1 /* $OpenBSD: if_wpi.c,v 1.144 2018/04/28 16:05:56 phessler Exp $ */ 2 3 /*- 4 * Copyright (c) 2006-2008 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 22 */ 23 24 #include "bpfilter.h" 25 26 #include <sys/param.h> 27 #include <sys/sockio.h> 28 #include <sys/mbuf.h> 29 #include <sys/kernel.h> 30 #include <sys/rwlock.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/conf.h> 35 #include <sys/device.h> 36 #include <sys/task.h> 37 #include <sys/endian.h> 38 39 #include <machine/bus.h> 40 #include <machine/intr.h> 41 42 #include <dev/pci/pcireg.h> 43 #include <dev/pci/pcivar.h> 44 #include <dev/pci/pcidevs.h> 45 46 #if NBPFILTER > 0 47 #include <net/bpf.h> 48 #endif 49 #include <net/if.h> 50 #include <net/if_dl.h> 51 #include <net/if_media.h> 52 53 #include <netinet/in.h> 54 #include <netinet/if_ether.h> 55 56 #include <net80211/ieee80211_var.h> 57 #include <net80211/ieee80211_amrr.h> 58 #include <net80211/ieee80211_radiotap.h> 59 60 #include <dev/pci/if_wpireg.h> 61 #include <dev/pci/if_wpivar.h> 62 63 static const struct pci_matchid wpi_devices[] = { 64 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 }, 65 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2 } 66 }; 67 68 int wpi_match(struct device *, void *, void *); 69 void wpi_attach(struct device *, struct device *, void *); 70 #if NBPFILTER > 0 71 void wpi_radiotap_attach(struct wpi_softc *); 72 #endif 73 int wpi_detach(struct device *, int); 74 int wpi_activate(struct device *, int); 75 void wpi_wakeup(struct wpi_softc *); 76 void wpi_init_task(void *); 77 int wpi_nic_lock(struct wpi_softc *); 78 int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 79 int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *, 80 void **, bus_size_t, bus_size_t); 81 void wpi_dma_contig_free(struct wpi_dma_info *); 82 int wpi_alloc_shared(struct wpi_softc *); 83 void wpi_free_shared(struct wpi_softc *); 84 int wpi_alloc_fwmem(struct wpi_softc *); 85 void wpi_free_fwmem(struct wpi_softc *); 86 int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 87 void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 88 void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 89 int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 90 int); 91 void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 92 void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 93 int wpi_read_eeprom(struct wpi_softc *); 94 void wpi_read_eeprom_channels(struct wpi_softc *, int); 95 void wpi_read_eeprom_group(struct wpi_softc *, int); 96 struct ieee80211_node *wpi_node_alloc(struct ieee80211com *); 97 void wpi_newassoc(struct ieee80211com *, struct ieee80211_node *, 98 int); 99 int wpi_media_change(struct ifnet *); 100 int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int); 101 void wpi_iter_func(void *, struct ieee80211_node *); 102 void wpi_calib_timeout(void *); 103 int wpi_ccmp_decap(struct wpi_softc *, struct mbuf *, 104 struct ieee80211_key *); 105 void wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *, 106 struct wpi_rx_data *); 107 void wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *); 108 void wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *); 109 void wpi_notif_intr(struct wpi_softc *); 110 void wpi_fatal_intr(struct wpi_softc *); 111 int wpi_intr(void *); 112 int wpi_tx(struct wpi_softc *, struct mbuf *, 113 struct ieee80211_node *); 114 void wpi_start(struct ifnet *); 115 void wpi_watchdog(struct ifnet *); 116 int wpi_ioctl(struct ifnet *, u_long, caddr_t); 117 int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 118 int wpi_mrr_setup(struct wpi_softc *); 119 void wpi_updateedca(struct ieee80211com *); 120 void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 121 int wpi_set_timing(struct wpi_softc *, struct ieee80211_node *); 122 void wpi_power_calibration(struct wpi_softc *); 123 int wpi_set_txpower(struct wpi_softc *, int); 124 int wpi_get_power_index(struct wpi_softc *, 125 struct wpi_power_group *, struct ieee80211_channel *, int); 126 int wpi_set_pslevel(struct wpi_softc *, int, int, int); 127 int wpi_config(struct wpi_softc *); 128 int wpi_scan(struct wpi_softc *, uint16_t); 129 int wpi_auth(struct wpi_softc *); 130 int wpi_run(struct wpi_softc *); 131 int wpi_set_key(struct ieee80211com *, struct ieee80211_node *, 132 struct ieee80211_key *); 133 void wpi_delete_key(struct ieee80211com *, struct ieee80211_node *, 134 struct ieee80211_key *); 135 int wpi_post_alive(struct wpi_softc *); 136 int wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int); 137 int wpi_load_firmware(struct wpi_softc *); 138 int wpi_read_firmware(struct wpi_softc *); 139 int wpi_clock_wait(struct wpi_softc *); 140 int wpi_apm_init(struct wpi_softc *); 141 void wpi_apm_stop_master(struct wpi_softc *); 142 void wpi_apm_stop(struct wpi_softc *); 143 void wpi_nic_config(struct wpi_softc *); 144 int wpi_hw_init(struct wpi_softc *); 145 void wpi_hw_stop(struct wpi_softc *); 146 int wpi_init(struct ifnet *); 147 void wpi_stop(struct ifnet *, int); 148 149 #ifdef WPI_DEBUG 150 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0) 151 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0) 152 int wpi_debug = 0; 153 #else 154 #define DPRINTF(x) 155 #define DPRINTFN(n, x) 156 #endif 157 158 struct cfdriver wpi_cd = { 159 NULL, "wpi", DV_IFNET 160 }; 161 162 struct cfattach wpi_ca = { 163 sizeof (struct wpi_softc), wpi_match, wpi_attach, wpi_detach, 164 wpi_activate 165 }; 166 167 int 168 wpi_match(struct device *parent, void *match, void *aux) 169 { 170 return pci_matchbyid((struct pci_attach_args *)aux, wpi_devices, 171 nitems(wpi_devices)); 172 } 173 174 void 175 wpi_attach(struct device *parent, struct device *self, void *aux) 176 { 177 struct wpi_softc *sc = (struct wpi_softc *)self; 178 struct ieee80211com *ic = &sc->sc_ic; 179 struct ifnet *ifp = &ic->ic_if; 180 struct pci_attach_args *pa = aux; 181 const char *intrstr; 182 pci_intr_handle_t ih; 183 pcireg_t memtype, reg; 184 int i, error; 185 186 sc->sc_pct = pa->pa_pc; 187 sc->sc_pcitag = pa->pa_tag; 188 sc->sc_dmat = pa->pa_dmat; 189 190 /* 191 * Get the offset of the PCI Express Capability Structure in PCI 192 * Configuration Space (the vendor driver hard-codes it as E0h.) 193 */ 194 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 195 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 196 if (error == 0) { 197 printf(": PCIe capability structure not found!\n"); 198 return; 199 } 200 201 /* Clear device-specific "PCI retry timeout" register (41h). */ 202 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 203 reg &= ~0xff00; 204 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg); 205 206 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WPI_PCI_BAR0); 207 error = pci_mapreg_map(pa, WPI_PCI_BAR0, memtype, 0, &sc->sc_st, 208 &sc->sc_sh, NULL, &sc->sc_sz, 0); 209 if (error != 0) { 210 printf(": can't map mem space\n"); 211 return; 212 } 213 214 /* Install interrupt handler. */ 215 if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) { 216 printf(": can't map interrupt\n"); 217 return; 218 } 219 intrstr = pci_intr_string(sc->sc_pct, ih); 220 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc, 221 sc->sc_dev.dv_xname); 222 if (sc->sc_ih == NULL) { 223 printf(": can't establish interrupt"); 224 if (intrstr != NULL) 225 printf(" at %s", intrstr); 226 printf("\n"); 227 return; 228 } 229 printf(": %s", intrstr); 230 231 /* Power ON adapter. */ 232 if ((error = wpi_apm_init(sc)) != 0) { 233 printf(": could not power ON adapter\n"); 234 return; 235 } 236 237 /* Read MAC address, channels, etc from EEPROM. */ 238 if ((error = wpi_read_eeprom(sc)) != 0) { 239 printf(": could not read EEPROM\n"); 240 return; 241 } 242 243 /* Allocate DMA memory for firmware transfers. */ 244 if ((error = wpi_alloc_fwmem(sc)) != 0) { 245 printf(": could not allocate memory for firmware\n"); 246 return; 247 } 248 249 /* Allocate shared area. */ 250 if ((error = wpi_alloc_shared(sc)) != 0) { 251 printf(": could not allocate shared area\n"); 252 goto fail1; 253 } 254 255 /* Allocate TX rings. */ 256 for (i = 0; i < WPI_NTXQUEUES; i++) { 257 if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 258 printf(": could not allocate TX ring %d\n", i); 259 goto fail2; 260 } 261 } 262 263 /* Allocate RX ring. */ 264 if ((error = wpi_alloc_rx_ring(sc, &sc->rxq)) != 0) { 265 printf(": could not allocate Rx ring\n"); 266 goto fail2; 267 } 268 269 /* Power OFF adapter. */ 270 wpi_apm_stop(sc); 271 /* Clear pending interrupts. */ 272 WPI_WRITE(sc, WPI_INT, 0xffffffff); 273 274 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 275 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 276 ic->ic_state = IEEE80211_S_INIT; 277 278 /* Set device capabilities. */ 279 ic->ic_caps = 280 IEEE80211_C_WEP | /* WEP */ 281 IEEE80211_C_RSN | /* WPA/RSN */ 282 IEEE80211_C_SCANALL | /* device scans all channels at once */ 283 IEEE80211_C_SCANALLBAND | /* driver scans all bands at once */ 284 IEEE80211_C_MONITOR | /* monitor mode supported */ 285 IEEE80211_C_SHSLOT | /* short slot time supported */ 286 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 287 IEEE80211_C_PMGT; /* power saving supported */ 288 289 /* Set supported rates. */ 290 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 291 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 292 if (sc->sc_flags & WPI_FLAG_HAS_5GHZ) { 293 ic->ic_sup_rates[IEEE80211_MODE_11A] = 294 ieee80211_std_rateset_11a; 295 } 296 297 /* IBSS channel undefined for now. */ 298 ic->ic_ibss_chan = &ic->ic_channels[0]; 299 300 ifp->if_softc = sc; 301 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 302 ifp->if_ioctl = wpi_ioctl; 303 ifp->if_start = wpi_start; 304 ifp->if_watchdog = wpi_watchdog; 305 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 306 307 if_attach(ifp); 308 ieee80211_ifattach(ifp); 309 ic->ic_node_alloc = wpi_node_alloc; 310 ic->ic_newassoc = wpi_newassoc; 311 ic->ic_updateedca = wpi_updateedca; 312 ic->ic_set_key = wpi_set_key; 313 ic->ic_delete_key = wpi_delete_key; 314 315 /* Override 802.11 state transition machine. */ 316 sc->sc_newstate = ic->ic_newstate; 317 ic->ic_newstate = wpi_newstate; 318 ieee80211_media_init(ifp, wpi_media_change, ieee80211_media_status); 319 320 sc->amrr.amrr_min_success_threshold = 1; 321 sc->amrr.amrr_max_success_threshold = 15; 322 323 #if NBPFILTER > 0 324 wpi_radiotap_attach(sc); 325 #endif 326 timeout_set(&sc->calib_to, wpi_calib_timeout, sc); 327 rw_init(&sc->sc_rwlock, "wpilock"); 328 task_set(&sc->init_task, wpi_init_task, sc); 329 return; 330 331 /* Free allocated memory if something failed during attachment. */ 332 fail2: while (--i >= 0) 333 wpi_free_tx_ring(sc, &sc->txq[i]); 334 wpi_free_shared(sc); 335 fail1: wpi_free_fwmem(sc); 336 } 337 338 #if NBPFILTER > 0 339 /* 340 * Attach the interface to 802.11 radiotap. 