1 /* $OpenBSD: sv.c,v 1.27 2010/07/15 03:43:11 jakemsr Exp $ */ 2 3 /* 4 * Copyright (c) 1998 Constantine Paul Sapuntzakis 5 * All rights reserved 6 * 7 * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The author's name or those of the contributors may be used to 18 * endorse or promote products derived from this software without 19 * specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * S3 SonicVibes driver 36 * Heavily based on the eap driver by Lennart Augustsson 37 */ 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/device.h> 44 45 #include <dev/pci/pcireg.h> 46 #include <dev/pci/pcivar.h> 47 #include <dev/pci/pcidevs.h> 48 49 #include <sys/audioio.h> 50 #include <dev/audio_if.h> 51 #include <dev/mulaw.h> 52 #include <dev/auconv.h> 53 54 #include <dev/ic/i8237reg.h> 55 #include <dev/ic/s3_617.h> 56 57 58 #include <machine/bus.h> 59 60 #ifdef __OpenBSD__ 61 struct cfdriver sv_cd = { 62 NULL, "sv", DV_DULL 63 }; 64 #endif 65 66 #ifdef AUDIO_DEBUG 67 #define DPRINTF(x) if (svdebug) printf x 68 #define DPRINTFN(n,x) if (svdebug>(n)) printf x 69 static int svdebug = 100; 70 #else 71 #define DPRINTF(x) 72 #define DPRINTFN(n,x) 73 #endif 74 75 int sv_match(struct device *, void *, void *); 76 static void sv_attach(struct device *, struct device *, void *); 77 int sv_intr(void *); 78 79 struct sv_dma { 80 bus_dmamap_t map; 81 caddr_t addr; 82 bus_dma_segment_t segs[1]; 83 int nsegs; 84 size_t size; 85 struct sv_dma *next; 86 }; 87 #define DMAADDR(map) ((map)->segs[0].ds_addr) 88 #define KERNADDR(map) ((void *)((map)->addr)) 89 90 enum { 91 SV_DMAA_CONFIGURED = 1, 92 SV_DMAC_CONFIGURED = 2, 93 SV_DMAA_TRIED_CONFIGURE = 4, 94 SV_DMAC_TRIED_CONFIGURE = 8 95 }; 96 97 struct sv_softc { 98 struct device sc_dev; /* base device */ 99 void *sc_ih; /* interrupt vectoring */ 100 101 pci_chipset_tag_t sc_pci_chipset_tag; 102 pcitag_t sc_pci_tag; 103 104 bus_space_tag_t sc_iot; 105 bus_space_handle_t sc_ioh; 106 bus_space_handle_t sc_dmaa_ioh; 107 bus_space_handle_t sc_dmac_ioh; 108 bus_dma_tag_t sc_dmatag; /* DMA tag */ 109 110 struct sv_dma *sc_dmas; 111 112 void (*sc_pintr)(void *); /* dma completion intr handler */ 113 void *sc_parg; /* arg for sc_intr() */ 114 115 void (*sc_rintr)(void *); /* dma completion intr handler */ 116 void *sc_rarg; /* arg for sc_intr() */ 117 char sc_enable; 118 char sc_trd; 119 120 char sc_dma_configured; 121 u_int sc_record_source; /* recording source mask */ 122 }; 123 124 125 struct cfattach sv_ca = { 126 sizeof(struct sv_softc), sv_match, sv_attach 127 }; 128 129 struct audio_device sv_device = { 130 "S3 SonicVibes", 131 "", 132 "sv" 133 }; 134 135 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) 136 137 int sv_allocmem(struct sv_softc *, size_t, size_t, struct sv_dma *); 138 int sv_freemem(struct sv_softc *, struct sv_dma *); 139 140 int sv_open(void *, int); 141 void sv_close(void *); 142 int sv_query_encoding(void *, struct audio_encoding *); 143 int sv_set_params(void *, int, int, struct audio_params *, struct audio_params *); 144 int sv_round_blocksize(void *, int); 145 int sv_dma_init_output(void *, void *, int); 146 int sv_dma_init_input(void *, void *, int); 147 int sv_dma_output(void *, void *, int, void (*)(void *), void *); 148 int sv_dma_input(void *, void *, int, void (*)(void *), void *); 149 int sv_halt_in_dma(void *); 150 int sv_halt_out_dma(void *); 151 int sv_getdev(void *, struct audio_device *); 152 int sv_mixer_set_port(void *, mixer_ctrl_t *); 153 int sv_mixer_get_port(void *, mixer_ctrl_t *); 154 int sv_query_devinfo(void *, mixer_devinfo_t *); 155 void *sv_malloc(void *, int, size_t, int, int); 156 void sv_free(void *, void *, int); 157 paddr_t sv_mappage(void *, void *, off_t, int); 158 int sv_get_props(void *); 159 160 void sv_dumpregs(struct sv_softc *sc); 161 162 struct audio_hw_if sv_hw_if = { 163 sv_open, 164 sv_close, 165 NULL, 166 sv_query_encoding, 167 sv_set_params, 168 sv_round_blocksize, 169 NULL, 170 sv_dma_init_output, 171 sv_dma_init_input, 172 sv_dma_output, 173 sv_dma_input, 174 sv_halt_out_dma, 175 sv_halt_in_dma, 176 NULL, 177 sv_getdev, 178 NULL, 179 sv_mixer_set_port, 180 sv_mixer_get_port, 181 sv_query_devinfo, 182 sv_malloc, 183 sv_free, 184 NULL, 185 sv_mappage, 186 sv_get_props, 187 NULL, 188 NULL, 189 NULL 190 }; 191 192 193 static __inline__ u_int8_t sv_read(struct sv_softc *, u_int8_t); 194 static __inline__ u_int8_t sv_read_indirect(struct sv_softc *, u_int8_t); 195 static __inline__ void sv_write(struct sv_softc *, u_int8_t, u_int8_t ); 196 static __inline__ void sv_write_indirect(struct sv_softc *, u_int8_t, u_int8_t ); 197 static void sv_init_mixer(struct sv_softc *); 198 199 static __inline__ void 200 sv_write (sc, reg, val) 201 struct sv_softc *sc; 202 u_int8_t reg, val; 