xref: /openbsd-src/sys/dev/pci/igc_i225.c (revision 5a38ef86d0b61900239c7913d24a05e7b88a58f0)
1 /*	$OpenBSD: igc_i225.c,v 1.1 2021/10/31 14:52:57 patrick Exp $	*/
2 /*-
3  * Copyright 2021 Intel Corp
4  * Copyright 2021 Rubicon Communications, LLC (Netgate)
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <dev/pci/igc_api.h>
9 
10 int	igc_init_nvm_params_i225(struct igc_hw *);
11 int	igc_init_mac_params_i225(struct igc_hw *);
12 int	igc_init_phy_params_i225(struct igc_hw *);
13 int	igc_reset_hw_i225(struct igc_hw *);
14 int	igc_acquire_nvm_i225(struct igc_hw *);
15 void	igc_release_nvm_i225(struct igc_hw *);
16 int	igc_get_hw_semaphore_i225(struct igc_hw *);
17 int	__igc_write_nvm_srwr(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
18 int	igc_pool_flash_update_done_i225(struct igc_hw *);
19 
20 /**
21  *  igc_init_nvm_params_i225 - Init NVM func ptrs.
22  *  @hw: pointer to the HW structure
23  **/
24 int
25 igc_init_nvm_params_i225(struct igc_hw *hw)
26 {
27 	struct igc_nvm_info *nvm = &hw->nvm;
28 	uint32_t eecd = IGC_READ_REG(hw, IGC_EECD);
29 	uint16_t size;
30 
31 	DEBUGFUNC("igc_init_nvm_params_i225");
32 
33 	size = (uint16_t)((eecd & IGC_EECD_SIZE_EX_MASK) >>
34 	    IGC_EECD_SIZE_EX_SHIFT);
35 	/*
36 	 * Added to a constant, "size" becomes the left-shift value
37 	 * for setting word_size.
38 	 */
39 	size += NVM_WORD_SIZE_BASE_SHIFT;
40 
41 	/* Just in case size is out of range, cap it to the largest
42 	 * EEPROM size supported.
43 	 */
44 	if (size > 15)
45 		size = 15;
46 
47 	nvm->word_size = 1 << size;
48 	nvm->opcode_bits = 8;
49 	nvm->delay_usec = 1;
50 	nvm->type = igc_nvm_eeprom_spi;
51 
52 	nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
53 	nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ? 16 : 8;
54 
55 	if (nvm->word_size == (1 << 15))
56 		nvm->page_size = 128;
57 
58 	nvm->ops.acquire = igc_acquire_nvm_i225;
59 	nvm->ops.release = igc_release_nvm_i225;
60 	if (igc_get_flash_presence_i225(hw)) {
61 		hw->nvm.type = igc_nvm_flash_hw;
62 		nvm->ops.read = igc_read_nvm_srrd_i225;
63 		nvm->ops.write = igc_write_nvm_srwr_i225;
64 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
65 		nvm->ops.update = igc_update_nvm_checksum_i225;
66 	} else {
67 		hw->nvm.type = igc_nvm_invm;
68 		nvm->ops.write = igc_null_write_nvm;
69 		nvm->ops.validate = igc_null_ops_generic;
70 		nvm->ops.update = igc_null_ops_generic;
71 	}
72 
73 	return IGC_SUCCESS;
74 }
75 
76 /**
77  *  igc_init_mac_params_i225 - Init MAC func ptrs.
78  *  @hw: pointer to the HW structure
79  **/
80 int
81 igc_init_mac_params_i225(struct igc_hw *hw)
82 {
83 	struct igc_mac_info *mac = &hw->mac;
84 	struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
85 
86 	DEBUGFUNC("igc_init_mac_params_i225");
87 
88 	/* Initialize function pointer */
89 	igc_init_mac_ops_generic(hw);
90 
91 	/* Set media type */
92 	hw->phy.media_type = igc_media_type_copper;
93 	/* Set mta register count */
94 	mac->mta_reg_count = 128;
95 	/* Set rar entry count */
96 	mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
97 
98 	/* reset */
99 	mac->ops.reset_hw = igc_reset_hw_i225;
100 	/* hw initialization */
101 	mac->ops.init_hw = igc_init_hw_i225;
102 	/* link setup */
103 	mac->ops.setup_link = igc_setup_link_generic;
104 	/* check for link */
105 	mac->ops.check_for_link = igc_check_for_link_i225;
106 	/* link info */
107 	mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
108 	/* acquire SW_FW sync */
109 	mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
110 	/* release SW_FW sync */
111 	mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
112 
113 	/* Allow a single clear of the SW semaphore on I225 */
114 	dev_spec->clear_semaphore_once = true;
115 	mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
116 
117 	/* Set if part includes ASF firmware */
118 	mac->asf_firmware_present = true;
119 
120 	/* multicast address update */
121 	mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
122 
123 	mac->ops.write_vfta = igc_write_vfta_generic;
124 
125 	return IGC_SUCCESS;
126 }
127 
128 /**
129  *  igc_init_phy_params_i225 - Init PHY func ptrs.