341 */ 342 void 343 wpi_radiotap_attach(struct wpi_softc *sc) 344 { 345 bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO, 346 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 347 348 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 349 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 350 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 351 352 sc->sc_txtap_len = sizeof sc->sc_txtapu; 353 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 354 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 355 } 356 #endif 357 358 int 359 wpi_detach(struct device *self, int flags) 360 { 361 struct wpi_softc *sc = (struct wpi_softc *)self; 362 struct ifnet *ifp = &sc->sc_ic.ic_if; 363 int qid; 364 365 timeout_del(&sc->calib_to); 366 task_del(systq, &sc->init_task); 367 368 /* Uninstall interrupt handler. */ 369 if (sc->sc_ih != NULL) 370 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 371 372 /* Free DMA resources. */ 373 wpi_free_rx_ring(sc, &sc->rxq); 374 for (qid = 0; qid < WPI_NTXQUEUES; qid++) 375 wpi_free_tx_ring(sc, &sc->txq[qid]); 376 wpi_free_shared(sc); 377 wpi_free_fwmem(sc); 378 379 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 380 381 ieee80211_ifdetach(ifp); 382 if_detach(ifp); 383 384 return 0; 385 } 386 387 int 388 wpi_activate(struct device *self, int act) 389 { 390 struct wpi_softc *sc = (struct wpi_softc *)self; 391 struct ifnet *ifp = &sc->sc_ic.ic_if; 392 393 switch (act) { 394 case DVACT_SUSPEND: 395 if (ifp->if_flags & IFF_RUNNING) 396 wpi_stop(ifp, 0); 397 break; 398 case DVACT_WAKEUP: 399 wpi_wakeup(sc); 400 break; 401 } 402 403 return 0; 404 } 405 406 void 407 wpi_wakeup(struct wpi_softc *sc) 408 { 409 pcireg_t reg; 410 411 /* Clear device-specific "PCI retry timeout" register (41h). */ 412 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 413 reg &= ~0xff00; 414 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg); 415 416 wpi_init_task(sc); 417 } 418 419 void 420 wpi_init_task(void *arg1) 421 { 422 struct wpi_softc *sc = arg1; 423 struct ifnet *ifp = &sc->sc_ic.ic_if; 424 int s; 425 426 rw_enter_write(&sc->sc_rwlock); 427 s = splnet(); 428 429 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP) 430 wpi_init(ifp); 431 432 splx(s); 433 rw_exit_write(&sc->sc_rwlock); 434 } 435 436 int 437 wpi_nic_lock(struct wpi_softc *sc) 438 { 439 int ntries; 440 441 /* Request exclusive access to NIC. */ 442 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 443 444 /* Spin until we actually get the lock. */ 445 for (ntries = 0; ntries < 1000; ntries++) { 446 if ((WPI_READ(sc, WPI_GP_CNTRL) & 447 (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) == 448 WPI_GP_CNTRL_MAC_ACCESS_ENA) 449 return 0; 450 DELAY(10); 451 } 452 return ETIMEDOUT; 453 } 454 455 static __inline void 456 wpi_nic_unlock(struct wpi_softc *sc) 457 { 458 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 459 } 460 461 static __inline uint32_t 462 wpi_prph_read(struct wpi_softc *sc, uint32_t addr) 463 { 464 WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr); 465 WPI_BARRIER_READ_WRITE(sc); 466 return WPI_READ(sc, WPI_PRPH_RDATA); 467 } 468 469 static __inline void 470 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data) 471 { 472 WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr); 473 WPI_BARRIER_WRITE(sc); 474 WPI_WRITE(sc, WPI_PRPH_WDATA, data); 475 } 476 477 static __inline void 478 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 479 { 480 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask); 481 } 482 483 static __inline void 484 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 485 { 486 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask); 487 } 488 489 static __inline void 490 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr, 491 const uint32_t *data, int count) 492 { 493 for (; count > 0; count--, data++, addr += 4) 494 wpi_prph_write(sc, addr, *data); 495 } 496 497 #ifdef WPI_DEBUG 498 499 static __inline uint32_t 500 wpi_mem_read(struct wpi_softc *sc, uint32_t addr) 501 { 502 WPI_WRITE(sc, WPI_MEM_RADDR, addr); 503 WPI_BARRIER_READ_WRITE(sc); 504 return WPI_READ(sc, WPI_MEM_RDATA); 505 } 506 507 static __inline void 508 wpi_mem_write(struct wpi_softc *sc, uint32_t addr, uint32_t data) 509 { 510 WPI_WRITE(sc, WPI_MEM_WADDR, addr); 511 WPI_BARRIER_WRITE(sc); 512 WPI_WRITE(sc, WPI_MEM_WDATA, data); 513 } 514 515 static __inline void 516 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data, 517 int count) 518 { 519 for (; count > 0; count--, addr += 4) 520 *data++ = wpi_mem_read(sc, addr); 521 } 522 523 #endif 524 525 int 526 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count) 527 { 528 uint8_t *out = data; 529 uint32_t val; 530 int error, ntries; 531 532 if ((error = wpi_nic_lock(sc)) != 0) 533 return error; 534 535 for (; count > 0; count -= 2, addr++) { 536 WPI_WRITE(sc, WPI_EEPROM, addr << 2); 537 WPI_CLRBITS(sc, WPI_EEPROM, WPI_EEPROM_CMD); 538 539 for (ntries = 0; ntries < 10; ntries++) { 540 val = WPI_READ(sc, WPI_EEPROM); 541 if (val & WPI_EEPROM_READ_VALID) 542 break; 543 DELAY(5); 544 } 545 if (ntries == 10) { 546 printf("%s: could not read EEPROM\n", 547 sc->sc_dev.dv_xname); 548 return ETIMEDOUT; 549 } 550 *out++ = val >> 16; 551 if (count > 1) 552 *out++ = val >> 24; 553 } 554 555 wpi_nic_unlock(sc); 556 return 0; 557 } 558 559 int 560 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap, 561 bus_size_t size, bus_size_t alignment) 562 { 563 int nsegs, error; 564 565 dma->tag = tag; 566 dma->size = size; 567 568 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 569 &dma->map); 570 if (error != 0) 571 goto fail; 572 573 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 574 BUS_DMA_NOWAIT | BUS_DMA_ZERO); 575 if (error != 0) 576 goto fail; 577 578 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 579 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 580 if (error != 0) 581 goto fail; 582 583 error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size, 584 BUS_DMA_NOWAIT); 585 if (error != 0) 586 goto fail; 587 588 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 589 590 dma->paddr = dma->map->dm_segs[0].ds_addr; 591 if (kvap != NULL) 592 *kvap = dma->vaddr; 593 594 return 0; 595 596 fail: wpi_dma_contig_free(dma); 597 return error; 598 } 599 600 void 601 wpi_dma_contig_free(struct wpi_dma_info *dma) 602 { 603 if (dma->map != NULL) { 604 if (dma->vaddr != NULL) { 605 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 606 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 607 bus_dmamap_unload(dma->tag, dma->map); 608 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 609 bus_dmamem_free(dma->tag, &dma->seg, 1); 610 dma->vaddr = NULL; 611 } 612 bus_dmamap_destroy(dma->tag, dma->map); 613 dma->map = NULL; 614 } 615 } 616 617 int 618 wpi_alloc_shared(struct wpi_softc *sc) 619 { 620 /* Shared buffer must be aligned on a 4KB boundary. */ 621 return wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma, 622 (void **)&sc->shared, sizeof (struct wpi_shared), 4096); 623 } 624 625 void 626 wpi_free_shared(struct wpi_softc *sc) 627 { 628 wpi_dma_contig_free(&sc->shared_dma); 629 } 630 631 int 632 wpi_alloc_fwmem(struct wpi_softc *sc) 633 { 634 /* Allocate enough contiguous space to store text and data. */ 635 return wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 636 WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16); 637 } 638 639 void 640 wpi_free_fwmem(struct wpi_softc *sc) 641 { 642 wpi_dma_contig_free(&sc->fw_dma); 643 } 644 645 int 646 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 647 { 648 bus_size_t size; 649 int i, error; 650 651 ring->cur = 0; 652 653 /* Allocate RX descriptors (16KB aligned.) */ 654 size = WPI_RX_RING_COUNT * sizeof (uint32_t); 655 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 656 (void **)&ring->desc, size, 16 * 1024); 657 if (error != 0) { 658 printf("%s: could not allocate RX ring DMA memory\n", 659 sc->sc_dev.dv_xname); 660 goto fail; 661 } 662 663 /* 664 * Allocate and map RX buffers. 665 */ 666 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 667 struct wpi_rx_data *data = &ring->data[i]; 668 669 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1, 670 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map); 671 if (error != 0) { 672 printf("%s: could not create RX buf DMA map\n", 673 sc->sc_dev.dv_xname); 674 goto fail; 675 } 676 677 data->m = MCLGETI(NULL, M_DONTWAIT, NULL, WPI_RBUF_SIZE); 678 if (data->m == NULL) { 679 printf("%s: could not allocate RX mbuf\n", 680 sc->sc_dev.dv_xname); 681 error = ENOBUFS; 682 goto fail; 683 } 684 685 error = bus_dmamap_load(sc->sc_dmat, data->map, 686 mtod(data->m, void *), WPI_RBUF_SIZE, NULL, 687 BUS_DMA_NOWAIT | BUS_DMA_READ); 688 if (error != 0) { 689 printf("%s: can't map mbuf (error %d)\n", 690 sc->sc_dev.dv_xname, error); 691 goto fail; 692 } 693 694 /* Set physical address of RX buffer. */ 695 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr); 696 } 697 698 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 699 BUS_DMASYNC_PREWRITE); 700 701 return 0; 702 703 fail: wpi_free_rx_ring(sc, ring); 704 return error; 705 } 706 707 void 708 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 709 { 710 int ntries; 711 712 if (wpi_nic_lock(sc) == 0) { 713 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0); 714 for (ntries = 0; ntries < 100; ntries++) { 715 if (WPI_READ(sc, WPI_FH_RX_STATUS) & 716 WPI_FH_RX_STATUS_IDLE) 717 break; 718 DELAY(10); 719 } 720 wpi_nic_unlock(sc); 721 } 722 ring->cur = 0; 723 } 724 725 void 726 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 727 { 728 int i; 729 730 wpi_dma_contig_free(&ring->desc_dma); 731 732 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 733 struct wpi_rx_data *data = &ring->data[i]; 734 735 if (data->m != NULL) { 736 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 737 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 738 bus_dmamap_unload(sc->sc_dmat, data->map); 739 m_freem(data->m); 740 } 741 if (data->map != NULL) 742 bus_dmamap_destroy(sc->sc_dmat, data->map); 743 } 744 } 745 746 int 747 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid) 748 { 749 bus_addr_t paddr; 750 bus_size_t size; 751 int i, error; 752 753 ring->qid = qid; 754 ring->queued = 0; 755 ring->cur = 0; 756 757 /* Allocate TX descriptors (16KB aligned.) */ 758 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc); 759 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 760 (void **)&ring->desc, size, 16 * 1024); 761 if (error != 0) { 762 printf("%s: could not allocate TX ring DMA memory\n", 763 sc->sc_dev.dv_xname); 764 goto fail; 765 } 766 767 /* Update shared area with ring physical address. */ 768 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 769 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0, 770 sizeof (struct wpi_shared), BUS_DMASYNC_PREWRITE); 771 772 /* 773 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 774 * to allocate commands space for other rings. 775 * XXX Do we really need to allocate descriptors for other rings? 