1 /* $OpenBSD: igc_mac.c,v 1.1 2021/10/31 14:52:57 patrick Exp $ */ 2 /*- 3 * Copyright 2021 Intel Corp 4 * Copyright 2021 Rubicon Communications, LLC (Netgate) 5 * SPDX-License-Identifier: BSD-3-Clause 6 */ 7 8 #include <dev/pci/igc_api.h> 9 10 /** 11 * igc_init_mac_ops_generic - Initialize MAC function pointers 12 * @hw: pointer to the HW structure 13 * 14 * Setups up the function pointers to no-op functions 15 **/ 16 void 17 igc_init_mac_ops_generic(struct igc_hw *hw) 18 { 19 struct igc_mac_info *mac = &hw->mac; 20 DEBUGFUNC("igc_init_mac_ops_generic"); 21 22 /* General Setup */ 23 mac->ops.init_params = igc_null_ops_generic; 24 mac->ops.config_collision_dist = igc_config_collision_dist_generic; 25 mac->ops.rar_set = igc_rar_set_generic; 26 } 27 28 /** 29 * igc_null_ops_generic - No-op function, returns 0 30 * @hw: pointer to the HW structure 31 **/ 32 int 33 igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG *hw) 34 { 35 DEBUGFUNC("igc_null_ops_generic"); 36 return IGC_SUCCESS; 37 } 38 39 /** 40 * igc_write_vfta_generic - Write value to VLAN filter table 41 * @hw: pointer to the HW structure 42 * @offset: register offset in VLAN filter table 43 * @value: register value written to VLAN filter table 44 * 45 * Writes value at the given offset in the register array which stores 46 * the VLAN filter table. 47 **/ 48 void 49 igc_write_vfta_generic(struct igc_hw *hw, uint32_t offset, uint32_t value) 50 { 51 DEBUGFUNC("igc_write_vfta_generic"); 52 53 IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value); 54 IGC_WRITE_FLUSH(hw); 55 } 56 57 /** 58 * igc_init_rx_addrs_generic - Initialize receive address's 59 * @hw: pointer to the HW structure 60 * @rar_count: receive address registers 61 * 62 * Setup the receive address registers by setting the base receive address 63 * register to the devices MAC address and clearing all the other receive 64 * address registers to 0. 65 **/ 66 void 67 igc_init_rx_addrs_generic(struct igc_hw *hw, uint16_t rar_count) 68 { 69 uint32_t i; 70 uint8_t mac_addr[ETHER_ADDR_LEN] = {0}; 71 72 DEBUGFUNC("igc_init_rx_addrs_generic"); 73 74 /* Setup the receive address */ 75 DEBUGOUT("Programming MAC Address into RAR[0]\n"); 76 77 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 78 79 /* Zero out the other (rar_entry_count - 1) receive addresses */ 80 DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); 81 for (i = 1; i < rar_count; i++) 82 hw->mac.ops.rar_set(hw, mac_addr, i); 83 } 84 85 /** 86 * igc_check_alt_mac_addr_generic - Check for alternate MAC addr 87 * @hw: pointer to the HW structure 88 * 89 * Checks the nvm for an alternate MAC address. An alternate MAC address 90 * can be setup by pre-boot software and must be treated like a permanent 91 * address and must override the actual permanent MAC address. If an 92 * alternate MAC address is found it is programmed into RAR0, replacing 93 * the permanent address that was installed into RAR0 by the Si on reset. 94 * This function will return SUCCESS unless it encounters an error while 95 * reading the EEPROM. 96 **/ 97 int 98 igc_check_alt_mac_addr_generic(struct igc_hw *hw) 99 { 100 uint32_t i; 101 int ret_val; 102 uint16_t offset, nvm_alt_mac_addr_offset, nvm_data; 103 uint8_t alt_mac_addr[ETHER_ADDR_LEN]; 104 105 DEBUGFUNC("igc_check_alt_mac_addr_generic"); 106 107 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data); 108 if (ret_val) 109 return ret_val; 110 111 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, 112 &nvm_alt_mac_addr_offset); 113 if (ret_val) { 114 DEBUGOUT("NVM Read Error\n"); 115 return ret_val; 116 } 117 118 if ((nvm_alt_mac_addr_offset == 0xFFFF) || 119 (nvm_alt_mac_addr_offset == 0x0000)) 120 /* There is no Alternate MAC Address */ 121 return IGC_SUCCESS; 122 123 if (hw->bus.func == IGC_FUNC_1) 124 nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1; 125 for (i = 0; i < ETHER_ADDR_LEN; i += 2) { 126 offset = nvm_alt_mac_addr_offset + (i >> 1); 127 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); 128 if (ret_val) { 129 DEBUGOUT("NVM Read Error\n"); 130 return ret_val; 131 } 132 133 alt_mac_addr[i] = (uint8_t)(nvm_data & 0xFF); 134 alt_mac_addr[i + 1] = (uint8_t)(nvm_data >> 8); 135 } 136 137 /* if multicast bit is set, the alternate address will not be used */ 138 if (alt_mac_addr[0] & 0x01) { 139 DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); 140 return IGC_SUCCESS; 141 } 142 143 /* We have a valid alternate MAC address, and we want to treat it the 144 * same as the normal permanent MAC address stored by the HW into the 145 * RAR. Do this by mapping this address into RAR0. 146 */ 147 hw->mac.ops.rar_set(hw, alt_mac_addr, 0); 148 149 return IGC_SUCCESS; 150 } 151 152 /** 153 * igc_rar_set_generic - Set receive address register 154 * @hw: pointer to the HW structure 155 * @addr: pointer to the receive address 156 * @index: receive address array register 157 * 158 * Sets the receive address array register at index to the address passed 159 * in by addr. 160 **/ 161 int 162 igc_rar_set_generic(struct igc_hw *hw, uint8_t *addr, uint32_t index) 163 { 164 uint32_t rar_low, rar_high; 165 166 DEBUGFUNC("igc_rar_set_generic"); 167 168 /* HW expects these in little endian so we reverse the byte order 169 * from network order (big endian) to little endian 170 */ 171 rar_low = ((uint32_t) addr[0] | ((uint32_t) addr[1] << 8) | 172 ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); 173 174 rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); 175 176 /* If MAC address zero, no need to set the AV bit */ 177 if (rar_low || rar_high) 178 rar_high |= IGC_RAH_AV; 179 180 /* Some bridges will combine consecutive 32-bit writes into 181 * a single burst write, which will malfunction on some parts. 182 * The flushes avoid this. 183 */ 184 IGC_WRITE_REG(hw, IGC_RAL(index), rar_low); 185 IGC_WRITE_FLUSH(hw); 186 IGC_WRITE_REG(hw, IGC_RAH(index), rar_high); 187 IGC_WRITE_FLUSH(hw); 188 189 return IGC_SUCCESS; 190 } 191 192 /** 193 * igc_hash_mc_addr_generic - Generate a multicast hash value 194 * @hw: pointer to the HW structure 195 * @mc_addr: pointer to a multicast address 196 * 197 * Generates a multicast address hash value which is used to determine 198 * the multicast filter table array address and new table value. 199 **/ 200 int 201 igc_hash_mc_addr_generic(struct igc_hw *hw, uint8_t *mc_addr) 202 { 203 uint32_t hash_value, hash_mask; 204 uint8_t bit_shift = 0; 205 206 DEBUGFUNC("igc_hash_mc_addr_generic"); 207 208 /* Register count multiplied by bits per register */ 209 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 210 211 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts 212 * where 0xFF would still fall within the hash mask. 213 */ 214 while (hash_mask >> bit_shift != 0xFF) 215 bit_shift++; 216 217 /* The portion of the address that is used for the hash table 218 * is determined by the mc_filter_type setting. 219 * The algorithm is such that there is a total of 8 bits of shifting. 220 * The bit_shift for a mc_filter_type of 0 represents the number of 221 * left-shifts where the MSB of mc_addr[5] would still fall within 222 * the hash_mask. Case 0 does this exactly. Since there are a total 223 * of 8 bits of shifting, then mc_addr[4] will shift right the 224 * remaining number of bits. Thus 8 - bit_shift. The rest of the 225 * cases are a variation of this algorithm...essentially raising the 226 * number of bits to shift mc_addr[5] left, while still keeping the 227 * 8-bit shifting total. 