1 /* $OpenBSD: sv.c,v 1.25 2008/10/25 22:30:43 jakemsr Exp $ */ 2 3 /* 4 * Copyright (c) 1998 Constantine Paul Sapuntzakis 5 * All rights reserved 6 * 7 * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The author's name or those of the contributors may be used to 18 * endorse or promote products derived from this software without 19 * specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * S3 SonicVibes driver 36 * Heavily based on the eap driver by Lennart Augustsson 37 */ 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/device.h> 44 45 #include <dev/pci/pcireg.h> 46 #include <dev/pci/pcivar.h> 47 #include <dev/pci/pcidevs.h> 48 49 #include <sys/audioio.h> 50 #include <dev/audio_if.h> 51 #include <dev/mulaw.h> 52 #include <dev/auconv.h> 53 54 #include <dev/ic/i8237reg.h> 55 #include <dev/ic/s3_617.h> 56 57 58 #include <machine/bus.h> 59 60 #ifdef __OpenBSD__ 61 struct cfdriver sv_cd = { 62 NULL, "sv", DV_DULL 63 }; 64 #endif 65 66 #ifdef AUDIO_DEBUG 67 #define DPRINTF(x) if (svdebug) printf x 68 #define DPRINTFN(n,x) if (svdebug>(n)) printf x 69 static int svdebug = 100; 70 #else 71 #define DPRINTF(x) 72 #define DPRINTFN(n,x) 73 #endif 74 75 int sv_match(struct device *, void *, void *); 76 static void sv_attach(struct device *, struct device *, void *); 77 int sv_intr(void *); 78 79 struct sv_dma { 80 bus_dmamap_t map; 81 caddr_t addr; 82 bus_dma_segment_t segs[1]; 83 int nsegs; 84 size_t size; 85 struct sv_dma *next; 86 }; 87 #define DMAADDR(map) ((map)->segs[0].ds_addr) 88 #define KERNADDR(map) ((void *)((map)->addr)) 89 90 enum { 91 SV_DMAA_CONFIGURED = 1, 92 SV_DMAC_CONFIGURED = 2, 93 SV_DMAA_TRIED_CONFIGURE = 4, 94 SV_DMAC_TRIED_CONFIGURE = 8 95 }; 96 97 struct sv_softc { 98 struct device sc_dev; /* base device */ 99 void *sc_ih; /* interrupt vectoring */ 100 101 pci_chipset_tag_t sc_pci_chipset_tag; 102 pcitag_t sc_pci_tag; 103 104 bus_space_tag_t sc_iot; 105 bus_space_handle_t sc_ioh; 106 bus_space_handle_t sc_dmaa_ioh; 107 bus_space_handle_t sc_dmac_ioh; 108 bus_dma_tag_t sc_dmatag; /* DMA tag */ 109 110 struct sv_dma *sc_dmas; 111 112 void (*sc_pintr)(void *); /* dma completion intr handler */ 113 void *sc_parg; /* arg for sc_intr() */ 114 115 void (*sc_rintr)(void *); /* dma completion intr handler */ 116 void *sc_rarg; /* arg for sc_intr() */ 117 char sc_enable; 118 char sc_trd; 119 120 char sc_dma_configured; 121 u_int sc_record_source; /* recording source mask */ 122 }; 123 124 125 struct cfattach sv_ca = { 126 sizeof(struct sv_softc), sv_match, sv_attach 127 }; 128 129 struct audio_device sv_device = { 130 "S3 SonicVibes", 131 "", 132 "sv" 133 }; 134 135 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) 136 137 int sv_allocmem(struct sv_softc *, size_t, size_t, struct sv_dma *); 138 int sv_freemem(struct sv_softc *, struct sv_dma *); 139 140 int sv_open(void *, int); 141 void sv_close(void *); 142 int sv_query_encoding(void *, struct audio_encoding *); 143 int sv_set_params(void *, int, int, struct audio_params *, struct audio_params *); 144 int sv_round_blocksize(void *, int); 145 int sv_dma_init_output(void *, void *, int); 146 int sv_dma_init_input(void *, void *, int); 147 int sv_dma_output(void *, void *, int, void (*)(void *), void *); 148 int sv_dma_input(void *, void *, int, void (*)(void *), void *); 149 int sv_halt_in_dma(void *); 150 int sv_halt_out_dma(void *); 151 int sv_getdev(void *, struct audio_device *); 152 int sv_mixer_set_port(void *, mixer_ctrl_t *); 153 int sv_mixer_get_port(void *, mixer_ctrl_t *); 154 int sv_query_devinfo(void *, mixer_devinfo_t *); 155 void *sv_malloc(void *, int, size_t, int, int); 156 void sv_free(void *, void *, int); 157 paddr_t sv_mappage(void *, void *, off_t, int); 158 int sv_get_props(void *); 159 160 void sv_dumpregs(struct sv_softc *sc); 161 162 struct audio_hw_if sv_hw_if = { 163 sv_open, 164 sv_close, 165 NULL, 166 sv_query_encoding, 167 sv_set_params, 168 sv_round_blocksize, 169 NULL, 170 sv_dma_init_output, 171 sv_dma_init_input, 172 sv_dma_output, 173 sv_dma_input, 174 sv_halt_out_dma, 175 sv_halt_in_dma, 176 NULL, 177 sv_getdev, 178 NULL, 179 sv_mixer_set_port, 180 sv_mixer_get_port, 181 sv_query_devinfo, 182 sv_malloc, 183 sv_free, 184 NULL, 185 sv_mappage, 186 sv_get_props, 187 NULL, 188 NULL, 189 NULL 190 }; 191 192 193 static __inline__ u_int8_t sv_read(struct sv_softc *, u_int8_t); 194 static __inline__ u_int8_t sv_read_indirect(struct sv_softc *, u_int8_t); 195 static __inline__ void sv_write(struct sv_softc *, u_int8_t, u_int8_t ); 196 static __inline__ void sv_write_indirect(struct sv_softc *, u_int8_t, u_int8_t ); 197 static void sv_init_mixer(struct sv_softc *); 198 199 static __inline__ void 200 sv_write (sc, reg, val) 201 struct sv_softc *sc; 