1 /* $OpenBSD: rnd.c,v 1.193 2017/07/30 21:40:14 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Theo de Raadt. 5 * Copyright (c) 2008 Damien Miller. 6 * Copyright (c) 1996, 1997, 2000-2002 Michael Shalayeff. 7 * Copyright (c) 2013 Markus Friedl. 8 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. 9 * All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, and the entire permission notice in its entirety, 16 * including the disclaimer of warranties. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * ALTERNATIVELY, this product may be distributed under the terms of 25 * the GNU Public License, in which case the provisions of the GPL are 26 * required INSTEAD OF the above restrictions. (This clause is 27 * necessary due to a potential bad interaction between the GPL and 28 * the restrictions contained in a BSD-style copyright.) 29 * 30 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 31 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 33 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 34 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 35 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 36 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 40 * OF THE POSSIBILITY OF SUCH DAMAGE. 41 */ 42 43 /* 44 * Computers are very predictable devices. Hence it is extremely hard 45 * to produce truly random numbers on a computer --- as opposed to 46 * pseudo-random numbers, which can be easily generated by using an 47 * algorithm. Unfortunately, it is very easy for attackers to guess 48 * the sequence of pseudo-random number generators, and for some 49 * applications this is not acceptable. Instead, we must try to 50 * gather "environmental noise" from the computer's environment, which 51 * must be hard for outside attackers to observe and use to 52 * generate random numbers. In a Unix environment, this is best done 53 * from inside the kernel. 54 * 55 * Sources of randomness from the environment include inter-keyboard 56 * timings, inter-interrupt timings from some interrupts, and other 57 * events which are both (a) non-deterministic and (b) hard for an 58 * outside observer to measure. Randomness from these sources is 59 * added to the "rnd states" queue; this is used as much of the 60 * source material which is mixed on occasion using a CRC-like function 61 * into the "entropy pool". This is not cryptographically strong, but 62 * it is adequate assuming the randomness is not chosen maliciously, 63 * and it is very fast because the interrupt-time event is only to add 64 * a small random token to the "rnd states" queue. 65 * 66 * When random bytes are desired, they are obtained by pulling from 67 * the entropy pool and running a SHA512 hash. The SHA512 hash avoids 68 * exposing the internal state of the entropy pool. Even if it is 69 * possible to analyze SHA512 in some clever way, as long as the amount 70 * of data returned from the generator is less than the inherent 71 * entropy in the pool, the output data is totally unpredictable. For 72 * this reason, the routine decreases its internal estimate of how many 73 * bits of "true randomness" are contained in the entropy pool as it 74 * outputs random numbers. 