228 * 229 * For example, given the following Destination MAC Address and an 230 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), 231 * we can see that the bit_shift for case 0 is 4. These are the hash 232 * values resulting from each mc_filter_type... 233 * [0] [1] [2] [3] [4] [5] 234 * 01 AA 00 12 34 56 235 * LSB MSB 236 * 237 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 238 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 239 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 240 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 241 */ 242 switch (hw->mac.mc_filter_type) { 243 default: 244 case 0: 245 break; 246 case 1: 247 bit_shift += 1; 248 break; 249 case 2: 250 bit_shift += 2; 251 break; 252 case 3: 253 bit_shift += 4; 254 break; 255 } 256 257 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 258 (((uint16_t) mc_addr[5]) << bit_shift))); 259 260 return hash_value; 261 } 262 263 /** 264 * igc_update_mc_addr_list_generic - Update Multicast addresses 265 * @hw: pointer to the HW structure 266 * @mc_addr_list: array of multicast addresses to program 267 * @mc_addr_count: number of multicast addresses to program 268 * 269 * Updates entire Multicast Table Array. 270 * The caller must have a packed mc_addr_list of multicast addresses. 271 **/ 272 void 273 igc_update_mc_addr_list_generic(struct igc_hw *hw, uint8_t *mc_addr_list, 274 uint32_t mc_addr_count) 275 { 276 uint32_t hash_value, hash_bit, hash_reg; 277 int i; 278 279 DEBUGFUNC("igc_update_mc_addr_list_generic"); 280 281 /* clear mta_shadow */ 282 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 283 284 /* update mta_shadow from mc_addr_list */ 285 for (i = 0; (uint32_t)i < mc_addr_count; i++) { 286 hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list); 287 288 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 289 hash_bit = hash_value & 0x1F; 290 291 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); 292 mc_addr_list += (ETHER_ADDR_LEN); 293 } 294 295 /* replace the entire MTA table */ 296 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) 297 IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]); 298 IGC_WRITE_FLUSH(hw); 299 } 300 301 /** 302 * igc_clear_hw_cntrs_base_generic - Clear base hardware counters 303 * @hw: pointer to the HW structure 304 * 305 * Clears the base hardware counters by reading the counter registers. 306 **/ 307 void 308 igc_clear_hw_cntrs_base_generic(struct igc_hw *hw) 309 { 310 DEBUGFUNC("igc_clear_hw_cntrs_base_generic"); 311 312 IGC_READ_REG(hw, IGC_CRCERRS); 313 IGC_READ_REG(hw, IGC_MPC); 314 IGC_READ_REG(hw, IGC_SCC); 315 IGC_READ_REG(hw, IGC_ECOL); 316 IGC_READ_REG(hw, IGC_MCC); 317 IGC_READ_REG(hw, IGC_LATECOL); 318 IGC_READ_REG(hw, IGC_COLC); 319 IGC_READ_REG(hw, IGC_RERC); 320 IGC_READ_REG(hw, IGC_DC); 321 IGC_READ_REG(hw, IGC_RLEC); 322 IGC_READ_REG(hw, IGC_XONRXC); 323 IGC_READ_REG(hw, IGC_XONTXC); 324 IGC_READ_REG(hw, IGC_XOFFRXC); 325 IGC_READ_REG(hw, IGC_XOFFTXC); 326 IGC_READ_REG(hw, IGC_FCRUC); 327 IGC_READ_REG(hw, IGC_GPRC); 328 IGC_READ_REG(hw, IGC_BPRC); 329 IGC_READ_REG(hw, IGC_MPRC); 330 IGC_READ_REG(hw, IGC_GPTC); 331 IGC_READ_REG(hw, IGC_GORCL); 332 IGC_READ_REG(hw, IGC_GORCH); 333 IGC_READ_REG(hw, IGC_GOTCL); 334 IGC_READ_REG(hw, IGC_GOTCH); 335 IGC_READ_REG(hw, IGC_RNBC); 336 IGC_READ_REG(hw, IGC_RUC); 337 IGC_READ_REG(hw, IGC_RFC); 338 IGC_READ_REG(hw, IGC_ROC); 339 IGC_READ_REG(hw, IGC_RJC); 340 IGC_READ_REG(hw, IGC_TORL); 341 IGC_READ_REG(hw, IGC_TORH); 342 IGC_READ_REG(hw, IGC_TOTL); 343 IGC_READ_REG(hw, IGC_TOTH); 344 IGC_READ_REG(hw, IGC_TPR); 345 IGC_READ_REG(hw, IGC_TPT); 346 IGC_READ_REG(hw, IGC_MPTC); 347 IGC_READ_REG(hw, IGC_BPTC); 348 IGC_READ_REG(hw, IGC_TLPIC); 349 IGC_READ_REG(hw, IGC_RLPIC); 350 IGC_READ_REG(hw, IGC_RXDMTC); 351 } 352 353 /** 354 * igc_setup_link_generic - Setup flow control and link settings 355 * @hw: pointer to the HW structure 356 * 357 * Determines which flow control settings to use, then configures flow 358 * control. Calls the appropriate media-specific link configuration 359 * function. Assuming the adapter has a valid link partner, a valid link 360 * should be established. Assumes the hardware has previously been reset 361 * and the transmitter and receiver are not enabled. 