xref: /openbsd-src/sys/dev/pci/igc_i225.c (revision 8550894424f8a4aa4aafb6cd57229dd6ed7cd9dd)
1 /*	$OpenBSD: igc_i225.c,v 1.3 2022/05/11 06:14:15 kevlo Exp $	*/
2 /*-
3  * Copyright 2021 Intel Corp
4  * Copyright 2021 Rubicon Communications, LLC (Netgate)
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <dev/pci/igc_api.h>
9 
10 int	igc_init_nvm_params_i225(struct igc_hw *);
11 int	igc_init_mac_params_i225(struct igc_hw *);
12 int	igc_init_phy_params_i225(struct igc_hw *);
13 int	igc_reset_hw_i225(struct igc_hw *);
14 int	igc_acquire_nvm_i225(struct igc_hw *);
15 void	igc_release_nvm_i225(struct igc_hw *);
16 int	igc_get_hw_semaphore_i225(struct igc_hw *);
17 int	__igc_write_nvm_srwr(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
18 int	igc_pool_flash_update_done_i225(struct igc_hw *);
19 
20 /**
21  *  igc_init_nvm_params_i225 - Init NVM func ptrs.
22  *  @hw: pointer to the HW structure
23  **/
24 int
25 igc_init_nvm_params_i225(struct igc_hw *hw)
26 {
27 	struct igc_nvm_info *nvm = &hw->nvm;
28 	uint32_t eecd = IGC_READ_REG(hw, IGC_EECD);
29 	uint16_t size;
30 
31 	DEBUGFUNC("igc_init_nvm_params_i225");
32 
33 	size = (uint16_t)((eecd & IGC_EECD_SIZE_EX_MASK) >>
34 	    IGC_EECD_SIZE_EX_SHIFT);
35 	/*
36 	 * Added to a constant, "size" becomes the left-shift value
37 	 * for setting word_size.
38 	 */
39 	size += NVM_WORD_SIZE_BASE_SHIFT;
40 
41 	/* Just in case size is out of range, cap it to the largest
42 	 * EEPROM size supported.
43 	 */
44 	if (size > 15)
45 		size = 15;
46 
47 	nvm->word_size = 1 << size;
48 	nvm->opcode_bits = 8;
49 	nvm->delay_usec = 1;
50 	nvm->type = igc_nvm_eeprom_spi;
51 
52 	nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
53 	nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ? 16 : 8;
54 
55 	if (nvm->word_size == (1 << 15))
56 		nvm->page_size = 128;
57 
58 	nvm->ops.acquire = igc_acquire_nvm_i225;
59 	nvm->ops.release = igc_release_nvm_i225;
60 	if (igc_get_flash_presence_i225(hw)) {
61 		hw->nvm.type = igc_nvm_flash_hw;
62 		nvm->ops.read = igc_read_nvm_srrd_i225;
63 		nvm->ops.write = igc_write_nvm_srwr_i225;
64 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
65 		nvm->ops.update = igc_update_nvm_checksum_i225;
66 	} else {
67 		hw->nvm.type = igc_nvm_invm;
68 		nvm->ops.write = igc_null_write_nvm;
69 		nvm->ops.validate = igc_null_ops_generic;
70 		nvm->ops.update = igc_null_ops_generic;
71 	}
72 
73 	return IGC_SUCCESS;
74 }
75 
76 /**
77  *  igc_init_mac_params_i225 - Init MAC func ptrs.
78  *  @hw: pointer to the HW structure
79  **/
80 int
81 igc_init_mac_params_i225(struct igc_hw *hw)
82 {
83 	struct igc_mac_info *mac = &hw->mac;
84 	struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
85 
86 	DEBUGFUNC("igc_init_mac_params_i225");
87 
88 	/* Initialize function pointer */
89 	igc_init_mac_ops_generic(hw);
90 
91 	/* Set media type */
92 	hw->phy.media_type = igc_media_type_copper;
93 	/* Set mta register count */
94 	mac->mta_reg_count = 128;
95 	/* Set rar entry count */
96 	mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
97 
98 	/* reset */
99 	mac->ops.reset_hw = igc_reset_hw_i225;
100 	/* hw initialization */
101 	mac->ops.init_hw = igc_init_hw_i225;
102 	/* link setup */
103 	mac->ops.setup_link = igc_setup_link_generic;
104 	/* check for link */
105 	mac->ops.check_for_link = igc_check_for_link_i225;
106 	/* link info */
107 	mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
108 	/* acquire SW_FW sync */
109 	mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
110 	/* release SW_FW sync */
111 	mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
112 
113 	/* Allow a single clear of the SW semaphore on I225 */
114 	dev_spec->clear_semaphore_once = true;
115 	mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
116 
117 	/* Set if part includes ASF firmware */
118 	mac->asf_firmware_present = true;
119 
120 	/* multicast address update */
121 	mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
122 
123 	mac->ops.write_vfta = igc_write_vfta_generic;
124 
125 	return IGC_SUCCESS;
126 }
127 
128 /**
129  *  igc_init_phy_params_i225 - Init PHY func ptrs.