202 u_int8_t reg, val; 203 204 { 205 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); 206 } 207 208 static __inline__ u_int8_t 209 sv_read (sc, reg) 210 struct sv_softc *sc; 211 u_int8_t reg; 212 213 { 214 return (bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg)); 215 } 216 217 static __inline__ u_int8_t 218 sv_read_indirect (sc, reg) 219 struct sv_softc *sc; 220 u_int8_t reg; 221 { 222 u_int8_t iaddr = 0; 223 224 if (sc->sc_trd > 0) 225 iaddr |= SV_IADDR_TRD; 226 227 iaddr |= (reg & SV_IADDR_MASK); 228 sv_write (sc, SV_CODEC_IADDR, iaddr); 229 230 return (sv_read(sc, SV_CODEC_IDATA)); 231 } 232 233 static __inline__ void 234 sv_write_indirect (sc, reg, val) 235 struct sv_softc *sc; 236 u_int8_t reg, val; 237 { 238 u_int8_t iaddr = 0; 239 #ifdef DIAGNOSTIC 240 if (reg > 0x3f) { 241 printf ("Invalid register\n"); 242 return; 243 } 244 #endif 245 246 if (reg == SV_DMA_DATA_FORMAT) 247 iaddr |= SV_IADDR_MCE; 248 249 if (sc->sc_trd > 0) 250 iaddr |= SV_IADDR_TRD; 251 252 iaddr |= (reg & SV_IADDR_MASK); 253 sv_write (sc, SV_CODEC_IADDR, iaddr); 254 sv_write (sc, SV_CODEC_IDATA, val); 255 } 256 257 int 258 sv_match(parent, match, aux) 259 struct device *parent; 260 void *match, *aux; 261 { 262 struct pci_attach_args *pa = aux; 263 264 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && 265 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) 266 return (1); 267 268 return (0); 269 } 270 271 static void 272 sv_attach(parent, self, aux) 273 struct device *parent, *self; 274 void *aux; 275 276 { 277 struct sv_softc *sc = (struct sv_softc *)self; 278 struct pci_attach_args *pa = aux; 279 pci_chipset_tag_t pc = pa->pa_pc; 280 pci_intr_handle_t ih; 281 bus_size_t iosize; 282 char const *intrstr; 283 u_int32_t dmareg, dmaio; 284 u_int8_t reg; 285 286 sc->sc_pci_chipset_tag = pc; 287 sc->sc_pci_tag = pa->pa_tag; 288 289 /* Map the enhanced port only */ 290 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, PCI_MAPREG_TYPE_IO, 0, 291 &sc->sc_iot, &sc->sc_ioh, NULL, &iosize, 0)) { 292 printf (": Couldn't map enhanced synth I/O range\n"); 293 return; 294 } 295 296 sc->sc_dmatag = pa->pa_dmat; 297 298 dmareg = pci_conf_read(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF); 299 iosize = 0x10; 300 dmaio = dmareg & ~(iosize - 1); 301 302 if (dmaio) { 303 dmareg &= 0xF; 304 305 if (bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmaa_ioh)) { 306 /* The BIOS assigned us some bad I/O address! Make sure to clear 307 and disable this DMA before we enable the device */ 308 pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF, 0); 309 310 printf (": can't map DMA i/o space\n"); 311 goto enable; 312 } 313 314 pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF, 315 dmaio | dmareg | 316 SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); 317 sc->sc_dma_configured |= SV_DMAA_CONFIGURED; 318 } 319 320 dmareg = pci_conf_read(pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF); 321 dmaio = dmareg & ~(iosize - 1); 322 if (dmaio) { 323 dmareg &= 0xF; 324 325 if (bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmac_ioh)) { 326 /* The BIOS assigned us some bad I/O address! Make sure to clear 327 and disable this DMA before we enable the device */ 328 pci_conf_write (pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF, 329 dmareg & ~SV_DMA_CHANNEL_ENABLE); 330 printf (": can't map DMA i/o space\n"); 331 goto enable; 332 } 333 334 pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF, 335 dmaio | dmareg | SV_DMA_CHANNEL_ENABLE); 336 sc->sc_dma_configured |= SV_DMAC_CONFIGURED; 337 } 338 339 /* Enable the device. */ 340 enable: 341 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); 342 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); 343 344 /* initialize codec registers */ 345 reg = sv_read(sc, SV_CODEC_CONTROL); 346 reg |= SV_CTL_RESET; 347 sv_write(sc, SV_CODEC_CONTROL, reg); 348 delay(50); 349 350 reg = sv_read(sc, SV_CODEC_CONTROL); 351 reg &= ~SV_CTL_RESET; 352 reg |= SV_CTL_INTA | SV_CTL_ENHANCED; 353 354 /* This write clears the reset */ 355 sv_write(sc, SV_CODEC_CONTROL, reg); 356 delay(50); 357 358 /* This write actually shoves the new values in */ 359 sv_write(sc, SV_CODEC_CONTROL, reg); 360 361 DPRINTF (("reg: %x\n", sv_read(sc, SV_CODEC_CONTROL))); 362 363 /* Enable DMA interrupts */ 364 reg = sv_read(sc, SV_CODEC_INTMASK); 365 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 366 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 367 sv_write(sc, SV_CODEC_INTMASK, reg); 368 369 sv_read(sc, SV_CODEC_STATUS); 370 371 sc->sc_trd = 0; 372 sc->sc_enable = 0; 373 374 /* Map and establish the interrupt. */ 375 if (pci_intr_map(pa, &ih)) { 376 printf(": couldn't map interrupt\n"); 377 return; 378 } 379 intrstr = pci_intr_string(pc, ih); 380 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc, 381 sc->sc_dev.dv_xname); 382 if (sc->sc_ih == NULL) { 383 printf(": couldn't establish interrupt"); 384 if (intrstr != NULL) 385 printf(" at %s", intrstr); 386 printf("\n"); 387 return; 388 } 389 printf(": %s\n", intrstr); 390 391 sv_init_mixer(sc); 392 393 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev); 394 } 395 396 #ifdef AUDIO_DEBUG 397 void 398 sv_dumpregs(sc) 399 struct sv_softc *sc; 400 { 401 int idx; 402 403 { int idx; 404 for (idx = 0; idx < 0x50; idx += 4) { 405 printf ("%02x = %x\n", idx, pci_conf_read(sc->sc_pci_chipset_tag, 406 sc->sc_pci_tag, idx)); 407 } 408 } 409 410 for (idx = 0; idx < 6; idx++) { 411 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); 412 } 413 414 for (idx = 0; idx < 0x32; idx++) { 415 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); 416 } 417 418 for (idx = 0; idx < 0x10; idx++) { 419 printf ("DMA %02x = %02x\n", idx, 420 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); 421 } 422 423 return; 424 } 425 #endif 426 427 int 428 sv_intr(p) 429 void *p; 430 { 431 struct sv_softc *sc = p; 432 u_int8_t intr; 433 434 intr = sv_read(sc, SV_CODEC_STATUS); 435 436 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) 437 return (0); 438 439 if (intr & SV_INTSTATUS_DMAA) { 440 if (sc->sc_pintr) 441 sc->sc_pintr(sc->sc_parg); 442 } 443 444 if (intr & SV_INTSTATUS_DMAC) { 445 if (sc->sc_rintr) 446 sc->sc_rintr(sc->sc_rarg); 447 } 448 449 return (1); 450 } 451 452 int 453 sv_allocmem(sc, size, align, p) 454 struct sv_softc *sc; 455 size_t size; 456 size_t align; 457 struct sv_dma *p; 458 { 459 int error; 460 461 p->size = size; 462 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, 463 p->segs, ARRAY_SIZE(p->segs), 464 &p->nsegs, BUS_DMA_NOWAIT); 465 if (error) 466 return (error); 467 468 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 469 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 470 if (error) 471 goto free; 472 473 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 474 0, BUS_DMA_NOWAIT, &p->map); 475 if (error) 476 goto unmap; 477 478 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 479 BUS_DMA_NOWAIT); 480 if (error) 481 goto destroy; 482 return (0); 483 484 destroy: 485 bus_dmamap_destroy(sc->sc_dmatag, p->map); 486 unmap: 487 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 488 free: 489 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 490 return (error); 491 } 492 493 int 494 sv_freemem(sc, p) 495 struct sv_softc *sc; 496 struct sv_dma *p; 497 { 498 bus_dmamap_unload(sc->sc_dmatag, p->map); 499 bus_dmamap_destroy(sc->sc_dmatag, p->map); 500 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 501 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 502 return (0); 503 } 504 505 int 506 sv_open(addr, flags) 507 void *addr; 508 int flags; 509 { 510 511 struct sv_softc *sc = addr; 512 int intr_mask = 0; 513 u_int8_t reg; 514 515 /* Map the DMA channels, if necessary */ 516 if (!(sc->sc_dma_configured & SV_DMAA_CONFIGURED)) { 517 /* XXX - there seems to be no general way to find an 518 I/O range */ 519 int dmaio; 520 int iosize = 0x10; 521 522 if (sc->sc_dma_configured & SV_DMAA_TRIED_CONFIGURE) 523 return (ENXIO); 524 525 for (dmaio = 0xa000; dmaio < 0xb000; dmaio += iosize) { 526 if (!bus_space_map(sc->sc_iot, dmaio, iosize, 0, 527 &sc->sc_dmaa_ioh)) { 528 goto found_dmaa; 529 } 530 } 531 532 sc->sc_dma_configured |= SV_DMAA_TRIED_CONFIGURE; 533 return (ENXIO); 534 found_dmaa: 535 536 pci_conf_write(sc->sc_pci_chipset_tag, sc->sc_pci_tag, 537 SV_DMAA_CONFIG_OFF, 538 dmaio | SV_DMA_CHANNEL_ENABLE 539 | SV_DMAA_EXTENDED_ADDR); 540 541 sc->sc_dma_configured |= SV_DMAA_CONFIGURED; 542 intr_mask = 1; 543 } 544 545 if (!(sc->sc_dma_configured & SV_DMAC_CONFIGURED)) { 546 /* XXX - there seems to be no general way to find an 547 I/O range */ 548 int dmaio; 549 int iosize = 0x10; 550 551 if (sc->sc_dma_configured & SV_DMAC_TRIED_CONFIGURE) 552 return (ENXIO); 553 554 for (dmaio = 0xa000; dmaio < 0xb000; dmaio += iosize) { 555 if (!bus_space_map(sc->sc_iot, dmaio, iosize, 0, 556 &sc->sc_dmac_ioh)) { 557 goto found_dmac; 558 } 559 } 560 561 sc->sc_dma_configured |= SV_DMAC_TRIED_CONFIGURE; 562 return (ENXIO); 563 found_dmac: 564 565 pci_conf_write(sc->sc_pci_chipset_tag, sc->sc_pci_tag, 566 SV_DMAC_CONFIG_OFF, 567 dmaio | SV_DMA_CHANNEL_ENABLE); 568 569 sc->sc_dma_configured |= SV_DMAC_CONFIGURED; 570 intr_mask = 1; 571 } 572 573 /* Make sure DMA interrupts are enabled */ 574 if (intr_mask) { 575 reg = sv_read(sc, SV_CODEC_INTMASK); 576 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 577 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 578 sv_write(sc, SV_CODEC_INTMASK, reg); 579 } 580 581 sc->sc_pintr = 0; 582 sc->sc_rintr = 0; 583 584 return (0); 585 } 586 587 /* 588 * Close function is called at splaudio(). 