75 * 76 * If this estimate goes to zero, the SHA512 hash will continue to generate 77 * output since there is no true risk because the SHA512 output is not 78 * exported outside this subsystem. It is next used as input to seed a 79 * ChaCha20 stream cipher, which is re-seeded from time to time. This 80 * design provides very high amounts of output data from a potentially 81 * small entropy base, at high enough speeds to encourage use of random 82 * numbers in nearly any situation. Before OpenBSD 5.5, the RC4 stream 83 * cipher (also known as ARC4) was used instead of ChaCha20. 84 * 85 * The output of this single ChaCha20 engine is then shared amongst many 86 * consumers in the kernel and userland via a few interfaces: 87 * arc4random_buf(), arc4random(), arc4random_uniform(), randomread() 88 * for the set of /dev/random nodes and the system call getentropy(), 89 * which provides seeds for process-context pseudorandom generators. 90 * 91 * Acknowledgements: 92 * ================= 93 * 94 * Ideas for constructing this random number generator were derived 95 * from Pretty Good Privacy's random number generator, and from private 96 * discussions with Phil Karn. Colin Plumb provided a faster random 97 * number generator, which speeds up the mixing function of the entropy 98 * pool, taken from PGPfone. Dale Worley has also contributed many 99 * useful ideas and suggestions to improve this driver. 100 * 101 * Any flaws in the design are solely my responsibility, and should 102 * not be attributed to the Phil, Colin, or any of the authors of PGP. 103 * 104 * Further background information on this topic may be obtained from 105 * RFC 1750, "Randomness Recommendations for Security", by Donald 106 * Eastlake, Steve Crocker, and Jeff Schiller. 107 * 108 * Using a RC4 stream cipher as 2nd stage after the MD5 (now SHA512) output 109 * is the result of work by David Mazieres. 110 */ 111 112 #include <sys/param.h> 113 #include <sys/systm.h> 114 #include <sys/disk.h> 115 #include <sys/event.h> 116 #include <sys/limits.h> 117 #include <sys/time.h> 118 #include <sys/ioctl.h> 119 #include <sys/malloc.h> 120 #include <sys/fcntl.h> 121 #include <sys/timeout.h> 122 #include <sys/mutex.h> 123 #include <sys/task.h> 124 #include <sys/msgbuf.h> 125 #include <sys/mount.h> 126 #include <sys/syscallargs.h> 127 128 #include <crypto/sha2.h> 129 130 #define KEYSTREAM_ONLY 131 #include <crypto/chacha_private.h> 132 133 #include <dev/rndvar.h> 134 135 #include <uvm/uvm_param.h> 136 #include <uvm/uvm_extern.h> 137 138 /* 139 * For the purposes of better mixing, we use the CRC-32 polynomial as 140 * well to make a twisted Generalized Feedback Shift Register 141 * 142 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 143 * Transactions on Modeling and Computer Simulation 2(3):179-194. 144 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 145 * II. ACM Transactions on Modeling and Computer Simulation 4:254-266) 146 * 147 * Thanks to Colin Plumb for suggesting this. 148 * 149 * We have not analyzed the resultant polynomial to prove it primitive; 150 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 151 * of a random large-degree polynomial over GF(2) are more than large enough 152 * that periodicity is not a concern. 