (rijndael_set_key_enc_only(&ctx, key, 256) != 0)
372 			goto out;
373 		for (i = 0; i < size; i += RIJNDAEL128_BLOCK_LEN)
374 			rijndael_encrypt(&ctx, &p[i], &c[i]);
375 		rv = 0;
376 		break;
377 	default:
378 		DNPRINTF(SR_D_DIS, "%s: unsupported encryption algorithm %d\n",
379 		    "softraid", alg);
380 		rv = -1;
381 		goto out;
382 	}
383 
384 out:
385 	explicit_bzero(&ctx, sizeof(ctx));
386 	return (rv);
387 }
388 
389 int
390 sr_crypto_decrypt(u_char *c, u_char *p, u_char *key, size_t size, int alg)
391 {
392 	rijndael_ctx		ctx;
393 	int			i, rv = 1;
394 
395 	switch (alg) {
396 	case SR_CRYPTOM_AES_ECB_256:
397 		if (rijndael_set_key(&ctx, key, 256) != 0)
398 			goto out;
399 		for (i = 0; i < size; i += RIJNDAEL128_BLOCK_LEN)
400 			rijndael_decrypt(&ctx, &c[i], &p[i]);
401 		rv = 0;
402 		break;
403 	default:
404 		DNPRINTF(SR_D_DIS, "%s: unsupported encryption algorithm %d\n",
405 		    "softraid", alg);
406 		rv = -1;
407 		goto out;
408 	}
409 
410 out:
411 	explicit_bzero(&ctx, sizeof(ctx));
412 	return (rv);
413 }
414 
415 void
416 sr_crypto_calculate_check_hmac_sha1(u_int8_t *maskkey, int maskkey_size,
417     u_int8_t *key, int key_size, u_char *check_digest)
418 {
419 	u_char			check_key[SHA1_DIGEST_LENGTH];
420 	HMAC_SHA1_CTX		hmacctx;
421 	SHA1_CTX		shactx;
422 
423 	bzero(check_key, sizeof(check_key));
424 	bzero(&hmacctx, sizeof(hmacctx));
425 	bzero(&shactx, sizeof(shactx));
426 
427 	/* k = SHA1(mask_key) */
428 	SHA1Init(&shactx);
429 	SHA1Update(&shactx, maskkey, maskkey_size);
430 	SHA1Final(check_key, &shactx);
431 
432 	/* mac = HMAC_SHA1_k(unencrypted key) */
433 	HMAC_SHA1_Init(&hmacctx, check_key, sizeof(check_key));
434 	HMAC_SHA1_Update(&hmacctx, key, key_size);
435 	HMAC_SHA1_Final(check_digest, &hmacctx);
436 
437 	explicit_bzero(check_key, sizeof(check_key));
438 	explicit_bzero(&hmacctx, sizeof(hmacctx));
439 	explicit_bzero(&shactx, sizeof(shactx));
440 }
441 
442 int
443 sr_crypto_decrypt_key(struct sr_discipline *sd)
444 {
445 	u_char			check_digest[SHA1_DIGEST_LENGTH];
446 	int			rv = 1;
447 
448 	DNPRINTF(SR_D_DIS, "%s: sr_crypto_decrypt_key\n", DEVNAME(sd->sd_sc));
449 
450 	if (sd->mds.mdd_crypto.scr_meta->scm_check_alg != SR_CRYPTOC_HMAC_SHA1)
451 		goto out;
452 
453 	if (sr_crypto_decrypt((u_char *)sd->mds.mdd_crypto.scr_meta->scm_key,
454 	    (u_char *)sd->mds.mdd_crypto.scr_key,
455 	    sd->mds.mdd_crypto.scr_maskkey, sizeof(sd->mds.mdd_crypto.scr_key),
456 	    sd->mds.mdd_crypto.scr_meta->scm_mask_alg) == -1)
457 		goto out;
458 
459 #ifdef SR_DEBUG0
460 	sr_crypto_dumpkeys(sd);
461 #endif
462 
463 	/* Check that the key decrypted properly. */
464 	sr_crypto_calculate_check_hmac_sha1(sd->mds.mdd_crypto.scr_maskkey,
465 	    sizeof(sd->mds.mdd_crypto.scr_maskkey),
466 	    (u_int8_t *)sd->mds.mdd_crypto.scr_key,
467 	    sizeof(sd->mds.mdd_crypto.scr_key),
468 	    check_digest);
469 	if (memcmp(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac,
470 	    check_digest, sizeof(check_digest)) != 0) {
471 		explicit_bzero(sd->mds.mdd_crypto.scr_key,
472 		    sizeof(sd->mds.mdd_crypto.scr_key));
473 		goto out;
474 	}
475 
476 	rv = 0; /* Success */
477 out:
478 	/* we don't need the mask key anymore */
479 	explicit_bzero(&sd->mds.mdd_crypto.scr_maskkey,
480 	    sizeof(sd->mds.mdd_crypto.scr_maskkey));
481 
482 	explicit_bzero(check_digest, sizeof(check_digest));
483 
484 	return rv;
485 }
486 
487 int
488 sr_crypto_create_keys(struct sr_discipline *sd)
489 {
490 