362 **/ 363 int 364 igc_setup_link_generic(struct igc_hw *hw) 365 { 366 int ret_val; 367 368 DEBUGFUNC("igc_setup_link_generic"); 369 370 /* In the case of the phy reset being blocked, we already have a link. 371 * We do not need to set it up again. 372 */ 373 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) 374 return IGC_SUCCESS; 375 376 /* If requested flow control is set to default, set flow control 377 * for both 'rx' and 'tx' pause frames. 378 */ 379 if (hw->fc.requested_mode == igc_fc_default) { 380 hw->fc.requested_mode = igc_fc_full; 381 } 382 383 /* Save off the requested flow control mode for use later. Depending 384 * on the link partner's capabilities, we may or may not use this mode. 385 */ 386 hw->fc.current_mode = hw->fc.requested_mode; 387 388 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", 389 hw->fc.current_mode); 390 391 /* Call the necessary media_type subroutine to configure the link. */ 392 ret_val = hw->mac.ops.setup_physical_interface(hw); 393 if (ret_val) 394 return ret_val; 395 396 /* Initialize the flow control address, type, and PAUSE timer 397 * registers to their default values. This is done even if flow 398 * control is disabled, because it does not hurt anything to 399 * initialize these registers. 400 */ 401 IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE); 402 IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH); 403 IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW); 404 405 IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time); 406 407 return igc_set_fc_watermarks_generic(hw); 408 } 409 410 /** 411 * igc_config_collision_dist_generic - Configure collision distance 412 * @hw: pointer to the HW structure 413 * 414 * Configures the collision distance to the default value and is used 415 * during link setup. 416 **/ 417 void 418 igc_config_collision_dist_generic(struct igc_hw *hw) 419 { 420 uint32_t tctl; 421 422 DEBUGFUNC("igc_config_collision_dist_generic"); 423 424 tctl = IGC_READ_REG(hw, IGC_TCTL); 425 426 tctl &= ~IGC_TCTL_COLD; 427 tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT; 428 429 IGC_WRITE_REG(hw, IGC_TCTL, tctl); 430 IGC_WRITE_FLUSH(hw); 431 } 432 433 /** 434 * igc_set_fc_watermarks_generic - Set flow control high/low watermarks 435 * @hw: pointer to the HW structure 436 * 437 * Sets the flow control high/low threshold (watermark) registers. If 438 * flow control XON frame transmission is enabled, then set XON frame 439 * transmission as well. 440 **/ 441 int 442 igc_set_fc_watermarks_generic(struct igc_hw *hw) 443 { 444 uint32_t fcrtl = 0, fcrth = 0; 445 446 DEBUGFUNC("igc_set_fc_watermarks_generic"); 447 448 /* Set the flow control receive threshold registers. Normally, 449 * these registers will be set to a default threshold that may be 450 * adjusted later by the driver's runtime code. However, if the 451 * ability to transmit pause frames is not enabled, then these 452 * registers will be set to 0. 453 */ 454 if (hw->fc.current_mode & igc_fc_tx_pause) { 455 /* We need to set up the Receive Threshold high and low water 456 * marks as well as (optionally) enabling the transmission of 457 * XON frames. 