776 */ 777 if (qid > 4) 778 return 0; 779 780 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd); 781 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 782 (void **)&ring->cmd, size, 4); 783 if (error != 0) { 784 printf("%s: could not allocate TX cmd DMA memory\n", 785 sc->sc_dev.dv_xname); 786 goto fail; 787 } 788 789 paddr = ring->cmd_dma.paddr; 790 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 791 struct wpi_tx_data *data = &ring->data[i]; 792 793 data->cmd_paddr = paddr; 794 paddr += sizeof (struct wpi_tx_cmd); 795 796 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 797 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 798 &data->map); 799 if (error != 0) { 800 printf("%s: could not create TX buf DMA map\n", 801 sc->sc_dev.dv_xname); 802 goto fail; 803 } 804 } 805 return 0; 806 807 fail: wpi_free_tx_ring(sc, ring); 808 return error; 809 } 810 811 void 812 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 813 { 814 int i; 815 816 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 817 struct wpi_tx_data *data = &ring->data[i]; 818 819 if (data->m != NULL) { 820 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 821 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 822 bus_dmamap_unload(sc->sc_dmat, data->map); 823 m_freem(data->m); 824 data->m = NULL; 825 } 826 } 827 /* Clear TX descriptors. */ 828 memset(ring->desc, 0, ring->desc_dma.size); 829 sc->qfullmsk &= ~(1 << ring->qid); 830 ring->queued = 0; 831 ring->cur = 0; 832 } 833 834 void 835 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 836 { 837 int i; 838 839 wpi_dma_contig_free(&ring->desc_dma); 840 wpi_dma_contig_free(&ring->cmd_dma); 841 842 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 843 struct wpi_tx_data *data = &ring->data[i]; 844 845 if (data->m != NULL) { 846 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 847 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 848 bus_dmamap_unload(sc->sc_dmat, data->map); 849 m_freem(data->m); 850 } 851 if (data->map != NULL) 852 bus_dmamap_destroy(sc->sc_dmat, data->map); 853 } 854 } 855 856 int 857 wpi_read_eeprom(struct wpi_softc *sc) 858 { 859 struct ieee80211com *ic = &sc->sc_ic; 860 char domain[4]; 861 int i; 862 863 if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) { 864 printf("%s: bad EEPROM signature\n", sc->sc_dev.dv_xname); 865 return EIO; 866 } 867 /* Clear HW ownership of EEPROM. */ 868 WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER); 869 870 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1); 871 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2); 872 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 873 874 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, letoh16(sc->rev), 875 sc->type)); 876 877 /* Read and print regulatory domain (4 ASCII characters.) */ 878 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4); 879 printf(", %.4s", domain); 880 881 /* Read and print MAC address. */ 882 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 883 printf(", address %s\n", ether_sprintf(ic->ic_myaddr)); 884 885 /* Read the list of authorized channels. */ 886 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 887 wpi_read_eeprom_channels(sc, i); 888 889 /* Read the list of TX power groups. */ 890 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 891 wpi_read_eeprom_group(sc, i); 892 893 return 0; 894 } 895 896 void 897 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 898 { 899 struct ieee80211com *ic = &sc->sc_ic; 900 const struct wpi_chan_band *band = &wpi_bands[n]; 901 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 902 int chan, i; 903 904 wpi_read_prom_data(sc, band->addr, channels, 905 band->nchan * sizeof (struct wpi_eeprom_chan)); 906 907 for (i = 0; i < band->nchan; i++) { 908 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) 909 continue; 910 911 chan = band->chan[i]; 912 913 if (n == 0) { /* 2GHz band */ 914 ic->ic_channels[chan].ic_freq = 915 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 916 ic->ic_channels[chan].ic_flags = 917 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 918 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 919 920 } else { /* 5GHz band */ 921 /* 922 * Some adapters support channels 7, 8, 11 and 12 923 * both in the 2GHz and 4.9GHz bands. 924 * Because of limitations in our net80211 layer, 925 * we don't support them in the 4.9GHz band. 926 */ 927 if (chan <= 14) 928 continue; 929 930 ic->ic_channels[chan].ic_freq = 931 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 932 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 933 /* We have at least one valid 5GHz channel. */ 934 sc->sc_flags |= WPI_FLAG_HAS_5GHZ; 935 } 936 937 /* Is active scan allowed on this channel? */ 938 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 939 ic->ic_channels[chan].ic_flags |= 940 IEEE80211_CHAN_PASSIVE; 941 } 942 943 /* Save maximum allowed TX power for this channel. */ 944 sc->maxpwr[chan] = channels[i].maxpwr; 945 946 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 947 chan, channels[i].flags, sc->maxpwr[chan])); 948 } 949 } 950 951 void 952 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 953 { 954 struct wpi_power_group *group = &sc->groups[n]; 955 struct wpi_eeprom_group rgroup; 956 int i; 957 958 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 959 sizeof rgroup); 960 961 /* Save TX power group information. */ 962 group->chan = rgroup.chan; 963 group->maxpwr = rgroup.maxpwr; 964 /* Retrieve temperature at which the samples were taken. */ 965 group->temp = (int16_t)letoh16(rgroup.temp); 966 967 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 968 group->chan, group->maxpwr, group->temp)); 969 970 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 971 group->samples[i].index = rgroup.samples[i].index; 972 group->samples[i].power = rgroup.samples[i].power; 973 974 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 975 group->samples[i].index, group->samples[i].power)); 976 } 977 } 978 979 struct ieee80211_node * 980 wpi_node_alloc(struct ieee80211com *ic) 981 { 982 return malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT | M_ZERO); 983 } 984 985 void 986 wpi_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 987 { 988 struct wpi_softc *sc = ic->ic_if.if_softc; 989 struct wpi_node *wn = (void *)ni; 990 uint8_t rate; 991 int ridx, i; 992 993 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 994 /* Start at lowest available bit-rate, AMRR will raise. */ 995 ni->ni_txrate = 0; 996 997 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 998 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 999 /* Map 802.11 rate to HW rate index. */ 1000 for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++) 1001 if (wpi_rates[ridx].rate == rate) 1002 break; 1003 wn->ridx[i] = ridx; 1004 } 1005 } 1006 1007 int 1008 wpi_media_change(struct ifnet *ifp) 1009 { 1010 struct wpi_softc *sc = ifp->if_softc; 1011 struct ieee80211com *ic = &sc->sc_ic; 1012 uint8_t rate, ridx; 1013 int error; 1014 1015 error = ieee80211_media_change(ifp); 1016 if (error != ENETRESET) 1017 return error; 1018 1019 if (ic->ic_fixed_rate != -1) { 1020 rate = ic->ic_sup_rates[ic->ic_curmode]. 1021 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1022 /* Map 802.11 rate to HW rate index. */ 1023 for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++) 1024 if (wpi_rates[ridx].rate == rate) 1025 break; 1026 sc->fixed_ridx = ridx; 1027 } 1028 1029 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1030 (IFF_UP | IFF_RUNNING)) { 1031 wpi_stop(ifp, 0); 1032 error = wpi_init(ifp); 1033 } 1034 return error; 1035 } 1036 1037 int 1038 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1039 { 1040 struct ifnet *ifp = &ic->ic_if; 1041 struct wpi_softc *sc = ifp->if_softc; 1042 int error; 1043 1044 timeout_del(&sc->calib_to); 1045 1046 switch (nstate) { 1047 case IEEE80211_S_SCAN: 1048 /* Make the link LED blink while we're scanning. */ 1049 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 1050 1051 if ((error = wpi_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { 1052 printf("%s: could not initiate scan\n", 1053 sc->sc_dev.dv_xname); 1054 return error; 1055 } 1056 if (ifp->if_flags & IFF_DEBUG) 1057 printf("%s: %s -> %s\n", ifp->if_xname, 1058 ieee80211_state_name[ic->ic_state], 1059 ieee80211_state_name[nstate]); 1060 ieee80211_set_link_state(ic, LINK_STATE_DOWN); 1061 ieee80211_free_allnodes(ic, 1); 1062 ic->ic_state = nstate; 1063 return 0; 1064 1065 case IEEE80211_S_ASSOC: 1066 if (ic->ic_state != IEEE80211_S_RUN) 1067 break; 1068 /* FALLTHROUGH */ 1069 case IEEE80211_S_AUTH: 1070 /* Reset state to handle reassociations correctly. */ 1071 sc->rxon.associd = 0; 1072 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 1073 1074 if ((error = wpi_auth(sc)) != 0) { 1075 printf("%s: could not move to auth state\n", 1076 sc->sc_dev.dv_xname); 1077 return error; 1078 } 1079 break; 1080 1081 case IEEE80211_S_RUN: 1082 if ((error = wpi_run(sc)) != 0) { 1083 printf("%s: could not move to run state\n", 1084 sc->sc_dev.dv_xname); 1085 return error; 1086 } 1087 break; 1088 1089 case IEEE80211_S_INIT: 1090 break; 1091 } 1092 1093 return sc->sc_newstate(ic, nstate, arg); 1094 } 1095 1096 void 1097 wpi_iter_func(void *arg, struct ieee80211_node *ni) 1098 { 1099 struct wpi_softc *sc = arg; 1100 struct wpi_node *wn = (struct wpi_node *)ni; 1101 1102 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1103 } 1104 1105 void 1106 wpi_calib_timeout(void *arg) 1107 { 1108 struct wpi_softc *sc = arg; 1109 struct ieee80211com *ic = &sc->sc_ic; 1110 int s; 1111 1112 s = splnet(); 1113 /* Automatic rate control triggered every 500ms. */ 1114 if (ic->ic_fixed_rate == -1) { 1115 if (ic->ic_opmode == IEEE80211_M_STA) 1116 wpi_iter_func(sc, ic->ic_bss); 1117 else 1118 ieee80211_iterate_nodes(ic, wpi_iter_func, sc); 1119 } 1120 1121 /* Force automatic TX power calibration every 60 secs. */ 1122 if (++sc->calib_cnt >= 120) { 1123 wpi_power_calibration(sc); 1124 sc->calib_cnt = 0; 1125 } 1126 splx(s); 1127 1128 /* Automatic rate control triggered every 500ms. */ 1129 timeout_add_msec(&sc->calib_to, 500); 1130 } 1131 1132 int 1133 wpi_ccmp_decap(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_key *k) 1134 { 1135 struct ieee80211_frame *wh; 1136 uint64_t pn, *prsc; 1137 uint8_t *ivp; 1138 uint8_t tid; 1139 int hdrlen; 1140 1141 wh = mtod(m, struct ieee80211_frame *); 1142 hdrlen = ieee80211_get_hdrlen(wh); 1143 ivp = (uint8_t *)wh + hdrlen; 1144 1145 /* Check that ExtIV bit is be set. */ 1146 if (!(ivp[3] & IEEE80211_WEP_EXTIV)) { 1147 DPRINTF(("CCMP decap ExtIV not set\n")); 1148 return 1; 1149 } 1150 tid = ieee80211_has_qos(wh) ? 1151 ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0; 1152 prsc = &k->k_rsc[tid]; 1153 1154 /* Extract the 48-bit PN from the CCMP header. */ 1155 pn = (uint64_t)ivp[0] | 1156 (uint64_t)ivp[1] << 8 | 1157 (uint64_t)ivp[4] << 16 | 1158 (uint64_t)ivp[5] << 24 | 1159 (uint64_t)ivp[6] << 32 | 1160 (uint64_t)ivp[7] << 40; 1161 if (pn <= *prsc) { 1162 /* 1163 * Not necessarily a replayed frame since we did not check 1164 * the sequence number of the 802.11 header yet. 1165 */ 1166 DPRINTF(("CCMP replayed\n")); 1167 return 1; 1168 } 1169 /* Update last seen packet number. */ 1170 *prsc = pn; 1171 1172 /* Clear Protected bit and strip IV. */ 1173 wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; 1174 memmove(mtod(m, caddr_t) + IEEE80211_CCMP_HDRLEN, wh, hdrlen); 1175 m_adj(m, IEEE80211_CCMP_HDRLEN); 1176 /* Strip MIC. */ 1177 m_adj(m, -IEEE80211_CCMP_MICLEN); 1178 return 0; 1179 } 1180 1181 void 1182 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1183 struct wpi_rx_data *data) 1184 { 1185 struct ieee80211com *ic = &sc->sc_ic; 1186 struct ifnet *ifp = &ic->ic_if; 1187 struct wpi_rx_ring *ring = &sc->rxq; 1188 struct wpi_rx_stat *stat; 1189 struct wpi_rx_head *head; 1190 struct wpi_rx_tail *tail; 1191 struct ieee80211_frame *wh; 1192 struct ieee80211_rxinfo rxi; 1193 struct ieee80211_node *ni; 1194 struct mbuf *m, *m1; 1195 uint32_t flags; 1196 int error; 1197 1198 bus_dmamap_sync(sc->sc_dmat, data->map, 0, WPI_RBUF_SIZE, 1199 BUS_DMASYNC_POSTREAD); 1200 stat = (struct wpi_rx_stat *)(desc + 1); 1201 1202 if (stat->len > WPI_STAT_MAXLEN) { 1203 printf("%s: invalid RX statistic header\n", 1204 sc->sc_dev.dv_xname); 1205 ifp->if_ierrors++; 1206 return; 1207 } 1208 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1209 