203 204 { 205 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); 206 } 207 208 static __inline__ u_int8_t 209 sv_read (sc, reg) 210 struct sv_softc *sc; 211 u_int8_t reg; 212 213 { 214 return (bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg)); 215 } 216 217 static __inline__ u_int8_t 218 sv_read_indirect (sc, reg) 219 struct sv_softc *sc; 220 u_int8_t reg; 221 { 222 u_int8_t iaddr = 0; 223 224 if (sc->sc_trd > 0) 225 iaddr |= SV_IADDR_TRD; 226 227 iaddr |= (reg & SV_IADDR_MASK); 228 sv_write (sc, SV_CODEC_IADDR, iaddr); 229 230 return (sv_read(sc, SV_CODEC_IDATA)); 231 } 232 233 static __inline__ void 234 sv_write_indirect (sc, reg, val) 235 struct sv_softc *sc; 236 u_int8_t reg, val; 237 { 238 u_int8_t iaddr = 0; 239 #ifdef DIAGNOSTIC 240 if (reg > 0x3f) { 241 printf ("Invalid register\n"); 242 return; 243 } 244 #endif 245 246 if (reg == SV_DMA_DATA_FORMAT) 247 iaddr |= SV_IADDR_MCE; 248 249 if (sc->sc_trd > 0) 250 iaddr |= SV_IADDR_TRD; 251 252 iaddr |= (reg & SV_IADDR_MASK); 253 sv_write (sc, SV_CODEC_IADDR, iaddr); 254 sv_write (sc, SV_CODEC_IDATA, val); 255 } 256 257 int 258 sv_match(parent, match, aux) 259 struct device *parent; 260 void *match, *aux; 261 { 262 struct pci_attach_args *pa = aux; 263 264 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && 265 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) 266 return (1); 267 268 return (0); 269 } 270 271 static void 272 sv_attach(parent, self, aux) 273 struct device *parent, *self; 274 void *aux; 275 276 { 277 struct sv_softc *sc = (struct sv_softc *)self; 278 struct pci_attach_args *pa = aux; 279 pci_chipset_tag_t pc = pa->pa_pc; 280 pci_intr_handle_t ih; 281 bus_size_t iosize; 282 char const *intrstr; 283 u_int32_t dmareg, dmaio; 284 u_int8_t reg; 285 286 sc->sc_pci_chipset_tag = pc; 287 sc->sc_pci_tag = pa->pa_tag; 288 289 /* Map the enhanced port only */ 290 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, PCI_MAPREG_TYPE_IO, 0, 291 &sc->sc_iot, &sc->sc_ioh, NULL, &iosize, 0)) { 292 printf (": Couldn't map enhanced synth I/O range\n"); 293 return; 294 } 295 296 sc->sc_dmatag = pa->pa_dmat; 297 298 dmareg = pci_conf_read(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF); 299 iosize = 0x10; 300 dmaio = dmareg & ~(iosize - 1); 301 302 if (dmaio) { 303 dmareg &= 0xF; 304 305 if (bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmaa_ioh)) { 306 /* The BIOS assigned us some bad I/O address! Make sure to clear 307 and disable this DMA before we enable the device */ 308 pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF, 0); 309 310 printf (": can't map DMA i/o space\n"); 311 goto enable; 312 } 313 314 pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF, 315 dmaio | dmareg | 316 SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); 317 sc->sc_dma_configured |= SV_DMAA_CONFIGURED; 318 } 319 320 dmareg = pci_conf_read(pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF); 321 dmaio = dmareg & ~(iosize - 1); 322 if (dmaio) { 323 dmareg &= 0xF; 324 325 if (bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmac_ioh)) { 326 /* The BIOS assigned us some bad I/O address! Make sure to clear 327 and disable this DMA before we enable the device */ 328 pci_conf_write (pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF, 329 dmareg & ~SV_DMA_CHANNEL_ENABLE); 330 printf (": can't map DMA i/o space\n"); 331 goto enable; 332 } 333 334 pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF, 335 dmaio | dmareg | SV_DMA_CHANNEL_ENABLE); 336 sc->sc_dma_configured |= SV_DMAC_CONFIGURED; 337 } 338 339 /* Enable the device. */ 340 enable: 341 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); 342 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); 343 344 /* initialize codec registers */ 345 reg = sv_read(sc, SV_CODEC_CONTROL); 346 reg |= SV_CTL_RESET; 347 sv_write(sc, SV_CODEC_CONTROL, reg); 348 delay(50); 349 350 reg = sv_read(sc, SV_CODEC_CONTROL); 351 reg &= ~SV_CTL_RESET; 352 reg |= SV_CTL_INTA | SV_CTL_ENHANCED; 353 354 /* This write clears the reset */ 355 sv_write(sc, SV_CODEC_CONTROL, reg); 356 delay(50); 357 358 /* This write actually shoves the new values in */ 359 sv_write(sc, SV_CODEC_CONTROL, reg); 360 361 DPRINTF (("reg: %x\n", sv_read(sc, SV_CODEC_CONTROL))); 362 363 /* Enable DMA interrupts */ 364 reg = sv_read(sc, SV_CODEC_INTMASK); 365 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 366 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 367 sv_write(sc, SV_CODEC_INTMASK, reg); 368 369 sv_read(sc, SV_CODEC_STATUS); 370 371 sc->sc_trd = 0; 372 sc->sc_enable = 0; 373 374 /* Map and establish the interrupt. */ 375 if (pci_intr_map(pa, &ih)) { 376 printf(": couldn't map interrupt\n"); 377 return; 378 } 379 intrstr = pci_intr_string(pc, ih); 