130  *  @hw: pointer to the HW structure
131  **/
132 int
133 igc_init_phy_params_i225(struct igc_hw *hw)
134 {
135 	struct igc_phy_info *phy = &hw->phy;
136 	uint32_t ctrl_ext;
137 	int ret_val = IGC_SUCCESS;
138 
139 	DEBUGFUNC("igc_init_phy_params_i225");
140 
141 	if (hw->phy.media_type != igc_media_type_copper) {
142 		phy->type = igc_phy_none;
143 		goto out;
144 	}
145 
146 	phy->ops.power_up = igc_power_up_phy_copper;
147 	phy->ops.power_down = igc_power_down_phy_copper_base;
148 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
149 	phy->reset_delay_us = 100;
150 	phy->ops.acquire = igc_acquire_phy_base;
151 	phy->ops.check_reset_block = igc_check_reset_block_generic;
152 	phy->ops.commit	= igc_phy_sw_reset_generic;
153 	phy->ops.release = igc_release_phy_base;
154 
155 	ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
156 
157 	/* Make sure the PHY is in a good state. Several people have reported
158 	 * firmware leaving the PHY's page select register set to something
159 	 * other than the default of zero, which causes the PHY ID read to
160 	 * access something other than the intended register.
161 	 */
162 	ret_val = hw->phy.ops.reset(hw);
163 	if (ret_val)
164 		goto out;
165 
166 	IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext);
167 	phy->ops.read_reg = igc_read_phy_reg_gpy;
168 	phy->ops.write_reg = igc_write_phy_reg_gpy;
169 
170 	ret_val = igc_get_phy_id(hw);
171 	/* Verify phy id and set remaining function pointers */
172 	switch (phy->id) {
173 	case I225_I_PHY_ID:
174 		phy->type = igc_phy_i225;
175 		phy->ops.set_d0_lplu_state = igc_set_d0_lplu_state_i225;
176 		phy->ops.set_d3_lplu_state = igc_set_d3_lplu_state_i225;
177 		/* TODO - complete with GPY PHY information */
178 		break;
179 	default:
180 		ret_val = -IGC_ERR_PHY;
181 		goto out;
182 	}
183 
184 out:
185 	return ret_val;
186 }
187 
188 /**
189  *  igc_reset_hw_i225 - Reset hardware
190  *  @hw: pointer to the HW structure
191  *
192  *  This resets the hardware into a known state.
193  **/
194 int
195 igc_reset_hw_i225(struct igc_hw *hw)
196 {
197 	uint32_t ctrl;
198 	int ret_val;
199 
200 	DEBUGFUNC("igc_reset_hw_i225");
201 
202 	/*
203 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
204 	 * on the last TLP read/write transaction when MAC is reset.
205 	 */
206 	ret_val = igc_disable_pcie_master_generic(hw);
207 	if (ret_val)
208 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
209 
210 	DEBUGOUT("Masking off all interrupts\n");
211 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
212 
213 	IGC_WRITE_REG(hw, IGC_RCTL, 0);
214 	IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
215 	IGC_WRITE_FLUSH(hw);
216 
217 	msec_delay(10);
218 
219 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
220 
221 	DEBUGOUT("Issuing a global reset to MAC\n");
222 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST);
223 
224 	ret_val = igc_get_auto_rd_done_generic(hw);
225 	if (ret_val) {
226 		/*
227 		 * When auto config read does not complete, do not
228 		 * return with an error. This can happen in situations
229 		 * where there is no eeprom and prevents getting link.
230 		 */
231 		DEBUGOUT("Auto Read Done did not complete\n");
232 	}
233 
234 	/* Clear any pending interrupt events. */
235 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
236 	IGC_READ_REG(hw, IGC_ICR);
237 
238 	/* Install any alternate MAC address into RAR0 */
239 	ret_val = igc_check_alt_mac_addr_generic(hw);
240 
241 	return ret_val;
242 }
243 
244 /* igc_acquire_nvm_i225 - Request for access to EEPROM
245  * @hw: pointer to the HW structure
246  *
247  * Acquire the necessary semaphores for exclusive access to the EEPROM.
248  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
249  * Return successful if access grant bit set, else clear the request for
250  * EEPROM access and return -IGC_ERR_NVM (-1).
251  */
252 int
253 igc_acquire_nvm_i225(struct igc_hw *hw)
254 {
255 	int ret_val;
256 
257 	DEBUGFUNC("igc_acquire_nvm_i225");
258 
259 	ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
260 
261 	return ret_val;
262 }
263 
264 /* igc_release_nvm_i225 - Release exclusive access to EEPROM
265  * @hw: pointer to the HW structure
266  *
267  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
268  * then release the semaphores acquired.
269  */
270 void
271 igc_release_nvm_i225(struct igc_hw *hw)
272 {
273 	DEBUGFUNC("igc_release_nvm_i225");
274 
275 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
276 }
277 
278 /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
279  * @hw: pointer to the HW structure
280  * @mask: specifies which semaphore to acquire
281  *
282  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
283  * will also specify which port we're acquiring the lock for.