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + letoh16(head->len)); 1210 flags = letoh32(tail->flags); 1211 1212 /* Discard frames with a bad FCS early. */ 1213 if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1214 DPRINTFN(2, ("rx tail flags error %x\n", flags)); 1215 ifp->if_ierrors++; 1216 return; 1217 } 1218 /* Discard frames that are too short. */ 1219 if (letoh16(head->len) < sizeof (*wh)) { 1220 DPRINTF(("frame too short: %d\n", letoh16(head->len))); 1221 ic->ic_stats.is_rx_tooshort++; 1222 ifp->if_ierrors++; 1223 return; 1224 } 1225 1226 m1 = MCLGETI(NULL, M_DONTWAIT, NULL, WPI_RBUF_SIZE); 1227 if (m1 == NULL) { 1228 ic->ic_stats.is_rx_nombuf++; 1229 ifp->if_ierrors++; 1230 return; 1231 } 1232 bus_dmamap_unload(sc->sc_dmat, data->map); 1233 1234 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 1235 WPI_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 1236 if (error != 0) { 1237 m_freem(m1); 1238 1239 /* Try to reload the old mbuf. */ 1240 error = bus_dmamap_load(sc->sc_dmat, data->map, 1241 mtod(data->m, void *), WPI_RBUF_SIZE, NULL, 1242 BUS_DMA_NOWAIT | BUS_DMA_READ); 1243 if (error != 0) { 1244 panic("%s: could not load old RX mbuf", 1245 sc->sc_dev.dv_xname); 1246 } 1247 /* Physical address may have changed. */ 1248 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr); 1249 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 1250 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 1251 BUS_DMASYNC_PREWRITE); 1252 ifp->if_ierrors++; 1253 return; 1254 } 1255 1256 m = data->m; 1257 data->m = m1; 1258 /* Update RX descriptor. */ 1259 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr); 1260 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 1261 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 1262 BUS_DMASYNC_PREWRITE); 1263 1264 /* Finalize mbuf. */ 1265 m->m_data = (caddr_t)(head + 1); 1266 m->m_pkthdr.len = m->m_len = letoh16(head->len); 1267 1268 /* Grab a reference to the source node. */ 1269 wh = mtod(m, struct ieee80211_frame *); 1270 ni = ieee80211_find_rxnode(ic, wh); 1271 1272 rxi.rxi_flags = 0; 1273 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 1274 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1275 (ni->ni_flags & IEEE80211_NODE_RXPROT) && 1276 ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) { 1277 if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP) { 1278 ic->ic_stats.is_ccmp_dec_errs++; 1279 ifp->if_ierrors++; 1280 m_freem(m); 1281 return; 1282 } 1283 /* Check whether decryption was successful or not. */ 1284 if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) { 1285 DPRINTF(("CCMP decryption failed 0x%x\n", flags)); 1286 ic->ic_stats.is_ccmp_dec_errs++; 1287 ifp->if_ierrors++; 1288 m_freem(m); 1289 return; 1290 } 1291 if (wpi_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) { 1292 ifp->if_ierrors++; 1293 m_freem(m); 1294 return; 1295 } 1296 rxi.rxi_flags |= IEEE80211_RXI_HWDEC; 1297 } 1298 1299 #if NBPFILTER > 0 1300 if (sc->sc_drvbpf != NULL) { 1301 struct mbuf mb; 1302 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1303 1304 tap->wr_flags = 0; 1305 if (letoh16(head->flags) & 0x4) 1306 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1307 tap->wr_chan_freq = 1308 htole16(ic->ic_channels[head->chan].ic_freq); 1309 tap->wr_chan_flags = 1310 htole16(ic->ic_channels[head->chan].ic_flags); 1311 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1312 tap->wr_dbm_antnoise = (int8_t)letoh16(stat->noise); 1313 tap->wr_tsft = tail->tstamp; 1314 tap->wr_antenna = (letoh16(head->flags) >> 4) & 0xf; 1315 switch (head->rate) { 1316 /* CCK rates. */ 1317 case 10: tap->wr_rate = 2; break; 1318 case 20: tap->wr_rate = 4; break; 1319 case 55: tap->wr_rate = 11; break; 1320 case 110: tap->wr_rate = 22; break; 1321 /* OFDM rates. */ 1322 case 0xd: tap->wr_rate = 12; break; 1323 case 0xf: tap->wr_rate = 18; break; 1324 case 0x5: tap->wr_rate = 24; break; 1325 case 0x7: tap->wr_rate = 36; break; 1326 case 0x9: tap->wr_rate = 48; break; 1327 case 0xb: tap->wr_rate = 72; break; 1328 case 0x1: tap->wr_rate = 96; break; 1329 case 0x3: tap->wr_rate = 108; break; 1330 /* Unknown rate: should not happen. */ 1331 default: tap->wr_rate = 0; 1332 } 1333 1334 mb.m_data = (caddr_t)tap; 1335 mb.m_len = sc->sc_rxtap_len; 1336 mb.m_next = m; 1337 mb.m_nextpkt = NULL; 1338 mb.m_type = 0; 1339 mb.m_flags = 0; 1340 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 1341 } 1342 #endif 1343 1344 /* Send the frame to the 802.11 layer. */ 1345 rxi.rxi_rssi = stat->rssi; 1346 rxi.rxi_tstamp = 0; /* unused */ 1347 ieee80211_input(ifp, m, ni, &rxi); 1348 1349 /* Node is no longer needed. */ 1350 ieee80211_release_node(ic, ni); 1351 } 1352 1353 void 1354 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1355 { 1356 struct ieee80211com *ic = &sc->sc_ic; 1357 struct ifnet *ifp = &ic->ic_if; 1358 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1359 struct wpi_tx_data *data = &ring->data[desc->idx]; 1360 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1361 struct wpi_node *wn = (struct wpi_node *)data->ni; 1362 1363 /* Update rate control statistics. */ 1364 wn->amn.amn_txcnt++; 1365 if (stat->retrycnt > 0) 1366 wn->amn.amn_retrycnt++; 1367 1368 if ((letoh32(stat->status) & 0xff) != 1) 1369 ifp->if_oerrors++; 1370 1371 /* Unmap and free mbuf. */ 1372 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1373 BUS_DMASYNC_POSTWRITE); 1374 bus_dmamap_unload(sc->sc_dmat, data->map); 1375 m_freem(data->m); 1376 data->m = NULL; 1377 ieee80211_release_node(ic, data->ni); 1378 data->ni = NULL; 1379 1380 sc->sc_tx_timer = 0; 1381 if (--ring->queued < WPI_TX_RING_LOMARK) { 1382 sc->qfullmsk &= ~(1 << ring->qid); 1383 if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) { 1384 ifq_clr_oactive(&ifp->if_snd); 1385 (*ifp->if_start)(ifp); 1386 } 1387 } 1388 } 1389 1390 void 1391 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1392 { 1393 struct wpi_tx_ring *ring = &sc->txq[4]; 1394 struct wpi_tx_data *data; 1395 1396 if ((desc->qid & 7) != 4) 1397 return; /* Not a command ack. */ 1398 1399 data = &ring->data[desc->idx]; 1400 1401 /* If the command was mapped in an mbuf, free it. */ 1402 if (data->m != NULL) { 1403 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1404 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1405 bus_dmamap_unload(sc->sc_dmat, data->map); 1406 m_freem(data->m); 1407 data->m = NULL; 1408 } 1409 wakeup(&ring->cmd[desc->idx]); 1410 } 1411 1412 void 1413 wpi_notif_intr(struct wpi_softc *sc) 1414 { 1415 struct ieee80211com *ic = &sc->sc_ic; 1416 struct ifnet *ifp = &ic->ic_if; 1417 uint32_t hw; 1418 1419 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0, 1420 sizeof (struct wpi_shared), BUS_DMASYNC_POSTREAD); 1421 1422 hw = letoh32(sc->shared->next); 1423 while (sc->rxq.cur != hw) { 1424 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 1425 struct wpi_rx_desc *desc; 1426 1427 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 1428 BUS_DMASYNC_POSTREAD); 1429 desc = mtod(data->m, struct wpi_rx_desc *); 1430 1431 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d " 1432 "len=%d\n", desc->qid, desc->idx, desc->flags, desc->type, 1433 letoh32(desc->len))); 1434 1435 if (!(desc->qid & 0x80)) /* Reply to a command. */ 1436 wpi_cmd_done(sc, desc); 1437 1438 switch (desc->type) { 1439 case WPI_RX_DONE: 1440 /* An 802.11 frame has been received. */ 1441 wpi_rx_done(sc, desc, data); 1442 break; 1443 1444 case WPI_TX_DONE: 1445 /* An 802.11 frame has been transmitted. */ 1446 wpi_tx_done(sc, desc); 1447 break; 1448 1449 case WPI_UC_READY: 1450 { 1451 struct wpi_ucode_info *uc = 1452 (struct wpi_ucode_info *)(desc + 1); 1453 1454 /* The microcontroller is ready. */ 1455 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1456 sizeof (*uc), BUS_DMASYNC_POSTREAD); 1457 DPRINTF(("microcode alive notification version %x " 1458 "alive %x\n", letoh32(uc->version), 1459 letoh32(uc->valid))); 1460 1461 if (letoh32(uc->valid) != 1) { 1462 printf("%s: microcontroller initialization " 1463 "failed\n", sc->sc_dev.dv_xname); 1464 } 1465 if (uc->subtype != WPI_UCODE_INIT) { 1466 /* Save the address of the error log. */ 1467 sc->errptr = letoh32(uc->errptr); 1468 } 1469 break; 1470 } 1471 case WPI_STATE_CHANGED: 1472 { 1473 uint32_t *status = (uint32_t *)(desc + 1); 1474 1475 /* Enabled/disabled notification. */ 1476 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1477 sizeof (*status), BUS_DMASYNC_POSTREAD); 1478 DPRINTF(("state changed to %x\n", letoh32(*status))); 1479 1480 if (letoh32(*status) & 1) { 1481 /* The radio button has to be pushed. */ 1482 printf("%s: Radio transmitter is off\n", 1483 sc->sc_dev.dv_xname); 1484 /* Turn the interface down. */ 1485 wpi_stop(ifp, 1); 1486 return; /* No further processing. */ 1487 } 1488 break; 1489 } 1490 case WPI_START_SCAN: 1491 { 1492 struct wpi_start_scan *scan = 1493 (struct wpi_start_scan *)(desc + 1); 1494 1495 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1496 sizeof (*scan), BUS_DMASYNC_POSTREAD); 1497 DPRINTFN(2, ("scanning channel %d status %x\n", 1498 scan->chan, letoh32(scan->status))); 1499 1500 /* Fix current channel. */ 1501 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 1502 break; 1503 } 1504 case WPI_STOP_SCAN: 1505 { 1506 struct wpi_stop_scan *scan = 1507 (struct wpi_stop_scan *)(desc + 1); 1508 1509 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1510 sizeof (*scan), BUS_DMASYNC_POSTREAD); 1511 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 1512 scan->nchan, scan->status, scan->chan)); 1513 1514 if (scan->status == 1 && scan->chan <= 14 && 1515 (sc->sc_flags & WPI_FLAG_HAS_5GHZ)) { 1516 /* 1517 * We just finished scanning 2GHz channels, 1518 * start scanning 5GHz ones. 1519 */ 1520 if (wpi_scan(sc, IEEE80211_CHAN_5GHZ) == 0) 1521 break; 1522 } 1523 ieee80211_end_scan(ifp); 1524 break; 1525 } 1526 } 1527 1528 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1529 } 1530 1531 /* Tell the firmware what we have processed. */ 1532 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1533 WPI_WRITE(sc, WPI_FH_RX_WPTR, hw & ~7); 1534 } 1535 1536 #ifdef WPI_DEBUG 1537 /* 1538 * Dump the error log of the firmware when a firmware panic occurs. Although 1539 * we can't debug the firmware because it is neither open source nor free, it 1540 * can help us to identify certain classes of problems. 1541 */ 1542 void 1543 wpi_fatal_intr(struct wpi_softc *sc) 1544 { 1545 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1546 struct wpi_fwdump dump; 1547 uint32_t i, offset, count; 1548 1549 /* Check that the error log address is valid. */ 1550 if (sc->errptr < WPI_FW_DATA_BASE || 1551 sc->errptr + sizeof (dump) > 1552 WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) { 1553 printf("%s: bad firmware error log address 0x%08x\n", 1554 sc->sc_dev.dv_xname, sc->errptr); 1555 return; 1556 } 1557 1558 if (wpi_nic_lock(sc) != 0) { 1559 printf("%s: could not read firmware error log\n", 1560 sc->sc_dev.dv_xname); 1561 return; 1562 } 1563 /* Read number of entries in the log. */ 1564 count = wpi_mem_read(sc, sc->errptr); 1565 if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) { 1566 printf("%s: invalid count field (count=%u)\n", 1567 sc->sc_dev.dv_xname, count); 1568 wpi_nic_unlock(sc); 1569 return; 1570 } 1571 /* Skip "count" field. */ 1572 offset = sc->errptr + sizeof (uint32_t); 1573 printf("firmware error log (count=%u):\n", count); 1574 for (i = 0; i < count; i++) { 1575 wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump, 1576 sizeof (dump) / sizeof (uint32_t)); 1577 1578 printf(" error type = \"%s\" (0x%08X)\n", 1579 (dump.desc < N(wpi_fw_errmsg)) ? 