130  *  @hw: pointer to the HW structure
131  **/
132 int
133 igc_init_phy_params_i225(struct igc_hw *hw)
134 {
135 	struct igc_phy_info *phy = &hw->phy;
136 	int ret_val = IGC_SUCCESS;
137 
138 	DEBUGFUNC("igc_init_phy_params_i225");
139 
140 	if (hw->phy.media_type != igc_media_type_copper) {
141 		phy->type = igc_phy_none;
142 		goto out;
143 	}
144 
145 	phy->ops.power_up = igc_power_up_phy_copper;
146 	phy->ops.power_down = igc_power_down_phy_copper_base;
147 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
148 	phy->reset_delay_us = 100;
149 	phy->ops.acquire = igc_acquire_phy_base;
150 	phy->ops.check_reset_block = igc_check_reset_block_generic;
151 	phy->ops.release = igc_release_phy_base;
152 	phy->ops.reset = igc_phy_hw_reset_generic;
153 	phy->ops.read_reg = igc_read_phy_reg_gpy;
154 	phy->ops.write_reg = igc_write_phy_reg_gpy;
155 
156 	/* Make sure the PHY is in a good state. Several people have reported
157 	 * firmware leaving the PHY's page select register set to something
158 	 * other than the default of zero, which causes the PHY ID read to
159 	 * access something other than the intended register.
160 	 */
161 	ret_val = hw->phy.ops.reset(hw);
162 	if (ret_val)
163 		goto out;
164 
165 	ret_val = igc_get_phy_id(hw);
166 	/* Verify phy id and set remaining function pointers */
167 	switch (phy->id) {
168 	case I225_I_PHY_ID:
169 	default:
170 		phy->type = igc_phy_i225;
171 		phy->ops.set_d0_lplu_state = igc_set_d0_lplu_state_i225;
172 		phy->ops.set_d3_lplu_state = igc_set_d3_lplu_state_i225;
173 		/* TODO - complete with GPY PHY information */
174 		break;
175 	}
176 
177 out:
178 	return ret_val;
179 }
180 
181 /**
182  *  igc_reset_hw_i225 - Reset hardware
183  *  @hw: pointer to the HW structure
184  *
185  *  This resets the hardware into a known state.
186  **/
187 int
188 igc_reset_hw_i225(struct igc_hw *hw)
189 {
190 	uint32_t ctrl;
191 	int ret_val;
192 
193 	DEBUGFUNC("igc_reset_hw_i225");
194 
195 	/*
196 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
197 	 * on the last TLP read/write transaction when MAC is reset.
198 	 */
199 	ret_val = igc_disable_pcie_master_generic(hw);
200 	if (ret_val)
201 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
202 
203 	DEBUGOUT("Masking off all interrupts\n");
204 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
205 
206 	IGC_WRITE_REG(hw, IGC_RCTL, 0);
207 	IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
208 	IGC_WRITE_FLUSH(hw);
209 
210 	msec_delay(10);
211 
212 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
213 
214 	DEBUGOUT("Issuing a global reset to MAC\n");
215 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST);
216 
217 	ret_val = igc_get_auto_rd_done_generic(hw);
218 	if (ret_val) {
219 		/*
220 		 * When auto config read does not complete, do not
221 		 * return with an error. This can happen in situations
222 		 * where there is no eeprom and prevents getting link.
223 		 */
224 		DEBUGOUT("Auto Read Done did not complete\n");
225 	}
226 
227 	/* Clear any pending interrupt events. */
228 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
229 	IGC_READ_REG(hw, IGC_ICR);
230 
231 	/* Install any alternate MAC address into RAR0 */
232 	ret_val = igc_check_alt_mac_addr_generic(hw);
233 
234 	return ret_val;
235 }
236 
237 /* igc_acquire_nvm_i225 - Request for access to EEPROM
238  * @hw: pointer to the HW structure
239  *
240  * Acquire the necessary semaphores for exclusive access to the EEPROM.
241  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
242  * Return successful if access grant bit set, else clear the request for
243  * EEPROM access and return -IGC_ERR_NVM (-1).
244  */
245 int
246 igc_acquire_nvm_i225(struct igc_hw *hw)
247 {
248 	int ret_val;
249 
250 	DEBUGFUNC("igc_acquire_nvm_i225");
251 
252 	ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
253 
254 	return ret_val;
255 }
256 
257 /* igc_release_nvm_i225 - Release exclusive access to EEPROM
258  * @hw: pointer to the HW structure
259  *
260  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
261  * then release the semaphores acquired.
262  */
263 void
264 igc_release_nvm_i225(struct igc_hw *hw)
265 {
266 	DEBUGFUNC("igc_release_nvm_i225");
267 
268 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
269 }
270 
271 /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
272  * @hw: pointer to the HW structure
273  * @mask: specifies which semaphore to acquire
274  *
275  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
276  * will also specify which port we're acquiring the lock for.