589 */ 590 void 591 sv_close(addr) 592 void *addr; 593 { 594 struct sv_softc *sc = addr; 595 596 sv_halt_in_dma(sc); 597 sv_halt_out_dma(sc); 598 599 sc->sc_pintr = 0; 600 sc->sc_rintr = 0; 601 } 602 603 int 604 sv_query_encoding(addr, fp) 605 void *addr; 606 struct audio_encoding *fp; 607 { 608 switch (fp->index) { 609 case 0: 610 strlcpy(fp->name, AudioEulinear, sizeof fp->name); 611 fp->encoding = AUDIO_ENCODING_ULINEAR; 612 fp->precision = 8; 613 fp->flags = 0; 614 return (0); 615 case 1: 616 strlcpy(fp->name, AudioEmulaw, sizeof fp->name); 617 fp->encoding = AUDIO_ENCODING_ULAW; 618 fp->precision = 8; 619 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 620 return (0); 621 case 2: 622 strlcpy(fp->name, AudioEalaw, sizeof fp->name); 623 fp->encoding = AUDIO_ENCODING_ALAW; 624 fp->precision = 8; 625 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 626 return (0); 627 case 3: 628 strlcpy(fp->name, AudioEslinear, sizeof fp->name); 629 fp->encoding = AUDIO_ENCODING_SLINEAR; 630 fp->precision = 8; 631 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 632 return (0); 633 case 4: 634 strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); 635 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 636 fp->precision = 16; 637 fp->flags = 0; 638 return (0); 639 case 5: 640 strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); 641 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 642 fp->precision = 16; 643 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 644 return (0); 645 case 6: 646 strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); 647 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 648 fp->precision = 16; 649 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 650 return (0); 651 case 7: 652 strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); 653 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 654 fp->precision = 16; 655 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 656 return (0); 657 default: 658 return (EINVAL); 659 } 660 } 661 662 int 663 sv_set_params(addr, setmode, usemode, p, r) 664 void *addr; 665 int setmode, usemode; 666 struct audio_params *p, *r; 667 { 668 struct sv_softc *sc = addr; 669 void (*pswcode)(void *, u_char *buf, int cnt); 670 void (*rswcode)(void *, u_char *buf, int cnt); 671 u_int32_t mode, val; 672 u_int8_t reg; 673 674 pswcode = rswcode = 0; 675 switch (p->encoding) { 676 case AUDIO_ENCODING_SLINEAR_BE: 677 if (p->precision == 16) 678 rswcode = pswcode = swap_bytes; 679 else 680 pswcode = rswcode = change_sign8; 681 break; 682 case AUDIO_ENCODING_SLINEAR_LE: 683 if (p->precision != 16) 684 pswcode = rswcode = change_sign8; 685 break; 686 case AUDIO_ENCODING_ULINEAR_BE: 687 if (p->precision == 16) { 688 pswcode = swap_bytes_change_sign16_le; 689 rswcode = change_sign16_swap_bytes_le; 690 } 691 break; 692 case AUDIO_ENCODING_ULINEAR_LE: 693 if (p->precision == 16) 694 pswcode = rswcode = change_sign16_le; 695 break; 696 case AUDIO_ENCODING_ULAW: 697 pswcode = mulaw_to_ulinear8; 698 rswcode = ulinear8_to_mulaw; 699 break; 700 case AUDIO_ENCODING_ALAW: 701 pswcode = alaw_to_ulinear8; 702 rswcode = ulinear8_to_alaw; 703 break; 704 default: 705 return (EINVAL); 706 } 707 708 if (p->precision == 16) 709 mode = SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16; 710 else 711 mode = 0; 712 if (p->channels > 2) 713 p->channels = 2; 714 if (p->channels == 2) 715 mode |= SV_DMAA_STEREO | SV_DMAC_STEREO; 716 if (p->sample_rate < 2000) 717 p->sample_rate = 2000; 718 if (p->sample_rate > 48000) 719 p->sample_rate = 48000; 720 721 p->sw_code = pswcode; 722 r->sw_code = rswcode; 723 724 /* Set the encoding */ 725 reg = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 726 reg &= ~(SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16 | SV_DMAA_STEREO | 727 SV_DMAC_STEREO); 728 reg |= (mode); 729 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, reg); 730 731 val = p->sample_rate * 65536 / 48000; 732 733 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, (val & 0xff)); 734 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, (val >> 8)); 735 736 #define F_REF 24576000 737 738 if (setmode & AUMODE_RECORD) 739 { 740 /* The ADC reference frequency (f_out) is 512 * the sample rate */ 741 742 /* f_out is dervied from the 24.576MHZ crystal by three values: 743 M & N & R. The equation is as follows: 744 745 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) 746 747 with the constraint that: 748 749 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150MHz 750 and n, m >= 1 751 */ 752 753 