380 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc, 381 sc->sc_dev.dv_xname); 382 if (sc->sc_ih == NULL) { 383 printf(": couldn't establish interrupt"); 384 if (intrstr != NULL) 385 printf(" at %s", intrstr); 386 printf("\n"); 387 return; 388 } 389 printf(": %s\n", intrstr); 390 391 sv_init_mixer(sc); 392 393 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev); 394 } 395 396 #ifdef AUDIO_DEBUG 397 void 398 sv_dumpregs(sc) 399 struct sv_softc *sc; 400 { 401 int idx; 402 403 { int idx; 404 for (idx = 0; idx < 0x50; idx += 4) { 405 printf ("%02x = %x\n", idx, pci_conf_read(sc->sc_pci_chipset_tag, 406 sc->sc_pci_tag, idx)); 407 } 408 } 409 410 for (idx = 0; idx < 6; idx++) { 411 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); 412 } 413 414 for (idx = 0; idx < 0x32; idx++) { 415 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); 416 } 417 418 for (idx = 0; idx < 0x10; idx++) { 419 printf ("DMA %02x = %02x\n", idx, 420 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); 421 } 422 423 return; 424 } 425 #endif 426 427 int 428 sv_intr(p) 429 void *p; 430 { 431 struct sv_softc *sc = p; 432 u_int8_t intr; 433 434 intr = sv_read(sc, SV_CODEC_STATUS); 435 436 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) 437 return (0); 438 439 if (intr & SV_INTSTATUS_DMAA) { 440 if (sc->sc_pintr) 441 sc->sc_pintr(sc->sc_parg); 442 } 443 444 if (intr & SV_INTSTATUS_DMAC) { 445 if (sc->sc_rintr) 446 sc->sc_rintr(sc->sc_rarg); 447 } 448 449 return (1); 450 } 451 452 int 453 sv_allocmem(sc, size, align, p) 454 struct sv_softc *sc; 455 size_t size; 456 size_t align; 457 struct sv_dma *p; 458 { 459 int error; 460 461 p->size = size; 462 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, 463 p->segs, ARRAY_SIZE(p->segs), 464 &p->nsegs, BUS_DMA_NOWAIT); 465 if (error) 466 return (error); 467 468 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 469 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 470 if (error) 471 goto free; 472 473 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 474 0, BUS_DMA_NOWAIT, &p->map); 475 if (error) 476 goto unmap; 477 478 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 479 BUS_DMA_NOWAIT); 480 if (error) 481 goto destroy; 482 return (0); 483 484 destroy: 485 bus_dmamap_destroy(sc->sc_dmatag, p->map); 486 unmap: 487 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 488 free: 489 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 490 return (error); 491 } 492 493 int 494 sv_freemem(sc, p) 495 struct sv_softc *sc; 496 struct sv_dma *p; 497 { 498 bus_dmamap_unload(sc->sc_dmatag, p->map); 499 bus_dmamap_destroy(sc->sc_dmatag, p->map); 500 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 501 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 502 return (0); 503 } 504 505 int 506 sv_open(addr, flags) 507 void *addr; 508 int flags; 509 { 510 511 struct sv_softc *sc = addr; 512 int intr_mask = 0; 513 u_int8_t reg; 514 515 /* Map the DMA channels, if necessary */ 516 if (!(sc->sc_dma_configured & SV_DMAA_CONFIGURED)) { 517 /* XXX - there seems to be no general way to find an 518 I/O range */ 519 int dmaio; 520 int iosize = 0x10; 521 522 if (sc->sc_dma_configured & SV_DMAA_TRIED_CONFIGURE) 523 return (ENXIO); 524 525 for (dmaio = 0xa000; dmaio < 0xb000; dmaio += iosize) { 526 if (!bus_space_map(sc->sc_iot, dmaio, iosize, 0, 527 &sc->sc_dmaa_ioh)) { 528 goto found_dmaa; 529 } 530 } 531 532 sc->sc_dma_configured |= SV_DMAA_TRIED_CONFIGURE; 533 return (ENXIO); 534 found_dmaa: 535 536 pci_conf_write(sc->sc_pci_chipset_tag, sc->sc_pci_tag, 537 SV_DMAA_CONFIG_OFF, 538 dmaio | SV_DMA_CHANNEL_ENABLE 539 | SV_DMAA_EXTENDED_ADDR); 540 541 sc->sc_dma_configured |= SV_DMAA_CONFIGURED; 542 intr_mask = 1; 543 } 544 545 if (!(sc->sc_dma_configured & SV_DMAC_CONFIGURED)) { 546 /* XXX - there seems to be no general way to find an 547 I/O range */ 548 int dmaio; 549 int iosize = 0x10; 550 551 if (sc->sc_dma_configured & SV_DMAC_TRIED_CONFIGURE) 552 return (ENXIO); 553 554 for (dmaio = 0xa000; dmaio < 0xb000; dmaio += iosize) { 555 if (!bus_space_map(sc->sc_iot, dmaio, iosize, 0, 556 &sc->sc_dmac_ioh)) { 557 goto found_dmac; 558 } 559 } 560 561 sc->sc_dma_configured |= SV_DMAC_TRIED_CONFIGURE; 562 return (ENXIO); 563 found_dmac: 564 565 pci_conf_write(sc->sc_pci_chipset_tag, sc->sc_pci_tag, 566 SV_DMAC_CONFIG_OFF, 567 dmaio | SV_DMA_CHANNEL_ENABLE); 568 569 sc->sc_dma_configured |= SV_DMAC_CONFIGURED; 570 intr_mask = 1; 571 } 572 573 /* Make sure DMA interrupts are enabled */ 574 if (intr_mask) { 575 reg = sv_read(sc, SV_CODEC_INTMASK); 576 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 577 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 578 sv_write(sc, SV_CODEC_INTMASK, reg); 579 } 580 581 sc->sc_pintr = 0; 582 sc->sc_rintr = 0; 583 584 return (0); 585 } 586 587 /* 588 * Close function is called at splaudio(). 