277  */
278 int
279 igc_acquire_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
280 {
281 	uint32_t swfw_sync;
282 	uint32_t swmask = mask;
283 	uint32_t fwmask = mask << 16;
284 	int ret_val = IGC_SUCCESS;
285 	int i = 0, timeout = 200;	/* FIXME: find real value to use here */
286 
287 	DEBUGFUNC("igc_acquire_swfw_sync_i225");
288 
289 	while (i < timeout) {
290 		if (igc_get_hw_semaphore_i225(hw)) {
291 			ret_val = -IGC_ERR_SWFW_SYNC;
292 			goto out;
293 		}
294 
295 		swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
296 		if (!(swfw_sync & (fwmask | swmask)))
297 			break;
298 
299 		/* Firmware currently using resource (fwmask)
300 		 * or other software thread using resource (swmask)
301 		 */
302 		igc_put_hw_semaphore_generic(hw);
303 		msec_delay(5);
304 		i++;
305 	}
306 
307 	if (i == timeout) {
308 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
309 		ret_val = -IGC_ERR_SWFW_SYNC;
310 		goto out;
311 	}
312 
313 	swfw_sync |= swmask;
314 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
315 
316 	igc_put_hw_semaphore_generic(hw);
317 
318 out:
319 	return ret_val;
320 }
321 
322 /* igc_release_swfw_sync_i225 - Release SW/FW semaphore
323  * @hw: pointer to the HW structure
324  * @mask: specifies which semaphore to acquire
325  *
326  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
327  * will also specify which port we're releasing the lock for.
328  */
329 void
330 igc_release_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
331 {
332 	uint32_t swfw_sync;
333 
334 	DEBUGFUNC("igc_release_swfw_sync_i225");
335 
336 	while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
337 		; /* Empty */
338 
339 	swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
340 	swfw_sync &= ~mask;
341 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
342 
343 	igc_put_hw_semaphore_generic(hw);
344 }
345 
346 /*
347  * igc_setup_copper_link_i225 - Configure copper link settings
348  * @hw: pointer to the HW structure
349  *
350  * Configures the link for auto-neg or forced speed and duplex.  Then we check
351  * for link, once link is established calls to configure collision distance
352  * and flow control are called.
353  */
354 int
355 igc_setup_copper_link_i225(struct igc_hw *hw)
356 {
357 	uint32_t ctrl, phpm_reg;
358 	int ret_val;
359 
360 	DEBUGFUNC("igc_setup_copper_link_i225");
361 
362 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
363 	ctrl |= IGC_CTRL_SLU;
364 	ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
365 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
366 
367 	phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
368 	phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
369 	IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
370 
371 	ret_val = igc_setup_copper_link_generic(hw);
372 
373 	return ret_val;
374 }
375 
376 /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
377  * @hw: pointer to the HW structure
378  *
379  * Acquire the HW semaphore to access the PHY or NVM
380  */
381 int
382 igc_get_hw_semaphore_i225(struct igc_hw *hw)
383 {
384 	uint32_t swsm;
385 	int timeout = hw->nvm.word_size + 1;
386 	int i = 0;
387 
388 	DEBUGFUNC("igc_get_hw_semaphore_i225");
389 
390 	/* Get the SW semaphore */
391 	while (i < timeout) {
392 		swsm = IGC_READ_REG(hw, IGC_SWSM);
393 		if (!(swsm & IGC_SWSM_SMBI))
394 			break;
395 
396 		DELAY(50);
397 		i++;
398 	}
399 
400 	if (i == timeout) {
401 		/* In rare circumstances, the SW semaphore may already be held
402 		 * unintentionally. Clear the semaphore once before giving up.
403 		 */
404 		if (hw->dev_spec._i225.clear_semaphore_once) {
405 			hw->dev_spec._i225.clear_semaphore_once = false;
406 			igc_put_hw_semaphore_generic(hw);
407 			for (i = 0; i < timeout; i++) {
408 				swsm = IGC_READ_REG(hw, IGC_SWSM);
409 				if (!(swsm & IGC_SWSM_SMBI))
410 					break;
411 
412 				DELAY(50);
413 			}
414 		}
415 
416 		/* If we do not have the semaphore here, we have to give up. */
417 		if (i == timeout) {
418 			DEBUGOUT("Driver can't access device -\n");
419 			DEBUGOUT("SMBI bit is set.\n");
420 			return -IGC_ERR_NVM;
421 		}
422 	}
423 
424 	/* Get the FW semaphore. */
425 	for (i = 0; i < timeout; i++) {
426 		swsm = IGC_READ_REG(hw, IGC_SWSM);
427 		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
428 
429 		/* Semaphore acquired if bit latched */
430 		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
431 			break;
432 
433 		DELAY(50);
434 	}
435 
436 	if (i == timeout) {
437 		/* Release semaphores */
438 		igc_put_hw_semaphore_generic(hw);
439 		DEBUGOUT("Driver can't access the NVM\n");
440 		return -IGC_ERR_NVM;
441 	}
442 
443 	return IGC_SUCCESS;
444 }
445 
446 /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
447  * @hw: pointer to the HW structure
448  * @offset: offset of word in the Shadow Ram to read
449  * @words: number of words to read
450  * @data: word read from the Shadow Ram
451  *
452  * Reads a 16 bit word from the Shadow Ram using the EERD register.
453  * Uses necessary synchronization semaphores.