458 */ 459 fcrtl = hw->fc.low_water; 460 if (hw->fc.send_xon) 461 fcrtl |= IGC_FCRTL_XONE; 462 463 fcrth = hw->fc.high_water; 464 } 465 IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl); 466 IGC_WRITE_REG(hw, IGC_FCRTH, fcrth); 467 468 return IGC_SUCCESS; 469 } 470 471 /** 472 * igc_force_mac_fc_generic - Force the MAC's flow control settings 473 * @hw: pointer to the HW structure 474 * 475 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the 476 * device control register to reflect the adapter settings. TFCE and RFCE 477 * need to be explicitly set by software when a copper PHY is used because 478 * autonegotiation is managed by the PHY rather than the MAC. Software must 479 * also configure these bits when link is forced on a fiber connection. 480 **/ 481 int 482 igc_force_mac_fc_generic(struct igc_hw *hw) 483 { 484 uint32_t ctrl; 485 486 DEBUGFUNC("igc_force_mac_fc_generic"); 487 488 ctrl = IGC_READ_REG(hw, IGC_CTRL); 489 490 /* Because we didn't get link via the internal auto-negotiation 491 * mechanism (we either forced link or we got link via PHY 492 * auto-neg), we have to manually enable/disable transmit an 493 * receive flow control. 494 * 495 * The "Case" statement below enables/disable flow control 496 * according to the "hw->fc.current_mode" parameter. 497 * 498 * The possible values of the "fc" parameter are: 499 * 0: Flow control is completely disabled 500 * 1: Rx flow control is enabled (we can receive pause 501 * frames but not send pause frames). 502 * 2: Tx flow control is enabled (we can send pause frames 503 * frames but we do not receive pause frames). 504 * 3: Both Rx and Tx flow control (symmetric) is enabled. 505 * other: No other values should be possible at this point. 506 */ 507 DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); 508 509 switch (hw->fc.current_mode) { 510 case igc_fc_none: 511 ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE)); 512 break; 513 case igc_fc_rx_pause: 514 ctrl &= (~IGC_CTRL_TFCE); 515 ctrl |= IGC_CTRL_RFCE; 516 break; 517 case igc_fc_tx_pause: 518 ctrl &= (~IGC_CTRL_RFCE); 519 ctrl |= IGC_CTRL_TFCE; 520 break; 521 case igc_fc_full: 522 ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE); 523 break; 524 default: 525 DEBUGOUT("Flow control param set incorrectly\n"); 526 return -IGC_ERR_CONFIG; 527 } 528 529 IGC_WRITE_REG(hw, IGC_CTRL, ctrl); 530 531 return IGC_SUCCESS; 532 } 533 534 /** 535 * igc_config_fc_after_link_up_generic - Configures flow control after link 536 * @hw: pointer to the HW structure 537 * 538 * Checks the status of auto-negotiation after link up to ensure that the 539 * speed and duplex were not forced. If the link needed to be forced, then 540 * flow control needs to be forced also. If auto-negotiation is enabled 541 * and did not fail, then we configure flow control based on our link 542 * partner. 543 **/ 544 int 545 igc_config_fc_after_link_up_generic(struct igc_hw *hw) 546 { 547 struct igc_mac_info *mac = &hw->mac; 548 uint16_t mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; 549 uint16_t speed, duplex; 550 int ret_val = IGC_SUCCESS; 551 552 DEBUGFUNC("igc_config_fc_after_link_up_generic"); 553 554 if (ret_val) { 555 DEBUGOUT("Error forcing flow control settings\n"); 556 return ret_val; 557 } 558 559 /* Check for the case where we have copper media and auto-neg is 560 * enabled. In this case, we need to check and see if Auto-Neg 561 * has completed, and if so, how the PHY and link partner has 562 * flow control configured. 563 */ 564 if (mac->autoneg) { 565 /* Read the MII Status Register and check to see if AutoNeg 566 * has completed. We read this twice because this reg has 567 * some "sticky" (latched) bits. 568 */ 569 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); 570 if (ret_val) 571 return ret_val; 572 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); 573 if (ret_val) 574 return ret_val; 575 576 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) 577 return ret_val; 578 579 /* The AutoNeg process has completed, so we now need to 580 * read both the Auto Negotiation Advertisement 581 * Register (Address 4) and the Auto_Negotiation Base 582 * Page Ability Register (Address 5) to determine how 583 * flow control was negotiated. 