1 /* $OpenBSD: sv.c,v 1.31 2014/07/12 18:48:52 tedu Exp $ */ 2 3 /* 4 * Copyright (c) 1998 Constantine Paul Sapuntzakis 5 * All rights reserved 6 * 7 * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The author's name or those of the contributors may be used to 18 * endorse or promote products derived from this software without 19 * specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * S3 SonicVibes driver 36 * Heavily based on the eap driver by Lennart Augustsson 37 */ 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/device.h> 44 45 #include <dev/pci/pcireg.h> 46 #include <dev/pci/pcivar.h> 47 #include <dev/pci/pcidevs.h> 48 49 #include <sys/audioio.h> 50 #include <dev/audio_if.h> 51 #include <dev/mulaw.h> 52 #include <dev/auconv.h> 53 54 #include <dev/ic/i8237reg.h> 55 #include <dev/ic/s3_617.h> 56 57 58 #include <machine/bus.h> 59 60 #ifdef __OpenBSD__ 61 struct cfdriver sv_cd = { 62 NULL, "sv", DV_DULL 63 }; 64 #endif 65 66 #ifdef AUDIO_DEBUG 67 #define DPRINTF(x) if (svdebug) printf x 68 #define DPRINTFN(n,x) if (svdebug>(n)) printf x 69 static int svdebug = 100; 70 #else 71 #define DPRINTF(x) 72 #define DPRINTFN(n,x) 73 #endif 74 75 int sv_match(struct device *, void *, void *); 76 static void sv_attach(struct device *, struct device *, void *); 77 int sv_intr(void *); 78 79 struct sv_dma { 80 bus_dmamap_t map; 81 caddr_t addr; 82 bus_dma_segment_t segs[1]; 83 int nsegs; 84 size_t size; 85 struct sv_dma *next; 86 }; 87 #define DMAADDR(map) ((map)->segs[0].ds_addr) 88 #define KERNADDR(map) ((void *)((map)->addr)) 89 90 enum { 91 SV_DMAA_CONFIGURED = 1, 92 SV_DMAC_CONFIGURED = 2, 93 SV_DMAA_TRIED_CONFIGURE = 4, 94 SV_DMAC_TRIED_CONFIGURE = 8 95 }; 96 97 struct sv_softc { 98 struct device sc_dev; /* base device */ 99 void *sc_ih; /* interrupt vectoring */ 100 101 pci_chipset_tag_t sc_pci_chipset_tag; 102 pcitag_t sc_pci_tag; 103 104 bus_space_tag_t sc_iot; 105 bus_space_handle_t sc_ioh; 106 bus_space_handle_t sc_dmaa_ioh; 107 bus_space_handle_t sc_dmac_ioh; 108 bus_dma_tag_t sc_dmatag; /* DMA tag */ 109 110 struct sv_dma *sc_dmas; 111 112 void (*sc_pintr)(void *); /* dma completion intr handler */ 113 void *sc_parg; /* arg for sc_intr() */ 114 115 void (*sc_rintr)(void *); /* dma completion intr handler */ 116 void *sc_rarg; /* arg for sc_intr() */ 117 char sc_enable; 118 char sc_trd; 119 120 char sc_dma_configured; 121 u_int sc_record_source; /* recording source mask */ 122 }; 123 124 125 struct cfattach sv_ca = { 126 sizeof(struct sv_softc), sv_match, sv_attach 127 }; 128 129 struct audio_device sv_device = { 130 "S3 SonicVibes", 131 "", 132 "sv" 133 }; 134 135 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) 136 137 int sv_allocmem(struct sv_softc *, size_t, size_t, struct sv_dma *); 138 int sv_freemem(struct sv_softc *, struct sv_dma *); 139 140 int sv_open(void *, int); 141 void sv_close(void *); 142 int sv_query_encoding(void *, struct audio_encoding *); 143 int sv_set_params(void *, int, int, struct audio_params *, struct audio_params *); 144 int sv_round_blocksize(void *, int); 145 int sv_dma_init_output(void *, void *, int); 146 int sv_dma_init_input(void *, void *, int); 147 int sv_dma_output(void *, void *, int, void (*)(void *), void *); 148 int sv_dma_input(void *, void *, int, void (*)(void *), void *); 149 int sv_halt_in_dma(void *); 150 int sv_halt_out_dma(void *); 151 int sv_getdev(void *, struct audio_device *); 152 int sv_mixer_set_port(void *, mixer_ctrl_t *); 153 int sv_mixer_get_port(void *, mixer_ctrl_t *); 154 int sv_query_devinfo(void *, mixer_devinfo_t *); 155 void *sv_malloc(void *, int, size_t, int, int); 156 void sv_free(void *, void *, int); 157 paddr_t sv_mappage(void *, void *, off_t, int); 158 int sv_get_props(void *); 159 160 void sv_dumpregs(struct sv_softc *sc); 161 162 struct audio_hw_if sv_hw_if = { 163 sv_open, 164 sv_close, 165 NULL, 166 sv_query_encoding, 167 sv_set_params, 168 sv_round_blocksize, 169 NULL, 170 sv_dma_init_output, 171 sv_dma_init_input, 172 sv_dma_output, 173 sv_dma_input, 174 sv_halt_out_dma, 175 sv_halt_in_dma, 176 NULL, 177 sv_getdev, 178 NULL, 179 sv_mixer_set_port, 180 sv_mixer_get_port, 181 sv_query_devinfo, 182 sv_malloc, 183 sv_free, 184 NULL, 185 sv_mappage, 186 sv_get_props, 187 NULL, 188 NULL, 189 NULL 190 }; 191 192 193 static __inline__ u_int8_t sv_read(struct sv_softc *, u_int8_t); 194 static __inline__ u_int8_t sv_read_indirect(struct sv_softc *, u_int8_t); 195 static __inline__ void sv_write(struct sv_softc *, u_int8_t, u_int8_t ); 196 static __inline__ void sv_write_indirect(struct sv_softc *, u_int8_t, u_int8_t ); 197 static void sv_init_mixer(struct sv_softc *); 198 199 static __inline__ void 200 sv_write (struct sv_softc *sc, u_int8_t reg, u_int8_t val) 201 { 202 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); 203 } 204 205 static __inline__ u_int8_t 206 sv_read (struct sv_softc *sc, u_int8_t reg) 207 { 208 return (bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg)); 209 } 210 211 static __inline__ u_int8_t 212 sv_read_indirect (struct sv_softc *sc, u_int8_t reg) 213 { 214 u_int8_t iaddr = 0; 215 216 if (sc->sc_trd > 0) 217 iaddr |= SV_IADDR_TRD; 218 219 iaddr |= (reg & SV_IADDR_MASK); 220 sv_write (sc, SV_CODEC_IADDR, iaddr); 221 222 return (sv_read(sc, SV_CODEC_IDATA)); 223 } 224 225 static __inline__ void 226 sv_write_indirect (struct sv_softc *sc, u_int8_t reg, u_int8_t val) 227 { 228 u_int8_t iaddr = 0; 229 #ifdef DIAGNOSTIC 230 if (reg > 0x3f) { 231 printf ("Invalid register\n"); 232 return; 233 } 234 #endif 235 236 if (reg == SV_DMA_DATA_FORMAT) 237 iaddr |= SV_IADDR_MCE; 238 239 if (sc->sc_trd > 0) 240 iaddr |= SV_IADDR_TRD; 241 242 iaddr |= (reg & SV_IADDR_MASK); 243 sv_write (sc, SV_CODEC_IADDR, iaddr); 244 sv_write (sc, SV_CODEC_IDATA, val); 245 } 246 247 int 248 sv_match(struct device *parent, void *match, void *aux) 249 { 250 struct pci_attach_args *pa = aux; 251 252 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && 253 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) 254 return (1); 255 256 return (0); 257 } 258 259 static void 260 sv_attach(struct device *parent, struct device *self, void *aux) 261 { 262 struct sv_softc *sc = (struct sv_softc *)self; 263 struct pci_attach_args *pa = aux; 264 pci_chipset_tag_t pc = pa->pa_pc; 265 pci_intr_handle_t ih; 266 bus_size_t iosize; 267 char const *intrstr; 268 u_int32_t dmareg, dmaio; 269 u_int8_t reg; 270 271 sc->sc_pci_chipset_tag = pc; 272 sc->sc_pci_tag = pa->pa_tag; 273 274 /* Map the enhanced port only */ 275 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, PCI_MAPREG_TYPE_IO, 0, 276 &sc->sc_iot, &sc->sc_ioh, NULL, &iosize, 0)) { 277 printf (": Couldn't map enhanced synth I/O range\n"); 278 return; 279 } 280 281 sc->sc_dmatag = pa->pa_dmat; 282 283 dmareg = pci_conf_read(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF); 284 iosize = 0x10; 285 dmaio = dmareg & ~(iosize - 1); 286 287 if (dmaio) { 288 dmareg &= 0xF; 289 290 if (bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmaa_ioh)) { 291 /* The BIOS assigned us some bad I/O address! Make sure to clear 292 and disable this DMA before we enable the device */ 293 pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF, 0); 294 295 printf (": can't map DMA i/o space\n"); 296 goto enable; 297 } 298 299 pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF, 300 dmaio | dmareg | 301 SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); 302 sc->sc_dma_configured |= SV_DMAA_CONFIGURED; 303 } 304 305 dmareg = pci_conf_read(pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF); 306 dmaio = dmareg & ~(iosize - 1); 307 if (dmaio) { 308 dmareg &= 0xF; 309 310 if (bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmac_ioh)) { 311 /* The BIOS assigned us some bad I/O address! Make sure to clear 312 and disable this DMA before we enable the device */ 313 pci_conf_write (pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF, 314 dmareg & ~SV_DMA_CHANNEL_ENABLE); 315 printf (": can't map DMA i/o space\n"); 316 goto enable; 317 } 318 319 pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF, 320 dmaio | dmareg | SV_DMA_CHANNEL_ENABLE); 321 sc->sc_dma_configured |= SV_DMAC_CONFIGURED; 322 } 323 324 /* Enable the device. */ 325 enable: 326 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); 327 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); 328 329 /* initialize codec registers */ 330 reg = sv_read(sc, SV_CODEC_CONTROL); 331 reg |= SV_CTL_RESET; 332 sv_write(sc, SV_CODEC_CONTROL, reg); 333 delay(50); 334 335 reg = sv_read(sc, SV_CODEC_CONTROL); 336 reg &= ~SV_CTL_RESET; 337 reg |= SV_CTL_INTA | SV_CTL_ENHANCED; 338 339 /* This write clears the reset */ 340 sv_write(sc, SV_CODEC_CONTROL, reg); 341 delay(50); 342 343 /* This write actually shoves the new values in */ 344 sv_write(sc, SV_CODEC_CONTROL, reg); 345 346 DPRINTF (("reg: %x\n", sv_read(sc, SV_CODEC_CONTROL))); 347 348 /* Enable DMA interrupts */ 349 reg = sv_read(sc, SV_CODEC_INTMASK); 350 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 351 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 352 sv_write(sc, SV_CODEC_INTMASK, reg); 353 354 sv_read(sc, SV_CODEC_STATUS); 355 356 sc->sc_trd = 0; 357 sc->sc_enable = 0; 358 359 /* Map and establish the interrupt. */ 360 if (pci_intr_map(pa, &ih)) { 361 printf(": couldn't map interrupt\n"); 362 return; 363 } 364 intrstr = pci_intr_string(pc, ih); 