491 	DNPRINTF(SR_D_DIS, "%s: sr_crypto_create_keys\n",
492 	    DEVNAME(sd->sd_sc));
493 
494 	if (AES_MAXKEYBYTES < sizeof(sd->mds.mdd_crypto.scr_maskkey))
495 		return (1);
496 
497 	/* XXX allow user to specify */
498 	sd->mds.mdd_crypto.scr_meta->scm_alg = SR_CRYPTOA_AES_XTS_256;
499 
500 	/* generate crypto keys */
501 	arc4random_buf(sd->mds.mdd_crypto.scr_key,
502 	    sizeof(sd->mds.mdd_crypto.scr_key));
503 
504 	/* Mask the disk keys. */
505 	sd->mds.mdd_crypto.scr_meta->scm_mask_alg = SR_CRYPTOM_AES_ECB_256;
506 	sr_crypto_encrypt((u_char *)sd->mds.mdd_crypto.scr_key,
507 	    (u_char *)sd->mds.mdd_crypto.scr_meta->scm_key,
508 	    sd->mds.mdd_crypto.scr_maskkey, sizeof(sd->mds.mdd_crypto.scr_key),
509 	    sd->mds.mdd_crypto.scr_meta->scm_mask_alg);
510 
511 	/* Prepare key decryption check code. */
512 	sd->mds.mdd_crypto.scr_meta->scm_check_alg = SR_CRYPTOC_HMAC_SHA1;
513 	sr_crypto_calculate_check_hmac_sha1(sd->mds.mdd_crypto.scr_maskkey,
514 	    sizeof(sd->mds.mdd_crypto.scr_maskkey),
515 	    (u_int8_t *)sd->mds.mdd_crypto.scr_key,
516 	    sizeof(sd->mds.mdd_crypto.scr_key),
517 	    sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac);
518 
519 	/* Erase the plaintext disk keys */
520 	explicit_bzero(sd->mds.mdd_crypto.scr_key,
521 	    sizeof(sd->mds.mdd_crypto.scr_key));
522 
523 #ifdef SR_DEBUG0
524 	sr_crypto_dumpkeys(sd);
525 #endif
526 
527 	sd->mds.mdd_crypto.scr_meta->scm_flags = SR_CRYPTOF_KEY |
528 	    SR_CRYPTOF_KDFHINT;
529 
530 	return (0);
531 }
532 
533 int
534 sr_crypto_change_maskkey(struct sr_discipline *sd,
535   struct sr_crypto_kdfinfo *kdfinfo1, struct sr_crypto_kdfinfo *kdfinfo2)
536 {
537 	u_char			check_digest[SHA1_DIGEST_LENGTH];
538 	u_char			*c, *p = NULL;
539 	size_t			ksz;
540 	int			rv = 1;
541 
542 	DNPRINTF(SR_D_DIS, "%s: sr_crypto_change_maskkey\n",
543 	    DEVNAME(sd->sd_sc));
544 
545 	if (sd->mds.mdd_crypto.scr_meta->scm_check_alg != SR_CRYPTOC_HMAC_SHA1)
546 		goto out;
547 
548 	c = (u_char *)sd->mds.mdd_crypto.scr_meta->scm_key;
549 	ksz = sizeof(sd->mds.mdd_crypto.scr_key);
550 	p = malloc(ksz, M_DEVBUF, M_WAITOK | M_CANFAIL | M_ZERO);
551 	if (p == NULL)
552 		goto out;
553 
554 	if (sr_crypto_decrypt(c, p, kdfinfo1->maskkey, ksz,
555 	    sd->mds.mdd_crypto.scr_meta->scm_mask_alg) == -1)
556 		goto out;
557 
558 #ifdef SR_DEBUG0
559 	sr_crypto_dumpkeys(sd);
560 #endif
561 
562 	sr_crypto_calculate_check_hmac_sha1(kdfinfo1->maskkey,
563 	    sizeof(kdfinfo1->maskkey), p, ksz, check_digest);
564 	if (memcmp(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac,
565 	    check_digest, sizeof(check_digest)) != 0) {
566 		sr_error(sd->sd_sc, "incorrect key or passphrase");
567 		rv = EPERM;
568 		goto out;
569 	}
570 
571 	/* Copy new KDF hint to metadata, if supplied. */
572 	if (kdfinfo2->flags & SR_CRYPTOKDF_HINT) {
573 		if (kdfinfo2->genkdf.len >
574 		    sizeof(sd->mds.mdd_crypto.scr_meta->scm_kdfhint))
575 			goto out;
576 		explicit_bzero(sd->mds.mdd_crypto.scr_meta->scm_kdfhint,
577 		    sizeof(sd->mds.mdd_crypto.scr_meta->scm_kdfhint));
578 		memcpy(sd->mds.mdd_crypto.scr_meta->scm_kdfhint,
579 		    &kdfinfo2->genkdf, kdfinfo2->genkdf.len);
580 	}
581 
582 	/* Mask the disk keys. */
583 	c = (u_char *)sd->mds.mdd_crypto.scr_meta->scm_key;
584 	if (sr_crypto_encrypt(p, c, kdfinfo2->maskkey, ksz,
585 	    sd->mds.mdd_crypto.scr_meta->scm_mask_alg) == -1)
586 		goto out;
587 
588 	/* Prepare key decryption check code. */