454  */
455 int
456 igc_read_nvm_srrd_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
457     uint16_t *data)
458 {
459 	uint16_t i, count;
460 	int status = IGC_SUCCESS;
461 
462 	DEBUGFUNC("igc_read_nvm_srrd_i225");
463 
464 	/* We cannot hold synchronization semaphores for too long,
465 	 * because of forceful takeover procedure. However it is more efficient
466 	 * to read in bursts than synchronizing access for each word.
467 	 */
468 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
469 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
470 		    IGC_EERD_EEWR_MAX_COUNT : (words - i);
471 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
472 			status = igc_read_nvm_eerd(hw, offset, count, data + i);
473 			hw->nvm.ops.release(hw);
474 		} else {
475 			status = IGC_ERR_SWFW_SYNC;
476 		}
477 
478 		if (status != IGC_SUCCESS)
479 			break;
480 	}
481 
482 	return status;
483 }
484 
485 /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
486  * @hw: pointer to the HW structure
487  * @offset: offset within the Shadow RAM to be written to
488  * @words: number of words to write
489  * @data: 16 bit word(s) to be written to the Shadow RAM
490  *
491  * Writes data to Shadow RAM at offset using EEWR register.
492  *
493  * If igc_update_nvm_checksum is not called after this function , the
494  * data will not be committed to FLASH and also Shadow RAM will most likely
495  * contain an invalid checksum.
496  *
497  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
498  * partially written.
499  */
500 int
501 igc_write_nvm_srwr_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
502     uint16_t *data)
503 {
504 	uint16_t i, count;
505 	int status = IGC_SUCCESS;
506 
507 	DEBUGFUNC("igc_write_nvm_srwr_i225");
508 
509 	/* We cannot hold synchronization semaphores for too long,
510 	 * because of forceful takeover procedure. However it is more efficient
511 	 * to write in bursts than synchronizing access for each word.
512 	 */
513 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
514 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
515 		    IGC_EERD_EEWR_MAX_COUNT : (words - i);
516 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
517 			status = __igc_write_nvm_srwr(hw, offset, count,
518 			    data + i);
519 			hw->nvm.ops.release(hw);
520 		} else
521 			status = IGC_ERR_SWFW_SYNC;
522 
523 		if (status != IGC_SUCCESS)
524 			break;
525 	}
526 
527 	return status;
528 }
529 
530 /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
531  * @hw: pointer to the HW structure
532  * @offset: offset within the Shadow Ram to be written to
533  * @words: number of words to write
534  * @data: 16 bit word(s) to be written to the Shadow Ram
535  *
536  * Writes data to Shadow Ram at offset using EEWR register.
537  *
538  * If igc_update_nvm_checksum is not called after this function , the
539  * Shadow Ram will most likely contain an invalid checksum.
540  */
541 int
542 __igc_write_nvm_srwr(struct igc_hw *hw, uint16_t offset, uint16_t words,
543     uint16_t *data)
544 {
545 	struct igc_nvm_info *nvm = &hw->nvm;
546 	uint32_t i, k, eewr = 0;
547 	uint32_t attempts = 100000;
548 	int ret_val = IGC_SUCCESS;
549 
550 	DEBUGFUNC("__igc_write_nvm_srwr");
551 
552 	/* A check for invalid values:  offset too large, too many words,
553 	 * too many words for the offset, and not enough words.
554 	 */
555 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
556 	    (words == 0)) {
557 		DEBUGOUT("nvm parameter(s) out of bounds\n");
558 		ret_val = -IGC_ERR_NVM;
559 		goto out;
560 	}
561 
562 	for (i = 0; i < words; i++) {
563 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
564 		    (data[i] << IGC_NVM_RW_REG_DATA) | IGC_NVM_RW_REG_START;
565 
566 		IGC_WRITE_REG(hw, IGC_SRWR, eewr);
567 
568 		for (k = 0; k < attempts; k++) {
569 			if (IGC_NVM_RW_REG_DONE & IGC_READ_REG(hw, IGC_SRWR)) {
570 				ret_val = IGC_SUCCESS;
571 				break;
572 			}
573 			DELAY(5);
574 		}
575 
576 		if (ret_val != IGC_SUCCESS) {
577 			DEBUGOUT("Shadow RAM write EEWR timed out\n");
578 			break;
579 		}
580 	}
581 
582 out:
583 	return ret_val;
584 }
585 
586 /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
587  * @hw: pointer to the HW structure
588  *
589  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
590  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
591  */
592 int
593 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
594 {
595 	int status = IGC_SUCCESS;
596 	int (*read_op_ptr)(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
597 
598 	DEBUGFUNC("igc_validate_nvm_checksum_i225");
599 
600 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
601 		/* Replace the read function with semaphore grabbing with
602 		 * the one that skips this for a while.
603 		 * We have semaphore taken already here.
604 		 */
605 		read_op_ptr = hw->nvm.ops.read;
606 		hw->nvm.ops.read = igc_read_nvm_eerd;
607 
608 		status = igc_validate_nvm_checksum_generic(hw);
609 
610 		/* Revert original read operation. */
611 		hw->nvm.ops.read = read_op_ptr;
612 
613 		hw->nvm.ops.release(hw);
614 	} else {
615 		status = IGC_ERR_SWFW_SYNC;
616 	}
617 
618 	return status;
619 }
620 
621 /* igc_update_nvm_checksum_i225 - Update EEPROM checksum
622  * @hw: pointer to the HW structure
623  *
624  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
625  * up to the checksum.  Then calculates the EEPROM checksum and writes the
626  * value to the EEPROM. Next commit EEPROM data onto the Flash.