365 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO | IPL_MPSAFE, 366 sv_intr, sc, sc->sc_dev.dv_xname); 367 if (sc->sc_ih == NULL) { 368 printf(": couldn't establish interrupt"); 369 if (intrstr != NULL) 370 printf(" at %s", intrstr); 371 printf("\n"); 372 return; 373 } 374 printf(": %s\n", intrstr); 375 376 sv_init_mixer(sc); 377 378 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev); 379 } 380 381 #ifdef AUDIO_DEBUG 382 void 383 sv_dumpregs(struct sv_softc *sc) 384 { 385 int idx; 386 387 { int idx; 388 for (idx = 0; idx < 0x50; idx += 4) { 389 printf ("%02x = %x\n", idx, pci_conf_read(sc->sc_pci_chipset_tag, 390 sc->sc_pci_tag, idx)); 391 } 392 } 393 394 for (idx = 0; idx < 6; idx++) { 395 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); 396 } 397 398 for (idx = 0; idx < 0x32; idx++) { 399 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); 400 } 401 402 for (idx = 0; idx < 0x10; idx++) { 403 printf ("DMA %02x = %02x\n", idx, 404 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); 405 } 406 407 return; 408 } 409 #endif 410 411 int 412 sv_intr(void *p) 413 { 414 struct sv_softc *sc = p; 415 u_int8_t intr; 416 417 mtx_enter(&audio_lock); 418 intr = sv_read(sc, SV_CODEC_STATUS); 419 420 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) { 421 mtx_leave(&audio_lock); 422 return (0); 423 } 424 425 if (intr & SV_INTSTATUS_DMAA) { 426 if (sc->sc_pintr) 427 sc->sc_pintr(sc->sc_parg); 428 } 429 430 if (intr & SV_INTSTATUS_DMAC) { 431 if (sc->sc_rintr) 432 sc->sc_rintr(sc->sc_rarg); 433 } 434 mtx_leave(&audio_lock); 435 return (1); 436 } 437 438 int 439 sv_allocmem(struct sv_softc *sc, size_t size, size_t align, struct sv_dma *p) 440 { 441 int error; 442 443 p->size = size; 444 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, 445 p->segs, ARRAY_SIZE(p->segs), 446 &p->nsegs, BUS_DMA_NOWAIT); 447 if (error) 448 return (error); 449 450 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 451 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 452 if (error) 453 goto free; 454 455 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 456 0, BUS_DMA_NOWAIT, &p->map); 457 if (error) 458 goto unmap; 459 460 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 461 BUS_DMA_NOWAIT); 462 if (error) 463 goto destroy; 464 return (0); 465 466 destroy: 467 bus_dmamap_destroy(sc->sc_dmatag, p->map); 468 unmap: 469 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 470 free: 471 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 472 return (error); 473 } 474 475 int 476 sv_freemem(struct sv_softc *sc, struct sv_dma *p) 477 { 478 bus_dmamap_unload(sc->sc_dmatag, p->map); 479 bus_dmamap_destroy(sc->sc_dmatag, p->map); 480 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 481 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 482 return (0); 483 } 484 485 int 486 sv_open(void *addr, int flags) 487 { 488 489 struct sv_softc *sc = addr; 490 int intr_mask = 0; 491 u_int8_t reg; 492 493 /* Map the DMA channels, if necessary */ 494 if (!(sc->sc_dma_configured & SV_DMAA_CONFIGURED)) { 495 /* XXX - there seems to be no general way to find an 496 I/O range */ 497 int dmaio; 498 int iosize = 0x10; 499 500 if (sc->sc_dma_configured & SV_DMAA_TRIED_CONFIGURE) 501 return (ENXIO); 502 503 for (dmaio = 0xa000; dmaio < 0xb000; dmaio += iosize) { 504 if (!bus_space_map(sc->sc_iot, dmaio, iosize, 0, 505 &sc->sc_dmaa_ioh)) { 506 goto found_dmaa; 507 } 508 } 509 510 sc->sc_dma_configured |= SV_DMAA_TRIED_CONFIGURE; 511 return (ENXIO); 512 found_dmaa: 513 514 pci_conf_write(sc->sc_pci_chipset_tag, sc->sc_pci_tag, 515 SV_DMAA_CONFIG_OFF, 516 dmaio | SV_DMA_CHANNEL_ENABLE 517 | SV_DMAA_EXTENDED_ADDR); 518 519 sc->sc_dma_configured |= SV_DMAA_CONFIGURED; 520 intr_mask = 1; 521 } 522 523 if (!(sc->sc_dma_configured & SV_DMAC_CONFIGURED)) { 524 /* XXX - there seems to be no general way to find an 525 I/O range */ 526 int dmaio; 527 int iosize = 0x10; 528 529 if (sc->sc_dma_configured & SV_DMAC_TRIED_CONFIGURE) 530 return (ENXIO); 531 532 for (dmaio = 0xa000; dmaio < 0xb000; dmaio += iosize) { 533 if (!bus_space_map(sc->sc_iot, dmaio, iosize, 0, 534 &sc->sc_dmac_ioh)) { 535 goto found_dmac; 536 } 537 } 538 539 sc->sc_dma_configured |= SV_DMAC_TRIED_CONFIGURE; 540 return (ENXIO); 541 found_dmac: 542 543 pci_conf_write(sc->sc_pci_chipset_tag, sc->sc_pci_tag, 544 SV_DMAC_CONFIG_OFF, 545 dmaio | SV_DMA_CHANNEL_ENABLE); 546 547 sc->sc_dma_configured |= SV_DMAC_CONFIGURED; 548 intr_mask = 1; 549 } 550 551 /* Make sure DMA interrupts are enabled */ 552 if (intr_mask) { 553 reg = sv_read(sc, SV_CODEC_INTMASK); 554 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 555 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 556 sv_write(sc, SV_CODEC_INTMASK, reg); 557 } 558 559 sc->sc_pintr = 0; 560 sc->sc_rintr = 0; 561 562 return (0); 563 } 564 565 /* 566 * Close function is called at splaudio(). 