284  */
285 int
286 igc_acquire_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
287 {
288 	uint32_t swfw_sync;
289 	uint32_t swmask = mask;
290 	uint32_t fwmask = mask << 16;
291 	int ret_val = IGC_SUCCESS;
292 	int i = 0, timeout = 200;	/* FIXME: find real value to use here */
293 
294 	DEBUGFUNC("igc_acquire_swfw_sync_i225");
295 
296 	while (i < timeout) {
297 		if (igc_get_hw_semaphore_i225(hw)) {
298 			ret_val = -IGC_ERR_SWFW_SYNC;
299 			goto out;
300 		}
301 
302 		swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
303 		if (!(swfw_sync & (fwmask | swmask)))
304 			break;
305 
306 		/* Firmware currently using resource (fwmask)
307 		 * or other software thread using resource (swmask)
308 		 */
309 		igc_put_hw_semaphore_generic(hw);
310 		msec_delay(5);
311 		i++;
312 	}
313 
314 	if (i == timeout) {
315 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
316 		ret_val = -IGC_ERR_SWFW_SYNC;
317 		goto out;
318 	}
319 
320 	swfw_sync |= swmask;
321 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
322 
323 	igc_put_hw_semaphore_generic(hw);
324 
325 out:
326 	return ret_val;
327 }
328 
329 /* igc_release_swfw_sync_i225 - Release SW/FW semaphore
330  * @hw: pointer to the HW structure
331  * @mask: specifies which semaphore to acquire
332  *
333  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
334  * will also specify which port we're releasing the lock for.
335  */
336 void
337 igc_release_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
338 {
339 	uint32_t swfw_sync;
340 
341 	DEBUGFUNC("igc_release_swfw_sync_i225");
342 
343 	while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
344 		; /* Empty */
345 
346 	swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
347 	swfw_sync &= ~mask;
348 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
349 
350 	igc_put_hw_semaphore_generic(hw);
351 }
352 
353 /*
354  * igc_setup_copper_link_i225 - Configure copper link settings
355  * @hw: pointer to the HW structure
356  *
357  * Configures the link for auto-neg or forced speed and duplex.  Then we check
358  * for link, once link is established calls to configure collision distance
359  * and flow control are called.
360  */
361 int
362 igc_setup_copper_link_i225(struct igc_hw *hw)
363 {
364 	uint32_t ctrl, phpm_reg;
365 	int ret_val;
366 
367 	DEBUGFUNC("igc_setup_copper_link_i225");
368 
369 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
370 	ctrl |= IGC_CTRL_SLU;
371 	ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
372 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
373 
374 	phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
375 	phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
376 	IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
377 
378 	ret_val = igc_setup_copper_link_generic(hw);
379 
380 	return ret_val;
381 }
382 
383 /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
384  * @hw: pointer to the HW structure
385  *
386  * Acquire the HW semaphore to access the PHY or NVM
387  */
388 int
389 igc_get_hw_semaphore_i225(struct igc_hw *hw)
390 {
391 	uint32_t swsm;
392 	int timeout = hw->nvm.word_size + 1;
393 	int i = 0;
394 
395 	DEBUGFUNC("igc_get_hw_semaphore_i225");
396 
397 	/* Get the SW semaphore */
398 	while (i < timeout) {
399 		swsm = IGC_READ_REG(hw, IGC_SWSM);
400 		if (!(swsm & IGC_SWSM_SMBI))
401 			break;
402 
403 		DELAY(50);
404 		i++;
405 	}
406 
407 	if (i == timeout) {
408 		/* In rare circumstances, the SW semaphore may already be held
409 		 * unintentionally. Clear the semaphore once before giving up.
410 		 */
411 		if (hw->dev_spec._i225.clear_semaphore_once) {
412 			hw->dev_spec._i225.clear_semaphore_once = false;
413 			igc_put_hw_semaphore_generic(hw);
414 			for (i = 0; i < timeout; i++) {
415 				swsm = IGC_READ_REG(hw, IGC_SWSM);
416 				if (!(swsm & IGC_SWSM_SMBI))
417 					break;
418 
419 				DELAY(50);
420 			}
421 		}
422 
423 		/* If we do not have the semaphore here, we have to give up. */
424 		if (i == timeout) {
425 			DEBUGOUT("Driver can't access device -\n");
426 			DEBUGOUT("SMBI bit is set.\n");
427 			return -IGC_ERR_NVM;
428 		}
429 	}
430 
431 	/* Get the FW semaphore. */
432 	for (i = 0; i < timeout; i++) {
433 		swsm = IGC_READ_REG(hw, IGC_SWSM);
434 		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
435 
436 		/* Semaphore acquired if bit latched */
437 		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
438 			break;
439 
440 		DELAY(50);
441 	}
442 
443 	if (i == timeout) {
444 		/* Release semaphores */
445 		igc_put_hw_semaphore_generic(hw);
446 		DEBUGOUT("Driver can't access the NVM\n");
447 		return -IGC_ERR_NVM;
448 	}
449 
450 	return IGC_SUCCESS;
451 }
452 
453 /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
454  * @hw: pointer to the HW structure
455  * @offset: offset of word in the Shadow Ram to read
456  * @words: number of words to read
457  * @data: word read from the Shadow Ram
458  *
459  * Reads a 16 bit word from the Shadow Ram using the EERD register.
460  * Uses necessary synchronization semaphores.