589 	sd->mds.mdd_crypto.scr_meta->scm_check_alg = SR_CRYPTOC_HMAC_SHA1;
590 	sr_crypto_calculate_check_hmac_sha1(kdfinfo2->maskkey,
591 	    sizeof(kdfinfo2->maskkey), (u_int8_t *)sd->mds.mdd_crypto.scr_key,
592 	    sizeof(sd->mds.mdd_crypto.scr_key), check_digest);
593 
594 	/* Copy new encrypted key and HMAC to metadata. */
595 	memcpy(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac, check_digest,
596 	    sizeof(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac));
597 
598 	rv = 0; /* Success */
599 
600 out:
601 	if (p) {
602 		explicit_bzero(p, ksz);
603 		free(p, M_DEVBUF, ksz);
604 	}
605 
606 	explicit_bzero(check_digest, sizeof(check_digest));
607 	explicit_bzero(&kdfinfo1->maskkey, sizeof(kdfinfo1->maskkey));
608 	explicit_bzero(&kdfinfo2->maskkey, sizeof(kdfinfo2->maskkey));
609 
610 	return (rv);
611 }
612 
613 struct sr_chunk *
614 sr_crypto_create_key_disk(struct sr_discipline *sd, dev_t dev)
615 {
616 	struct sr_softc		*sc = sd->sd_sc;
617 	struct sr_discipline	*fakesd = NULL;
618 	struct sr_metadata	*sm = NULL;
619 	struct sr_meta_chunk    *km;
620 	struct sr_meta_opt_item *omi = NULL;
621 	struct sr_meta_keydisk	*skm;
622 	struct sr_chunk		*key_disk = NULL;
623 	struct disklabel	label;
624 	struct vnode		*vn;
625 	char			devname[32];
626 	int			c, part, open = 0;
627 
628 	/*
629 	 * Create a metadata structure on the key disk and store
630 	 * keying material in the optional metadata.
631 	 */
632 
633 	sr_meta_getdevname(sc, dev, devname, sizeof(devname));
634 
635 	/* Make sure chunk is not already in use. */
636 	c = sr_chunk_in_use(sc, dev);
637 	if (c != BIOC_SDINVALID && c != BIOC_SDOFFLINE) {
638 		sr_error(sc, "%s is already in use", devname);
639 		goto done;
640 	}
641 
642 	/* Open device. */
643 	if (bdevvp(dev, &vn)) {
644 		sr_error(sc, "cannot open key disk %s", devname);
645 		goto done;
646 	}
647 	if (VOP_OPEN(vn, FREAD | FWRITE, NOCRED, curproc)) {
648 		DNPRINTF(SR_D_META,"%s: sr_crypto_create_key_disk cannot "
649 		    "open %s\n", DEVNAME(sc), devname);
650 		vput(vn);
651 		goto done;
652 	}
653 	open = 1; /* close dev on error */
654 
655 	/* Get partition details. */
656 	part = DISKPART(dev);
657 	if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label,
658 	    FREAD, NOCRED, curproc)) {
659 		DNPRINTF(SR_D_META, "%s: sr_crypto_create_key_disk ioctl "
660 		    "failed\n", DEVNAME(sc));
661 		goto done;
662 	}
663 	if (label.d_partitions[part].p_fstype != FS_RAID) {
664 		sr_error(sc, "%s partition not of type RAID (%d)",
665 		    devname, label.d_partitions[part].p_fstype);
666 		goto done;
667 	}
668 
669 	/*
670 	 * Create and populate chunk metadata.
671 	 */
672 
673 	key_disk = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_WAITOK | M_ZERO);
674 	km = &key_disk->src_meta;
675 
676 	key_disk->src_dev_mm = dev;
677 	key_disk->src_vn = vn;
678 	strlcpy(key_disk->src_devname, devname, sizeof(km->scmi.scm_devname));
679 	key_disk->src_size = 0;
680 
681 	km->scmi.scm_volid = sd->sd_meta->ssdi.ssd_level;
682 	km->scmi.scm_chunk_id = 0;
683 	km->scmi.scm_size = 0;
684 	km->scmi.scm_coerced_size = 0;
685 	strlcpy(km->scmi.scm_devname, devname, sizeof(km->scmi.scm_devname));
686 	memcpy(&km->scmi.scm_uuid, &sd->sd_meta->ssdi.ssd_uuid,
687 	    sizeof(struct sr_uuid));
688 
689 	sr_checksum(sc, km, &km->scm_checksum,
690 	    sizeof(struct sr_meta_chunk_invariant));
691 
692 	km->scm_status = BIOC_SDONLINE;
693 
694 	/*
695 	 * Create and populate our own discipline and metadata.