589 */ 590 void 591 sv_close(addr) 592 void *addr; 593 { 594 struct sv_softc *sc = addr; 595 596 sv_halt_in_dma(sc); 597 sv_halt_out_dma(sc); 598 599 sc->sc_pintr = 0; 600 sc->sc_rintr = 0; 601 } 602 603 int 604 sv_query_encoding(addr, fp) 605 void *addr; 606 struct audio_encoding *fp; 607 { 608 switch (fp->index) { 609 case 0: 610 strlcpy(fp->name, AudioEulinear, sizeof fp->name); 611 fp->encoding = AUDIO_ENCODING_ULINEAR; 612 fp->precision = 8; 613 fp->flags = 0; 614 break; 615 case 1: 616 strlcpy(fp->name, AudioEmulaw, sizeof fp->name); 617 fp->encoding = AUDIO_ENCODING_ULAW; 618 fp->precision = 8; 619 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 620 break; 621 case 2: 622 strlcpy(fp->name, AudioEalaw, sizeof fp->name); 623 fp->encoding = AUDIO_ENCODING_ALAW; 624 fp->precision = 8; 625 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 626 break; 627 case 3: 628 strlcpy(fp->name, AudioEslinear, sizeof fp->name); 629 fp->encoding = AUDIO_ENCODING_SLINEAR; 630 fp->precision = 8; 631 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 632 break; 633 case 4: 634 strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); 635 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 636 fp->precision = 16; 637 fp->flags = 0; 638 break; 639 case 5: 640 strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); 641 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 642 fp->precision = 16; 643 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 644 break; 645 case 6: 646 strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); 647 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 648 fp->precision = 16; 649 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 650 break; 651 case 7: 652 strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); 653 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 654 fp->precision = 16; 655 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 656 break; 657 default: 658 return (EINVAL); 659 } 660 fp->bps = AUDIO_BPS(fp->precision); 661 fp->msb = 1; 662 663 return (0); 664 } 665 666 int 667 sv_set_params(addr, setmode, usemode, p, r) 668 void *addr; 669 int setmode, usemode; 670 struct audio_params *p, *r; 671 { 672 struct sv_softc *sc = addr; 673 void (*pswcode)(void *, u_char *buf, int cnt); 674 void (*rswcode)(void *, u_char *buf, int cnt); 675 u_int32_t mode, val; 676 u_int8_t reg; 677 678 pswcode = rswcode = 0; 679 switch (p->encoding) { 680 case AUDIO_ENCODING_SLINEAR_BE: 681 if (p->precision == 16) 682 rswcode = pswcode = swap_bytes; 683 else 684 pswcode = rswcode = change_sign8; 685 break; 686 case AUDIO_ENCODING_SLINEAR_LE: 687 if (p->precision != 16) 688 pswcode = rswcode = change_sign8; 689 break; 690 case AUDIO_ENCODING_ULINEAR_BE: 691 if (p->precision == 16) { 692 pswcode = swap_bytes_change_sign16_le; 693 rswcode = change_sign16_swap_bytes_le; 694 } 695 break; 696 case AUDIO_ENCODING_ULINEAR_LE: 697 if (p->precision == 16) 698 pswcode = rswcode = change_sign16_le; 699 break; 700 case AUDIO_ENCODING_ULAW: 701 pswcode = mulaw_to_ulinear8; 702 rswcode = ulinear8_to_mulaw; 703 break; 704 case AUDIO_ENCODING_ALAW: 705 pswcode = alaw_to_ulinear8; 706 rswcode = ulinear8_to_alaw; 707 break; 708 default: 709 return (EINVAL); 710 } 711 712 if (p->precision == 16) 713 mode = SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16; 714 else 715 mode = 0; 716 if (p->channels > 2) 717 p->channels = 2; 718 if (p->channels == 2) 719 mode |= SV_DMAA_STEREO | SV_DMAC_STEREO; 720 if (p->sample_rate < 2000) 721 p->sample_rate = 2000; 722 if (p->sample_rate > 48000) 723 p->sample_rate = 48000; 724 725 p->sw_code = pswcode; 726 r->sw_code = rswcode; 727 p->bps = AUDIO_BPS(p->precision); 728 r->bps = AUDIO_BPS(r->precision); 729 p->msb = r->msb = 1; 730 731 /* Set the encoding */ 732 reg = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 733 reg &= ~(SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16 | SV_DMAA_STEREO | 734 SV_DMAC_STEREO); 735 reg |= (mode); 736 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, reg); 737 738 val = p->sample_rate * 65536 / 48000; 739 740 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, (val & 0xff)); 741 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, (val >> 8)); 742 743 #define F_REF 24576000 744 745 if (setmode & AUMODE_RECORD) 746 { 747 /* The ADC reference frequency (f_out) is 512 * the sample rate */ 748 749 /* f_out is dervied from the 24.576MHZ crystal by three values: 750 M & N & R. The equation is as follows: 751 752 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) 753 754 with the constraint that: 755 756 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150MHz 