627  */
628 int
629 igc_update_nvm_checksum_i225(struct igc_hw *hw)
630 {
631 	uint16_t checksum = 0;
632 	uint16_t i, nvm_data;
633 	int ret_val;
634 
635 	DEBUGFUNC("igc_update_nvm_checksum_i225");
636 
637 	/* Read the first word from the EEPROM. If this times out or fails, do
638 	 * not continue or we could be in for a very long wait while every
639 	 * EEPROM read fails
640 	 */
641 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
642 	if (ret_val != IGC_SUCCESS) {
643 		DEBUGOUT("EEPROM read failed\n");
644 		goto out;
645 	}
646 
647 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
648 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
649 		 * because we do not want to take the synchronization
650 		 * semaphores twice here.
651 		 */
652 
653 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
654 			ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
655 			if (ret_val) {
656 				hw->nvm.ops.release(hw);
657 				DEBUGOUT("NVM Read Error while updating\n");
658 				DEBUGOUT("checksum.\n");
659 				goto out;
660 			}
661 			checksum += nvm_data;
662 		}
663 		checksum = (uint16_t)NVM_SUM - checksum;
664 		ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
665 		    &checksum);
666 		if (ret_val != IGC_SUCCESS) {
667 			hw->nvm.ops.release(hw);
668 			DEBUGOUT("NVM Write Error while updating checksum.\n");
669 			goto out;
670 		}
671 
672 		hw->nvm.ops.release(hw);
673 
674 		ret_val = igc_update_flash_i225(hw);
675 	} else {
676 		ret_val = IGC_ERR_SWFW_SYNC;
677 	}
678 out:
679 	return ret_val;
680 }
681 
682 /* igc_get_flash_presence_i225 - Check if flash device is detected.
683  * @hw: pointer to the HW structure
684  */
685 bool
686 igc_get_flash_presence_i225(struct igc_hw *hw)
687 {
688 	uint32_t eec = 0;
689 	bool ret_val = false;
690 
691 	DEBUGFUNC("igc_get_flash_presence_i225");
692 
693 	eec = IGC_READ_REG(hw, IGC_EECD);
694 
695 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
696 		ret_val = true;
697 
698 	return ret_val;
699 }
700 
701 /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
702  * Counter in FLSWCNT register.
703  *
704  * @hw: pointer to the HW structure
705  * @burst_counter: size in bytes of the Flash burst to read or write
706  */
707 int
708 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, uint32_t burst_counter)
709 {
710 	int ret_val = IGC_SUCCESS;
711 
712 	DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
713 
714 	/* Validate input data */
715 	if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
716 		/* Write FLSWCNT - burst counter */
717 		IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
718 	} else {
719 		ret_val = IGC_ERR_INVALID_ARGUMENT;
720 	}
721 
722 	return ret_val;
723 }
724 
725 
726 /* igc_write_erase_flash_command_i225 - write/erase to a sector
727  * region on a given address.
728  *
729  * @hw: pointer to the HW structure
730  * @opcode: opcode to be used for the write command
731  * @address: the offset to write into the FLASH image
732  */
733 int
734 igc_write_erase_flash_command_i225(struct igc_hw *hw, uint32_t opcode,
735     uint32_t address)
736 {
737 	uint32_t flswctl = 0;
738 	int timeout = IGC_NVM_GRANT_ATTEMPTS;
739 	int ret_val = IGC_SUCCESS;
740 
741 	DEBUGFUNC("igc_write_erase_flash_command_i225");
742 
743 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
744 	/* Polling done bit on FLSWCTL register */
745 	while (timeout) {
746 		if (flswctl & IGC_FLSWCTL_DONE)
747 			break;
748 		DELAY(5);
749 		flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
750 		timeout--;
751 	}
752 
753 	if (!timeout) {
754 		DEBUGOUT("Flash transaction was not done\n");
755 		return -IGC_ERR_NVM;
756 	}
757 
758 	/* Build and issue command on FLSWCTL register */
759 	flswctl = address | opcode;
760 	IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
761 
762 	/* Check if issued command is valid on FLSWCTL register */
763 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
764 	if (!(flswctl & IGC_FLSWCTL_CMDV)) {
765 		DEBUGOUT("Write flash command failed\n");
766 		ret_val = IGC_ERR_INVALID_ARGUMENT;
767 	}
768 
769 	return ret_val;
770 }
771 
772 /* igc_update_flash_i225 - Commit EEPROM to the flash
773  * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
774  * register makes the FW load the internal shadow RAM into the flash.
775  * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
776  * then FW is not active so the SW is responsible shadow RAM dump.