696 	 */
697 
698 	sm = malloc(sizeof(struct sr_metadata), M_DEVBUF, M_WAITOK | M_ZERO);
699 	sm->ssdi.ssd_magic = SR_MAGIC;
700 	sm->ssdi.ssd_version = SR_META_VERSION;
701 	sm->ssd_ondisk = 0;
702 	sm->ssdi.ssd_vol_flags = 0;
703 	memcpy(&sm->ssdi.ssd_uuid, &sd->sd_meta->ssdi.ssd_uuid,
704 	    sizeof(struct sr_uuid));
705 	sm->ssdi.ssd_chunk_no = 1;
706 	sm->ssdi.ssd_volid = SR_KEYDISK_VOLID;
707 	sm->ssdi.ssd_level = SR_KEYDISK_LEVEL;
708 	sm->ssdi.ssd_size = 0;
709 	strlcpy(sm->ssdi.ssd_vendor, "OPENBSD", sizeof(sm->ssdi.ssd_vendor));
710 	snprintf(sm->ssdi.ssd_product, sizeof(sm->ssdi.ssd_product),
711 	    "SR %s", "KEYDISK");
712 	snprintf(sm->ssdi.ssd_revision, sizeof(sm->ssdi.ssd_revision),
713 	    "%03d", SR_META_VERSION);
714 
715 	fakesd = malloc(sizeof(struct sr_discipline), M_DEVBUF,
716 	    M_WAITOK | M_ZERO);
717 	fakesd->sd_sc = sd->sd_sc;
718 	fakesd->sd_meta = sm;
719 	fakesd->sd_meta_type = SR_META_F_NATIVE;
720 	fakesd->sd_vol_status = BIOC_SVONLINE;
721 	strlcpy(fakesd->sd_name, "KEYDISK", sizeof(fakesd->sd_name));
722 	SLIST_INIT(&fakesd->sd_meta_opt);
723 
724 	/* Add chunk to volume. */
725 	fakesd->sd_vol.sv_chunks = malloc(sizeof(struct sr_chunk *), M_DEVBUF,
726 	    M_WAITOK | M_ZERO);
727 	fakesd->sd_vol.sv_chunks[0] = key_disk;
728 	SLIST_INIT(&fakesd->sd_vol.sv_chunk_list);
729 	SLIST_INSERT_HEAD(&fakesd->sd_vol.sv_chunk_list, key_disk, src_link);
730 
731 	/* Generate mask key. */
732 	arc4random_buf(sd->mds.mdd_crypto.scr_maskkey,
733 	    sizeof(sd->mds.mdd_crypto.scr_maskkey));
734 
735 	/* Copy mask key to optional metadata area. */
736 	omi = malloc(sizeof(struct sr_meta_opt_item), M_DEVBUF,
737 	    M_WAITOK | M_ZERO);
738 	omi->omi_som = malloc(sizeof(struct sr_meta_keydisk), M_DEVBUF,
739 	    M_WAITOK | M_ZERO);
740 	omi->omi_som->som_type = SR_OPT_KEYDISK;
741 	omi->omi_som->som_length = sizeof(struct sr_meta_keydisk);
742 	skm = (struct sr_meta_keydisk *)omi->omi_som;
743 	memcpy(&skm->skm_maskkey, sd->mds.mdd_crypto.scr_maskkey,
744 	    sizeof(skm->skm_maskkey));
745 	SLIST_INSERT_HEAD(&fakesd->sd_meta_opt, omi, omi_link);
746 	fakesd->sd_meta->ssdi.ssd_opt_no++;
747 
748 	/* Save metadata. */
749 	if (sr_meta_save(fakesd, SR_META_DIRTY)) {
750 		sr_error(sc, "could not save metadata to %s", devname);
751 		goto fail;
752 	}
753 
754 	goto done;
755 
756 fail:
757 	free(key_disk, M_DEVBUF, sizeof(struct sr_chunk));
758 	key_disk = NULL;
759 
760 done:
761 	free(omi, M_DEVBUF, sizeof(struct sr_meta_opt_item));
762 	if (fakesd && fakesd->sd_vol.sv_chunks)
763 		free(fakesd->sd_vol.sv_chunks, M_DEVBUF,
764 		    sizeof(struct sr_chunk *));
765 	free(fakesd, M_DEVBUF, sizeof(struct sr_discipline));
766 	free(sm, M_DEVBUF, sizeof(struct sr_metadata));
767 	if (open) {
768 		VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, curproc);
769 		vput(vn);
770 	}
771 
772 	return key_disk;
773 }
774 
775 struct sr_chunk *
776 sr_crypto_read_key_disk(struct sr_discipline *sd, dev_t dev)
777 {
778 	struct sr_softc		*sc = sd->sd_sc;
779 	struct sr_metadata	*sm = NULL;
780 	struct sr_meta_opt_item *omi, *omi_next;
781 	struct sr_meta_opt_hdr	*omh;
782 	struct sr_meta_keydisk	*skm;
783 	struct sr_meta_opt_head som;
784 	struct sr_chunk		*key_disk = NULL;
785 	struct disklabel	label;
786 	struct vnode		*vn = NULL;
787 	char			devname[32];
788 	int			c, part, open = 0;
789 
790 	/*
791 	 * Load a key disk and load keying material into memory.