153 * 154 * The input hash is much less sensitive than the output hash. All 155 * we want from it is to be a good non-cryptographic hash - 156 * i.e. to not produce collisions when fed "random" data of the sort 157 * we expect to see. As long as the pool state differs for different 158 * inputs, we have preserved the input entropy and done a good job. 159 * The fact that an intelligent attacker can construct inputs that 160 * will produce controlled alterations to the pool's state is not 161 * important because we don't consider such inputs to contribute any 162 * randomness. The only property we need with respect to them is that 163 * the attacker can't increase his/her knowledge of the pool's state. 164 * Since all additions are reversible (knowing the final state and the 165 * input, you can reconstruct the initial state), if an attacker has 166 * any uncertainty about the initial state, he/she can only shuffle 167 * that uncertainty about, but never cause any collisions (which would 168 * decrease the uncertainty). 169 * 170 * The chosen system lets the state of the pool be (essentially) the input 171 * modulo the generator polynomial. Now, for random primitive polynomials, 172 * this is a universal class of hash functions, meaning that the chance 173 * of a collision is limited by the attacker's knowledge of the generator 174 * polynomial, so if it is chosen at random, an attacker can never force 175 * a collision. Here, we use a fixed polynomial, but we *can* assume that 176 * ###--> it is unknown to the processes generating the input entropy. <-### 177 * Because of this important property, this is a good, collision-resistant 178 * hash; hash collisions will occur no more often than chance. 179 */ 180 181 /* 182 * Stirring polynomials over GF(2) for various pool sizes. Used in 183 * add_entropy_words() below. 184 * 185 * The polynomial terms are chosen to be evenly spaced (minimum RMS 186 * distance from evenly spaced; except for the last tap, which is 1 to 187 * get the twisting happening as fast as possible. 188 * 189 * The resultant polynomial is: 190 * 2^POOLWORDS + 2^POOL_TAP1 + 2^POOL_TAP2 + 2^POOL_TAP3 + 2^POOL_TAP4 + 1 191 */ 192 #define POOLWORDS 2048 193 #define POOLBYTES (POOLWORDS*4) 194 #define POOLMASK (POOLWORDS - 1) 195 #define POOL_TAP1 1638 196 #define POOL_TAP2 1231 197 #define POOL_TAP3 819 198 #define POOL_TAP4 411 199 200 struct mutex entropylock = MUTEX_INITIALIZER(IPL_HIGH); 201 202 /* 203 * Raw entropy collection from device drivers; at interrupt context or not. 204 * add_*_randomness() provide data which is put into the entropy queue. 205 * Almost completely under the entropylock. 206 */ 207 208 #define QEVLEN (1024 / sizeof(struct rand_event)) 209 #define QEVSLOW (QEVLEN * 3 / 4) /* yet another 0.75 for 60-minutes hour /-; */ 210 #define QEVSBITS 10 211 212 #define KEYSZ 32 213 #define IVSZ 8 214 #define BLOCKSZ 64 215 #define RSBUFSZ (16*BLOCKSZ) 216 #define EBUFSIZE KEYSZ + IVSZ 217 218 struct rand_event { 219 u_int re_time; 220 u_int re_val; 221 } rnd_event_space[QEVLEN]; 222 /* index of next free slot */ 223 u_int rnd_event_idx; 224 225 struct timeout rnd_timeout; 226 227 static u_int32_t entropy_pool[POOLWORDS]; 228 u_int32_t entropy_pool0[POOLWORDS] __attribute__((section(".openbsd.randomdata"))); 229 u_int entropy_add_ptr; 230 u_char entropy_input_rotate; 231 232 void dequeue_randomness(void *); 233 void add_entropy_words(const u_int32_t *, u_int); 234 void extract_entropy(u_int8_t *) 235 __attribute__((__bounded__(__minbytes__,1,EBUFSIZE))); 236 237 int filt_randomread(struct knote *, long); 238 void filt_randomdetach(struct knote *); 239 int filt_randomwrite(struct knote *, long); 240 241 static void _rs_seed(u_char *, size_t); 242 static void _rs_clearseed(const void *p, size_t s); 243 244 struct filterops randomread_filtops = 245 { 1, NULL, filt_randomdetach, filt_randomread }; 246 struct filterops randomwrite_filtops = 247 { 1, NULL, filt_randomdetach, filt_randomwrite }; 248 249 static __inline struct rand_event * 250 rnd_get(void) 251 { 252 if (rnd_event_idx == 0) 253 return NULL; 254 /* if it wrapped around, start dequeuing at the end */ 255 if (rnd_event_idx > QEVLEN) 256 rnd_event_idx = QEVLEN; 257 258 return &rnd_event_space[--rnd_event_idx]; 259 } 260 261 static __inline struct rand_event * 262 rnd_put(void) 263 { 264 u_int idx = rnd_event_idx++; 265 266 /* allow wrapping. caller will use xor. */ 267 idx = idx % QEVLEN; 268 269 return &rnd_event_space[idx]; 270 } 271 272 static __inline u_int 273 rnd_qlen(void) 274 { 275 return rnd_event_idx; 276 } 277 278 /* 279 * This function adds entropy to the entropy pool by using timing 280 * delays. It uses the timer_rand_state structure to make an estimate 281 * of how many bits of entropy this call has added to the pool. 282 * 283 * The number "val" is also added to the pool - it should somehow describe 284 * the type of event which just happened. Currently the values of 0-255 285 * are for keyboard scan codes, 256 and upwards - for interrupts. 286 */ 287 void 288 enqueue_randomness(u_int state, u_int val) 289 { 290 struct rand_event *rep; 291 struct timespec ts; 292 293 #ifdef DIAGNOSTIC 294 if (state >= RND_SRC_NUM) 295 return; 296 #endif 297 298 if (timeout_initialized(&rnd_timeout)) 299 nanotime(&ts); 300 301 val += state << 13; 302 303 mtx_enter(&entropylock); 304 305 rep = rnd_put(); 306 307 rep->re_time += ts.tv_nsec ^ (ts.tv_sec << 20); 308 rep->re_val += val; 309 310 if (rnd_qlen() > QEVSLOW/2 && timeout_initialized(&rnd_timeout) && 311 !timeout_pending(&rnd_timeout)) 312 timeout_add(&rnd_timeout, 1); 313 314 mtx_leave(&entropylock); 315 } 316 317 /* 318 * This function adds a byte into the entropy pool. It does not 319 * update the entropy estimate. The caller must do this if appropriate. 320 * 321 * The pool is stirred with a polynomial of degree POOLWORDS over GF(2); 322 * see POOL_TAP[1-4] above 323 * 324 * Rotate the input word by a changing number of bits, to help assure 325 * that all bits in the entropy get toggled. Otherwise, if the pool 326 * is consistently fed small numbers (such as keyboard scan codes) 327 * then the upper bits of the entropy pool will frequently remain 328 * untouched. 329 */ 330 void 331 add_entropy_words(const u_int32_t *buf, u_int n) 332 { 333 /* derived from IEEE 802.3 CRC-32 */ 334 static const u_int32_t twist_table[8] = { 335 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 336 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 337 }; 338 339 for (; n--; buf++) { 340 u_int32_t w = (*buf << entropy_input_rotate) | 341 (*buf >> ((32 - entropy_input_rotate) & 31)); 342 u_int i = entropy_add_ptr = 343 (entropy_add_ptr - 1) & POOLMASK; 344 /* 345 * Normally, we add 7 bits of rotation to the pool. 346 * At the beginning of the pool, add an extra 7 bits 347 * rotation, so that successive passes spread the 348 * input bits across the pool evenly. 349 */ 350 entropy_input_rotate = 351 (entropy_input_rotate + (i ? 