777  *
778  * @hw: pointer to the HW structure
779  */
780 int
781 igc_update_flash_i225(struct igc_hw *hw)
782 {
783 	uint32_t block_sw_protect = 1;
784 	uint32_t i, flup, fw_valid_bit;
785 	uint16_t current_offset;
786 	uint16_t base_address = 0x0;
787 	uint16_t current_offset_data = 0;
788 	int ret_val = 0;
789 
790 	DEBUGFUNC("igc_update_flash_i225");
791 
792 	block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
793 	    IGC_FLSECU_BLK_SW_ACCESS_I225;
794 
795 	fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) & IGC_FWSM_FW_VALID_I225;
796 	if (fw_valid_bit) {
797 		ret_val = igc_pool_flash_update_done_i225(hw);
798 		if (ret_val == -IGC_ERR_NVM) {
799 			DEBUGOUT("Flash update time out\n");
800 			goto out;
801 		}
802 
803 		flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
804 		IGC_WRITE_REG(hw, IGC_EECD, flup);
805 
806 		ret_val = igc_pool_flash_update_done_i225(hw);
807 		if (ret_val == IGC_SUCCESS)
808 			DEBUGOUT("Flash update complete\n");
809 		else
810 			DEBUGOUT("Flash update time out\n");
811 	} else if (!block_sw_protect) {
812 		/* FW is not active and security protection is disabled.
813 		 * therefore, SW is in charge of shadow RAM dump.
814 		 * Check which sector is valid. if sector 0 is valid,
815 		 * base address remains 0x0. otherwise, sector 1 is
816 		 * valid and its base address is 0x1000
817 		 */
818 		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
819 			base_address = 0x1000;
820 
821 		/* Valid sector erase */
822 		ret_val = igc_write_erase_flash_command_i225(hw,
823 		    IGC_I225_ERASE_CMD_OPCODE, base_address);
824 		if (!ret_val) {
825 			DEBUGOUT("Sector erase failed\n");
826 			goto out;
827 		}
828 
829 		current_offset = base_address;
830 
831 		/* Write */
832 		for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
833 			/* Set burst write length */
834 			ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
835 			    0x2);
836 			if (ret_val != IGC_SUCCESS)
837 				break;
838 
839 			/* Set address and opcode */
840 			ret_val = igc_write_erase_flash_command_i225(hw,
841 			    IGC_I225_WRITE_CMD_OPCODE, 2 * current_offset);
842 			if (ret_val != IGC_SUCCESS)
843 				break;
844 
845 			ret_val = igc_read_nvm_eerd(hw, current_offset, 1,
846 			    &current_offset_data);
847 			if (ret_val) {
848 				DEBUGOUT("Failed to read from EEPROM\n");
849 				goto out;
850 			}
851 
852 			/* Write CurrentOffseData to FLSWDATA register */
853 			IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
854 			    current_offset_data);
855 			current_offset++;
856 
857 			/* Wait till operation has finished */
858 			ret_val = igc_poll_eerd_eewr_done(hw,
859 			    IGC_NVM_POLL_READ);
860 			if (ret_val)
861 				break;
862 
863 			DELAY(1000);
864 		}
865 	}
866 out:
867 	return ret_val;
868 }
869 
870 /* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
871  * @hw: pointer to the HW structure
872  */
873 int
874 igc_pool_flash_update_done_i225(struct igc_hw *hw)
875 {
876 	uint32_t i, reg;
877 	int ret_val = -IGC_ERR_NVM;
878 
879 	DEBUGFUNC("igc_pool_flash_update_done_i225");
880 
881 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
882 		reg = IGC_READ_REG(hw, IGC_EECD);
883 		if (reg & IGC_EECD_FLUDONE_I225) {
884 			ret_val = IGC_SUCCESS;
885 			break;
886 		}
887 		DELAY(5);
888 	}
889 
890 	return ret_val;
891 }
892 
893 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
894  * @hw: pointer to the HW structure
895  * @link: bool indicating link status
896  *
897  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
898  * settings, otherwise specify that there is no LTR requirement.
899  */
900 int
901 igc_set_ltr_i225(struct igc_hw *hw, bool link)
902 {
903 	uint16_t speed, duplex;
904 	uint32_t tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
905 	int size;
906 
907 	DEBUGFUNC("igc_set_ltr_i225");
908 
909 	/* If we do not have link, LTR thresholds are zero. */
910 	if (link) {
911 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
912 
913 		/* Check if using copper interface with EEE enabled or if the
914 		 * link speed is 10 Mbps.
915 		 */
916 		if ((hw->phy.media_type == igc_media_type_copper) &&
917 		    !(hw->dev_spec._i225.eee_disable) &&
918 		     (speed != SPEED_10)) {
919 			/* EEE enabled, so send LTRMAX threshold. */
920 			ltrc = IGC_READ_REG(hw, IGC_LTRC) | IGC_LTRC_EEEMS_EN;
921 			IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
922 
923 			/* Calculate tw_system (nsec). */
924 			if (speed == SPEED_100) {
925 				tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
926 				    IGC_TW_SYSTEM_100_MASK) >>
927 				    IGC_TW_SYSTEM_100_SHIFT) * 500;
928 			} else {
929 				tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
930 				    IGC_TW_SYSTEM_1000_MASK) * 500;
931 				}
932 		} else {
933 			tw_system = 0;
934 			}
935 
936 		/* Get the Rx packet buffer size. */
937 		size = IGC_READ_REG(hw, IGC_RXPBS) & IGC_RXPBS_SIZE_I225_MASK;
938 
939 		/* Calculations vary based on DMAC settings. */
940 		if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
941 			size -= (IGC_READ_REG(hw, IGC_DMACR) &
942 			    IGC_DMACR_DMACTHR_MASK) >> IGC_DMACR_DMACTHR_SHIFT;
943 			/* Convert size to bits. */
944 			size *= 1024 * 8;
945 		} else {
946 			/* Convert size to bytes, subtract the MTU, and then
947 			 * convert the size to bits.