int goal_f_out = 512 * r->sample_rate; 754 int a, n, m, best_n, best_m, best_error = 10000000; 755 int pll_sample; 756 757 for (a = 0; a < 8; a++) { 758 if ((goal_f_out * (1 << a)) >= 80000000) 759 break; 760 } 761 762 /* a != 8 because sample_rate >= 2000 */ 763 764 for (n = 33; n > 2; n--) { 765 int error; 766 767 m = (goal_f_out * n * (1 << a)) / F_REF; 768 769 if ((m > 257) || (m < 3)) continue; 770 771 pll_sample = (m * F_REF) / (n * (1 << a)); 772 pll_sample /= 512; 773 774 /* Threshold might be good here */ 775 error = pll_sample - r->sample_rate; 776 error = abs(error); 777 778 if (error < best_error) { 779 best_error = error; 780 best_n = n; 781 best_m = m; 782 if (error == 0) break; 783 } 784 } 785 786 787 best_n -= 2; 788 best_m -= 2; 789 790 sv_write_indirect(sc, SV_ADC_PLL_M, best_m); 791 sv_write_indirect(sc, SV_ADC_PLL_N, best_n | (a << SV_PLL_R_SHIFT)); 792 } 793 return (0); 794 } 795 796 int 797 sv_round_blocksize(addr, blk) 798 void *addr; 799 int blk; 800 { 801 return ((blk + 31) & -32); /* keep good alignment */ 802 } 803 804 int 805 sv_dma_init_input(addr, buf, cc) 806 void *addr; 807 void *buf; 808 int cc; 809 { 810 struct sv_softc *sc = addr; 811 struct sv_dma *p; 812 int dma_count; 813 814 DPRINTF(("sv_dma_init_input: dma start loop input addr=%p cc=%d\n", 815 buf, cc)); 816 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next) 817 ; 818 if (!p) { 819 printf("sv_dma_init_input: bad addr %p\n", buf); 820 return (EINVAL); 821 } 822 823 dma_count = (cc >> 1) - 1; 824 825 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, 826 DMAADDR(p)); 827 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, 828 dma_count); 829 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, 830 DMA37MD_WRITE | DMA37MD_LOOP); 831 832 return (0); 833 } 834 835 int 836 sv_dma_init_output(addr, buf, cc) 837 void *addr; 838 void *buf; 839 int cc; 840 { 841 struct sv_softc *sc = addr; 842 struct sv_dma *p; 843 int dma_count; 844 845 DPRINTF(("eap: dma start loop output buf=%p cc=%d\n", buf, cc)); 846 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next) 847 ; 848 if (!p) { 849 printf("sv_dma_init_output: bad addr %p\n", buf); 850 return (EINVAL); 851 } 852 853 dma_count = cc - 1; 854 855 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, 856 DMAADDR(p)); 857 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, 858 dma_count); 859 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, 860 DMA37MD_READ | DMA37MD_LOOP); 861 862 return (0); 863 } 864 865 int 866 sv_dma_output(addr, p, cc, intr, arg) 867 void *addr; 868 void *p; 869 int cc; 870 void (*intr)(void *); 871 void *arg; 872 { 873 struct sv_softc *sc = addr; 874 u_int8_t mode; 875 876 DPRINTFN(1, 877 ("sv_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n", 878 addr, p, cc, intr, arg)); 879 880 sc->sc_pintr = intr; 881 sc->sc_parg = arg; 882 if (!(sc->sc_enable & SV_PLAY_ENABLE)) { 883 int dma_count = cc - 1; 884 885 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); 886 sv_write_indirect(sc, SV_DMAA_COUNT0, (dma_count & 0xFF)); 887 888 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 889 mode |= SV_PLAY_ENABLE; 890 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 891 sc->sc_enable |= SV_PLAY_ENABLE; 892 } 893 return (0); 894 } 895 896 int 897 sv_dma_input(addr, p, cc, intr, arg) 898 void *addr; 899 void *p; 900 int cc; 901 void (*intr)(void *); 902 void *arg; 903 { 904 struct sv_softc *sc = addr; 905 u_int8_t mode; 906 907 DPRINTFN(1, ("sv_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n", 908 addr, p, cc, intr, arg)); 909 sc->sc_rintr = intr; 910 sc->sc_rarg = arg; 911 if (!(sc->sc_enable & SV_RECORD_ENABLE)) { 912 int dma_count = (cc >> 1) - 1; 913 914 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); 915 sv_write_indirect(sc, SV_DMAC_COUNT0, (dma_count & 0xFF)); 916 917 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 918 mode |= SV_RECORD_ENABLE; 919 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 920 sc->sc_enable |= SV_RECORD_ENABLE; 921 } 922 return (0); 923 } 924 925 int 926 sv_halt_out_dma(addr) 927 void *addr; 928 { 929 struct sv_softc *sc = addr; 930 u_int8_t mode; 931 932 DPRINTF(("eap: sv_halt_out_dma\n")); 933 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 934 mode &= ~SV_PLAY_ENABLE; 935 sc->sc_enable &= ~SV_PLAY_ENABLE; 936 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 937 938 return (0); 939 } 940 941 int 942 sv_halt_in_dma(addr) 943 void *addr; 944 { 945 struct sv_softc *sc = addr; 946 u_int8_t mode; 947 948 DPRINTF(("eap: sv_halt_in_dma\n")); 949 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 950 mode &= ~SV_RECORD_ENABLE; 951 sc->sc_enable &= ~SV_RECORD_ENABLE; 952 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 