567 */ 568 void 569 sv_close(void *addr) 570 { 571 struct sv_softc *sc = addr; 572 573 sv_halt_in_dma(sc); 574 sv_halt_out_dma(sc); 575 576 sc->sc_pintr = 0; 577 sc->sc_rintr = 0; 578 } 579 580 int 581 sv_query_encoding(void *addr, struct audio_encoding *fp) 582 { 583 switch (fp->index) { 584 case 0: 585 strlcpy(fp->name, AudioEulinear, sizeof fp->name); 586 fp->encoding = AUDIO_ENCODING_ULINEAR; 587 fp->precision = 8; 588 fp->flags = 0; 589 break; 590 case 1: 591 strlcpy(fp->name, AudioEmulaw, sizeof fp->name); 592 fp->encoding = AUDIO_ENCODING_ULAW; 593 fp->precision = 8; 594 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 595 break; 596 case 2: 597 strlcpy(fp->name, AudioEalaw, sizeof fp->name); 598 fp->encoding = AUDIO_ENCODING_ALAW; 599 fp->precision = 8; 600 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 601 break; 602 case 3: 603 strlcpy(fp->name, AudioEslinear, sizeof fp->name); 604 fp->encoding = AUDIO_ENCODING_SLINEAR; 605 fp->precision = 8; 606 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 607 break; 608 case 4: 609 strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); 610 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 611 fp->precision = 16; 612 fp->flags = 0; 613 break; 614 case 5: 615 strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); 616 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 617 fp->precision = 16; 618 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 619 break; 620 case 6: 621 strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); 622 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 623 fp->precision = 16; 624 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 625 break; 626 case 7: 627 strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); 628 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 629 fp->precision = 16; 630 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 631 break; 632 default: 633 return (EINVAL); 634 } 635 fp->bps = AUDIO_BPS(fp->precision); 636 fp->msb = 1; 637 638 return (0); 639 } 640 641 int 642 sv_set_params(void *addr, int setmode, int usemode, 643 struct audio_params *p, struct audio_params *r) 644 { 645 struct sv_softc *sc = addr; 646 void (*pswcode)(void *, u_char *buf, int cnt); 647 void (*rswcode)(void *, u_char *buf, int cnt); 648 u_int32_t mode, val; 649 u_int8_t reg; 650 651 pswcode = rswcode = 0; 652 switch (p->encoding) { 653 case AUDIO_ENCODING_SLINEAR_BE: 654 if (p->precision == 16) 655 rswcode = pswcode = swap_bytes; 656 else 657 pswcode = rswcode = change_sign8; 658 break; 659 case AUDIO_ENCODING_SLINEAR_LE: 660 if (p->precision != 16) 661 pswcode = rswcode = change_sign8; 662 break; 663 case AUDIO_ENCODING_ULINEAR_BE: 664 if (p->precision == 16) { 665 pswcode = swap_bytes_change_sign16_le; 666 rswcode = change_sign16_swap_bytes_le; 667 } 668 break; 669 case AUDIO_ENCODING_ULINEAR_LE: 670 if (p->precision == 16) 671 pswcode = rswcode = change_sign16_le; 672 break; 673 case AUDIO_ENCODING_ULAW: 674 pswcode = mulaw_to_ulinear8; 675 rswcode = ulinear8_to_mulaw; 676 break; 677 case AUDIO_ENCODING_ALAW: 678 pswcode = alaw_to_ulinear8; 679 rswcode = ulinear8_to_alaw; 680 break; 681 default: 682 return (EINVAL); 683 } 684 685 if (p->precision == 16) 686 mode = SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16; 687 else 688 mode = 0; 689 if (p->channels > 2) 690 p->channels = 2; 691 if (p->channels == 2) 692 mode |= SV_DMAA_STEREO | SV_DMAC_STEREO; 693 if (p->sample_rate < 2000) 694 p->sample_rate = 2000; 695 if (p->sample_rate > 48000) 696 p->sample_rate = 48000; 697 698 p->sw_code = pswcode; 699 r->sw_code = rswcode; 700 p->bps = AUDIO_BPS(p->precision); 701 r->bps = AUDIO_BPS(r->precision); 702 p->msb = r->msb = 1; 703 704 /* Set the encoding */ 705 reg = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 706 reg &= ~(SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16 | SV_DMAA_STEREO | 707 SV_DMAC_STEREO); 708 reg |= (mode); 709 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, reg); 710 711 val = p->sample_rate * 65536 / 48000; 712 713 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, (val & 0xff)); 714 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, (val >> 8)); 715 716 #define F_REF 24576000 717 718 if (setmode & AUMODE_RECORD) 719 { 720 /* The ADC reference frequency (f_out) is 512 * the sample rate */ 721 722 /* f_out is dervied from the 24.576MHZ crystal by three values: 723 M & N & R. The equation is as follows: 724 725 