757 and n, m >= 1 758 */ 759 760 int goal_f_out = 512 * r->sample_rate; 761 int a, n, m, best_n, best_m, best_error = 10000000; 762 int pll_sample; 763 764 for (a = 0; a < 8; a++) { 765 if ((goal_f_out * (1 << a)) >= 80000000) 766 break; 767 } 768 769 /* a != 8 because sample_rate >= 2000 */ 770 771 for (n = 33; n > 2; n--) { 772 int error; 773 774 m = (goal_f_out * n * (1 << a)) / F_REF; 775 776 if ((m > 257) || (m < 3)) continue; 777 778 pll_sample = (m * F_REF) / (n * (1 << a)); 779 pll_sample /= 512; 780 781 /* Threshold might be good here */ 782 error = pll_sample - r->sample_rate; 783 error = abs(error); 784 785 if (error < best_error) { 786 best_error = error; 787 best_n = n; 788 best_m = m; 789 if (error == 0) break; 790 } 791 } 792 793 794 best_n -= 2; 795 best_m -= 2; 796 797 sv_write_indirect(sc, SV_ADC_PLL_M, best_m); 798 sv_write_indirect(sc, SV_ADC_PLL_N, best_n | (a << SV_PLL_R_SHIFT)); 799 } 800 return (0); 801 } 802 803 int 804 sv_round_blocksize(addr, blk) 805 void *addr; 806 int blk; 807 { 808 return ((blk + 31) & -32); /* keep good alignment */ 809 } 810 811 int 812 sv_dma_init_input(addr, buf, cc) 813 void *addr; 814 void *buf; 815 int cc; 816 { 817 struct sv_softc *sc = addr; 818 struct sv_dma *p; 819 int dma_count; 820 821 DPRINTF(("sv_dma_init_input: dma start loop input addr=%p cc=%d\n", 822 buf, cc)); 823 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next) 824 ; 825 if (!p) { 826 printf("sv_dma_init_input: bad addr %p\n", buf); 827 return (EINVAL); 828 } 829 830 dma_count = (cc >> 1) - 1; 831 832 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, 833 DMAADDR(p)); 834 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, 835 dma_count); 836 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, 837 DMA37MD_WRITE | DMA37MD_LOOP); 838 839 return (0); 840 } 841 842 int 843 sv_dma_init_output(addr, buf, cc) 844 void *addr; 845 void *buf; 846 int cc; 847 { 848 struct sv_softc *sc = addr; 849 struct sv_dma *p; 850 int dma_count; 851 852 DPRINTF(("eap: dma start loop output buf=%p cc=%d\n", buf, cc)); 853 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next) 854 ; 855 if (!p) { 856 printf("sv_dma_init_output: bad addr %p\n", buf); 857 return (EINVAL); 858 } 859 860 dma_count = cc - 1; 861 862 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, 863 DMAADDR(p)); 864 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, 865 dma_count); 866 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, 867 DMA37MD_READ | DMA37MD_LOOP); 868 869 return (0); 870 } 871 872 int 873 sv_dma_output(addr, p, cc, intr, arg) 874 void *addr; 875 void *p; 876 int cc; 877 void (*intr)(void *); 878 void *arg; 879 { 880 struct sv_softc *sc = addr; 881 u_int8_t mode; 882 883 DPRINTFN(1, 884 ("sv_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n", 885 addr, p, cc, intr, arg)); 886 887 sc->sc_pintr = intr; 888 sc->sc_parg = arg; 889 if (!(sc->sc_enable & SV_PLAY_ENABLE)) { 890 int dma_count = cc - 1; 891 892 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); 893 sv_write_indirect(sc, SV_DMAA_COUNT0, (dma_count & 0xFF)); 894 895 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 896 mode |= SV_PLAY_ENABLE; 897 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 898 sc->sc_enable |= SV_PLAY_ENABLE; 899 } 900 return (0); 901 } 902 903 int 904 sv_dma_input(addr, p, cc, intr, arg) 905 void *addr; 906 void *p; 907 int cc; 908 void (*intr)(void *); 909 void *arg; 910 { 911 struct sv_softc *sc = addr; 912 u_int8_t mode; 913 914 DPRINTFN(1, ("sv_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n", 915 addr, p, cc, intr, arg)); 916 sc->sc_rintr = intr; 917 sc->sc_rarg = arg; 918 if (!(sc->sc_enable & SV_RECORD_ENABLE)) { 919 int dma_count = (cc >> 1) - 1; 920 921 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); 922 sv_write_indirect(sc, SV_DMAC_COUNT0, (dma_count & 0xFF)); 923 924 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 925 mode |= SV_RECORD_ENABLE; 926 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 927 sc->sc_enable |= SV_RECORD_ENABLE; 928 } 929 return (0); 930 } 931 932 int 933 sv_halt_out_dma(addr) 934 void *addr; 935 { 936 struct sv_softc *sc = addr; 937 u_int8_t mode; 938 939 DPRINTF(("eap: sv_halt_out_dma\n")); 940 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 941 mode &= ~SV_PLAY_ENABLE; 942 sc->sc_enable &= ~SV_PLAY_ENABLE; 943 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 944 945 return (0); 946 } 947 948 int 949 sv_halt_in_dma(addr) 950 void *addr; 951 { 952 struct sv_softc *sc = addr; 953 u_int8_t mode; 954 955 DPRINTF(("eap: sv_halt_in_dma\n")); 956 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 957 mode &= ~SV_RECORD_ENABLE; 958 sc->sc_enable &= ~SV_RECORD_ENABLE; 