7 : 14)) & 31; 352 353 /* XOR pool contents corresponding to polynomial terms */ 354 w ^= entropy_pool[(i + POOL_TAP1) & POOLMASK] ^ 355 entropy_pool[(i + POOL_TAP2) & POOLMASK] ^ 356 entropy_pool[(i + POOL_TAP3) & POOLMASK] ^ 357 entropy_pool[(i + POOL_TAP4) & POOLMASK] ^ 358 entropy_pool[(i + 1) & POOLMASK] ^ 359 entropy_pool[i]; /* + 2^POOLWORDS */ 360 361 entropy_pool[i] = (w >> 3) ^ twist_table[w & 7]; 362 } 363 } 364 365 /* 366 * Pulls entropy out of the queue and merges it into the pool 367 * with the CRC. 368 */ 369 /* ARGSUSED */ 370 void 371 dequeue_randomness(void *v) 372 { 373 struct rand_event *rep; 374 u_int32_t buf[2]; 375 376 mtx_enter(&entropylock); 377 378 if (timeout_initialized(&rnd_timeout)) 379 timeout_del(&rnd_timeout); 380 381 while ((rep = rnd_get())) { 382 buf[0] = rep->re_time; 383 buf[1] = rep->re_val; 384 mtx_leave(&entropylock); 385 386 add_entropy_words(buf, 2); 387 388 mtx_enter(&entropylock); 389 } 390 mtx_leave(&entropylock); 391 } 392 393 /* 394 * Grabs a chunk from the entropy_pool[] and slams it through SHA512 when 395 * requested. 396 */ 397 void 398 extract_entropy(u_int8_t *buf) 399 { 400 static u_int32_t extract_pool[POOLWORDS]; 401 u_char digest[SHA512_DIGEST_LENGTH]; 402 SHA2_CTX shactx; 403 404 #if SHA512_DIGEST_LENGTH < EBUFSIZE 405 #error "need more bigger hash output" 406 #endif 407 408 /* 409 * INTENTIONALLY not protected by entropylock. Races during 410 * memcpy() result in acceptable input data; races during 411 * SHA512Update() would create nasty data dependencies. We 412 * do not rely on this as a benefit, but if it happens, cool. 413 */ 414 memcpy(extract_pool, entropy_pool, sizeof(extract_pool)); 415 416 /* Hash the pool to get the output */ 417 SHA512Init(&shactx); 418 SHA512Update(&shactx, (u_int8_t *)extract_pool, sizeof(extract_pool)); 419 SHA512Final(digest, &shactx); 420 421 /* Copy data to destination buffer */ 422 memcpy(buf, digest, EBUFSIZE); 423 424 /* Modify pool so next hash will produce different results */ 425 add_timer_randomness(EBUFSIZE); 426 dequeue_randomness(NULL); 427 428 /* Wipe data from memory */ 429 explicit_bzero(extract_pool, sizeof(extract_pool)); 430 explicit_bzero(digest, sizeof(digest)); 431 } 432 433 /* random keystream by ChaCha */ 434 435 void arc4_reinit(void *v); /* timeout to start reinit */ 436 void arc4_init(void *); /* actually do the reinit */ 437 438 struct mutex rndlock = MUTEX_INITIALIZER(IPL_HIGH); 439 struct timeout arc4_timeout; 440 struct task arc4_task = TASK_INITIALIZER(arc4_init, NULL); 441 442 static chacha_ctx rs; /* chacha context for random keystream */ 443 /* keystream blocks (also chacha seed from boot) */ 444 static u_char rs_buf[RSBUFSZ]; 445 u_char rs_buf0[RSBUFSZ] __attribute__((section(".openbsd.randomdata"))); 446 static size_t rs_have; /* valid bytes at end of rs_buf */ 447 static size_t rs_count; /* bytes till reseed */ 448 449 void 450 suspend_randomness(void) 451 { 452 struct timespec ts; 453 454 getnanotime(&ts); 455 add_true_randomness(ts.tv_sec); 456 add_true_randomness(ts.tv_nsec); 457 458 dequeue_randomness(NULL); 459 rs_count = 0; 460 arc4random_buf(entropy_pool, sizeof(entropy_pool)); 461 } 462 463 void 464 resume_randomness(char *buf, size_t buflen) 465 { 466 struct timespec ts; 467 468 if (buf && buflen) 469 _rs_seed(buf, buflen); 470 getnanotime(&ts); 471 add_true_randomness(ts.tv_sec); 472 add_true_randomness(ts.tv_nsec); 473 474 dequeue_randomness(NULL); 