1580 wpi_fw_errmsg[dump.desc] : "UNKNOWN", 1581 dump.desc); 1582 printf(" error data = 0x%08X\n", 1583 dump.data); 1584 printf(" branch link = 0x%08X%08X\n", 1585 dump.blink[0], dump.blink[1]); 1586 printf(" interrupt link = 0x%08X%08X\n", 1587 dump.ilink[0], dump.ilink[1]); 1588 printf(" time = %u\n", dump.time); 1589 1590 offset += sizeof (dump); 1591 } 1592 wpi_nic_unlock(sc); 1593 /* Dump driver status (TX and RX rings) while we're here. */ 1594 printf("driver status:\n"); 1595 for (i = 0; i < 6; i++) { 1596 struct wpi_tx_ring *ring = &sc->txq[i]; 1597 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 1598 i, ring->qid, ring->cur, ring->queued); 1599 } 1600 printf(" rx ring: cur=%d\n", sc->rxq.cur); 1601 printf(" 802.11 state %d\n", sc->sc_ic.ic_state); 1602 #undef N 1603 } 1604 #endif 1605 1606 int 1607 wpi_intr(void *arg) 1608 { 1609 struct wpi_softc *sc = arg; 1610 struct ifnet *ifp = &sc->sc_ic.ic_if; 1611 uint32_t r1, r2; 1612 1613 /* Disable interrupts. */ 1614 WPI_WRITE(sc, WPI_MASK, 0); 1615 1616 r1 = WPI_READ(sc, WPI_INT); 1617 r2 = WPI_READ(sc, WPI_FH_INT); 1618 1619 if (r1 == 0 && r2 == 0) { 1620 if (ifp->if_flags & IFF_UP) 1621 WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK); 1622 return 0; /* Interrupt not for us. */ 1623 } 1624 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 1625 return 0; /* Hardware gone! */ 1626 1627 /* Acknowledge interrupts. */ 1628 WPI_WRITE(sc, WPI_INT, r1); 1629 WPI_WRITE(sc, WPI_FH_INT, r2); 1630 1631 if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) { 1632 printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname); 1633 /* Dump firmware error log and stop. */ 1634 #ifdef WPI_DEBUG 1635 wpi_fatal_intr(sc); 1636 #endif 1637 wpi_stop(ifp, 1); 1638 task_add(systq, &sc->init_task); 1639 return 1; 1640 } 1641 if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) || 1642 (r2 & WPI_FH_INT_RX)) 1643 wpi_notif_intr(sc); 1644 1645 if (r1 & WPI_INT_ALIVE) 1646 wakeup(sc); /* Firmware is alive. */ 1647 1648 /* Re-enable interrupts. */ 1649 if (ifp->if_flags & IFF_UP) 1650 WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK); 1651 1652 return 1; 1653 } 1654 1655 int 1656 wpi_tx(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 1657 { 1658 struct ieee80211com *ic = &sc->sc_ic; 1659 struct wpi_node *wn = (void *)ni; 1660 struct wpi_tx_ring *ring; 1661 struct wpi_tx_desc *desc; 1662 struct wpi_tx_data *data; 1663 struct wpi_tx_cmd *cmd; 1664 struct wpi_cmd_data *tx; 1665 const struct wpi_rate *rinfo; 1666 struct ieee80211_frame *wh; 1667 struct ieee80211_key *k = NULL; 1668 enum ieee80211_edca_ac ac; 1669 uint32_t flags; 1670 uint16_t qos; 1671 u_int hdrlen; 1672 uint8_t *ivp, tid, ridx, type; 1673 int i, totlen, hasqos, error; 1674 1675 wh = mtod(m, struct ieee80211_frame *); 1676 hdrlen = ieee80211_get_hdrlen(wh); 1677 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1678 1679 /* Select EDCA Access Category and TX ring for this frame. */ 1680 if ((hasqos = ieee80211_has_qos(wh))) { 1681 qos = ieee80211_get_qos(wh); 1682 tid = qos & IEEE80211_QOS_TID; 1683 ac = ieee80211_up_to_ac(ic, tid); 1684 } else { 1685 tid = 0; 1686 ac = EDCA_AC_BE; 1687 } 1688 1689 ring = &sc->txq[ac]; 1690 desc = &ring->desc[ring->cur]; 1691 data = &ring->data[ring->cur]; 1692 1693 /* Choose a TX rate index. */ 1694 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1695 type != IEEE80211_FC0_TYPE_DATA) { 1696 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 1697 WPI_RIDX_OFDM6 : WPI_RIDX_CCK1; 1698 } else if (ic->ic_fixed_rate != -1) { 1699 ridx = sc->fixed_ridx; 1700 } else 1701 ridx = wn->ridx[ni->ni_txrate]; 1702 rinfo = &wpi_rates[ridx]; 1703 1704 #if NBPFILTER > 0 1705 if (sc->sc_drvbpf != NULL) { 1706 struct mbuf mb; 1707 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1708 1709 tap->wt_flags = 0; 1710 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1711 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1712 tap->wt_rate = rinfo->rate; 1713 tap->wt_hwqueue = ac; 1714 if ((ic->ic_flags & IEEE80211_F_WEPON) && 1715 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)) 1716 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1717 1718 mb.m_data = (caddr_t)tap; 1719 mb.m_len = sc->sc_txtap_len; 1720 mb.m_next = m; 1721 mb.m_nextpkt = NULL; 1722 mb.m_type = 0; 1723 mb.m_flags = 0; 1724 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 1725 } 1726 #endif 1727 1728 totlen = m->m_pkthdr.len; 1729 1730 /* Encrypt the frame if need be. */ 1731 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1732 /* Retrieve key for TX. */ 1733 k = ieee80211_get_txkey(ic, wh, ni); 1734 if (k->k_cipher != IEEE80211_CIPHER_CCMP) { 1735 /* Do software encryption. */ 1736 if ((m = ieee80211_encrypt(ic, m, k)) == NULL) 1737 return ENOBUFS; 1738 /* 802.11 header may have moved. */ 1739 wh = mtod(m, struct ieee80211_frame *); 1740 totlen = m->m_pkthdr.len; 1741 1742 } else /* HW appends CCMP MIC. */ 1743 totlen += IEEE80211_CCMP_HDRLEN; 1744 } 1745 1746 /* Prepare TX firmware command. */ 1747 cmd = &ring->cmd[ring->cur]; 1748 cmd->code = WPI_CMD_TX_DATA; 1749 cmd->flags = 0; 1750 cmd->qid = ring->qid; 1751 cmd->idx = ring->cur; 1752 1753 tx = (struct wpi_cmd_data *)cmd->data; 1754 /* NB: No need to clear tx, all fields are reinitialized here. */ 1755 1756 flags = 0; 1757 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1758 /* Unicast frame, check if an ACK is expected. */ 1759 if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) != 1760 IEEE80211_QOS_ACK_POLICY_NOACK) 1761 flags |= WPI_TX_NEED_ACK; 1762 } 1763 1764 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 1765 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1766 /* NB: Group frames are sent using CCK in 802.11b/g. */ 1767 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 1768 flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP; 1769 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1770 ridx <= WPI_RIDX_OFDM54) { 1771 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1772 flags |= WPI_TX_NEED_CTS | WPI_TX_FULL_TXOP; 1773 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1774 flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP; 1775 } 1776 } 1777 1778 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1779 type != IEEE80211_FC0_TYPE_DATA) 1780 tx->id = WPI_ID_BROADCAST; 1781 else 1782 tx->id = wn->id; 1783 1784 if (type == IEEE80211_FC0_TYPE_MGT) { 1785 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1786 1787 #ifndef IEEE80211_STA_ONLY 1788 /* Tell HW to set timestamp in probe responses. */ 1789 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1790 flags |= WPI_TX_INSERT_TSTAMP; 1791 #endif 1792 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1793 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1794 tx->timeout = htole16(3); 1795 else 1796 tx->timeout = htole16(2); 1797 } else 1798 tx->timeout = htole16(0); 1799 1800 tx->len = htole16(totlen); 1801 tx->tid = tid; 1802 tx->rts_ntries = 7; 1803 tx->data_ntries = 15; 1804 tx->ofdm_mask = 0xff; 1805 tx->cck_mask = 0x0f; 1806 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1807 tx->plcp = rinfo->plcp; 1808 1809 /* Copy 802.11 header in TX command. */ 1810 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 1811 1812 if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) { 1813 /* Trim 802.11 header and prepend CCMP IV. */ 1814 m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN); 1815 ivp = mtod(m, uint8_t *); 1816 k->k_tsc++; 1817 ivp[0] = k->k_tsc; 1818 ivp[1] = k->k_tsc >> 8; 1819 ivp[2] = 0; 1820 ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV; 1821 ivp[4] = k->k_tsc >> 16; 1822 ivp[5] = k->k_tsc >> 24; 1823 ivp[6] = k->k_tsc >> 32; 1824 ivp[7] = k->k_tsc >> 40; 1825 1826 tx->security = WPI_CIPHER_CCMP; 1827 memcpy(tx->key, k->k_key, k->k_len); 1828 } else { 1829 /* Trim 802.11 header. */ 1830 m_adj(m, hdrlen); 1831 tx->security = 0; 1832 } 1833 tx->flags = htole32(flags); 1834 1835 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 1836 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1837 if (error != 0 && error != EFBIG) { 1838 printf("%s: can't map mbuf (error %d)\n", 1839 sc->sc_dev.dv_xname, error); 1840 m_freem(m); 1841 return error; 1842 } 1843 if (error != 0) { 1844 /* Too many DMA segments, linearize mbuf. */ 1845 if (m_defrag(m, M_DONTWAIT)) { 1846 m_freem(m); 1847 return ENOBUFS; 1848 } 1849 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 1850 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1851 if (error != 0) { 1852 printf("%s: can't map mbuf (error %d)\n", 1853 sc->sc_dev.dv_xname, error); 1854 m_freem(m); 1855 return error; 1856 } 1857 } 1858 1859 data->m = m; 1860 data->ni = ni; 1861 1862 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1863 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 1864 1865 /* Fill TX descriptor. */ 1866 desc->flags = htole32(WPI_PAD32(m->m_pkthdr.len) << 28 | 1867 (1 + data->map->dm_nsegs) << 24); 1868 /* First DMA segment is used by the TX command. */ 1869 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1870 ring->cur * sizeof (struct wpi_tx_cmd)); 1871 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) + 1872 ((hdrlen + 3) & ~3)); 1873 /* Other DMA segments are for data payload. */ 1874 for (i = 1; i <= data->map->dm_nsegs; i++) { 1875 desc->segs[i].addr = 1876 htole32(data->map->dm_segs[i - 1].ds_addr); 1877 desc->segs[i].len = 1878 htole32(data->map->dm_segs[i - 1].ds_len); 1879 } 1880 1881 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1882 BUS_DMASYNC_PREWRITE); 1883 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 1884 (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd), 1885 BUS_DMASYNC_PREWRITE); 1886 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 1887 (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc), 1888 BUS_DMASYNC_PREWRITE); 1889 1890 /* Kick TX ring. */ 1891 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 1892 WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 1893 1894 /* Mark TX ring as full if we reach a certain threshold. */ 1895 if (++ring->queued > WPI_TX_RING_HIMARK) 1896 sc->qfullmsk |= 1 << ring->qid; 1897 1898 return 0; 1899 } 1900 1901 void 1902 wpi_start(struct ifnet *ifp) 1903 { 1904 struct wpi_softc *sc = ifp->if_softc; 1905 struct ieee80211com *ic = &sc->sc_ic; 1906 struct ieee80211_node *ni; 1907 struct mbuf *m; 1908 1909 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 1910 return; 1911 1912 for (;;) { 1913 if (sc->qfullmsk != 0) { 1914 ifq_set_oactive(&ifp->if_snd); 1915 break; 1916 } 1917 /* Send pending management frames first. */ 1918 m = mq_dequeue(&ic->ic_mgtq); 1919 if (m != NULL) { 1920 ni = m->m_pkthdr.ph_cookie; 1921 goto sendit; 1922 } 1923 if (ic->ic_state != IEEE80211_S_RUN) 1924 break; 1925 1926 /* Encapsulate and send data frames. */ 1927 IFQ_DEQUEUE(&ifp->if_snd, m); 1928 if (m == NULL) 1929 break; 1930 #if NBPFILTER > 0 1931 if (ifp->if_bpf != NULL) 1932 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 1933 #endif 1934 if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) 1935 continue; 1936 sendit: 1937 #if NBPFILTER > 0 1938 if (ic->ic_rawbpf != NULL) 1939 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 1940 #endif 1941 if (wpi_tx(sc, m, ni) != 0) { 1942 ieee80211_release_node(ic, ni); 1943 ifp->if_oerrors++; 1944 continue; 1945 } 1946 1947 sc->sc_tx_timer = 5; 1948 ifp->if_timer = 1; 1949 } 1950 } 1951 1952 void 1953 wpi_watchdog(struct ifnet *ifp) 1954 { 1955 struct wpi_softc *sc = ifp->if_softc; 1956 1957 ifp->if_timer = 0; 1958 1959 if (sc->sc_tx_timer > 0) { 1960 if (--sc->sc_tx_timer == 0) { 1961 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1962 wpi_stop(ifp, 1); 1963 ifp->if_oerrors++; 1964 return; 1965 } 1966 ifp->if_timer = 1; 1967 } 1968 1969 ieee80211_watchdog(ifp); 1970 } 1971 1972 int 1973 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1974 { 1975 struct wpi_softc *sc = ifp->if_softc; 1976 struct ieee80211com *ic = &sc->sc_ic; 1977 int s, error = 0; 1978 1979 error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR); 1980 if (error) 1981 return error; 1982 s = splnet(); 1983 1984 switch (cmd) { 1985 case SIOCSIFADDR: 1986 ifp->if_flags |= IFF_UP; 1987 /* FALLTHROUGH */ 1988 case SIOCSIFFLAGS: 1989 if (ifp->if_flags & IFF_UP) { 1990 if (!