584 */ 585 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, 586 &mii_nway_adv_reg); 587 if (ret_val) 588 return ret_val; 589 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, 590 &mii_nway_lp_ability_reg); 591 if (ret_val) 592 return ret_val; 593 594 /* Two bits in the Auto Negotiation Advertisement Register 595 * (Address 4) and two bits in the Auto Negotiation Base 596 * Page Ability Register (Address 5) determine flow control 597 * for both the PHY and the link partner. The following 598 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 599 * 1999, describes these PAUSE resolution bits and how flow 600 * control is determined based upon these settings. 601 * NOTE: DC = Don't Care 602 * 603 * LOCAL DEVICE | LINK PARTNER 604 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 605 *-------|---------|-------|---------|-------------------- 606 * 0 | 0 | DC | DC | igc_fc_none 607 * 0 | 1 | 0 | DC | igc_fc_none 608 * 0 | 1 | 1 | 0 | igc_fc_none 609 * 0 | 1 | 1 | 1 | igc_fc_tx_pause 610 * 1 | 0 | 0 | DC | igc_fc_none 611 * 1 | DC | 1 | DC | igc_fc_full 612 * 1 | 1 | 0 | 0 | igc_fc_none 613 * 1 | 1 | 0 | 1 | igc_fc_rx_pause 614 * 615 * Are both PAUSE bits set to 1? If so, this implies 616 * Symmetric Flow Control is enabled at both ends. The 617 * ASM_DIR bits are irrelevant per the spec. 618 * 619 * For Symmetric Flow Control: 620 * 621 * LOCAL DEVICE | LINK PARTNER 622 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 623 *-------|---------|-------|---------|-------------------- 624 * 1 | DC | 1 | DC | IGC_fc_full 625 * 626 */ 627 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 628 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { 629 /* Now we need to check if the user selected Rx ONLY 630 * of pause frames. In this case, we had to advertise 631 * FULL flow control because we could not advertise Rx 632 * ONLY. Hence, we must now check to see if we need to 633 * turn OFF the TRANSMISSION of PAUSE frames. 634 */ 635 if (hw->fc.requested_mode == igc_fc_full) 636 hw->fc.current_mode = igc_fc_full; 637 else 638 hw->fc.current_mode = igc_fc_rx_pause; 639 } 640 /* For receiving PAUSE frames ONLY. 641 * 642 * LOCAL DEVICE | LINK PARTNER 643 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 644 *-------|---------|-------|---------|-------------------- 645 * 0 | 1 | 1 | 1 | igc_fc_tx_pause 646 */ 647 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && 648 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 649 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 650 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 651 hw->fc.current_mode = igc_fc_tx_pause; 652 } 653 /* For transmitting PAUSE frames ONLY. 654 * 655 * LOCAL DEVICE | LINK PARTNER 656 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 657 *-------|---------|-------|---------|-------------------- 658 * 1 | 1 | 0 | 1 | igc_fc_rx_pause 659 */ 660 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 661 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 662 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 663 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 664 hw->fc.current_mode = igc_fc_rx_pause; 665 } else { 666 /* Per the IEEE spec, at this point flow control 667 * should be disabled. 668 */ 669 hw->fc.current_mode = igc_fc_none; 670 DEBUGOUT("Flow Control = NONE.\n"); 671 } 672 673 /* Now we need to do one last check... If we auto- 674 * negotiated to HALF DUPLEX, flow control should not be 675 * enabled per IEEE 802.3 spec. 676 */ 677 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); 678 if (ret_val) { 679 DEBUGOUT("Error getting link speed and duplex\n"); 680 return ret_val; 681 } 682 683 if (duplex == HALF_DUPLEX) 684 hw->fc.current_mode = igc_fc_none; 685 686 /* Now we call a subroutine to actually force the MAC 687 * controller to use the correct flow control settings. 