959 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 960 961 return (0); 962 } 963 964 int 965 sv_getdev(addr, retp) 966 void *addr; 967 struct audio_device *retp; 968 { 969 *retp = sv_device; 970 return (0); 971 } 972 973 974 /* 975 * Mixer related code is here 976 * 977 */ 978 979 #define SV_INPUT_CLASS 0 980 #define SV_OUTPUT_CLASS 1 981 #define SV_RECORD_CLASS 2 982 983 #define SV_LAST_CLASS 2 984 985 static const char *mixer_classes[] = { AudioCinputs, AudioCoutputs, AudioCrecord }; 986 987 static const struct { 988 u_int8_t l_port; 989 u_int8_t r_port; 990 u_int8_t mask; 991 u_int8_t class; 992 const char *audio; 993 } ports[] = { 994 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, 995 SV_INPUT_CLASS, "aux1" }, 996 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 997 SV_INPUT_CLASS, AudioNcd }, 998 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, 999 SV_INPUT_CLASS, AudioNline }, 1000 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, 1001 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 1002 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, 1003 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, 1004 SV_INPUT_CLASS, "aux2" }, 1005 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, 1006 SV_INPUT_CLASS, AudioNdac }, 1007 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 1008 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } 1009 }; 1010 1011 1012 static const struct { 1013 int idx; 1014 const char *name; 1015 } record_sources[] = { 1016 { SV_REC_CD, AudioNcd }, 1017 { SV_REC_DAC, AudioNdac }, 1018 { SV_REC_AUX2, "aux2" }, 1019 { SV_REC_LINE, AudioNline }, 1020 { SV_REC_AUX1, "aux1" }, 1021 { SV_REC_MIC, AudioNmicrophone }, 1022 { SV_REC_MIXER, AudioNmixerout } 1023 }; 1024 1025 1026 #define SV_DEVICES_PER_PORT 2 1027 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) 1028 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) 1029 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) 1030 #define SV_MIC_BOOST (SV_LAST_MIXER + 2) 1031 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) 1032 #define SV_SRS_MODE (SV_LAST_MIXER + 4) 1033 1034 int 1035 sv_query_devinfo(addr, dip) 1036 void *addr; 1037 mixer_devinfo_t *dip; 1038 { 1039 1040 if (dip->index < 0) 1041 return (ENXIO); 1042 1043 /* It's a class */ 1044 if (dip->index <= SV_LAST_CLASS) { 1045 dip->type = AUDIO_MIXER_CLASS; 1046 dip->mixer_class = dip->index; 1047 dip->next = dip->prev = AUDIO_MIXER_LAST; 1048 strlcpy(dip->label.name, mixer_classes[dip->index], 1049 sizeof dip->label.name); 1050 return (0); 1051 } 1052 1053 if (dip->index >= SV_FIRST_MIXER && 1054 dip->index <= SV_LAST_MIXER) { 1055 int off = dip->index - SV_FIRST_MIXER; 1056 int mute = (off % SV_DEVICES_PER_PORT); 1057 int idx = off / SV_DEVICES_PER_PORT; 1058 1059 dip->mixer_class = ports[idx].class; 1060 strlcpy(dip->label.name, ports[idx].audio, sizeof dip->label.name); 1061 1062 if (!mute) { 1063 dip->type = AUDIO_MIXER_VALUE; 1064 dip->prev = AUDIO_MIXER_LAST; 1065 dip->next = dip->index + 1; 1066 1067 if (ports[idx].r_port != 0) 1068 dip->un.v.num_channels = 2; 1069 else 1070 dip->un.v.num_channels = 1; 1071 1072 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1073 1074 } else { 1075 dip->type = AUDIO_MIXER_ENUM; 1076 dip->prev = dip->index - 1; 1077 dip->next = AUDIO_MIXER_LAST; 1078 1079 strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); 1080 dip->un.e.num_mem = 2; 1081 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 1082 sizeof dip->un.e.member[0].label.name); 1083 dip->un.e.member[0].ord = 0; 1084 strlcpy(dip->un.e.member[1].label.name, AudioNon, 1085 sizeof dip->un.e.member[1].label.name); 1086 dip->un.e.member[1].ord = 1; 1087 1088 } 1089 1090 return (0); 1091 } 1092 1093 switch (dip->index) { 1094 case SV_RECORD_SOURCE: 1095 dip->mixer_class = SV_RECORD_CLASS; 1096 dip->prev = AUDIO_MIXER_LAST; 1097 dip->next = SV_RECORD_GAIN; 1098 strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); 1099 dip->type = AUDIO_MIXER_ENUM; 1100 1101 dip->un.e.num_mem = ARRAY_SIZE(record_sources); 1102 1103 { 1104 int idx; 1105 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1106 strlcpy(dip->un.e.member[idx].label.name, record_sources[idx].name, 1107 sizeof dip->un.e.member[idx].label.name); 1108 dip->un.e.member[idx].ord = record_sources[idx].idx; 1109 } 1110 } 1111 return (0); 1112 1113 case SV_RECORD_GAIN: 1114 dip->mixer_class = SV_RECORD_CLASS; 1115 dip->prev = SV_RECORD_SOURCE; 1116 dip->next = AUDIO_MIXER_LAST; 1117 strlcpy(dip->label.name, "gain", sizeof dip->label.name); 1118 dip->type = AUDIO_MIXER_VALUE; 1119 dip->un.v.num_channels = 1; 1120 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1121 return (0); 1122 1123 case SV_MIC_BOOST: 