(ifp->if_flags & IFF_RUNNING)) 1991 error = wpi_init(ifp); 1992 } else { 1993 if (ifp->if_flags & IFF_RUNNING) 1994 wpi_stop(ifp, 1); 1995 } 1996 break; 1997 1998 case SIOCS80211POWER: 1999 error = ieee80211_ioctl(ifp, cmd, data); 2000 if (error != ENETRESET) 2001 break; 2002 if (ic->ic_state == IEEE80211_S_RUN) { 2003 if (ic->ic_flags & IEEE80211_F_PMGTON) 2004 error = wpi_set_pslevel(sc, 0, 3, 0); 2005 else /* back to CAM */ 2006 error = wpi_set_pslevel(sc, 0, 0, 0); 2007 } else { 2008 /* Defer until transition to IEEE80211_S_RUN. */ 2009 error = 0; 2010 } 2011 break; 2012 2013 default: 2014 error = ieee80211_ioctl(ifp, cmd, data); 2015 } 2016 2017 if (error == ENETRESET) { 2018 error = 0; 2019 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 2020 (IFF_UP | IFF_RUNNING)) { 2021 wpi_stop(ifp, 0); 2022 error = wpi_init(ifp); 2023 } 2024 } 2025 2026 splx(s); 2027 rw_exit_write(&sc->sc_rwlock); 2028 return error; 2029 } 2030 2031 /* 2032 * Send a command to the firmware. 2033 */ 2034 int 2035 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2036 { 2037 struct wpi_tx_ring *ring = &sc->txq[4]; 2038 struct wpi_tx_desc *desc; 2039 struct wpi_tx_data *data; 2040 struct wpi_tx_cmd *cmd; 2041 struct mbuf *m; 2042 bus_addr_t paddr; 2043 int totlen, error; 2044 2045 desc = &ring->desc[ring->cur]; 2046 data = &ring->data[ring->cur]; 2047 totlen = 4 + size; 2048 2049 if (size > sizeof cmd->data) { 2050 /* Command is too large to fit in a descriptor. */ 2051 if (totlen > MCLBYTES) 2052 return EINVAL; 2053 MGETHDR(m, M_DONTWAIT, MT_DATA); 2054 if (m == NULL) 2055 return ENOMEM; 2056 if (totlen > MHLEN) { 2057 MCLGET(m, M_DONTWAIT); 2058 if (!(m->m_flags & M_EXT)) { 2059 m_freem(m); 2060 return ENOMEM; 2061 } 2062 } 2063 cmd = mtod(m, struct wpi_tx_cmd *); 2064 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 2065 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 2066 if (error != 0) { 2067 m_freem(m); 2068 return error; 2069 } 2070 data->m = m; 2071 paddr = data->map->dm_segs[0].ds_addr; 2072 } else { 2073 cmd = &ring->cmd[ring->cur]; 2074 paddr = data->cmd_paddr; 2075 } 2076 2077 cmd->code = code; 2078 cmd->flags = 0; 2079 cmd->qid = ring->qid; 2080 cmd->idx = ring->cur; 2081 memcpy(cmd->data, buf, size); 2082 2083 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2084 desc->segs[0].addr = htole32(paddr); 2085 desc->segs[0].len = htole32(totlen); 2086 2087 if (size > sizeof cmd->data) { 2088 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 2089 BUS_DMASYNC_PREWRITE); 2090 } else { 2091 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 2092 (caddr_t)cmd - ring->cmd_dma.vaddr, totlen, 2093 BUS_DMASYNC_PREWRITE); 2094 } 2095 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2096 (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc), 2097 BUS_DMASYNC_PREWRITE); 2098 2099 /* Kick command ring. */ 2100 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2101 WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 2102 2103 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz); 2104 } 2105 2106 /* 2107 * Configure HW multi-rate retries. 2108 */ 2109 int 2110 wpi_mrr_setup(struct wpi_softc *sc) 2111 { 2112 struct ieee80211com *ic = &sc->sc_ic; 2113 struct wpi_mrr_setup mrr; 2114 int i, error; 2115 2116 /* CCK rates (not used with 802.11a). */ 2117 for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) { 2118 mrr.rates[i].flags = 0; 2119 mrr.rates[i].plcp = wpi_rates[i].plcp; 2120 /* Fallback to the immediate lower CCK rate (if any.) */ 2121 mrr.rates[i].next = 2122 (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1; 2123 /* Try one time at this rate before falling back to "next". */ 2124 mrr.rates[i].ntries = 1; 2125 } 2126 /* OFDM rates (not used with 802.11b). */ 2127 for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) { 2128 mrr.rates[i].flags = 0; 2129 mrr.rates[i].plcp = wpi_rates[i].plcp; 2130 /* Fallback to the immediate lower rate (if any.) */ 2131 /* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */ 2132 mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ? 2133 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2134 WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) : 2135 i - 1; 2136 /* Try one time at this rate before falling back to "next". */ 2137 mrr.rates[i].ntries = 1; 2138 } 2139 /* Setup MRR for control frames. */ 2140 mrr.which = htole32(WPI_MRR_CTL); 2141 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2142 if (error != 0) { 2143 printf("%s: could not setup MRR for control frames\n", 2144 sc->sc_dev.dv_xname); 2145 return error; 2146 } 2147 /* Setup MRR for data frames. */ 2148 mrr.which = htole32(WPI_MRR_DATA); 2149 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2150 if (error != 0) { 2151 printf("%s: could not setup MRR for data frames\n", 2152 sc->sc_dev.dv_xname); 2153 return error; 2154 } 2155 return 0; 2156 } 2157 2158 void 2159 wpi_updateedca(struct ieee80211com *ic) 2160 { 2161 #define WPI_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 2162 struct wpi_softc *sc = ic->ic_softc; 2163 struct wpi_edca_params cmd; 2164 int aci; 2165 2166 memset(&cmd, 0, sizeof cmd); 2167 cmd.flags = htole32(WPI_EDCA_UPDATE); 2168 for (aci = 0; aci < EDCA_NUM_AC; aci++) { 2169 const struct ieee80211_edca_ac_params *ac = 2170 &ic->ic_edca_ac[aci]; 2171 cmd.ac[aci].aifsn = ac->ac_aifsn; 2172 cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->ac_ecwmin)); 2173 cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->ac_ecwmax)); 2174 cmd.ac[aci].txoplimit = 2175 htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit)); 2176 } 2177 (void)wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 2178 #undef WPI_EXP2 2179 } 2180 2181 void 2182 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2183 { 2184 struct wpi_cmd_led led; 2185 2186 led.which = which; 2187 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2188 led.off = off; 2189 led.on = on; 2190 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2191 } 2192 2193 int 2194 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni) 2195 { 2196 struct wpi_cmd_timing cmd; 2197 uint64_t val, mod; 2198 2199 memset(&cmd, 0, sizeof cmd); 2200 memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t)); 2201 cmd.bintval = htole16(ni->ni_intval); 2202 cmd.lintval = htole16(10); 2203 2204 /* Compute remaining time until next beacon. */ 2205 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 2206 mod = letoh64(cmd.tstamp) % val; 2207 cmd.binitval = htole32((uint32_t)(val - mod)); 2208 2209 DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n", 2210 ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod))); 2211 2212 return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1); 2213 } 2214 2215 /* 2216 * This function is called periodically (every minute) to adjust TX power 2217 * based on temperature variation. 2218 */ 2219 void 2220 wpi_power_calibration(struct wpi_softc *sc) 2221 { 2222 int temp; 2223 2224 temp = (int)WPI_READ(sc, WPI_UCODE_GP2); 2225 /* Sanity-check temperature. */ 2226 if (temp < -260 || temp > 25) { 2227 /* This can't be correct, ignore. */ 2228 DPRINTF(("out-of-range temperature reported: %d\n", temp)); 2229 return; 2230 } 2231 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 2232 /* Adjust TX power if need be (delta > 6). */ 2233 if (abs(temp - sc->temp) > 6) { 2234 /* Record temperature of last calibration. */ 2235 sc->temp = temp; 2236 (void)wpi_set_txpower(sc, 1); 2237 } 2238 } 2239 2240 /* 2241 * Set TX power for current channel (each rate has its own power settings). 2242 */ 2243 int 2244 wpi_set_txpower(struct wpi_softc *sc, int async) 2245 { 2246 struct ieee80211com *ic = &sc->sc_ic; 2247 struct ieee80211_channel *ch; 2248 struct wpi_power_group *group; 2249 struct wpi_cmd_txpower cmd; 2250 u_int chan; 2251 int idx, i; 2252 2253 /* Retrieve current channel from last RXON. */ 2254 chan = sc->rxon.chan; 2255 DPRINTF(("setting TX power for channel %d\n", chan)); 2256 ch = &ic->ic_channels[chan]; 2257 2258 /* Find the TX power group to which this channel belongs. */ 2259 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 2260 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 2261 if (chan <= group->chan) 2262 break; 2263 } else 2264 group = &sc->groups[0]; 2265 2266 memset(&cmd, 0, sizeof cmd); 2267 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 2268 cmd.chan = htole16(chan); 2269 2270 /* Set TX power for all OFDM and CCK rates. */ 2271 for (i = 0; i <= WPI_RIDX_MAX ; i++) { 2272 /* Retrieve TX power for this channel/rate. */ 2273 idx = wpi_get_power_index(sc, group, ch, i); 2274 2275 cmd.rates[i].plcp = wpi_rates[i].plcp; 2276 2277 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 2278 cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 2279 cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 2280 } else { 2281 cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 2282 cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 2283 } 2284 DPRINTF(("chan %d/rate %d: power index %d\n", chan, 2285 wpi_rates[i].rate, idx)); 2286 } 2287 return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async); 2288 } 2289 2290 /* 2291 * Determine TX power index for a given channel/rate combination. 2292 * This takes into account the regulatory information from EEPROM and the 2293 * current temperature. 