461  */
462 int
463 igc_read_nvm_srrd_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
464     uint16_t *data)
465 {
466 	uint16_t i, count;
467 	int status = IGC_SUCCESS;
468 
469 	DEBUGFUNC("igc_read_nvm_srrd_i225");
470 
471 	/* We cannot hold synchronization semaphores for too long,
472 	 * because of forceful takeover procedure. However it is more efficient
473 	 * to read in bursts than synchronizing access for each word.
474 	 */
475 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
476 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
477 		    IGC_EERD_EEWR_MAX_COUNT : (words - i);
478 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
479 			status = igc_read_nvm_eerd(hw, offset, count, data + i);
480 			hw->nvm.ops.release(hw);
481 		} else {
482 			status = IGC_ERR_SWFW_SYNC;
483 		}
484 
485 		if (status != IGC_SUCCESS)
486 			break;
487 	}
488 
489 	return status;
490 }
491 
492 /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
493  * @hw: pointer to the HW structure
494  * @offset: offset within the Shadow RAM to be written to
495  * @words: number of words to write
496  * @data: 16 bit word(s) to be written to the Shadow RAM
497  *
498  * Writes data to Shadow RAM at offset using EEWR register.
499  *
500  * If igc_update_nvm_checksum is not called after this function , the
501  * data will not be committed to FLASH and also Shadow RAM will most likely
502  * contain an invalid checksum.
503  *
504  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
505  * partially written.
506  */
507 int
508 igc_write_nvm_srwr_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
509     uint16_t *data)
510 {
511 	uint16_t i, count;
512 	int status = IGC_SUCCESS;
513 
514 	DEBUGFUNC("igc_write_nvm_srwr_i225");
515 
516 	/* We cannot hold synchronization semaphores for too long,
517 	 * because of forceful takeover procedure. However it is more efficient
518 	 * to write in bursts than synchronizing access for each word.
519 	 */
520 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
521 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
522 		    IGC_EERD_EEWR_MAX_COUNT : (words - i);
523 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
524 			status = __igc_write_nvm_srwr(hw, offset, count,
525 			    data + i);
526 			hw->nvm.ops.release(hw);
527 		} else
528 			status = IGC_ERR_SWFW_SYNC;
529 
530 		if (status != IGC_SUCCESS)
531 			break;
532 	}
533 
534 	return status;
535 }
536 
537 /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
538  * @hw: pointer to the HW structure
539  * @offset: offset within the Shadow Ram to be written to
540  * @words: number of words to write
541  * @data: 16 bit word(s) to be written to the Shadow Ram
542  *
543  * Writes data to Shadow Ram at offset using EEWR register.
544  *
545  * If igc_update_nvm_checksum is not called after this function , the
546  * Shadow Ram will most likely contain an invalid checksum.
547  */
548 int
549 __igc_write_nvm_srwr(struct igc_hw *hw, uint16_t offset, uint16_t words,
550     uint16_t *data)
551 {
552 	struct igc_nvm_info *nvm = &hw->nvm;
553 	uint32_t i, k, eewr = 0;
554 	uint32_t attempts = 100000;
555 	int ret_val = IGC_SUCCESS;
556 
557 	DEBUGFUNC("__igc_write_nvm_srwr");
558 
559 	/* A check for invalid values:  offset too large, too many words,
560 	 * too many words for the offset, and not enough words.
561 	 */
562 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
563 	    (words == 0)) {
564 		DEBUGOUT("nvm parameter(s) out of bounds\n");
565 		ret_val = -IGC_ERR_NVM;
566 		goto out;
567 	}
568 
569 	for (i = 0; i < words; i++) {
570 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
571 		    (data[i] << IGC_NVM_RW_REG_DATA) | IGC_NVM_RW_REG_START;
572 
573 		IGC_WRITE_REG(hw, IGC_SRWR, eewr);
574 
575 		for (k = 0; k < attempts; k++) {
576 			if (IGC_NVM_RW_REG_DONE & IGC_READ_REG(hw, IGC_SRWR)) {
577 				ret_val = IGC_SUCCESS;
578 				break;
579 			}
580 			DELAY(5);
581 		}
582 
583 		if (ret_val != IGC_SUCCESS) {
584 			DEBUGOUT("Shadow RAM write EEWR timed out\n");
585 			break;
586 		}
587 	}
588 
589 out:
590 	return ret_val;
591 }
592 
593 /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
594  * @hw: pointer to the HW structure
595  *
596  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
597  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
598  */
599 int
600 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
601 {
602 	int status = IGC_SUCCESS;
603 	int (*read_op_ptr)(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
604 
605 	DEBUGFUNC("igc_validate_nvm_checksum_i225");
606 
607 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
608 		/* Replace the read function with semaphore grabbing with
609 		 * the one that skips this for a while.
610 		 * We have semaphore taken already here.