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) 726 727 with the constraint that: 728 729 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150MHz 730 and n, m >= 1 731 */ 732 733 int goal_f_out = 512 * r->sample_rate; 734 int a, n, m, best_n, best_m, best_error = 10000000; 735 int pll_sample; 736 737 for (a = 0; a < 8; a++) { 738 if ((goal_f_out * (1 << a)) >= 80000000) 739 break; 740 } 741 742 /* a != 8 because sample_rate >= 2000 */ 743 744 for (n = 33; n > 2; n--) { 745 int error; 746 747 m = (goal_f_out * n * (1 << a)) / F_REF; 748 749 if ((m > 257) || (m < 3)) continue; 750 751 pll_sample = (m * F_REF) / (n * (1 << a)); 752 pll_sample /= 512; 753 754 /* Threshold might be good here */ 755 error = pll_sample - r->sample_rate; 756 error = abs(error); 757 758 if (error < best_error) { 759 best_error = error; 760 best_n = n; 761 best_m = m; 762 if (error == 0) break; 763 } 764 } 765 766 767 best_n -= 2; 768 best_m -= 2; 769 770 sv_write_indirect(sc, SV_ADC_PLL_M, best_m); 771 sv_write_indirect(sc, SV_ADC_PLL_N, best_n | (a << SV_PLL_R_SHIFT)); 772 } 773 return (0); 774 } 775 776 int 777 sv_round_blocksize(void *addr, int blk) 778 { 779 return ((blk + 31) & -32); /* keep good alignment */ 780 } 781 782 int 783 sv_dma_init_input(void *addr, void *buf, int cc) 784 { 785 struct sv_softc *sc = addr; 786 struct sv_dma *p; 787 int dma_count; 788 789 DPRINTF(("sv_dma_init_input: dma start loop input addr=%p cc=%d\n", 790 buf, cc)); 791 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next) 792 ; 793 if (!p) { 794 printf("sv_dma_init_input: bad addr %p\n", buf); 795 return (EINVAL); 796 } 797 798 dma_count = (cc >> 1) - 1; 799 800 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, 801 DMAADDR(p)); 802 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, 803 dma_count); 804 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, 805 DMA37MD_WRITE | DMA37MD_LOOP); 806 807 return (0); 808 } 809 810 int 811 sv_dma_init_output(void *addr, void *buf, int cc) 812 { 813 struct sv_softc *sc = addr; 814 struct sv_dma *p; 815 int dma_count; 816 817 DPRINTF(("sv: dma start loop output buf=%p cc=%d\n", buf, cc)); 818 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next) 819 ; 820 if (!p) { 821 printf("sv_dma_init_output: bad addr %p\n", buf); 822 return (EINVAL); 823 } 824 825 dma_count = cc - 1; 826 827 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, 828 DMAADDR(p)); 829 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, 830 dma_count); 831 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, 832 DMA37MD_READ | DMA37MD_LOOP); 833 834 return (0); 835 } 836 837 int 838 sv_dma_output(void *addr, void *p, int cc, void (*intr)(void *), void *arg) 839 { 840 struct sv_softc *sc = addr; 841 u_int8_t mode; 842 843 DPRINTFN(1, 844 ("sv_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n", 845 addr, p, cc, intr, arg)); 846 sc->sc_pintr = intr; 847 sc->sc_parg = arg; 848 if (!(sc->sc_enable & SV_PLAY_ENABLE)) { 849 int dma_count = cc - 1; 850 851 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); 852 sv_write_indirect(sc, SV_DMAA_COUNT0, (dma_count & 0xFF)); 853 854 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 855 mode |= SV_PLAY_ENABLE; 856 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 857 sc->sc_enable |= SV_PLAY_ENABLE; 858 } 859 return (0); 860 } 861 862 int 863 sv_dma_input(void *addr, void *p, int cc, void (*intr)(void *), void *arg) 864 { 865 struct sv_softc *sc = addr; 866 u_int8_t mode; 867 868 DPRINTFN(1, ("sv_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n", 869 addr, p, cc, intr, arg)); 870 sc->sc_rintr = intr; 871 sc->sc_rarg = arg; 872 if (!(sc->sc_enable & SV_RECORD_ENABLE)) { 873 int dma_count = (cc >> 1) - 1; 874 875 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); 876 sv_write_indirect(sc, SV_DMAC_COUNT0, (dma_count & 0xFF)); 877 878 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 879 mode |= SV_RECORD_ENABLE; 880 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 881 sc->sc_enable |= SV_RECORD_ENABLE; 882 } 883 return (0); 884 } 885 886 int 887 sv_halt_out_dma(void *addr) 888 { 889 struct sv_softc *sc = addr; 890 u_int8_t mode; 891 892 DPRINTF(("sv: sv_halt_out_dma\n")); 893 mtx_enter(&audio_lock); 894 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 895 mode &= ~SV_PLAY_ENABLE; 896 sc->sc_enable &= ~SV_PLAY_ENABLE; 897 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 898 mtx_leave(&audio_lock); 899 return (0); 900 } 901 902 int 903 sv_halt_in_dma(void *addr) 904 { 905 struct sv_softc *sc = addr; 906 u_int8_t mode; 907 908 DPRINTF(("sv: sv_halt_in_dma\n")); 909 mtx_enter(&audio_lock); 910 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 911 