2294 */ 2295 int 2296 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 2297 struct ieee80211_channel *c, int ridx) 2298 { 2299 /* Fixed-point arithmetic division using a n-bit fractional part. */ 2300 #define fdivround(a, b, n) \ 2301 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 2302 2303 /* Linear interpolation. */ 2304 #define interpolate(x, x1, y1, x2, y2, n) \ 2305 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 2306 2307 struct ieee80211com *ic = &sc->sc_ic; 2308 struct wpi_power_sample *sample; 2309 int pwr, idx; 2310 u_int chan; 2311 2312 /* Get channel number. */ 2313 chan = ieee80211_chan2ieee(ic, c); 2314 2315 /* Default TX power is group maximum TX power minus 3dB. */ 2316 pwr = group->maxpwr / 2; 2317 2318 /* Decrease TX power for highest OFDM rates to reduce distortion. */ 2319 switch (ridx) { 2320 case WPI_RIDX_OFDM36: 2321 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 2322 break; 2323 case WPI_RIDX_OFDM48: 2324 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 2325 break; 2326 case WPI_RIDX_OFDM54: 2327 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 2328 break; 2329 } 2330 2331 /* Never exceed the channel maximum allowed TX power. */ 2332 pwr = MIN(pwr, sc->maxpwr[chan]); 2333 2334 /* Retrieve TX power index into gain tables from samples. */ 2335 for (sample = group->samples; sample < &group->samples[3]; sample++) 2336 if (pwr > sample[1].power) 2337 break; 2338 /* Fixed-point linear interpolation using a 19-bit fractional part. */ 2339 idx = interpolate(pwr, sample[0].power, sample[0].index, 2340 sample[1].power, sample[1].index, 19); 2341 2342 /*- 2343 * Adjust power index based on current temperature: 2344 * - if cooler than factory-calibrated: decrease output power 2345 * - if warmer than factory-calibrated: increase output power 2346 */ 2347 idx -= (sc->temp - group->temp) * 11 / 100; 2348 2349 /* Decrease TX power for CCK rates (-5dB). */ 2350 if (ridx >= WPI_RIDX_CCK1) 2351 idx += 10; 2352 2353 /* Make sure idx stays in a valid range. */ 2354 if (idx < 0) 2355 idx = 0; 2356 else if (idx > WPI_MAX_PWR_INDEX) 2357 idx = WPI_MAX_PWR_INDEX; 2358 return idx; 2359 2360 #undef interpolate 2361 #undef fdivround 2362 } 2363 2364 /* 2365 * Set STA mode power saving level (between 0 and 5). 2366 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 2367 */ 2368 int 2369 wpi_set_pslevel(struct wpi_softc *sc, int dtim, int level, int async) 2370 { 2371 struct wpi_pmgt_cmd cmd; 2372 const struct wpi_pmgt *pmgt; 2373 uint32_t max, skip_dtim; 2374 pcireg_t reg; 2375 int i; 2376 2377 /* Select which PS parameters to use. */ 2378 if (dtim <= 10) 2379 pmgt = &wpi_pmgt[0][level]; 2380 else 2381 pmgt = &wpi_pmgt[1][level]; 2382 2383 memset(&cmd, 0, sizeof cmd); 2384 if (level != 0) /* not CAM */ 2385 cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP); 2386 /* Retrieve PCIe Active State Power Management (ASPM). */ 2387 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 2388 sc->sc_cap_off + PCI_PCIE_LCSR); 2389 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 2390 cmd.flags |= htole16(WPI_PS_PCI_PMGT); 2391 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 2392 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 2393 2394 if (dtim == 0) { 2395 dtim = 1; 2396 skip_dtim = 0; 2397 } else 2398 skip_dtim = pmgt->skip_dtim; 2399 if (skip_dtim != 0) { 2400 cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM); 2401 max = pmgt->intval[4]; 2402 if (max == (uint32_t)-1) 2403 max = dtim * (skip_dtim + 1); 2404 else if (max > dtim) 2405 max = (max / dtim) * dtim; 2406 } else 2407 max = dtim; 2408 for (i = 0; i < 5; i++) 2409 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 2410 2411 DPRINTF(("setting power saving level to %d\n", level)); 2412 return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 2413 } 2414 2415 int 2416 wpi_config(struct wpi_softc *sc) 2417 { 2418 struct ieee80211com *ic = &sc->sc_ic; 2419 struct ifnet *ifp = &ic->ic_if; 2420 struct wpi_bluetooth bluetooth; 2421 struct wpi_node_info node; 2422 int error; 2423 2424 /* Set power saving level to CAM during initialization. */ 2425 if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) { 2426 printf("%s: could not set power saving level\n", 2427 sc->sc_dev.dv_xname); 2428 return error; 2429 } 2430 2431 /* Configure bluetooth coexistence. */ 2432 memset(&bluetooth, 0, sizeof bluetooth); 2433 bluetooth.flags = WPI_BT_COEX_MODE_4WIRE; 2434 bluetooth.lead_time = WPI_BT_LEAD_TIME_DEF; 2435 bluetooth.max_kill = WPI_BT_MAX_KILL_DEF; 2436 error = wpi_cmd(sc, WPI_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 2437 if (error != 0) { 2438 printf("%s: could not configure bluetooth coexistence\n", 2439 sc->sc_dev.dv_xname); 2440 return error; 2441 } 2442 2443 /* Configure adapter. */ 2444 memset(&sc->rxon, 0, sizeof (struct wpi_rxon)); 2445 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 2446 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 2447 /* Set default channel. */ 2448 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 2449 sc->rxon.flags = htole32(WPI_RXON_TSF); 2450 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 2451 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 2452 switch (ic->ic_opmode) { 2453 case IEEE80211_M_STA: 2454 sc->rxon.mode = WPI_MODE_STA; 2455 sc->rxon.filter = htole32(WPI_FILTER_MULTICAST); 2456 break; 2457 case IEEE80211_M_MONITOR: 2458 sc->rxon.mode = WPI_MODE_MONITOR; 2459 sc->rxon.filter = htole32(WPI_FILTER_MULTICAST | 2460 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2461 break; 2462 default: 2463 /* Should not get there. */ 2464 break; 2465 } 2466 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 2467 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 2468 DPRINTF(("setting configuration\n")); 2469 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon), 2470 0); 2471 if (error != 0) { 2472 printf("%s: RXON command failed\n", sc->sc_dev.dv_xname); 2473 return error; 2474 } 2475 2476 /* Configuration has changed, set TX power accordingly. */ 2477 if ((error = wpi_set_txpower(sc, 0)) != 0) { 2478 printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); 2479 return error; 2480 } 2481 2482 /* Add broadcast node. */ 2483 memset(&node, 0, sizeof node); 2484 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 2485 node.id = WPI_ID_BROADCAST; 2486 node.plcp = wpi_rates[WPI_RIDX_CCK1].plcp; 2487 node.action = htole32(WPI_ACTION_SET_RATE); 2488 node.antenna = WPI_ANTENNA_BOTH; 2489 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2490 if (error != 0) { 2491 printf("%s: could not add broadcast node\n", 2492 sc->sc_dev.dv_xname); 2493 return error; 2494 } 2495 2496 if ((error = wpi_mrr_setup(sc)) != 0) { 2497 printf("%s: could not setup MRR\n", sc->sc_dev.dv_xname); 2498 return error; 2499 } 2500 return 0; 2501 } 2502 2503 int 2504 wpi_scan(struct wpi_softc *sc, uint16_t flags) 2505 { 2506 struct ieee80211com *ic = &sc->sc_ic; 2507 struct wpi_scan_hdr *hdr; 2508 struct wpi_cmd_data *tx; 2509 struct wpi_scan_essid *essid; 2510 struct wpi_scan_chan *chan; 2511 struct ieee80211_frame *wh; 2512 struct ieee80211_rateset *rs; 2513 struct ieee80211_channel *c; 2514 uint8_t *buf, *frm; 2515 int buflen, error; 2516 2517 buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 2518 if (buf == NULL) { 2519 printf("%s: could not allocate buffer for scan command\n", 2520 sc->sc_dev.dv_xname); 2521 return ENOMEM; 2522 } 2523 hdr = (struct wpi_scan_hdr *)buf; 2524 /* 2525 * Move to the next channel if no frames are received within 10ms 2526 * after sending the probe request. 2527 */ 2528 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 2529 hdr->quiet_threshold = htole16(1); /* min # of packets */ 2530 2531 tx = (struct wpi_cmd_data *)(hdr + 1); 2532 tx->flags = htole32(WPI_TX_AUTO_SEQ); 2533 tx->id = WPI_ID_BROADCAST; 2534 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 2535 2536 if (flags & IEEE80211_CHAN_5GHZ) { 2537 hdr->crc_threshold = htole16(1); 2538 /* Send probe requests at 6Mbps. */ 2539 tx->plcp = wpi_rates[WPI_RIDX_OFDM6].plcp; 2540 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 2541 } else { 2542 hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO); 2543 /* Send probe requests at 1Mbps. */ 2544 tx->plcp = wpi_rates[WPI_RIDX_CCK1].plcp; 2545 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 2546 } 2547 2548 essid = (struct wpi_scan_essid *)(tx + 1); 2549 if (ic->ic_des_esslen != 0) { 2550 essid[0].id = IEEE80211_ELEMID_SSID; 2551 essid[0].len = ic->ic_des_esslen; 2552 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 2553 } 2554 /* 2555 * Build a probe request frame. Most of the following code is a 2556 * copy & paste of what is done in net80211. 2557 */ 2558 wh = (struct ieee80211_frame *)(essid + 4); 2559 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2560 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2561 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2562 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 2563 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2564 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 2565 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 2566 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 2567 2568 frm = (uint8_t *)(wh + 1); 2569 frm = ieee80211_add_ssid(frm, NULL, 0); 2570 frm = ieee80211_add_rates(frm, rs); 2571 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 2572 frm = ieee80211_add_xrates(frm, rs); 2573 2574 /* Set length of probe request. */ 2575 tx->len = htole16(frm - (uint8_t *)wh); 2576 2577 chan = (struct wpi_scan_chan *)frm; 2578 for (c = &ic->ic_channels[1]; 2579 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2580 if ((c->ic_flags & flags) != flags) 2581 continue; 2582 2583 chan->chan = ieee80211_chan2ieee(ic, c); 2584 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 2585 chan->flags = 0; 2586 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) 2587 chan->flags |= WPI_CHAN_ACTIVE; 2588 if (ic->ic_des_esslen != 0) 2589 chan->flags |= WPI_CHAN_NPBREQS(1); 2590 chan->dsp_gain = 0x6e; 2591 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2592 chan->rf_gain = 0x3b; 2593 chan->active = htole16(24); 2594 chan->passive = htole16(110); 2595 } else { 2596 chan->rf_gain = 0x28; 2597 chan->active = htole16(36); 2598 chan->passive = htole16(120); 2599 } 2600 hdr->nchan++; 2601 chan++; 2602 } 2603 2604 buflen = (uint8_t *)chan - buf; 2605 hdr->len = htole16(buflen); 2606 2607 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 2608 error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1); 2609 free(buf, M_DEVBUF, WPI_SCAN_MAXSZ); 2610 return error; 2611 } 2612 2613 int 2614 wpi_auth(struct wpi_softc *sc) 2615 { 2616 struct ieee80211com *ic = &sc->sc_ic; 2617 struct ieee80211_node *ni = ic->ic_bss; 2618 struct wpi_node_info node; 2619 int error; 2620 2621 /* Update adapter configuration. */ 2622 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 2623 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2624 sc->rxon.flags = htole32(WPI_RXON_TSF); 2625 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2626 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 2627 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2628 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 2629 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2630 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 2631 switch (ic->ic_curmode) { 2632 case IEEE80211_MODE_11A: 2633 sc->rxon.cck_mask = 0; 2634 sc->rxon.ofdm_mask = 0x15; 2635 break; 2636 case IEEE80211_MODE_11B: 2637 sc->rxon.cck_mask = 0x03; 2638 sc->rxon.ofdm_mask = 0; 2639 break; 2640 default: /* Assume 802.11b/g. */ 2641 sc->rxon.cck_mask = 0x0f; 2642 sc->rxon.ofdm_mask = 0x15; 2643 } 2644 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, 2645 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); 2646 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon), 2647 1); 2648 if (error != 0) { 2649 printf("%s: RXON command failed\n", sc->sc_dev.dv_xname); 2650 return error; 2651 } 2652 2653 /* Configuration has changed, set TX power accordingly. */ 2654 if ((error = wpi_set_txpower(sc, 1)) != 0) { 2655 printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); 2656 return error; 2657 } 2658 /* 2659 * Reconfiguring RXON clears the firmware nodes table so we must 2660 * add the broadcast node again. 