611 		 */
612 		read_op_ptr = hw->nvm.ops.read;
613 		hw->nvm.ops.read = igc_read_nvm_eerd;
614 
615 		status = igc_validate_nvm_checksum_generic(hw);
616 
617 		/* Revert original read operation. */
618 		hw->nvm.ops.read = read_op_ptr;
619 
620 		hw->nvm.ops.release(hw);
621 	} else {
622 		status = IGC_ERR_SWFW_SYNC;
623 	}
624 
625 	return status;
626 }
627 
628 /* igc_update_nvm_checksum_i225 - Update EEPROM checksum
629  * @hw: pointer to the HW structure
630  *
631  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
632  * up to the checksum.  Then calculates the EEPROM checksum and writes the
633  * value to the EEPROM. Next commit EEPROM data onto the Flash.
634  */
635 int
636 igc_update_nvm_checksum_i225(struct igc_hw *hw)
637 {
638 	uint16_t checksum = 0;
639 	uint16_t i, nvm_data;
640 	int ret_val;
641 
642 	DEBUGFUNC("igc_update_nvm_checksum_i225");
643 
644 	/* Read the first word from the EEPROM. If this times out or fails, do
645 	 * not continue or we could be in for a very long wait while every
646 	 * EEPROM read fails
647 	 */
648 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
649 	if (ret_val != IGC_SUCCESS) {
650 		DEBUGOUT("EEPROM read failed\n");
651 		goto out;
652 	}
653 
654 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
655 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
656 		 * because we do not want to take the synchronization
657 		 * semaphores twice here.
658 		 */
659 
660 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
661 			ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
662 			if (ret_val) {
663 				hw->nvm.ops.release(hw);
664 				DEBUGOUT("NVM Read Error while updating\n");
665 				DEBUGOUT("checksum.\n");
666 				goto out;
667 			}
668 			checksum += nvm_data;
669 		}
670 		checksum = (uint16_t)NVM_SUM - checksum;
671 		ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
672 		    &checksum);
673 		if (ret_val != IGC_SUCCESS) {
674 			hw->nvm.ops.release(hw);
675 			DEBUGOUT("NVM Write Error while updating checksum.\n");
676 			goto out;
677 		}
678 
679 		hw->nvm.ops.release(hw);
680 
681 		ret_val = igc_update_flash_i225(hw);
682 	} else {
683 		ret_val = IGC_ERR_SWFW_SYNC;
684 	}
685 out:
686 	return ret_val;
687 }
688 
689 /* igc_get_flash_presence_i225 - Check if flash device is detected.
690  * @hw: pointer to the HW structure
691  */
692 bool
693 igc_get_flash_presence_i225(struct igc_hw *hw)
694 {
695 	uint32_t eec = 0;
696 	bool ret_val = false;
697 
698 	DEBUGFUNC("igc_get_flash_presence_i225");
699 
700 	eec = IGC_READ_REG(hw, IGC_EECD);
701 
702 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
703 		ret_val = true;
704 
705 	return ret_val;
706 }
707 
708 /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
709  * Counter in FLSWCNT register.
710  *
711  * @hw: pointer to the HW structure
712  * @burst_counter: size in bytes of the Flash burst to read or write
713  */
714 int
715 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, uint32_t burst_counter)
716 {
717 	int ret_val = IGC_SUCCESS;
718 
719 	DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
720 
721 	/* Validate input data */
722 	if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
723 		/* Write FLSWCNT - burst counter */
724 		IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
725 	} else {
726 		ret_val = IGC_ERR_INVALID_ARGUMENT;
727 	}
728 
729 	return ret_val;
730 }
731 
732 
733 /* igc_write_erase_flash_command_i225 - write/erase to a sector
734  * region on a given address.
735  *
736  * @hw: pointer to the HW structure
737  * @opcode: opcode to be used for the write command
738  * @address: the offset to write into the FLASH image
739  */
740 int
741 igc_write_erase_flash_command_i225(struct igc_hw *hw, uint32_t opcode,
742     uint32_t address)
743 {
744 	uint32_t flswctl = 0;
745 	int timeout = IGC_NVM_GRANT_ATTEMPTS;
746 	int ret_val = IGC_SUCCESS;
747 
748 	DEBUGFUNC("igc_write_erase_flash_command_i225");
749 
750 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
751 	/* Polling done bit on FLSWCTL register */
752 	while (timeout) {
753 		if (flswctl & IGC_FLSWCTL_DONE)
754 			break;
755 		DELAY(5);
756 		flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
757 		timeout--;
758 	}
759 
760 	if (!timeout) {
761 		DEBUGOUT("Flash transaction was not done\n");
762 		return -IGC_ERR_NVM;
763 	}
764 
765 	/* Build and issue command on FLSWCTL register */
766 	flswctl = address | opcode;
767 	IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
768 
769 	/* Check if issued command is valid on FLSWCTL register */
770 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
771 	if (!(flswctl & IGC_FLSWCTL_CMDV)) {
772 		DEBUGOUT("Write flash command failed\n");
773 		ret_val = IGC_ERR_INVALID_ARGUMENT;
774 	}
775 
776 	return ret_val;
777 }
778 
779 /* igc_update_flash_i225 - Commit EEPROM to the flash
780  * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
781  * register makes the FW load the internal shadow RAM into the flash.
782  * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
783  * then FW is not active so the SW is responsible shadow RAM dump.