953 954 return (0); 955 } 956 957 int 958 sv_getdev(addr, retp) 959 void *addr; 960 struct audio_device *retp; 961 { 962 *retp = sv_device; 963 return (0); 964 } 965 966 967 /* 968 * Mixer related code is here 969 * 970 */ 971 972 #define SV_INPUT_CLASS 0 973 #define SV_OUTPUT_CLASS 1 974 #define SV_RECORD_CLASS 2 975 976 #define SV_LAST_CLASS 2 977 978 static const char *mixer_classes[] = { AudioCinputs, AudioCoutputs, AudioCrecord }; 979 980 static const struct { 981 u_int8_t l_port; 982 u_int8_t r_port; 983 u_int8_t mask; 984 u_int8_t class; 985 const char *audio; 986 } ports[] = { 987 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, 988 SV_INPUT_CLASS, "aux1" }, 989 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 990 SV_INPUT_CLASS, AudioNcd }, 991 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, 992 SV_INPUT_CLASS, AudioNline }, 993 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, 994 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 995 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, 996 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, 997 SV_INPUT_CLASS, "aux2" }, 998 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, 999 SV_INPUT_CLASS, AudioNdac }, 1000 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 1001 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } 1002 }; 1003 1004 1005 static const struct { 1006 int idx; 1007 const char *name; 1008 } record_sources[] = { 1009 { SV_REC_CD, AudioNcd }, 1010 { SV_REC_DAC, AudioNdac }, 1011 { SV_REC_AUX2, "aux2" }, 1012 { SV_REC_LINE, AudioNline }, 1013 { SV_REC_AUX1, "aux1" }, 1014 { SV_REC_MIC, AudioNmicrophone }, 1015 { SV_REC_MIXER, AudioNmixerout } 1016 }; 1017 1018 1019 #define SV_DEVICES_PER_PORT 2 1020 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) 1021 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) 1022 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) 1023 #define SV_MIC_BOOST (SV_LAST_MIXER + 2) 1024 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) 1025 #define SV_SRS_MODE (SV_LAST_MIXER + 4) 1026 1027 int 1028 sv_query_devinfo(addr, dip) 1029 void *addr; 1030 mixer_devinfo_t *dip; 1031 { 1032 1033 if (dip->index < 0) 1034 return (ENXIO); 1035 1036 /* It's a class */ 1037 if (dip->index <= SV_LAST_CLASS) { 1038 dip->type = AUDIO_MIXER_CLASS; 1039 dip->mixer_class = dip->index; 1040 dip->next = dip->prev = AUDIO_MIXER_LAST; 1041 strlcpy(dip->label.name, mixer_classes[dip->index], 1042 sizeof dip->label.name); 1043 return (0); 1044 } 1045 1046 if (dip->index >= SV_FIRST_MIXER && 1047 dip->index <= SV_LAST_MIXER) { 1048 int off = dip->index - SV_FIRST_MIXER; 1049 int mute = (off % SV_DEVICES_PER_PORT); 1050 int idx = off / SV_DEVICES_PER_PORT; 1051 1052 dip->mixer_class = ports[idx].class; 1053 strlcpy(dip->label.name, ports[idx].audio, sizeof dip->label.name); 1054 1055 if (!mute) { 1056 dip->type = AUDIO_MIXER_VALUE; 1057 dip->prev = AUDIO_MIXER_LAST; 1058 dip->next = dip->index + 1; 1059 1060 if (ports[idx].r_port != 0) 1061 dip->un.v.num_channels = 2; 1062 else 1063 dip->un.v.num_channels = 1; 1064 1065 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1066 1067 } else { 1068 dip->type = AUDIO_MIXER_ENUM; 1069 dip->prev = dip->index - 1; 1070 dip->next = AUDIO_MIXER_LAST; 1071 1072 strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); 1073 dip->un.e.num_mem = 2; 1074 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 1075 sizeof dip->un.e.member[0].label.name); 1076 dip->un.e.member[0].ord = 0; 1077 strlcpy(dip->un.e.member[1].label.name, AudioNon, 1078 sizeof dip->un.e.member[1].label.name); 1079 dip->un.e.member[1].ord = 1; 1080 1081 } 1082 1083 return (0); 1084 } 1085 1086 switch (dip->index) { 1087 case SV_RECORD_SOURCE: 1088 dip->mixer_class = SV_RECORD_CLASS; 1089 dip->prev = AUDIO_MIXER_LAST; 1090 dip->next = SV_RECORD_GAIN; 1091 strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); 1092 dip->type = AUDIO_MIXER_ENUM; 1093 1094 dip->un.e.num_mem = ARRAY_SIZE(record_sources); 1095 1096 { 1097 int idx; 1098 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1099 strlcpy(dip->un.e.member[idx].label.name, record_sources[idx].name, 1100 sizeof dip->un.e.member[idx].label.name); 1101 dip->un.e.member[idx].ord = record_sources[idx].idx; 1102 } 1103 } 1104 return (0); 1105 1106 case SV_RECORD_GAIN: 1107 dip->mixer_class = SV_RECORD_CLASS; 1108 dip->prev = SV_RECORD_SOURCE; 1109 dip->next = AUDIO_MIXER_LAST; 1110 strlcpy(dip->label.name, "gain", sizeof dip->label.name); 1111 dip->type = AUDIO_MIXER_VALUE; 1112 dip->un.v.num_channels = 1; 1113 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1114 return (0); 1115 1116 case SV_MIC_BOOST: 1117 dip->mixer_class = SV_RECORD_CLASS; 1118 dip->prev = AUDIO_MIXER_LAST; 1119 dip->next = AUDIO_MIXER_LAST; 1120 strlcpy(dip->label.name, "micboost", sizeof dip->label.name); 1121 goto on_off; 1122 1123 case SV_SRS_MODE: 1124 dip->mixer_class = SV_OUTPUT_CLASS; 1125 dip->prev = dip->next = AUDIO_MIXER_LAST; 1126 strlcpy(dip->label.name, AudioNspatial, sizeof dip->label.name); 1127 1128 on_off: 1129 dip->type = AUDIO_MIXER_ENUM; 1130 dip->un.e.num_mem = 2; 1131 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 1132 sizeof dip->un.e.member[0].label.name); 1133 dip->un.e.member[0].ord = 0; 1134 strlcpy(dip->un.e.member[1].label.name, AudioNon, 1135 sizeof dip->un.e.member[1].label.name); 1136 dip->un.e.member[1].ord = 1; 1137 return (0); 1138 } 1139 1140 return (ENXIO); 1141 } 1142 1143 int 1144 sv_mixer_set_port(addr, cp) 1145 void *addr; 1146 mixer_ctrl_t *cp; 1147 { 1148 struct sv_softc *sc = addr; 1149 u_int8_t reg; 1150 int idx; 1151 1152 if (cp->dev >= SV_FIRST_MIXER && 1153 cp->dev <= SV_LAST_MIXER) { 1154 int off = cp->dev - SV_FIRST_MIXER; 1155 int mute = (off % SV_DEVICES_PER_PORT); 1156 idx = off / SV_DEVICES_PER_PORT; 1157 1158 if (mute) { 1159 if (cp->type != AUDIO_MIXER_ENUM) 1160 return (EINVAL); 1161 1162 reg = sv_read_indirect(sc, ports[idx].l_port); 1163 if (cp->un.ord) 1164 reg |= SV_MUTE_BIT; 1165 else 1166 reg &= ~SV_MUTE_BIT; 1167 sv_write_indirect(sc, ports[idx].l_port, reg); 1168 1169 if (ports[idx].r_port) { 1170 reg = sv_read_indirect(sc, ports[idx].r_port); 1171 if (cp->un.ord) 1172 reg |= SV_MUTE_BIT; 1173 else 1174 reg &= ~SV_MUTE_BIT; 1175 sv_write_indirect(sc, ports[idx].r_port, reg); 1176 } 1177 } else { 1178 int lval, rval; 1179 1180 if (cp->type != AUDIO_MIXER_VALUE) 1181 return (EINVAL); 1182 1183 if (cp->un.value.num_channels != 1 && 1184 cp->un.value.num_channels != 2) 1185 return (EINVAL); 1186 1187 if (ports[idx].r_port == 0) { 1188 if (cp->un.value.num_channels != 1) 1189 return (EINVAL); 1190 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 1191 } else { 1192 if (cp->un.value.num_channels != 2) 1193 return (EINVAL); 1194 1195 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1196 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1197 } 1198 1199 sc->sc_trd = 1; 1200 1201 reg = sv_read_indirect(sc, ports[idx].l_port); 1202 reg &= ~(ports[idx].mask); 1203 lval = ((AUDIO_MAX_GAIN - lval) * ports[idx].mask) / AUDIO_MAX_GAIN; 1204 reg |= lval; 1205 sv_write_indirect(sc, ports[idx].l_port, reg); 1206 1207 if (ports[idx].r_port != 0) { 1208 reg = sv_read_indirect(sc, ports[idx].r_port); 1209 reg &= ~(ports[idx].mask); 1210 1211 rval = ((AUDIO_MAX_GAIN - rval) * ports[idx].mask) / AUDIO_MAX_GAIN; 1212 reg |= rval; 1213 1214 sv_write_indirect(sc, ports[idx].r_port, reg); 1215 } 1216 1217 sc->sc_trd = 0; 1218 sv_read_indirect(sc, ports[idx].l_port); 1219 } 1220 1221 return (0); 1222 } 1223 1224 1225 switch (cp->dev) { 1226 case SV_RECORD_SOURCE: 1227 if (cp->type != AUDIO_MIXER_ENUM) 1228 return (EINVAL); 1229 1230 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1231 if (record_sources[idx].idx == cp->un.ord) 1232 goto found; 1233 } 1234 1235 return (EINVAL); 1236 1237 found: 1238 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1239 reg &= ~SV_REC_SOURCE_MASK; 1240 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1241 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1242 1243 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1244 reg &= ~SV_REC_SOURCE_MASK; 1245 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1246 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1247 return (0); 1248 1249 case SV_RECORD_GAIN: 1250 { 1251 int val; 1252 1253 if (cp->type != AUDIO_MIXER_VALUE) 1254 return (EINVAL); 1255 1256 if (cp->un.value.num_channels != 1) 1257 return (EINVAL); 1258 1259 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK) 1260 / AUDIO_MAX_GAIN; 1261 1262 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1263 reg &= ~SV_REC_GAIN_MASK; 1264 reg |= val; 1265 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1266 1267 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1268 reg &= ~SV_REC_GAIN_MASK; 1269 reg |= val; 1270 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1271 1272 } 1273 1274 return (0); 1275 1276 case SV_MIC_BOOST: 1277 if (cp->type != AUDIO_MIXER_ENUM) 1278 return (EINVAL); 1279 1280 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1281 if (cp->un.ord) { 1282 reg |= SV_MIC_BOOST_BIT; 1283 } else { 1284 reg &= ~SV_MIC_BOOST_BIT; 1285 } 1286 1287 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1288 return (0); 1289 1290 case SV_SRS_MODE: 1291 if (cp->type != AUDIO_MIXER_ENUM) 1292 return (EINVAL); 1293 1294 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1295 