475 rs_count = 0; 476 } 477 478 static inline void _rs_rekey(u_char *dat, size_t datlen); 479 480 static inline void 481 _rs_init(u_char *buf, size_t n) 482 { 483 KASSERT(n >= KEYSZ + IVSZ); 484 chacha_keysetup(&rs, buf, KEYSZ * 8); 485 chacha_ivsetup(&rs, buf + KEYSZ, NULL); 486 } 487 488 static void 489 _rs_seed(u_char *buf, size_t n) 490 { 491 _rs_rekey(buf, n); 492 493 /* invalidate rs_buf */ 494 rs_have = 0; 495 memset(rs_buf, 0, RSBUFSZ); 496 497 rs_count = 1600000; 498 } 499 500 static void 501 _rs_stir(int do_lock) 502 { 503 struct timespec ts; 504 u_int8_t buf[EBUFSIZE], *p; 505 int i; 506 507 /* 508 * Use SHA512 PRNG data and a system timespec; early in the boot 509 * process this is the best we can do -- some architectures do 510 * not collect entropy very well during this time, but may have 511 * clock information which is better than nothing. 512 */ 513 extract_entropy(buf); 514 515 nanotime(&ts); 516 for (p = (u_int8_t *)&ts, i = 0; i < sizeof(ts); i++) 517 buf[i] ^= p[i]; 518 519 if (do_lock) 520 mtx_enter(&rndlock); 521 _rs_seed(buf, sizeof(buf)); 522 if (do_lock) 523 mtx_leave(&rndlock); 524 525 explicit_bzero(buf, sizeof(buf)); 526 } 527 528 static inline void 529 _rs_stir_if_needed(size_t len) 530 { 531 static int rs_initialized; 532 533 if (!rs_initialized) { 534 memcpy(entropy_pool, entropy_pool0, sizeof entropy_pool); 535 memcpy(rs_buf, rs_buf0, sizeof rs_buf); 536 /* seeds cannot be cleaned yet, random_start() will do so */ 537 _rs_init(rs_buf, KEYSZ + IVSZ); 538 rs_count = 1024 * 1024 * 1024; /* until main() runs */ 539 rs_initialized = 1; 540 } else if (rs_count <= len) 541 _rs_stir(0); 542 else 543 rs_count -= len; 544 } 545 546 static void 547 _rs_clearseed(const void *p, size_t s) 548 { 549 struct kmem_dyn_mode kd_avoidalias; 550 vaddr_t va = trunc_page((vaddr_t)p); 551 vsize_t off = (vaddr_t)p - va; 552 vsize_t len; 553 vaddr_t rwva; 554 paddr_t pa; 555 556 while (s > 0) { 557 pmap_extract(pmap_kernel(), va, &pa); 558 559 memset(&kd_avoidalias, 0, sizeof kd_avoidalias); 560 kd_avoidalias.kd_prefer = pa; 561 kd_avoidalias.kd_waitok = 1; 562 rwva = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, 563 &kd_avoidalias); 564 if (!rwva) 565 panic("_rs_clearseed"); 566 567 pmap_kenter_pa(rwva, pa, PROT_READ | PROT_WRITE); 568 pmap_update(pmap_kernel()); 569 570 len = MIN(s, PAGE_SIZE - off); 571 explicit_bzero((void *)(rwva + off), len); 572 573 pmap_kremove(rwva, PAGE_SIZE); 574 km_free((void *)rwva, PAGE_SIZE, &kv_any, &kp_none); 575 576 va += PAGE_SIZE; 577 s -= len; 578 off = 0; 579 } 580 } 581 582 static inline void 583 _rs_rekey(u_char *dat, size_t datlen) 584 { 585 #ifndef KEYSTREAM_ONLY 586 memset(rs_buf, 0, RSBUFSZ); 587 #endif 588 /* fill rs_buf with the keystream */ 589 chacha_encrypt_bytes(&rs, rs_buf, rs_buf, RSBUFSZ); 590 /* mix in optional user provided data */ 591 if (dat) { 592 size_t i, m; 593 594 m = MIN(datlen, KEYSZ + IVSZ); 595 for (i = 0; i < m; i++) 596 rs_buf[i] ^= dat[i]; 597 } 598 /* immediately reinit for backtracking resistance */ 599 _rs_init(rs_buf, KEYSZ + IVSZ); 600 memset(rs_buf, 0, KEYSZ + IVSZ); 601 rs_have = RSBUFSZ - KEYSZ - IVSZ; 602 } 603 604 static inline void 605 _rs_random_buf(void *_buf, size_t n) 606 { 607 u_char *buf = (u_char *)_buf; 608 size_t m; 609 610 _rs_stir_if_needed(n); 611 while (n > 0) { 612 if (rs_have > 0) { 613 m = MIN(n, rs_have); 