792 	 */
793 
794 	SLIST_INIT(&som);
795 
796 	sr_meta_getdevname(sc, dev, devname, sizeof(devname));
797 
798 	/* Make sure chunk is not already in use. */
799 	c = sr_chunk_in_use(sc, dev);
800 	if (c != BIOC_SDINVALID && c != BIOC_SDOFFLINE) {
801 		sr_error(sc, "%s is already in use", devname);
802 		goto done;
803 	}
804 
805 	/* Open device. */
806 	if (bdevvp(dev, &vn)) {
807 		sr_error(sc, "cannot open key disk %s", devname);
808 		goto done;
809 	}
810 	if (VOP_OPEN(vn, FREAD, NOCRED, curproc)) {
811 		DNPRINTF(SR_D_META,"%s: sr_crypto_read_key_disk cannot "
812 		    "open %s\n", DEVNAME(sc), devname);
813 		vput(vn);
814 		goto done;
815 	}
816 	open = 1; /* close dev on error */
817 
818 	/* Get partition details. */
819 	part = DISKPART(dev);
820 	if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD,
821 	    NOCRED, curproc)) {
822 		DNPRINTF(SR_D_META, "%s: sr_crypto_read_key_disk ioctl "
823 		    "failed\n", DEVNAME(sc));
824 		goto done;
825 	}
826 	if (label.d_partitions[part].p_fstype != FS_RAID) {
827 		sr_error(sc, "%s partition not of type RAID (%d)",
828 		    devname, label.d_partitions[part].p_fstype);
829 		goto done;
830 	}
831 
832 	/*
833 	 * Read and validate key disk metadata.
834 	 */
835 	sm = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_WAITOK | M_ZERO);
836 	if (sr_meta_native_read(sd, dev, sm, NULL)) {
837 		sr_error(sc, "native bootprobe could not read native metadata");
838 		goto done;
839 	}
840 
841 	if (sr_meta_validate(sd, dev, sm, NULL)) {
842 		DNPRINTF(SR_D_META, "%s: invalid metadata\n",
843 		    DEVNAME(sc));
844 		goto done;
845 	}
846 
847 	/* Make sure this is a key disk. */
848 	if (sm->ssdi.ssd_level != SR_KEYDISK_LEVEL) {
849 		sr_error(sc, "%s is not a key disk", devname);
850 		goto done;
851 	}
852 
853 	/* Construct key disk chunk. */
854 	key_disk = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_WAITOK | M_ZERO);
855 	key_disk->src_dev_mm = dev;
856 	key_disk->src_vn = vn;
857 	key_disk->src_size = 0;
858 
859 	memcpy(&key_disk->src_meta, (struct sr_meta_chunk *)(sm + 1),
860 	    sizeof(key_disk->src_meta));
861 
862 	/* Read mask key from optional metadata. */
863 	sr_meta_opt_load(sc, sm, &som);
864 	SLIST_FOREACH(omi, &som, omi_link) {
865 		omh = omi->omi_som;
866 		if (omh->som_type == SR_OPT_KEYDISK) {
867 			skm = (struct sr_meta_keydisk *)omh;
868 			memcpy(sd->mds.mdd_crypto.scr_maskkey, &skm->skm_maskkey,
869 			    sizeof(sd->mds.mdd_crypto.scr_maskkey));
870 		} else if (omh->som_type == SR_OPT_CRYPTO) {
871 			/* Original keydisk format with key in crypto area. */
872 			memcpy(sd->mds.mdd_crypto.scr_maskkey,
873 			    omh + sizeof(struct sr_meta_opt_hdr),
874 			    sizeof(sd->mds.mdd_crypto.scr_maskkey));
875 		}
876 	}
877 
878 	open = 0;
879 
880 done:
881 	for (omi = SLIST_FIRST(&som); omi != NULL; omi = omi_next) {
882 		omi_next = SLIST_NEXT(omi, omi_link);
883 		free(omi->omi_som, M_DEVBUF, 0);
884 		free(omi, M_DEVBUF, 0);
885 	}
886 
887 	free(sm, M_DEVBUF, SR_META_SIZE * DEV_BSIZE);
888 
889 	if (vn && open) {
890 		VOP_CLOSE(vn, FREAD, NOCRED, curproc);
891 		vput(vn);
892 	}
893 
894 	return key_disk;
895 }
896 
897 static void
898 sr_crypto_free_sessions(struct sr_discipline *sd)
899 {
900 	u_int			i;
901 
902 	for (i = 0; i < SR_CRYPTO_MAXKEYS; i++) {