784  *
785  * @hw: pointer to the HW structure
786  */
787 int
788 igc_update_flash_i225(struct igc_hw *hw)
789 {
790 	uint32_t block_sw_protect = 1;
791 	uint32_t i, flup, fw_valid_bit;
792 	uint16_t current_offset;
793 	uint16_t base_address = 0x0;
794 	uint16_t current_offset_data = 0;
795 	int ret_val = 0;
796 
797 	DEBUGFUNC("igc_update_flash_i225");
798 
799 	block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
800 	    IGC_FLSECU_BLK_SW_ACCESS_I225;
801 
802 	fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) & IGC_FWSM_FW_VALID_I225;
803 	if (fw_valid_bit) {
804 		ret_val = igc_pool_flash_update_done_i225(hw);
805 		if (ret_val == -IGC_ERR_NVM) {
806 			DEBUGOUT("Flash update time out\n");
807 			goto out;
808 		}
809 
810 		flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
811 		IGC_WRITE_REG(hw, IGC_EECD, flup);
812 
813 		ret_val = igc_pool_flash_update_done_i225(hw);
814 		if (ret_val == IGC_SUCCESS)
815 			DEBUGOUT("Flash update complete\n");
816 		else
817 			DEBUGOUT("Flash update time out\n");
818 	} else if (!block_sw_protect) {
819 		/* FW is not active and security protection is disabled.
820 		 * therefore, SW is in charge of shadow RAM dump.
821 		 * Check which sector is valid. if sector 0 is valid,
822 		 * base address remains 0x0. otherwise, sector 1 is
823 		 * valid and it's base address is 0x1000
824 		 */
825 		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
826 			base_address = 0x1000;
827 
828 		/* Valid sector erase */
829 		ret_val = igc_write_erase_flash_command_i225(hw,
830 		    IGC_I225_ERASE_CMD_OPCODE, base_address);
831 		if (!ret_val) {
832 			DEBUGOUT("Sector erase failed\n");
833 			goto out;
834 		}
835 
836 		current_offset = base_address;
837 
838 		/* Write */
839 		for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
840 			/* Set burst write length */
841 			ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
842 			    0x2);
843 			if (ret_val != IGC_SUCCESS)
844 				break;
845 
846 			/* Set address and opcode */
847 			ret_val = igc_write_erase_flash_command_i225(hw,
848 			    IGC_I225_WRITE_CMD_OPCODE, 2 * current_offset);
849 			if (ret_val != IGC_SUCCESS)
850 				break;
851 
852 			ret_val = igc_read_nvm_eerd(hw, current_offset, 1,
853 			    &current_offset_data);
854 			if (ret_val) {
855 				DEBUGOUT("Failed to read from EEPROM\n");
856 				goto out;
857 			}
858 
859 			/* Write CurrentOffseData to FLSWDATA register */
860 			IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
861 			    current_offset_data);
862 			current_offset++;
863 
864 			/* Wait till operation has finished */
865 			ret_val = igc_poll_eerd_eewr_done(hw,
866 			    IGC_NVM_POLL_READ);
867 			if (ret_val)
868 				break;
869 
870 			DELAY(1000);
871 		}
872 	}
873 out:
874 	return ret_val;
875 }
876 
877 /* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
878  * @hw: pointer to the HW structure
879  */
880 int
881 igc_pool_flash_update_done_i225(struct igc_hw *hw)
882 {
883 	uint32_t i, reg;
884 	int ret_val = -IGC_ERR_NVM;
885 
886 	DEBUGFUNC("igc_pool_flash_update_done_i225");
887 
888 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
889 		reg = IGC_READ_REG(hw, IGC_EECD);
890 		if (reg & IGC_EECD_FLUDONE_I225) {
891 			ret_val = IGC_SUCCESS;
892 			break;
893 		}
894 		DELAY(5);
895 	}
896 
897 	return ret_val;
898 }
899 
900 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
901  * @hw: pointer to the HW structure
902  * @link: bool indicating link status
903  *
904  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
905  * settings, otherwise specify that there is no LTR requirement.
906  */
907 int
908 igc_set_ltr_i225(struct igc_hw *hw, bool link)
909 {
910 	uint16_t speed, duplex;
911 	uint32_t tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
912 	int size;
913 
914 	DEBUGFUNC("igc_set_ltr_i225");
915 
916 	/* If we do not have link, LTR thresholds are zero. */
917 	if (link) {
918 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
919 
920 		/* Check if using copper interface with EEE enabled or if the
921 		 * link speed is 10 Mbps.
922 		 */
923 		if ((hw->phy.media_type == igc_media_type_copper) &&
924 		    !(hw->dev_spec._i225.eee_disable) &&
925 		     (speed != SPEED_10)) {
926 			/* EEE enabled, so send LTRMAX threshold. */
927 			ltrc = IGC_READ_REG(hw, IGC_LTRC) | IGC_LTRC_EEEMS_EN;
928 			IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
929 
930 			/* Calculate tw_system (nsec). */
931 			if (speed == SPEED_100) {
932 				tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
933 				    IGC_TW_SYSTEM_100_MASK) >>
934 				    IGC_TW_SYSTEM_100_SHIFT) * 500;
935 			} else {
936 				tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
937 				    IGC_TW_SYSTEM_1000_MASK) * 500;
938 				}
939 		} else {
940 			tw_system = 0;
941 			}
942 
943 		/* Get the Rx packet buffer size. */
944 		size = IGC_READ_REG(hw, IGC_RXPBS) & IGC_RXPBS_SIZE_I225_MASK;
945 
946 		/* Calculations vary based on DMAC settings. */
947 		if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
948 			size -= (IGC_READ_REG(hw, IGC_DMACR) &
949 			    IGC_DMACR_DMACTHR_MASK) >> IGC_DMACR_DMACTHR_SHIFT;
950 			/* Convert size to bits. */
951 			size *= 1024 * 8;
952 		} else {
953 			/* Convert size to bytes, subtract the MTU, and then
954 			 * convert the size to bits.