mode &= ~SV_RECORD_ENABLE; 912 sc->sc_enable &= ~SV_RECORD_ENABLE; 913 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); 914 mtx_leave(&audio_lock); 915 return (0); 916 } 917 918 int 919 sv_getdev(void *addr, struct audio_device *retp) 920 { 921 *retp = sv_device; 922 return (0); 923 } 924 925 926 /* 927 * Mixer related code is here 928 * 929 */ 930 931 #define SV_INPUT_CLASS 0 932 #define SV_OUTPUT_CLASS 1 933 #define SV_RECORD_CLASS 2 934 935 #define SV_LAST_CLASS 2 936 937 static const char *mixer_classes[] = { AudioCinputs, AudioCoutputs, AudioCrecord }; 938 939 static const struct { 940 u_int8_t l_port; 941 u_int8_t r_port; 942 u_int8_t mask; 943 u_int8_t class; 944 const char *audio; 945 } ports[] = { 946 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, 947 SV_INPUT_CLASS, "aux1" }, 948 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 949 SV_INPUT_CLASS, AudioNcd }, 950 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, 951 SV_INPUT_CLASS, AudioNline }, 952 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, 953 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 954 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, 955 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, 956 SV_INPUT_CLASS, "aux2" }, 957 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, 958 SV_INPUT_CLASS, AudioNdac }, 959 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 960 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } 961 }; 962 963 964 static const struct { 965 int idx; 966 const char *name; 967 } record_sources[] = { 968 { SV_REC_CD, AudioNcd }, 969 { SV_REC_DAC, AudioNdac }, 970 { SV_REC_AUX2, "aux2" }, 971 { SV_REC_LINE, AudioNline }, 972 { SV_REC_AUX1, "aux1" }, 973 { SV_REC_MIC, AudioNmicrophone }, 974 { SV_REC_MIXER, AudioNmixerout } 975 }; 976 977 978 #define SV_DEVICES_PER_PORT 2 979 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) 980 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) 981 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) 982 #define SV_MIC_BOOST (SV_LAST_MIXER + 2) 983 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) 984 #define SV_SRS_MODE (SV_LAST_MIXER + 4) 985 986 int 987 sv_query_devinfo(void *addr, mixer_devinfo_t *dip) 988 { 989 990 if (dip->index < 0) 991 return (ENXIO); 992 993 /* It's a class */ 994 if (dip->index <= SV_LAST_CLASS) { 995 dip->type = AUDIO_MIXER_CLASS; 996 dip->mixer_class = dip->index; 997 dip->next = dip->prev = AUDIO_MIXER_LAST; 998 strlcpy(dip->label.name, mixer_classes[dip->index], 999 sizeof dip->label.name); 1000 return (0); 1001 } 1002 1003 if (dip->index >= SV_FIRST_MIXER && 1004 dip->index <= SV_LAST_MIXER) { 1005 int off = dip->index - SV_FIRST_MIXER; 1006 int mute = (off % SV_DEVICES_PER_PORT); 1007 int idx = off / SV_DEVICES_PER_PORT; 1008 1009 dip->mixer_class = ports[idx].class; 1010 strlcpy(dip->label.name, ports[idx].audio, sizeof dip->label.name); 1011 1012 if (!mute) { 1013 dip->type = AUDIO_MIXER_VALUE; 1014 dip->prev = AUDIO_MIXER_LAST; 1015 dip->next = dip->index + 1; 1016 1017 if (ports[idx].r_port != 0) 1018 dip->un.v.num_channels = 2; 1019 else 1020 dip->un.v.num_channels = 1; 1021 1022 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1023 1024 } else { 1025 dip->type = AUDIO_MIXER_ENUM; 1026 dip->prev = dip->index - 1; 1027 dip->next = AUDIO_MIXER_LAST; 1028 1029 strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); 1030 dip->un.e.num_mem = 2; 1031 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 1032 sizeof dip->un.e.member[0].label.name); 1033 dip->un.e.member[0].ord = 0; 1034 strlcpy(dip->un.e.member[1].label.name, AudioNon, 1035 sizeof dip->un.e.member[1].label.name); 1036 dip->un.e.member[1].ord = 1; 1037 1038 } 1039 1040 return (0); 1041 } 1042 1043 switch (dip->index) { 1044 case SV_RECORD_SOURCE: 1045 dip->mixer_class = SV_RECORD_CLASS; 1046 dip->prev = AUDIO_MIXER_LAST; 1047 dip->next = SV_RECORD_GAIN; 1048 strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); 1049 dip->type = AUDIO_MIXER_ENUM; 1050 1051 dip->un.e.num_mem = ARRAY_SIZE(record_sources); 1052 1053 { 1054 int idx; 1055 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1056 strlcpy(dip->un.e.member[idx].label.name, record_sources[idx].name, 1057 sizeof dip->un.e.member[idx].label.name); 1058 dip->un.e.member[idx].ord = record_sources[idx].idx; 1059 } 1060 } 1061 return (0); 1062 1063 case SV_RECORD_GAIN: 1064 dip->mixer_class = SV_RECORD_CLASS; 1065 dip->prev = SV_RECORD_SOURCE; 1066 dip->next = AUDIO_MIXER_LAST; 1067 strlcpy(dip->label.name, "gain", sizeof dip->label.name); 1068 dip->type = AUDIO_MIXER_VALUE; 1069 dip->un.v.num_channels = 1; 1070 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1071 