903 		if (sd->mds.mdd_crypto.scr_sid[i] != (u_int64_t)-1) {
904 			crypto_freesession(sd->mds.mdd_crypto.scr_sid[i]);
905 			sd->mds.mdd_crypto.scr_sid[i] = (u_int64_t)-1;
906 		}
907 	}
908 }
909 
910 int
911 sr_crypto_alloc_resources(struct sr_discipline *sd)
912 {
913 	struct sr_workunit	*wu;
914 	struct sr_crypto_wu	*crwu;
915 	struct cryptoini	cri;
916 	u_int			num_keys, i;
917 
918 	DNPRINTF(SR_D_DIS, "%s: sr_crypto_alloc_resources\n",
919 	    DEVNAME(sd->sd_sc));
920 
921 	sd->mds.mdd_crypto.scr_alg = CRYPTO_AES_XTS;
922 	switch (sd->mds.mdd_crypto.scr_meta->scm_alg) {
923 	case SR_CRYPTOA_AES_XTS_128:
924 		sd->mds.mdd_crypto.scr_klen = 256;
925 		break;
926 	case SR_CRYPTOA_AES_XTS_256:
927 		sd->mds.mdd_crypto.scr_klen = 512;
928 		break;
929 	default:
930 		sr_error(sd->sd_sc, "unknown crypto algorithm");
931 		return (EINVAL);
932 	}
933 
934 	for (i = 0; i < SR_CRYPTO_MAXKEYS; i++)
935 		sd->mds.mdd_crypto.scr_sid[i] = (u_int64_t)-1;
936 
937 	if (sr_wu_alloc(sd, sizeof(struct sr_crypto_wu))) {
938 		sr_error(sd->sd_sc, "unable to allocate work units");
939 		return (ENOMEM);
940 	}
941 	if (sr_ccb_alloc(sd)) {
942 		sr_error(sd->sd_sc, "unable to allocate CCBs");
943 		return (ENOMEM);
944 	}
945 	if (sr_crypto_decrypt_key(sd)) {
946 		sr_error(sd->sd_sc, "incorrect key or passphrase");
947 		return (EPERM);
948 	}
949 
950 	/*
951 	 * For each work unit allocate the uio, iovec and crypto structures.
952 	 * These have to be allocated now because during runtime we cannot
953 	 * fail an allocation without failing the I/O (which can cause real
954 	 * problems).
955 	 */
956 	TAILQ_FOREACH(wu, &sd->sd_wu, swu_next) {
957 		crwu = (struct sr_crypto_wu *)wu;
958 		crwu->cr_uio.uio_iov = &crwu->cr_iov;
959 		crwu->cr_dmabuf = dma_alloc(MAXPHYS, PR_WAITOK);
960 		crwu->cr_crp = crypto_getreq(MAXPHYS >> DEV_BSHIFT);
961 		if (crwu->cr_crp == NULL)
962 			return (ENOMEM);
963 	}
964 
965 	memset(&cri, 0, sizeof(cri));
966 	cri.cri_alg = sd->mds.mdd_crypto.scr_alg;
967 	cri.cri_klen = sd->mds.mdd_crypto.scr_klen;
968 
969 	/* Allocate a session for every 2^SR_CRYPTO_KEY_BLKSHIFT blocks. */
970 	num_keys = ((sd->sd_meta->ssdi.ssd_size - 1) >>
971 	    SR_CRYPTO_KEY_BLKSHIFT) + 1;
972 	if (num_keys > SR_CRYPTO_MAXKEYS)
973 		return (EFBIG);
974 	for (i = 0; i < num_keys; i++) {
975 		cri.cri_key = sd->mds.mdd_crypto.scr_key[i];
976 		if (crypto_newsession(&sd->mds.mdd_crypto.scr_sid[i],
977 		    &cri, 0) != 0) {
978 			sr_crypto_free_sessions(sd);
979 			return (EINVAL);
980 		}
981 	}
982 
983 	sr_hotplug_register(sd, sr_crypto_hotplug);
984 
985 	return (0);
986 }
987 
988 void
989 sr_crypto_free_resources(struct sr_discipline *sd)
990 {
991 	struct sr_workunit	*wu;
992 	struct sr_crypto_wu	*crwu;
993 
994 	DNPRINTF(SR_D_DIS, "%s: sr_crypto_free_resources\n",
995 	    DEVNAME(sd->sd_sc));
996 
997 	if (sd->mds.mdd_crypto.key_disk != NULL) {
998 		explicit_bzero(sd->mds.mdd_crypto.key_disk,
999 		    sizeof(*sd->mds.mdd_crypto.key_disk));
1000 		free(sd->mds.mdd_crypto.key_disk, M_DEVBUF,
1001 		    sizeof(*sd->mds.mdd_crypto.key_disk));
1002 	}
1003 
1004 	sr_hotplug_unregister(sd, sr_crypto_hotplug);
1005 
1006 	sr_crypto_free_sessions(sd);
1007 
1008 	TAILQ_FOREACH(wu, &sd->sd_wu, swu_next) {
1009 		crwu = (struct sr_crypto_wu *)wu;