955 			 */
956 			size *= 1024;
957 			size -= hw->dev_spec._i225.mtu;
958 			size *= 8;
959 		}
960 
961 		if (size < 0) {
962 			DEBUGOUT1("Invalid effective Rx buffer size %d\n",
963 			    size);
964 			return -IGC_ERR_CONFIG;
965 		}
966 
967 		/* Calculate the thresholds. Since speed is in Mbps, simplify
968 		 * the calculation by multiplying size/speed by 1000 for result
969 		 * to be in nsec before dividing by the scale in nsec. Set the
970 		 * scale such that the LTR threshold fits in the register.
971 		 */
972 		ltr_min = (1000 * size) / speed;
973 		ltr_max = ltr_min + tw_system;
974 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
975 		    IGC_LTRMINV_SCALE_32768;
976 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
977 		    IGC_LTRMAXV_SCALE_32768;
978 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
979 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
980 
981 		/* Only write the LTR thresholds if they differ from before. */
982 		ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
983 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
984 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
985 			    (scale_min << IGC_LTRMINV_SCALE_SHIFT);
986 			IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
987 		}
988 
989 		ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
990 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
991 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
992 			    (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
993 			IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
994 		}
995 	}
996 
997 	return IGC_SUCCESS;
998 }
999 
1000 /* igc_check_for_link_i225 - Check for link
1001  * @hw: pointer to the HW structure
1002  *
1003  * Checks to see of the link status of the hardware has changed.  If a
1004  * change in link status has been detected, then we read the PHY registers
1005  * to get the current speed/duplex if link exists.
1006  */
1007 int
1008 igc_check_for_link_i225(struct igc_hw *hw)
1009 {
1010 	struct igc_mac_info *mac = &hw->mac;
1011 	int ret_val;
1012 	bool link = false;
1013 
1014 	DEBUGFUNC("igc_check_for_link_i225");
1015 
1016 	/* We only want to go out to the PHY registers to see if
1017 	 * Auto-Neg has completed and/or if our link status has
1018 	 * changed.  The get_link_status flag is set upon receiving
1019 	 * a Link Status Change or Rx Sequence Error interrupt.
1020 	 */
1021 	if (!mac->get_link_status) {
1022 		ret_val = IGC_SUCCESS;
1023 		goto out;
1024 	}
1025 
1026 	/* First we want to see if the MII Status Register reports
1027 	 * link.  If so, then we want to get the current speed/duplex
1028 	 * of the PHY.
1029 	 */
1030 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1031 	if (ret_val)
1032 		goto out;
1033 
1034 	if (!link)
1035 		goto out; /* No link detected */
1036 
1037 	/* First we want to see if the MII Status Register reports
1038 	 * link.  If so, then we want to get the current speed/duplex
1039 	 * of the PHY.
1040 	 */
1041 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1042 	if (ret_val)
1043 		goto out;
1044 
1045 	if (!link)
1046 		goto out; /* No link detected */
1047 
1048 	mac->get_link_status = false;
1049 
1050 	/* Check if there was DownShift, must be checked
1051 	 * immediately after link-up
1052 	 */
1053 	igc_check_downshift_generic(hw);
1054 
1055 	/* If we are forcing speed/duplex, then we simply return since
1056 	 * we have already determined whether we have link or not.
1057 	 */
1058 	if (!mac->autoneg)
1059 		goto out;
1060 
1061 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1062 	 * of MAC speed/duplex configuration.  So we only need to
1063 	 * configure Collision Distance in the MAC.
1064 	 */
1065 	mac->ops.config_collision_dist(hw);
1066 
1067 	/* Configure Flow Control now that Auto-Neg has completed.
1068 	 * First, we need to restore the desired flow control
1069 	 * settings because we may have had to re-autoneg with a
1070 	 * different link partner.
1071 	 */
1072 	ret_val = igc_config_fc_after_link_up_generic(hw);
1073 	if (ret_val)
1074 		DEBUGOUT("Error configuring flow control\n");
1075 out:
1076 	/* Now that we are aware of our link settings, we can set the LTR
1077 	 * thresholds.
1078 	 */
1079 	ret_val = igc_set_ltr_i225(hw, link);
1080 
1081 	return ret_val;
1082 }
1083 
1084 /* igc_init_function_pointers_i225 - Init func ptrs.
1085  * @hw: pointer to the HW structure
1086  *
1087  * Called to initialize all function pointers and parameters.