948 			 */
949 			size *= 1024;
950 			size -= hw->dev_spec._i225.mtu;
951 			size *= 8;
952 		}
953 
954 		if (size < 0) {
955 			DEBUGOUT1("Invalid effective Rx buffer size %d\n",
956 			    size);
957 			return -IGC_ERR_CONFIG;
958 		}
959 
960 		/* Calculate the thresholds. Since speed is in Mbps, simplify
961 		 * the calculation by multiplying size/speed by 1000 for result
962 		 * to be in nsec before dividing by the scale in nsec. Set the
963 		 * scale such that the LTR threshold fits in the register.
964 		 */
965 		ltr_min = (1000 * size) / speed;
966 		ltr_max = ltr_min + tw_system;
967 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
968 		    IGC_LTRMINV_SCALE_32768;
969 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
970 		    IGC_LTRMAXV_SCALE_32768;
971 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
972 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
973 
974 		/* Only write the LTR thresholds if they differ from before. */
975 		ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
976 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
977 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
978 			    (scale_min << IGC_LTRMINV_SCALE_SHIFT);
979 			IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
980 		}
981 
982 		ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
983 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
984 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
985 			    (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
986 			IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
987 		}
988 	}
989 
990 	return IGC_SUCCESS;
991 }
992 
993 /* igc_check_for_link_i225 - Check for link
994  * @hw: pointer to the HW structure
995  *
996  * Checks to see of the link status of the hardware has changed.  If a
997  * change in link status has been detected, then we read the PHY registers
998  * to get the current speed/duplex if link exists.
999  */
1000 int
1001 igc_check_for_link_i225(struct igc_hw *hw)
1002 {
1003 	struct igc_mac_info *mac = &hw->mac;
1004 	int ret_val;
1005 	bool link = false;
1006 
1007 	DEBUGFUNC("igc_check_for_link_i225");
1008 
1009 	/* We only want to go out to the PHY registers to see if
1010 	 * Auto-Neg has completed and/or if our link status has
1011 	 * changed.  The get_link_status flag is set upon receiving
1012 	 * a Link Status Change or Rx Sequence Error interrupt.
1013 	 */
1014 	if (!mac->get_link_status) {
1015 		ret_val = IGC_SUCCESS;
1016 		goto out;
1017 	}
1018 
1019 	/* First we want to see if the MII Status Register reports
1020 	 * link.  If so, then we want to get the current speed/duplex
1021 	 * of the PHY.
1022 	 */
1023 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1024 	if (ret_val)
1025 		goto out;
1026 
1027 	if (!link)
1028 		goto out; /* No link detected */
1029 
1030 	/* First we want to see if the MII Status Register reports
1031 	 * link.  If so, then we want to get the current speed/duplex
1032 	 * of the PHY.
1033 	 */
1034 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1035 	if (ret_val)
1036 		goto out;
1037 
1038 	if (!link)
1039 		goto out; /* No link detected */
1040 
1041 	mac->get_link_status = false;
1042 
1043 	/* Check if there was DownShift, must be checked
1044 	 * immediately after link-up
1045 	 */
1046 	igc_check_downshift_generic(hw);
1047 
1048 	/* If we are forcing speed/duplex, then we simply return since
1049 	 * we have already determined whether we have link or not.
1050 	 */
1051 	if (!mac->autoneg)
1052 		goto out;
1053 
1054 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1055 	 * of MAC speed/duplex configuration.  So we only need to
1056 	 * configure Collision Distance in the MAC.
1057 	 */
1058 	mac->ops.config_collision_dist(hw);
1059 
1060 	/* Configure Flow Control now that Auto-Neg has completed.
1061 	 * First, we need to restore the desired flow control
1062 	 * settings because we may have had to re-autoneg with a
1063 	 * different link partner.
1064 	 */
1065 	ret_val = igc_config_fc_after_link_up_generic(hw);
1066 	if (ret_val)
1067 		DEBUGOUT("Error configuring flow control\n");
1068 out:
1069 	/* Now that we are aware of our link settings, we can set the LTR
1070 	 * thresholds.
1071 	 */
1072 	ret_val = igc_set_ltr_i225(hw, link);
1073 
1074 	return ret_val;
1075 }
1076 
1077 /* igc_init_function_pointers_i225 - Init func ptrs.
1078  * @hw: pointer to the HW structure
1079  *
1080  * Called to initialize all function pointers and parameters.