1010 		if (crwu->cr_dmabuf)
1011 			dma_free(crwu->cr_dmabuf, MAXPHYS);
1012 		if (crwu->cr_crp)
1013 			crypto_freereq(crwu->cr_crp);
1014 	}
1015 
1016 	sr_wu_free(sd);
1017 	sr_ccb_free(sd);
1018 }
1019 
1020 int
1021 sr_crypto_ioctl(struct sr_discipline *sd, struct bioc_discipline *bd)
1022 {
1023 	struct sr_crypto_kdfpair kdfpair;
1024 	struct sr_crypto_kdfinfo kdfinfo1, kdfinfo2;
1025 	int			size, rv = 1;
1026 
1027 	DNPRINTF(SR_D_IOCTL, "%s: sr_crypto_ioctl %u\n",
1028 	    DEVNAME(sd->sd_sc), bd->bd_cmd);
1029 
1030 	switch (bd->bd_cmd) {
1031 	case SR_IOCTL_GET_KDFHINT:
1032 
1033 		/* Get KDF hint for userland. */
1034 		size = sizeof(sd->mds.mdd_crypto.scr_meta->scm_kdfhint);
1035 		if (bd->bd_data == NULL || bd->bd_size > size)
1036 			goto bad;
1037 		if (copyout(sd->mds.mdd_crypto.scr_meta->scm_kdfhint,
1038 		    bd->bd_data, bd->bd_size))
1039 			goto bad;
1040 
1041 		rv = 0;
1042 
1043 		break;
1044 
1045 	case SR_IOCTL_CHANGE_PASSPHRASE:
1046 
1047 		/* Attempt to change passphrase. */
1048 
1049 		size = sizeof(kdfpair);
1050 		if (bd->bd_data == NULL || bd->bd_size > size)
1051 			goto bad;
1052 		if (copyin(bd->bd_data, &kdfpair, size))
1053 			goto bad;
1054 
1055 		size = sizeof(kdfinfo1);
1056 		if (kdfpair.kdfinfo1 == NULL || kdfpair.kdfsize1 > size)
1057 			goto bad;
1058 		if (copyin(kdfpair.kdfinfo1, &kdfinfo1, size))
1059 			goto bad;
1060 
1061 		size = sizeof(kdfinfo2);
1062 		if (kdfpair.kdfinfo2 == NULL || kdfpair.kdfsize2 > size)
1063 			goto bad;
1064 		if (copyin(kdfpair.kdfinfo2, &kdfinfo2, size))
1065 			goto bad;
1066 
1067 		if (sr_crypto_change_maskkey(sd, &kdfinfo1, &kdfinfo2))
1068 			goto bad;
1069 
1070 		/* Save metadata to disk. */
1071 		rv = sr_meta_save(sd, SR_META_DIRTY);
1072 
1073 		break;
1074 	}
1075 
1076 bad:
1077 	explicit_bzero(&kdfpair, sizeof(kdfpair));
1078 	explicit_bzero(&kdfinfo1, sizeof(kdfinfo1));
1079 	explicit_bzero(&kdfinfo2, sizeof(kdfinfo2));
1080 
1081 	return (rv);
1082 }
1083 
1084 int
1085 sr_crypto_meta_opt_handler(struct sr_discipline *sd, struct sr_meta_opt_hdr *om)
1086 {
1087 	int rv = EINVAL;
1088 
1089 	if (om->som_type == SR_OPT_CRYPTO) {
1090 		sd->mds.mdd_crypto.scr_meta = (struct sr_meta_crypto *)om;
1091 		rv = 0;
1092 	}
1093 
1094 	return (rv);
1095 }
1096 
1097 int
1098 sr_crypto_rw(struct sr_workunit *wu)
1099 {
1100 	struct sr_crypto_wu	*crwu;
1101 	daddr_t			blkno;
1102 	int			rv = 0;
1103 
1104 	DNPRINTF(SR_D_DIS, "%s: sr_crypto_rw wu %p\n",
1105 	    DEVNAME(wu->swu_dis->sd_sc), wu);
1106 
1107 	if (sr_validate_io(wu, &blkno, "sr_crypto_rw"))
1108 		return (1);
1109 
1110 	if (wu->swu_xs->flags & SCSI_DATA_OUT) {
1111 		crwu = sr_crypto_prepare(wu, 1);
1112 		crwu->cr_crp->crp_callback = sr_crypto_write;
1113 		rv = crypto_dispatch(crwu->cr_crp);
1114 		if (rv == 0)
1115 			rv = crwu->cr_crp->crp_etype;
1116 	} else
1117 		rv = sr_crypto_dev_rw(wu, NULL);
1118 
1119 	return (rv);
1120 }
1121 
1122 void
1123 sr_crypto_write(struct cryptop *crp)
1124 {
1125 	struct sr_crypto_wu	*crwu = crp->crp_opaque;
1126 	struct sr_workunit	*wu = &crwu->cr_wu;
1127 	int			s;
1128 
1129 	DNPRINTF(SR_D_INTR, "%s: sr_crypto_write: wu %p xs: %p\n",
1130 	    DEVNAME(wu->swu_dis->sd_sc), wu, wu->swu_xs);
1131 
1132 	if (crp->crp_etype) {
1133 		/* fail io */