if (cp->un.ord) { 1296 reg &= ~SV_SRS_SPACE_ONOFF; 1297 } else { 1298 reg |= SV_SRS_SPACE_ONOFF; 1299 } 1300 1301 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); 1302 return (0); 1303 } 1304 1305 return (EINVAL); 1306 } 1307 1308 int 1309 sv_mixer_get_port(addr, cp) 1310 void *addr; 1311 mixer_ctrl_t *cp; 1312 { 1313 struct sv_softc *sc = addr; 1314 int val; 1315 u_int8_t reg; 1316 1317 if (cp->dev >= SV_FIRST_MIXER && 1318 cp->dev <= SV_LAST_MIXER) { 1319 int off = cp->dev - SV_FIRST_MIXER; 1320 int mute = (off % 2); 1321 int idx = off / 2; 1322 1323 if (mute) { 1324 if (cp->type != AUDIO_MIXER_ENUM) 1325 return (EINVAL); 1326 1327 reg = sv_read_indirect(sc, ports[idx].l_port); 1328 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); 1329 } else { 1330 if (cp->type != AUDIO_MIXER_VALUE) 1331 return (EINVAL); 1332 1333 if (cp->un.value.num_channels != 1 && 1334 cp->un.value.num_channels != 2) 1335 return (EINVAL); 1336 1337 if ((ports[idx].r_port == 0 && 1338 cp->un.value.num_channels != 1) || 1339 (ports[idx].r_port != 0 && 1340 cp->un.value.num_channels != 2)) 1341 return (EINVAL); 1342 1343 reg = sv_read_indirect(sc, ports[idx].l_port); 1344 reg &= ports[idx].mask; 1345 1346 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1347 1348 if (ports[idx].r_port != 0) { 1349 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val; 1350 1351 reg = sv_read_indirect(sc, ports[idx].r_port); 1352 reg &= ports[idx].mask; 1353 1354 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1355 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val; 1356 } else 1357 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val; 1358 } 1359 1360 return (0); 1361 } 1362 1363 switch (cp->dev) { 1364 case SV_RECORD_SOURCE: 1365 if (cp->type != AUDIO_MIXER_ENUM) 1366 return (EINVAL); 1367 1368 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1369 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); 1370 1371 return (0); 1372 1373 case SV_RECORD_GAIN: 1374 if (cp->type != AUDIO_MIXER_VALUE) 1375 return (EINVAL); 1376 1377 if (cp->un.value.num_channels != 1) 1378 return (EINVAL); 1379 1380 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; 1381 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1382 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; 1383 1384 return (0); 1385 1386 case SV_MIC_BOOST: 1387 if (cp->type != AUDIO_MIXER_ENUM) 1388 return (EINVAL); 1389 1390 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1391 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); 1392 1393 return (0); 1394 1395 1396 case SV_SRS_MODE: 1397 if (cp->type != AUDIO_MIXER_ENUM) 1398 return (EINVAL); 1399 1400 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1401 1402 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); 1403 return (0); 1404 } 1405 1406 return (EINVAL); 1407 } 1408 1409 1410 static void 1411 sv_init_mixer(sc) 1412 struct sv_softc *sc; 1413 { 1414 mixer_ctrl_t cp; 1415 int idx; 1416 1417 cp.type = AUDIO_MIXER_ENUM; 1418 cp.dev = SV_SRS_MODE; 1419 cp.un.ord = 0; 1420 1421 sv_mixer_set_port(sc, &cp); 1422 1423 for (idx = 0; idx < ARRAY_SIZE(ports); idx++) { 1424 if (ports[idx].audio == AudioNdac) { 1425 cp.type = AUDIO_MIXER_ENUM; 1426 cp.dev = SV_FIRST_MIXER + idx * SV_DEVICES_PER_PORT + 1; 1427 cp.un.ord = 0; 1428 sv_mixer_set_port(sc, &cp); 1429 break; 1430 } 1431 } 1432 } 1433 1434 void * 1435 sv_malloc(addr, direction, size, pool, flags) 1436 void *addr; 1437 int direction; 1438 size_t size; 1439 int pool; 1440 int flags; 1441 { 1442 struct sv_softc *sc = addr; 1443 struct sv_dma *p; 1444 int error; 1445 1446 p = malloc(sizeof(*p), pool, flags); 1447 if (!p) 1448 return (0); 1449 error = sv_allocmem(sc, size, 16, p); 1450 if (error) { 1451 free(p, pool); 1452 return (0); 1453 } 1454 p->next = sc->sc_dmas; 1455 sc->sc_dmas = p; 1456 return (KERNADDR(p)); 1457 } 1458 1459 void 1460 sv_free(addr, ptr, pool) 1461 void *addr; 1462 void *ptr; 1463 int pool; 1464 { 1465 struct sv_softc *sc = addr; 1466 struct sv_dma **p; 1467 1468 for (p = &sc->sc_dmas; *p; p = &(*p)->next) { 1469 if (KERNADDR(*p) == ptr) { 1470 sv_freemem(sc, *p); 1471 *p = (*p)->next; 1472 free(*p, pool); 1473 return; 1474 } 1475 } 1476 } 1477 1478 paddr_t 1479 sv_mappage(addr, mem, off, prot) 1480 void *addr; 1481 void *mem; 1482 off_t off; 1483 int prot; 1484 { 1485 struct sv_softc *sc = addr; 1486 struct sv_dma *p; 1487 1488 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) 1489 ; 1490 if (!p) 1491 return (-1); 1492 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 1493 off, prot, BUS_DMA_WAITOK)); 1494 } 1495 1496 int 1497 sv_get_props(addr) 1498 void *addr; 1499 { 1500 return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX); 1501 } 1502