1081  */
1082 void
1083 igc_init_function_pointers_i225(struct igc_hw *hw)
1084 {
1085 	igc_init_mac_ops_generic(hw);
1086 	igc_init_phy_ops_generic(hw);
1087 	igc_init_nvm_ops_generic(hw);
1088 	hw->mac.ops.init_params = igc_init_mac_params_i225;
1089 	hw->nvm.ops.init_params = igc_init_nvm_params_i225;
1090 	hw->phy.ops.init_params = igc_init_phy_params_i225;
1091 }
1092 
1093 /* igc_init_hw_i225 - Init hw for I225
1094  * @hw: pointer to the HW structure
1095  *
1096  * Called to initialize hw for i225 hw family.
1097  */
1098 int
1099 igc_init_hw_i225(struct igc_hw *hw)
1100 {
1101 	int ret_val;
1102 
1103 	DEBUGFUNC("igc_init_hw_i225");
1104 
1105 	ret_val = igc_init_hw_base(hw);
1106 	return ret_val;
1107 }
1108 
1109 /*
1110  * igc_set_d0_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D0 state
1111  * @hw: pointer to the HW structure
1112  * @active: true to enable LPLU, false to disable
1113  *
1114  * Note: since I225 does not actually support LPLU, this function
1115  * simply enables/disables 1G and 2.5G speeds in D0.
1116  */
1117 int
1118 igc_set_d0_lplu_state_i225(struct igc_hw *hw, bool active)
1119 {
1120 	uint32_t data;
1121 
1122 	DEBUGFUNC("igc_set_d0_lplu_state_i225");
1123 
1124 	data = IGC_READ_REG(hw, IGC_I225_PHPM);
1125 
1126 	if (active) {
1127 		data |= IGC_I225_PHPM_DIS_1000;
1128 		data |= IGC_I225_PHPM_DIS_2500;
1129 	} else {
1130 		data &= ~IGC_I225_PHPM_DIS_1000;
1131 		data &= ~IGC_I225_PHPM_DIS_2500;
1132 	}
1133 
1134 	IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1135 	return IGC_SUCCESS;
1136 }
1137 
1138 /*
1139  * igc_set_d3_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D3 state
1140  * @hw: pointer to the HW structure
1141  * @active: true to enable LPLU, false to disable
1142  *
1143  * Note: since I225 does not actually support LPLU, this function
1144  * simply enables/disables 100M, 1G and 2.5G speeds in D3.
1145  */
1146 int
1147 igc_set_d3_lplu_state_i225(struct igc_hw *hw, bool active)
1148 {
1149 	uint32_t data;
1150 
1151 	DEBUGFUNC("igc_set_d3_lplu_state_i225");
1152 
1153 	data = IGC_READ_REG(hw, IGC_I225_PHPM);
1154 
1155 	if (active) {
1156 		data |= IGC_I225_PHPM_DIS_100_D3;
1157 		data |= IGC_I225_PHPM_DIS_1000_D3;
1158 		data |= IGC_I225_PHPM_DIS_2500_D3;
1159 	} else {
1160 		data &= ~IGC_I225_PHPM_DIS_100_D3;
1161 		data &= ~IGC_I225_PHPM_DIS_1000_D3;
1162 		data &= ~IGC_I225_PHPM_DIS_2500_D3;
1163 	}
1164 
1165 	IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1166 	return IGC_SUCCESS;
1167 }
1168 
1169 /**
1170  *  igc_set_eee_i225 - Enable/disable EEE support
1171  *  @hw: pointer to the HW structure
1172  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
1173  *  @adv1G: boolean flag enabling 1G EEE advertisement
1174  *  @adv100M: boolean flag enabling 100M EEE advertisement
1175  *
1176  *  Enable/disable EEE based on setting in dev_spec structure.
1177  *
1178  **/
1179 int
1180 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
1181     bool adv100M)
1182 {
1183 	uint32_t ipcnfg, eeer;
1184 
1185 	DEBUGFUNC("igc_set_eee_i225");
1186 
1187 	if (hw->mac.type != igc_i225 ||
1188 	    hw->phy.media_type != igc_media_type_copper)
1189 		goto out;
1190 	ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
1191 	eeer = IGC_READ_REG(hw, IGC_EEER);
1192 
1193 	/* enable or disable per user setting */
1194 	if (!(hw->dev_spec._i225.eee_disable)) {
1195 		uint32_t eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
1196 
1197 		if (adv100M)
1198 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
1199 		else
1200 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
1201 
1202 		if (adv1G)
1203 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
1204 		else
1205 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
1206 
1207 		if (adv2p5G)
1208 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
1209 		else
1210 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
1211 
1212 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1213 			IGC_EEER_LPI_FC);
1214 
1215 		/* This bit should not be set in normal operation. */
1216 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
1217 			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
1218 	} else {
1219 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
1220 			IGC_IPCNFG_EEE_100M_AN);
1221 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1222 			IGC_EEER_LPI_FC);
1223 	}
1224 	IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
1225 	IGC_WRITE_REG(hw, IGC_EEER, eeer);
1226 	IGC_READ_REG(hw, IGC_IPCNFG);
1227 	IGC_READ_REG(hw, IGC_EEER);
1228 out:
1229 
1230 	return IGC_SUCCESS;
1231 }
1232