1134 		wu->swu_xs->error = XS_DRIVER_STUFFUP;
1135 		s = splbio();
1136 		sr_scsi_done(wu->swu_dis, wu->swu_xs);
1137 		splx(s);
1138 	}
1139 
1140 	sr_crypto_dev_rw(wu, crwu);
1141 }
1142 
1143 int
1144 sr_crypto_dev_rw(struct sr_workunit *wu, struct sr_crypto_wu *crwu)
1145 {
1146 	struct sr_discipline	*sd = wu->swu_dis;
1147 	struct scsi_xfer	*xs = wu->swu_xs;
1148 	struct sr_ccb		*ccb;
1149 	struct uio		*uio;
1150 	daddr_t			blkno;
1151 
1152 	blkno = wu->swu_blk_start;
1153 
1154 	ccb = sr_ccb_rw(sd, 0, blkno, xs->datalen, xs->data, xs->flags, 0);
1155 	if (!ccb) {
1156 		/* should never happen but handle more gracefully */
1157 		printf("%s: %s: too many ccbs queued\n",
1158 		    DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname);
1159 		goto bad;
1160 	}
1161 	if (!ISSET(xs->flags, SCSI_DATA_IN)) {
1162 		uio = crwu->cr_crp->crp_buf;
1163 		ccb->ccb_buf.b_data = uio->uio_iov->iov_base;
1164 		ccb->ccb_opaque = crwu;
1165 	}
1166 	sr_wu_enqueue_ccb(wu, ccb);
1167 	sr_schedule_wu(wu);
1168 
1169 	return (0);
1170 
1171 bad:
1172 	/* wu is unwound by sr_wu_put */
1173 	if (crwu)
1174 		crwu->cr_crp->crp_etype = EINVAL;
1175 	return (1);
1176 }
1177 
1178 void
1179 sr_crypto_done(struct sr_workunit *wu)
1180 {
1181 	struct scsi_xfer	*xs = wu->swu_xs;
1182 	struct sr_crypto_wu	*crwu;
1183 	int			s;
1184 
1185 	/* If this was a successful read, initiate decryption of the data. */
1186 	if (ISSET(xs->flags, SCSI_DATA_IN) && xs->error == XS_NOERROR) {
1187 		crwu = sr_crypto_prepare(wu, 0);
1188 		crwu->cr_crp->crp_callback = sr_crypto_read;
1189 		DNPRINTF(SR_D_INTR, "%s: sr_crypto_done: crypto_dispatch %p\n",
1190 		    DEVNAME(wu->swu_dis->sd_sc), crwu->cr_crp);
1191 		crypto_dispatch(crwu->cr_crp);
1192 		return;
1193 	}
1194 
1195 	s = splbio();
1196 	sr_scsi_done(wu->swu_dis, wu->swu_xs);
1197 	splx(s);
1198 }
1199 
1200 void
1201 sr_crypto_read(struct cryptop *crp)
1202 {
1203 	struct sr_crypto_wu	*crwu = crp->crp_opaque;
1204 	struct sr_workunit	*wu = &crwu->cr_wu;
1205 	int			s;
1206 
1207 	DNPRINTF(SR_D_INTR, "%s: sr_crypto_read: wu %p xs: %p\n",
1208 	    DEVNAME(wu->swu_dis->sd_sc), wu, wu->swu_xs);
1209 
1210 	if (crp->crp_etype)
1211 		wu->swu_xs->error = XS_DRIVER_STUFFUP;
1212 
1213 	s = splbio();
1214 	sr_scsi_done(wu->swu_dis, wu->swu_xs);
1215 	splx(s);
1216 }
1217 
1218 void
1219 sr_crypto_hotplug(struct sr_discipline *sd, struct disk *diskp, int action)
1220 {
1221 	DNPRINTF(SR_D_MISC, "%s: sr_crypto_hotplug: %s %d\n",
1222 	    DEVNAME(sd->sd_sc), diskp->dk_name, action);
1223 }
1224 
1225 #ifdef SR_DEBUG0
1226 void
1227 sr_crypto_dumpkeys(struct sr_discipline *sd)
1228 {
1229 	int			i, j;
1230 
1231 	printf("sr_crypto_dumpkeys:\n");
1232 	for (i = 0; i < SR_CRYPTO_MAXKEYS; i++) {
1233 		printf("\tscm_key[%d]: 0x", i);
1234 		for (j = 0; j < SR_CRYPTO_KEYBYTES; j++) {
1235 			printf("%02x",
1236 			    sd->mds.mdd_crypto.scr_meta->scm_key[i][j]);
1237 		}
1238 		printf("\n");
1239 	}
1240 	printf("sr_crypto_dumpkeys: runtime data keys:\n");
1241 	for (i = 0; i < SR_CRYPTO_MAXKEYS; i++) {
1242 		printf("\tscr_key[%d]: 0x", i);
1243 		for (j = 0; j < SR_CRYPTO_KEYBYTES; j++) {
1244 			printf("%02x",
1245 			    sd->mds.mdd_crypto.scr_key[i][j]);
1246 		}
1247 		printf("\n");
1248 	}
1249 }
1250 #endif	/* SR_DEBUG */
1251