614 memcpy(buf, rs_buf + RSBUFSZ - rs_have, m); 615 memset(rs_buf + RSBUFSZ - rs_have, 0, m); 616 buf += m; 617 n -= m; 618 rs_have -= m; 619 } 620 if (rs_have == 0) 621 _rs_rekey(NULL, 0); 622 } 623 } 624 625 static inline void 626 _rs_random_u32(u_int32_t *val) 627 { 628 _rs_stir_if_needed(sizeof(*val)); 629 if (rs_have < sizeof(*val)) 630 _rs_rekey(NULL, 0); 631 memcpy(val, rs_buf + RSBUFSZ - rs_have, sizeof(*val)); 632 memset(rs_buf + RSBUFSZ - rs_have, 0, sizeof(*val)); 633 rs_have -= sizeof(*val); 634 } 635 636 /* Return one word of randomness from a ChaCha20 generator */ 637 u_int32_t 638 arc4random(void) 639 { 640 u_int32_t ret; 641 642 mtx_enter(&rndlock); 643 _rs_random_u32(&ret); 644 mtx_leave(&rndlock); 645 return ret; 646 } 647 648 /* 649 * Fill a buffer of arbitrary length with ChaCha20-derived randomness. 650 */ 651 void 652 arc4random_buf(void *buf, size_t n) 653 { 654 mtx_enter(&rndlock); 655 _rs_random_buf(buf, n); 656 mtx_leave(&rndlock); 657 } 658 659 /* 660 * Calculate a uniformly distributed random number less than upper_bound 661 * avoiding "modulo bias". 662 * 663 * Uniformity is achieved by generating new random numbers until the one 664 * returned is outside the range [0, 2**32 % upper_bound). This 665 * guarantees the selected random number will be inside 666 * [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound) 667 * after reduction modulo upper_bound. 668 */ 669 u_int32_t 670 arc4random_uniform(u_int32_t upper_bound) 671 { 672 u_int32_t r, min; 673 674 if (upper_bound < 2) 675 return 0; 676 677 /* 2**32 % x == (2**32 - x) % x */ 678 min = -upper_bound % upper_bound; 679 680 /* 681 * This could theoretically loop forever but each retry has 682 * p > 0.5 (worst case, usually far better) of selecting a 683 * number inside the range we need, so it should rarely need 684 * to re-roll. 685 */ 686 for (;;) { 687 r = arc4random(); 688 if (r >= min) 689 break; 690 } 691 692 return r % upper_bound; 693 } 694 695 /* ARGSUSED */ 696 void 697 arc4_init(void *null) 698 { 699 _rs_stir(1); 700 } 701 702 /* 703 * Called by timeout to mark arc4 for stirring, 704 */ 705 void 706 arc4_reinit(void *v) 707 { 708 task_add(systq, &arc4_task); 709 /* 10 minutes, per dm@'s suggestion */ 710 timeout_add_sec(&arc4_timeout, 10 * 60); 711 } 712 713 /* 714 * Start periodic services inside the random subsystem, which pull 715 * entropy forward, hash it, and re-seed the random stream as needed. 716 */ 717 void 718 random_start(void) 719 { 720 #if !defined(NO_PROPOLICE) 721 extern long __guard_local; 722 723 if (__guard_local == 0) 724 printf("warning: no entropy supplied by boot loader\n"); 725 #endif 726 727 _rs_clearseed(entropy_pool0, sizeof entropy_pool0); 728 _rs_clearseed(rs_buf0, sizeof rs_buf0); 729 730 /* Message buffer may contain data from previous boot */ 731 if (msgbufp->msg_magic == MSG_MAGIC) 732 add_entropy_words((u_int32_t *)msgbufp->msg_bufc, 733 msgbufp->msg_bufs / sizeof(u_int32_t)); 734 735 dequeue_randomness(NULL); 736 arc4_init(NULL); 737 timeout_set(&arc4_timeout, arc4_reinit, NULL); 738 arc4_reinit(NULL); 739 timeout_set(&rnd_timeout, dequeue_randomness, NULL); 740 } 741 742 int 743 randomopen(dev_t dev, int flag, int mode, struct proc *p) 744 { 745 return 0; 746 } 747 748 int 749 randomclose(dev_t dev, int flag, int mode, struct proc *p) 750 { 751 return 0; 752 } 753 754 /* 755 * Maximum number of bytes to serve directly from the main ChaCha 756 * pool. Larger requests are served from a discrete ChaCha instance keyed 757 * from the main pool. 758 */ 759 #define ARC4_MAIN_MAX_BYTES 2048 760 761 int 762 randomread(dev_t dev, struct uio *uio, int ioflag) 763 { 764 u_char lbuf[KEYSZ+IVSZ]; 765 chacha_ctx lctx; 766 size_t total = uio->uio_resid; 767 u_char *buf; 768 int myctx = 0, ret = 0; 769 770 if (uio->uio_resid == 0) 771 return 0; 772 773 buf = malloc(POOLBYTES, M_TEMP, M_WAITOK); 774 if (total > ARC4_MAIN_MAX_BYTES) { 775 arc4random_buf(lbuf, sizeof(lbuf)); 776 chacha_keysetup(&lctx, lbuf, KEYSZ * 8); 777 chacha_ivsetup(&lctx, lbuf + KEYSZ, NULL); 778 explicit_bzero(lbuf, sizeof(lbuf)); 779 myctx = 1; 780 } 781 782 while (ret == 0 && uio->uio_resid > 0) { 783 size_t n = ulmin(POOLBYTES, uio->uio_resid); 784 785 if (myctx) { 786 #ifndef KEYSTREAM_ONLY 787 memset(buf, 0, n); 788 #endif 789 chacha_encrypt_bytes(&lctx, buf, buf, n); 790 } else 791 arc4random_buf(buf, n); 792 ret = uiomove(buf, n, uio); 793 if (ret == 0 && uio->uio_resid > 0) 794 yield(); 795 } 796 if (myctx) 797 explicit_bzero(&lctx, sizeof(lctx)); 798 explicit_bzero(buf, POOLBYTES); 799 free(buf, M_TEMP, POOLBYTES); 800 return ret; 801 } 802 803 int 804 randomwrite(dev_t dev, struct uio *uio, int flags) 805 { 806 int ret = 0, newdata = 0; 807 u_int32_t *buf; 808 809 if (uio->uio_resid == 0) 810 return 0; 811 812 buf = malloc(POOLBYTES, M_TEMP, M_WAITOK); 813 814 while (ret == 0 && uio->uio_resid > 0) { 815 size_t n = ulmin(POOLBYTES, uio->uio_resid); 816 817 ret = uiomove(buf, n, uio); 818 if (ret != 0) 819 break; 820 while (n % sizeof(u_int32_t)) 821 ((u_int8_t *)buf)[n++] = 0; 822 add_entropy_words(buf, n / 4); 823 if (uio->uio_resid > 0) 824 yield(); 825 newdata = 1; 826 } 827 828 if (newdata) 829 arc4_init(NULL); 830 831 explicit_bzero(buf, POOLBYTES); 832 free(buf, M_TEMP, POOLBYTES); 833 return ret; 834 } 835 836 int 837 randomkqfilter(dev_t dev, struct knote *kn) 838 { 839 switch (kn->kn_filter) { 840 case EVFILT_READ: 841 kn->kn_fop = &randomread_filtops; 842 break; 843 case EVFILT_WRITE: 844 kn->kn_fop = &randomwrite_filtops; 845 break; 846 default: 847 return (EINVAL); 848 } 849 850 return (0); 851 } 852 853 void 854 filt_randomdetach(struct knote *kn) 855 { 856 } 857 858 int 859 filt_randomread(struct knote *kn, long hint) 860 { 861 kn->kn_data = ARC4_MAIN_MAX_BYTES; 862 return (1); 863 } 864 865 int 866 filt_randomwrite(struct knote *kn, long hint) 867 { 868 kn->kn_data = POOLBYTES; 869 return (1); 870 } 871 872 int 873 randomioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) 874 { 875 switch (cmd) { 876 case FIOASYNC: 877 /* No async flag in softc so this is a no-op. */ 878 break; 879 case FIONBIO: 880 /* Handled in the upper FS layer. */ 881 break; 882 default: 883 return ENOTTY; 884 } 885 return 0; 886 } 887 888 int 889 sys_getentropy(struct proc *p, void *v, register_t *retval) 890 { 891 struct sys_getentropy_args /* { 892 syscallarg(void *) buf; 893 syscallarg(size_t) nbyte; 894 } */ *uap = v; 895 char buf[256]; 896 int error; 897 898 if (SCARG(uap, nbyte) > sizeof(buf)) 899 return (EIO); 900 arc4random_buf(buf, SCARG(uap, nbyte)); 901 if ((error = copyout(buf, SCARG(uap, buf), SCARG(uap, nbyte))) != 0) 902 return (error); 903 explicit_bzero(buf, sizeof(buf)); 904 retval[0] = 0; 905 return (0); 906 } 907