1124 dip->mixer_class = SV_RECORD_CLASS; 1125 dip->prev = AUDIO_MIXER_LAST; 1126 dip->next = AUDIO_MIXER_LAST; 1127 strlcpy(dip->label.name, "micboost", sizeof dip->label.name); 1128 goto on_off; 1129 1130 case SV_SRS_MODE: 1131 dip->mixer_class = SV_OUTPUT_CLASS; 1132 dip->prev = dip->next = AUDIO_MIXER_LAST; 1133 strlcpy(dip->label.name, AudioNspatial, sizeof dip->label.name); 1134 1135 on_off: 1136 dip->type = AUDIO_MIXER_ENUM; 1137 dip->un.e.num_mem = 2; 1138 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 1139 sizeof dip->un.e.member[0].label.name); 1140 dip->un.e.member[0].ord = 0; 1141 strlcpy(dip->un.e.member[1].label.name, AudioNon, 1142 sizeof dip->un.e.member[1].label.name); 1143 dip->un.e.member[1].ord = 1; 1144 return (0); 1145 } 1146 1147 return (ENXIO); 1148 } 1149 1150 int 1151 sv_mixer_set_port(addr, cp) 1152 void *addr; 1153 mixer_ctrl_t *cp; 1154 { 1155 struct sv_softc *sc = addr; 1156 u_int8_t reg; 1157 int idx; 1158 1159 if (cp->dev >= SV_FIRST_MIXER && 1160 cp->dev <= SV_LAST_MIXER) { 1161 int off = cp->dev - SV_FIRST_MIXER; 1162 int mute = (off % SV_DEVICES_PER_PORT); 1163 idx = off / SV_DEVICES_PER_PORT; 1164 1165 if (mute) { 1166 if (cp->type != AUDIO_MIXER_ENUM) 1167 return (EINVAL); 1168 1169 reg = sv_read_indirect(sc, ports[idx].l_port); 1170 if (cp->un.ord) 1171 reg |= SV_MUTE_BIT; 1172 else 1173 reg &= ~SV_MUTE_BIT; 1174 sv_write_indirect(sc, ports[idx].l_port, reg); 1175 1176 if (ports[idx].r_port) { 1177 reg = sv_read_indirect(sc, ports[idx].r_port); 1178 if (cp->un.ord) 1179 reg |= SV_MUTE_BIT; 1180 else 1181 reg &= ~SV_MUTE_BIT; 1182 sv_write_indirect(sc, ports[idx].r_port, reg); 1183 } 1184 } else { 1185 int lval, rval; 1186 1187 if (cp->type != AUDIO_MIXER_VALUE) 1188 return (EINVAL); 1189 1190 if (cp->un.value.num_channels != 1 && 1191 cp->un.value.num_channels != 2) 1192 return (EINVAL); 1193 1194 if (ports[idx].r_port == 0) { 1195 if (cp->un.value.num_channels != 1) 1196 return (EINVAL); 1197 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 1198 } else { 1199 if (cp->un.value.num_channels != 2) 1200 return (EINVAL); 1201 1202 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1203 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1204 } 1205 1206 sc->sc_trd = 1; 1207 1208 reg = sv_read_indirect(sc, ports[idx].l_port); 1209 reg &= ~(ports[idx].mask); 1210 lval = ((AUDIO_MAX_GAIN - lval) * ports[idx].mask) / AUDIO_MAX_GAIN; 1211 reg |= lval; 1212 sv_write_indirect(sc, ports[idx].l_port, reg); 1213 1214 if (ports[idx].r_port != 0) { 1215 reg = sv_read_indirect(sc, ports[idx].r_port); 1216 reg &= ~(ports[idx].mask); 1217 1218 rval = ((AUDIO_MAX_GAIN - rval) * ports[idx].mask) / AUDIO_MAX_GAIN; 1219 reg |= rval; 1220 1221 sv_write_indirect(sc, ports[idx].r_port, reg); 1222 } 1223 1224 sc->sc_trd = 0; 1225 sv_read_indirect(sc, ports[idx].l_port); 1226 } 1227 1228 return (0); 1229 } 1230 1231 1232 switch (cp->dev) { 1233 case SV_RECORD_SOURCE: 1234 if (cp->type != AUDIO_MIXER_ENUM) 1235 return (EINVAL); 1236 1237 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1238 if (record_sources[idx].idx == cp->un.ord) 1239 goto found; 1240 } 1241 1242 return (EINVAL); 1243 1244 found: 1245 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1246 reg &= ~SV_REC_SOURCE_MASK; 1247 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1248 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1249 1250 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1251 reg &= ~SV_REC_SOURCE_MASK; 1252 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1253 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1254 return (0); 1255 1256 case SV_RECORD_GAIN: 1257 { 1258 int val; 1259 1260 if (cp->type != AUDIO_MIXER_VALUE) 1261 return (EINVAL); 1262 1263 if (cp->un.value.num_channels != 1) 1264 return (EINVAL); 1265 1266 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK) 1267 / AUDIO_MAX_GAIN; 1268 1269 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1270 reg &= ~SV_REC_GAIN_MASK; 1271 reg |= val; 1272 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1273 1274 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1275 reg &= ~SV_REC_GAIN_MASK; 1276 reg |= val; 1277 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1278 1279 } 1280 1281 return (0); 1282 1283 case SV_MIC_BOOST: 1284 if (cp->type != AUDIO_MIXER_ENUM) 1285 return (EINVAL); 1286 1287 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1288 if (cp->un.ord) { 1289 reg |= SV_MIC_BOOST_BIT; 1290 } else { 1291 reg &= ~SV_MIC_BOOST_BIT; 1292 } 1293 1294 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1295 return (0); 1296 1297 case SV_SRS_MODE: 1298 if (cp->type != AUDIO_MIXER_ENUM) 1299 return (EINVAL); 1300 1301 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1302 