1088  */
1089 void
1090 igc_init_function_pointers_i225(struct igc_hw *hw)
1091 {
1092 	igc_init_mac_ops_generic(hw);
1093 	igc_init_phy_ops_generic(hw);
1094 	igc_init_nvm_ops_generic(hw);
1095 	hw->mac.ops.init_params = igc_init_mac_params_i225;
1096 	hw->nvm.ops.init_params = igc_init_nvm_params_i225;
1097 	hw->phy.ops.init_params = igc_init_phy_params_i225;
1098 }
1099 
1100 /* igc_init_hw_i225 - Init hw for I225
1101  * @hw: pointer to the HW structure
1102  *
1103  * Called to initialize hw for i225 hw family.
1104  */
1105 int
1106 igc_init_hw_i225(struct igc_hw *hw)
1107 {
1108 	int ret_val;
1109 
1110 	DEBUGFUNC("igc_init_hw_i225");
1111 
1112 	ret_val = igc_init_hw_base(hw);
1113 	return ret_val;
1114 }
1115 
1116 /*
1117  * igc_set_d0_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D0 state
1118  * @hw: pointer to the HW structure
1119  * @active: true to enable LPLU, false to disable
1120  *
1121  * Note: since I225 does not actually support LPLU, this function
1122  * simply enables/disables 1G and 2.5G speeds in D0.
1123  */
1124 int
1125 igc_set_d0_lplu_state_i225(struct igc_hw *hw, bool active)
1126 {
1127 	uint32_t data;
1128 
1129 	DEBUGFUNC("igc_set_d0_lplu_state_i225");
1130 
1131 	data = IGC_READ_REG(hw, IGC_I225_PHPM);
1132 
1133 	if (active) {
1134 		data |= IGC_I225_PHPM_DIS_1000;
1135 		data |= IGC_I225_PHPM_DIS_2500;
1136 	} else {
1137 		data &= ~IGC_I225_PHPM_DIS_1000;
1138 		data &= ~IGC_I225_PHPM_DIS_2500;
1139 	}
1140 
1141 	IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1142 	return IGC_SUCCESS;
1143 }
1144 
1145 /*
1146  * igc_set_d3_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D3 state
1147  * @hw: pointer to the HW structure
1148  * @active: true to enable LPLU, false to disable
1149  *
1150  * Note: since I225 does not actually support LPLU, this function
1151  * simply enables/disables 100M, 1G and 2.5G speeds in D3.
1152  */
1153 int
1154 igc_set_d3_lplu_state_i225(struct igc_hw *hw, bool active)
1155 {
1156 	uint32_t data;
1157 
1158 	DEBUGFUNC("igc_set_d3_lplu_state_i225");
1159 
1160 	data = IGC_READ_REG(hw, IGC_I225_PHPM);
1161 
1162 	if (active) {
1163 		data |= IGC_I225_PHPM_DIS_100_D3;
1164 		data |= IGC_I225_PHPM_DIS_1000_D3;
1165 		data |= IGC_I225_PHPM_DIS_2500_D3;
1166 	} else {
1167 		data &= ~IGC_I225_PHPM_DIS_100_D3;
1168 		data &= ~IGC_I225_PHPM_DIS_1000_D3;
1169 		data &= ~IGC_I225_PHPM_DIS_2500_D3;
1170 	}
1171 
1172 	IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1173 	return IGC_SUCCESS;
1174 }
1175 
1176 /**
1177  *  igc_set_eee_i225 - Enable/disable EEE support
1178  *  @hw: pointer to the HW structure
1179  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
1180  *  @adv1G: boolean flag enabling 1G EEE advertisement
1181  *  @adv100M: boolean flag enabling 100M EEE advertisement
1182  *
1183  *  Enable/disable EEE based on setting in dev_spec structure.
1184  *
1185  **/
1186 int
1187 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
1188     bool adv100M)
1189 {
1190 	uint32_t ipcnfg, eeer;
1191 
1192 	DEBUGFUNC("igc_set_eee_i225");
1193 
1194 	if (hw->mac.type != igc_i225 ||
1195 	    hw->phy.media_type != igc_media_type_copper)
1196 		goto out;
1197 	ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
1198 	eeer = IGC_READ_REG(hw, IGC_EEER);
1199 
1200 	/* enable or disable per user setting */
1201 	if (!(hw->dev_spec._i225.eee_disable)) {
1202 		uint32_t eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
1203 
1204 		if (adv100M)
1205 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
1206 		else
1207 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
1208 
1209 		if (adv1G)
1210 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
1211 		else
1212 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
1213 
1214 		if (adv2p5G)
1215 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
1216 		else
1217 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
1218 
1219 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1220 			IGC_EEER_LPI_FC);
1221 
1222 		/* This bit should not be set in normal operation. */
1223 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
1224 			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
1225 	} else {
1226 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
1227 			IGC_IPCNFG_EEE_100M_AN);
1228 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1229 			IGC_EEER_LPI_FC);
1230 	}
1231 	IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
1232 	IGC_WRITE_REG(hw, IGC_EEER, eeer);
1233 	IGC_READ_REG(hw, IGC_IPCNFG);
1234 	IGC_READ_REG(hw, IGC_EEER);
1235 out:
1236 
1237 	return IGC_SUCCESS;
1238 }
1239