return (0); 1072 1073 case SV_MIC_BOOST: 1074 dip->mixer_class = SV_RECORD_CLASS; 1075 dip->prev = AUDIO_MIXER_LAST; 1076 dip->next = AUDIO_MIXER_LAST; 1077 strlcpy(dip->label.name, "micboost", sizeof dip->label.name); 1078 goto on_off; 1079 1080 case SV_SRS_MODE: 1081 dip->mixer_class = SV_OUTPUT_CLASS; 1082 dip->prev = dip->next = AUDIO_MIXER_LAST; 1083 strlcpy(dip->label.name, AudioNspatial, sizeof dip->label.name); 1084 1085 on_off: 1086 dip->type = AUDIO_MIXER_ENUM; 1087 dip->un.e.num_mem = 2; 1088 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 1089 sizeof dip->un.e.member[0].label.name); 1090 dip->un.e.member[0].ord = 0; 1091 strlcpy(dip->un.e.member[1].label.name, AudioNon, 1092 sizeof dip->un.e.member[1].label.name); 1093 dip->un.e.member[1].ord = 1; 1094 return (0); 1095 } 1096 1097 return (ENXIO); 1098 } 1099 1100 int 1101 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp) 1102 { 1103 struct sv_softc *sc = addr; 1104 u_int8_t reg; 1105 int idx; 1106 1107 if (cp->dev >= SV_FIRST_MIXER && 1108 cp->dev <= SV_LAST_MIXER) { 1109 int off = cp->dev - SV_FIRST_MIXER; 1110 int mute = (off % SV_DEVICES_PER_PORT); 1111 idx = off / SV_DEVICES_PER_PORT; 1112 1113 if (mute) { 1114 if (cp->type != AUDIO_MIXER_ENUM) 1115 return (EINVAL); 1116 1117 reg = sv_read_indirect(sc, ports[idx].l_port); 1118 if (cp->un.ord) 1119 reg |= SV_MUTE_BIT; 1120 else 1121 reg &= ~SV_MUTE_BIT; 1122 sv_write_indirect(sc, ports[idx].l_port, reg); 1123 1124 if (ports[idx].r_port) { 1125 reg = sv_read_indirect(sc, ports[idx].r_port); 1126 if (cp->un.ord) 1127 reg |= SV_MUTE_BIT; 1128 else 1129 reg &= ~SV_MUTE_BIT; 1130 sv_write_indirect(sc, ports[idx].r_port, reg); 1131 } 1132 } else { 1133 int lval, rval; 1134 1135 if (cp->type != AUDIO_MIXER_VALUE) 1136 return (EINVAL); 1137 1138 if (cp->un.value.num_channels != 1 && 1139 cp->un.value.num_channels != 2) 1140 return (EINVAL); 1141 1142 if (ports[idx].r_port == 0) { 1143 if (cp->un.value.num_channels != 1) 1144 return (EINVAL); 1145 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 1146 } else { 1147 if (cp->un.value.num_channels != 2) 1148 return (EINVAL); 1149 1150 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1151 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1152 } 1153 1154 sc->sc_trd = 1; 1155 1156 reg = sv_read_indirect(sc, ports[idx].l_port); 1157 reg &= ~(ports[idx].mask); 1158 lval = ((AUDIO_MAX_GAIN - lval) * ports[idx].mask) / AUDIO_MAX_GAIN; 1159 reg |= lval; 1160 sv_write_indirect(sc, ports[idx].l_port, reg); 1161 1162 if (ports[idx].r_port != 0) { 1163 reg = sv_read_indirect(sc, ports[idx].r_port); 1164 reg &= ~(ports[idx].mask); 1165 1166 rval = ((AUDIO_MAX_GAIN - rval) * ports[idx].mask) / AUDIO_MAX_GAIN; 1167 reg |= rval; 1168 1169 sv_write_indirect(sc, ports[idx].r_port, reg); 1170 } 1171 1172 sc->sc_trd = 0; 1173 sv_read_indirect(sc, ports[idx].l_port); 1174 } 1175 1176 return (0); 1177 } 1178 1179 1180 switch (cp->dev) { 1181 case SV_RECORD_SOURCE: 1182 if (cp->type != AUDIO_MIXER_ENUM) 1183 return (EINVAL); 1184 1185 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1186 if (record_sources[idx].idx == cp->un.ord) 1187 goto found; 1188 } 1189 1190 return (EINVAL); 1191 1192 found: 1193 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1194 reg &= ~SV_REC_SOURCE_MASK; 1195 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1196 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1197 1198 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1199 reg &= ~SV_REC_SOURCE_MASK; 1200 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1201 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1202 return (0); 1203 1204 case SV_RECORD_GAIN: 1205 { 1206 int val; 1207 1208 if (cp->type != AUDIO_MIXER_VALUE) 1209 return (EINVAL); 1210 1211 if (cp->un.value.num_channels != 1) 1212 return (EINVAL); 1213 1214 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK) 1215 / AUDIO_MAX_GAIN; 1216 1217 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1218 reg &= ~SV_REC_GAIN_MASK; 1219 reg |= val; 1220 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1221 1222 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1223 reg &= ~SV_REC_GAIN_MASK; 1224 reg |= val; 1225 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1226 1227 } 1228 1229 return (0); 1230 1231 case SV_MIC_BOOST: 1232 if (cp->type != AUDIO_MIXER_ENUM) 1233 return (EINVAL); 1234 1235 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1236 if (cp->un.ord) { 1237 reg |= SV_MIC_BOOST_BIT; 1238 } else { 1239 reg &= ~SV_MIC_BOOST_BIT; 1240 } 1241 1242 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1243 return (0); 1244 1245 case SV_SRS_MODE: 1246 if (cp->type != AUDIO_MIXER_ENUM) 1247 return (EINVAL); 1248 1249 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1250 if (cp->un.ord) { 1251 reg &= ~SV_SRS_SPACE_ONOFF; 1252 } else { 1253 reg |= SV_SRS_SPACE_ONOFF; 1254 } 1255 1256 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); 1257 return (0); 1258 } 1259 1260 return (EINVAL); 1261 } 1262 1263 int 1264 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp) 1265 { 1266 struct sv_softc *sc = addr; 1267 int val; 1268 u_int8_t reg; 1269 1270 if (cp->dev >= SV_FIRST_MIXER && 1271 cp->dev <= SV_LAST_MIXER) { 1272 int off = cp->dev - SV_FIRST_MIXER; 1273 int mute = (off % 2); 1274 int idx = off / 2; 1275 1276 if (mute) { 1277 if (cp->type != AUDIO_MIXER_ENUM) 1278 return (EINVAL); 1279 1280 reg = sv_read_indirect(sc, ports[idx].l_port); 1281 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); 1282 } else { 1283 if (cp->type != AUDIO_MIXER_VALUE) 1284 return (EINVAL); 1285 1286 if (cp->un.value.num_channels != 1 && 1287 cp->un.value.num_channels != 2) 1288 return (EINVAL); 1289 1290 if ((ports[idx].r_port == 0 && 1291 cp->un.value.num_channels != 1) || 1292 (ports[idx].r_port != 0 && 1293 cp->un.value.num_channels != 2)) 1294 return (EINVAL); 1295 1296 reg = sv_read_indirect(sc, ports[idx].l_port); 1297 reg &= ports[idx].mask; 1298 1299 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1300 1301 if (ports[idx].r_port != 0) { 1302 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val; 1303 1304 reg = sv_read_indirect(sc, ports[idx].r_port); 1305 reg &= ports[idx].mask; 1306 1307 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1308 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val; 1309 } else 1310 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val; 1311 } 1312 1313 return (0); 1314 } 1315 1316 switch (cp->dev) { 1317 case SV_RECORD_SOURCE: 1318 if (cp->type != AUDIO_MIXER_ENUM) 1319 return (EINVAL); 1320 1321 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1322 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); 1323 1324 return (0); 1325 1326 case SV_RECORD_GAIN: 1327 if (cp->type != AUDIO_MIXER_VALUE) 1328 return (EINVAL); 1329 1330 if (cp->un.value.num_channels != 1) 1331 return (EINVAL); 1332 1333 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; 1334 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1335 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; 1336 1337 return (0); 1338 1339 case SV_MIC_BOOST: 1340 if (cp->type != AUDIO_MIXER_ENUM) 1341 return (EINVAL); 1342 1343 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1344 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); 1345 1346 return (0); 1347 1348 1349 case SV_SRS_MODE: 1350 if (cp->type != AUDIO_MIXER_ENUM) 1351 return (EINVAL); 1352 1353 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1354 1355 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); 1356 return (0); 1357 } 1358 1359 return (EINVAL); 1360 } 1361 1362 1363 static void 1364 sv_init_mixer(struct sv_softc *sc) 1365 { 1366 mixer_ctrl_t cp; 1367 int idx; 1368 1369 cp.type = AUDIO_MIXER_ENUM; 1370 cp.dev = SV_SRS_MODE; 1371 cp.un.ord = 0; 1372 1373 sv_mixer_set_port(sc, &cp); 1374 1375 for (idx = 0; idx < ARRAY_SIZE(ports); idx++) { 1376 if (strcmp(ports[idx].audio, AudioNdac) == 0) { 1377 cp.type = AUDIO_MIXER_ENUM; 1378 cp.dev = SV_FIRST_MIXER + idx * SV_DEVICES_PER_PORT + 1; 1379 cp.un.ord = 0; 1380 sv_mixer_set_port(sc, &cp); 1381 break; 1382 } 1383 } 1384 } 1385 1386 void * 1387 sv_malloc(void *addr, int direction, size_t size, int pool, int flags) 1388 { 1389 struct sv_softc *sc = addr; 1390 struct sv_dma *p; 1391 int error; 1392 1393 p = malloc(sizeof(*p), pool, flags); 1394 if (!p) 1395 return (0); 1396 error = sv_allocmem(sc, size, 16, p); 1397 if (error) { 1398 free(p, pool, 0); 1399 return (0); 1400 } 1401 p->next = sc->sc_dmas; 1402 sc->sc_dmas = p; 1403 return (KERNADDR(p)); 1404 } 1405 1406 void 1407 sv_free(void *addr, void *ptr, int pool) 1408 { 1409 struct sv_softc *sc = addr; 1410 struct sv_dma **p; 1411 1412 for (p = &sc->sc_dmas; *p; p = &(*p)->next) { 1413 if (KERNADDR(*p) == ptr) { 1414 sv_freemem(sc, *p); 1415 *p = (*p)->next; 1416 free(*p, pool, 0); 1417 return; 1418 } 1419 } 1420 } 1421 1422 paddr_t 1423 sv_mappage(void *addr, void *mem, off_t off, int prot) 1424 { 1425 struct sv_softc *sc = addr; 1426 struct sv_dma *p; 1427 1428 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) 1429 ; 1430 if (!p) 1431 return (-1); 1432 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 1433 off, prot, BUS_DMA_WAITOK)); 1434 } 1435 1436 int 1437 sv_get_props(void *addr) 1438 { 1439 return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX); 1440 } 1441