688 */ 689 ret_val = igc_force_mac_fc_generic(hw); 690 if (ret_val) { 691 DEBUGOUT("Error forcing flow control settings\n"); 692 return ret_val; 693 } 694 } 695 696 return IGC_SUCCESS; 697 } 698 699 /** 700 * igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex 701 * @hw: pointer to the HW structure 702 * @speed: stores the current speed 703 * @duplex: stores the current duplex 704 * 705 * Read the status register for the current speed/duplex and store the current 706 * speed and duplex for copper connections. 707 **/ 708 int 709 igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, uint16_t *speed, 710 uint16_t *duplex) 711 { 712 uint32_t status; 713 714 DEBUGFUNC("igc_get_speed_and_duplex_copper_generic"); 715 716 status = IGC_READ_REG(hw, IGC_STATUS); 717 if (status & IGC_STATUS_SPEED_1000) { 718 /* For I225, STATUS will indicate 1G speed in both 1 Gbps 719 * and 2.5 Gbps link modes. An additional bit is used 720 * to differentiate between 1 Gbps and 2.5 Gbps. 721 */ 722 if ((hw->mac.type == igc_i225) && 723 (status & IGC_STATUS_SPEED_2500)) { 724 *speed = SPEED_2500; 725 DEBUGOUT("2500 Mbs, "); 726 } else { 727 *speed = SPEED_1000; 728 DEBUGOUT("1000 Mbs, "); 729 } 730 } else if (status & IGC_STATUS_SPEED_100) { 731 *speed = SPEED_100; 732 DEBUGOUT("100 Mbs, "); 733 } else { 734 *speed = SPEED_10; 735 DEBUGOUT("10 Mbs, "); 736 } 737 738 if (status & IGC_STATUS_FD) { 739 *duplex = FULL_DUPLEX; 740 DEBUGOUT("Full Duplex\n"); 741 } else { 742 *duplex = HALF_DUPLEX; 743 DEBUGOUT("Half Duplex\n"); 744 } 745 746 return IGC_SUCCESS; 747 } 748 749 /** 750 * igc_put_hw_semaphore_generic - Release hardware semaphore 751 * @hw: pointer to the HW structure 752 * 753 * Release hardware semaphore used to access the PHY or NVM 754 **/ 755 void 756 igc_put_hw_semaphore_generic(struct igc_hw *hw) 757 { 758 uint32_t swsm; 759 760 DEBUGFUNC("igc_put_hw_semaphore_generic"); 761 762 swsm = IGC_READ_REG(hw, IGC_SWSM); 763 swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI); 764 765 IGC_WRITE_REG(hw, IGC_SWSM, swsm); 766 } 767 768 /** 769 * igc_get_auto_rd_done_generic - Check for auto read completion 770 * @hw: pointer to the HW structure 771 * 772 * Check EEPROM for Auto Read done bit. 773 **/ 774 int 775 igc_get_auto_rd_done_generic(struct igc_hw *hw) 776 { 777 int i = 0; 778 779 DEBUGFUNC("igc_get_auto_rd_done_generic"); 780 781 while (i < AUTO_READ_DONE_TIMEOUT) { 782 if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD) 783 break; 784 msec_delay(1); 785 i++; 786 } 787 788 if (i == AUTO_READ_DONE_TIMEOUT) { 789 DEBUGOUT("Auto read by HW from NVM has not completed.\n"); 790 return -IGC_ERR_RESET; 791 } 792 793 return IGC_SUCCESS; 794 } 795 796 /** 797 * igc_disable_pcie_master_generic - Disables PCI-express master access 798 * @hw: pointer to the HW structure 799 * 800 * Returns IGC_SUCCESS if successful, else returns -10 801 * (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused 802 * the master requests to be disabled. 803 * 804 * Disables PCI-Express master access and verifies there are no pending 805 * requests. 806 **/ 807 int 808 igc_disable_pcie_master_generic(struct igc_hw *hw) 809 { 810 uint32_t ctrl; 811 int timeout = MASTER_DISABLE_TIMEOUT; 812 813 DEBUGFUNC("igc_disable_pcie_master_generic"); 814 815 ctrl = IGC_READ_REG(hw, IGC_CTRL); 816 ctrl |= IGC_CTRL_GIO_MASTER_DISABLE; 817 IGC_WRITE_REG(hw, IGC_CTRL, ctrl); 818 819 while (timeout) { 820 if (!(IGC_READ_REG(hw, IGC_STATUS) & 821 IGC_STATUS_GIO_MASTER_ENABLE)) 822 break; 823 DELAY(100); 824 timeout--; 825 } 826 827 if (!timeout) { 828 DEBUGOUT("Master requests are pending.\n"); 829 return -IGC_ERR_MASTER_REQUESTS_PENDING; 830 } 831 832 return IGC_SUCCESS; 833 } 834