if (cp->un.ord) { 1303 reg &= ~SV_SRS_SPACE_ONOFF; 1304 } else { 1305 reg |= SV_SRS_SPACE_ONOFF; 1306 } 1307 1308 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); 1309 return (0); 1310 } 1311 1312 return (EINVAL); 1313 } 1314 1315 int 1316 sv_mixer_get_port(addr, cp) 1317 void *addr; 1318 mixer_ctrl_t *cp; 1319 { 1320 struct sv_softc *sc = addr; 1321 int val; 1322 u_int8_t reg; 1323 1324 if (cp->dev >= SV_FIRST_MIXER && 1325 cp->dev <= SV_LAST_MIXER) { 1326 int off = cp->dev - SV_FIRST_MIXER; 1327 int mute = (off % 2); 1328 int idx = off / 2; 1329 1330 if (mute) { 1331 if (cp->type != AUDIO_MIXER_ENUM) 1332 return (EINVAL); 1333 1334 reg = sv_read_indirect(sc, ports[idx].l_port); 1335 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); 1336 } else { 1337 if (cp->type != AUDIO_MIXER_VALUE) 1338 return (EINVAL); 1339 1340 if (cp->un.value.num_channels != 1 && 1341 cp->un.value.num_channels != 2) 1342 return (EINVAL); 1343 1344 if ((ports[idx].r_port == 0 && 1345 cp->un.value.num_channels != 1) || 1346 (ports[idx].r_port != 0 && 1347 cp->un.value.num_channels != 2)) 1348 return (EINVAL); 1349 1350 reg = sv_read_indirect(sc, ports[idx].l_port); 1351 reg &= ports[idx].mask; 1352 1353 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1354 1355 if (ports[idx].r_port != 0) { 1356 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val; 1357 1358 reg = sv_read_indirect(sc, ports[idx].r_port); 1359 reg &= ports[idx].mask; 1360 1361 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1362 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val; 1363 } else 1364 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val; 1365 } 1366 1367 return (0); 1368 } 1369 1370 switch (cp->dev) { 1371 case SV_RECORD_SOURCE: 1372 if (cp->type != AUDIO_MIXER_ENUM) 1373 return (EINVAL); 1374 1375 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1376 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); 1377 1378 return (0); 1379 1380 case SV_RECORD_GAIN: 1381 if (cp->type != AUDIO_MIXER_VALUE) 1382 return (EINVAL); 1383 1384 if (cp->un.value.num_channels != 1) 1385 return (EINVAL); 1386 1387 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; 1388 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1389 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; 1390 1391 return (0); 1392 1393 case SV_MIC_BOOST: 1394 if (cp->type != AUDIO_MIXER_ENUM) 1395 return (EINVAL); 1396 1397 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1398 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); 1399 1400 return (0); 1401 1402 1403 case SV_SRS_MODE: 1404 if (cp->type != AUDIO_MIXER_ENUM) 1405 return (EINVAL); 1406 1407 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1408 1409 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); 1410 return (0); 1411 } 1412 1413 return (EINVAL); 1414 } 1415 1416 1417 static void 1418 sv_init_mixer(sc) 1419 struct sv_softc *sc; 1420 { 1421 mixer_ctrl_t cp; 1422 int idx; 1423 1424 cp.type = AUDIO_MIXER_ENUM; 1425 cp.dev = SV_SRS_MODE; 1426 cp.un.ord = 0; 1427 1428 sv_mixer_set_port(sc, &cp); 1429 1430 for (idx = 0; idx < ARRAY_SIZE(ports); idx++) { 1431 if (strcmp(ports[idx].audio, AudioNdac) == 0) { 1432 cp.type = AUDIO_MIXER_ENUM; 1433 cp.dev = SV_FIRST_MIXER + idx * SV_DEVICES_PER_PORT + 1; 1434 cp.un.ord = 0; 1435 sv_mixer_set_port(sc, &cp); 1436 break; 1437 } 1438 } 1439 } 1440 1441 void * 1442 sv_malloc(addr, direction, size, pool, flags) 1443 void *addr; 1444 int direction; 1445 size_t size; 1446 int pool; 1447 int flags; 1448 { 1449 struct sv_softc *sc = addr; 1450 struct sv_dma *p; 1451 int error; 1452 1453 p = malloc(sizeof(*p), pool, flags); 1454 if (!p) 1455 return (0); 1456 error = sv_allocmem(sc, size, 16, p); 1457 if (error) { 1458 free(p, pool); 1459 return (0); 1460 } 1461 p->next = sc->sc_dmas; 1462 sc->sc_dmas = p; 1463 return (KERNADDR(p)); 1464 } 1465 1466 void 1467 sv_free(addr, ptr, pool) 1468 void *addr; 1469 void *ptr; 1470 int pool; 1471 { 1472 struct sv_softc *sc = addr; 1473 struct sv_dma **p; 1474 1475 for (p = &sc->sc_dmas; *p; p = &(*p)->next) { 1476 if (KERNADDR(*p) == ptr) { 1477 sv_freemem(sc, *p); 1478 *p = (*p)->next; 1479 free(*p, pool); 1480 return; 1481 } 1482 } 1483 } 1484 1485 paddr_t 1486 sv_mappage(addr, mem, off, prot) 1487 void *addr; 1488 void *mem; 1489 off_t off; 1490 int prot; 1491 { 1492 struct sv_softc *sc = addr; 1493 struct sv_dma *p; 1494 1495 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) 1496 ; 1497 if (!p) 1498 return (-1); 1499 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 1500 off, prot, BUS_DMA_WAITOK)); 1501 } 1502 1503 int 1504 sv_get_props(addr) 1505 void *addr; 1506 { 1507 return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX); 1508 } 1509