2661 */ 2662 memset(&node, 0, sizeof node); 2663 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 2664 node.id = WPI_ID_BROADCAST; 2665 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2666 wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp; 2667 node.action = htole32(WPI_ACTION_SET_RATE); 2668 node.antenna = WPI_ANTENNA_BOTH; 2669 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2670 if (error != 0) { 2671 printf("%s: could not add broadcast node\n", 2672 sc->sc_dev.dv_xname); 2673 return error; 2674 } 2675 return 0; 2676 } 2677 2678 int 2679 wpi_run(struct wpi_softc *sc) 2680 { 2681 struct ieee80211com *ic = &sc->sc_ic; 2682 struct ieee80211_node *ni = ic->ic_bss; 2683 struct wpi_node_info node; 2684 int error; 2685 2686 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2687 /* Link LED blinks while monitoring. */ 2688 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2689 return 0; 2690 } 2691 if ((error = wpi_set_timing(sc, ni)) != 0) { 2692 printf("%s: could not set timing\n", sc->sc_dev.dv_xname); 2693 return error; 2694 } 2695 2696 /* Update adapter configuration. */ 2697 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 2698 /* Short preamble and slot time are negotiated when associating. */ 2699 sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT); 2700 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2701 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 2702 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2703 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 2704 sc->rxon.filter |= htole32(WPI_FILTER_BSS); 2705 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); 2706 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon), 2707 1); 2708 if (error != 0) { 2709 printf("%s: RXON command failed\n", sc->sc_dev.dv_xname); 2710 return error; 2711 } 2712 2713 /* Configuration has changed, set TX power accordingly. */ 2714 if ((error = wpi_set_txpower(sc, 1)) != 0) { 2715 printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); 2716 return error; 2717 } 2718 2719 /* Fake a join to init the TX rate. */ 2720 ((struct wpi_node *)ni)->id = WPI_ID_BSS; 2721 wpi_newassoc(ic, ni, 1); 2722 2723 /* Add BSS node. */ 2724 memset(&node, 0, sizeof node); 2725 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid); 2726 node.id = WPI_ID_BSS; 2727 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2728 wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp; 2729 node.action = htole32(WPI_ACTION_SET_RATE); 2730 node.antenna = WPI_ANTENNA_BOTH; 2731 DPRINTF(("adding BSS node\n")); 2732 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2733 if (error != 0) { 2734 printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname); 2735 return error; 2736 } 2737 2738 /* Start periodic calibration timer. */ 2739 sc->calib_cnt = 0; 2740 timeout_add_msec(&sc->calib_to, 500); 2741 2742 /* Link LED always on while associated. */ 2743 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2744 2745 /* Enable power-saving mode if requested by user. */ 2746 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 2747 (void)wpi_set_pslevel(sc, 0, 3, 1); 2748 2749 return 0; 2750 } 2751 2752 /* 2753 * We support CCMP hardware encryption/decryption of unicast frames only. 2754 * HW support for TKIP really sucks. We should let TKIP die anyway. 2755 */ 2756 int 2757 wpi_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 2758 struct ieee80211_key *k) 2759 { 2760 struct wpi_softc *sc = ic->ic_softc; 2761 struct wpi_node *wn = (void *)ni; 2762 struct wpi_node_info node; 2763 uint16_t kflags; 2764 2765 if ((k->k_flags & IEEE80211_KEY_GROUP) || 2766 k->k_cipher != IEEE80211_CIPHER_CCMP) 2767 return ieee80211_set_key(ic, ni, k); 2768 2769 kflags = WPI_KFLAG_CCMP | WPI_KFLAG_KID(k->k_id); 2770 memset(&node, 0, sizeof node); 2771 node.id = wn->id; 2772 node.control = WPI_NODE_UPDATE; 2773 node.flags = WPI_FLAG_SET_KEY; 2774 node.kflags = htole16(kflags); 2775 memcpy(node.key, k->k_key, k->k_len); 2776 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 2777 return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2778 } 2779 2780 void 2781 wpi_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 2782 struct ieee80211_key *k) 2783 { 2784 struct wpi_softc *sc = ic->ic_softc; 2785 struct wpi_node *wn = (void *)ni; 2786 struct wpi_node_info node; 2787 2788 if ((k->k_flags & IEEE80211_KEY_GROUP) || 2789 k->k_cipher != IEEE80211_CIPHER_CCMP) { 2790 /* See comment about other ciphers above. */ 2791 ieee80211_delete_key(ic, ni, k); 2792 return; 2793 } 2794 if (ic->ic_state != IEEE80211_S_RUN) 2795 return; /* Nothing to do. */ 2796 memset(&node, 0, sizeof node); 2797 node.id = wn->id; 2798 node.control = WPI_NODE_UPDATE; 2799 node.flags = WPI_FLAG_SET_KEY; 2800 node.kflags = 0; 2801 DPRINTF(("delete keys for node %d\n", node.id)); 2802 (void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2803 } 2804 2805 int 2806 wpi_post_alive(struct wpi_softc *sc) 2807 { 2808 int ntries, error; 2809 2810 /* Check (again) that the radio is not disabled. */ 2811 if ((error = wpi_nic_lock(sc)) != 0) 2812 return error; 2813 /* NB: Runtime firmware must be up and running. */ 2814 if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) { 2815 printf("%s: radio is disabled by hardware switch\n", 2816 sc->sc_dev.dv_xname); 2817 wpi_nic_unlock(sc); 2818 return EPERM; /* :-) */ 2819 } 2820 wpi_nic_unlock(sc); 2821 2822 /* Wait for thermal sensor to calibrate. */ 2823 for (ntries = 0; ntries < 1000; ntries++) { 2824 if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0) 2825 break; 2826 DELAY(10); 2827 } 2828 if (ntries == 1000) { 2829 printf("%s: timeout waiting for thermal sensor calibration\n", 2830 sc->sc_dev.dv_xname); 2831 return ETIMEDOUT; 2832 } 2833 DPRINTF(("temperature %d\n", sc->temp)); 2834 return 0; 2835 } 2836 2837 /* 2838 * The firmware boot code is small and is intended to be copied directly into 2839 * the NIC internal memory (no DMA transfer.) 2840 */ 2841 int 2842 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size) 2843 { 2844 int error, ntries; 2845 2846 size /= sizeof (uint32_t); 2847 2848 if ((error = wpi_nic_lock(sc)) != 0) 2849 return error; 2850 2851 /* Copy microcode image into NIC memory. */ 2852 wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE, 2853 (const uint32_t *)ucode, size); 2854 2855 wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0); 2856 wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE); 2857 wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size); 2858 2859 /* Start boot load now. */ 2860 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START); 2861 2862 /* Wait for transfer to complete. */ 2863 for (ntries = 0; ntries < 1000; ntries++) { 2864 if (!(wpi_prph_read(sc, WPI_BSM_WR_CTRL) & 2865 WPI_BSM_WR_CTRL_START)) 2866 break; 2867 DELAY(10); 2868 } 2869 if (ntries == 1000) { 2870 printf("%s: could not load boot firmware\n", 2871 sc->sc_dev.dv_xname); 2872 wpi_nic_unlock(sc); 2873 return ETIMEDOUT; 2874 } 2875 2876 /* Enable boot after power up. */ 2877 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN); 2878 2879 wpi_nic_unlock(sc); 2880 return 0; 2881 } 2882 2883 int 2884 wpi_load_firmware(struct wpi_softc *sc) 2885 { 2886 struct wpi_fw_info *fw = &sc->fw; 2887 struct wpi_dma_info *dma = &sc->fw_dma; 2888 int error; 2889 2890 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 2891 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 2892 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 2893 BUS_DMASYNC_PREWRITE); 2894 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, 2895 fw->init.text, fw->init.textsz); 2896 bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ, 2897 fw->init.textsz, BUS_DMASYNC_PREWRITE); 2898 2899 /* Tell adapter where to find initialization sections. */ 2900 if ((error = wpi_nic_lock(sc)) != 0) 2901 return error; 2902 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 2903 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz); 2904 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 2905 dma->paddr + WPI_FW_DATA_MAXSZ); 2906 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 2907 wpi_nic_unlock(sc); 2908 2909 /* Load firmware boot code. */ 2910 error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 2911 if (error != 0) { 2912 printf("%s: could not load boot firmware\n", 2913 sc->sc_dev.dv_xname); 2914 return error; 2915 } 2916 /* Now press "execute". */ 2917 WPI_WRITE(sc, WPI_RESET, 0); 2918 2919 /* Wait at most one second for first alive notification. */ 2920 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 2921 printf("%s: timeout waiting for adapter to initialize\n", 2922 sc->sc_dev.dv_xname); 2923 return error; 2924 } 2925 2926 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 2927 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 2928 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 2929 BUS_DMASYNC_PREWRITE); 2930 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, 2931 fw->main.text, fw->main.textsz); 2932 bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ, 2933 fw->main.textsz, BUS_DMASYNC_PREWRITE); 2934 2935 /* Tell adapter where to find runtime sections. */ 2936 if ((error = wpi_nic_lock(sc)) != 0) 2937 return error; 2938 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 2939 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz); 2940 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 2941 dma->paddr + WPI_FW_DATA_MAXSZ); 2942 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, 2943 WPI_FW_UPDATED | fw->main.textsz); 2944 wpi_nic_unlock(sc); 2945 2946 return 0; 2947 } 2948 2949 int 2950 wpi_read_firmware(struct wpi_softc *sc) 2951 { 2952 struct wpi_fw_info *fw = &sc->fw; 2953 const struct wpi_firmware_hdr *hdr; 2954 int error; 2955 2956 /* Read firmware image from filesystem. */ 2957 if ((error = loadfirmware("wpi-3945abg", &fw->data, &fw->datalen)) != 0) { 2958 printf("%s: error, %d, could not read firmware %s\n", 2959 sc->sc_dev.dv_xname, error, "wpi-3945abg"); 2960 return error; 2961 } 2962 if (fw->datalen < sizeof (*hdr)) { 2963 printf("%s: truncated firmware header: %zu bytes\n", 2964 sc->sc_dev.dv_xname, fw->datalen); 2965 free(fw->data, M_DEVBUF, fw->datalen); 2966 return EINVAL; 2967 } 2968 /* Extract firmware header information. */ 2969 hdr = (struct wpi_firmware_hdr *)fw->data; 2970 fw->main.textsz = letoh32(hdr->main_textsz); 2971 fw->main.datasz = letoh32(hdr->main_datasz); 2972 fw->init.textsz = letoh32(hdr->init_textsz); 2973 fw->init.datasz = letoh32(hdr->init_datasz); 2974 fw->boot.textsz = letoh32(hdr->boot_textsz); 2975 fw->boot.datasz = 0; 2976 2977 /* Sanity-check firmware header. */ 2978 if (fw->main.textsz > WPI_FW_TEXT_MAXSZ || 2979 fw->main.datasz > WPI_FW_DATA_MAXSZ || 2980 fw->init.textsz > WPI_FW_TEXT_MAXSZ || 2981 fw->init.datasz > WPI_FW_DATA_MAXSZ || 2982 fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ || 2983 (fw->boot.textsz & 3) != 0) { 2984 printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname); 2985 free(fw->data, M_DEVBUF, fw->datalen); 2986 return EINVAL; 2987 } 2988 2989 /* Check that all firmware sections fit. */ 2990 if (fw->datalen < sizeof (*hdr) + fw->main.textsz + fw->main.datasz + 2991 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 2992 printf("%s: firmware file too short: %zu bytes\n", 2993 sc->sc_dev.dv_xname, fw->datalen); 2994 free(fw->data, M_DEVBUF, fw->datalen); 2995 return EINVAL; 2996 } 2997 2998 /* Get pointers to firmware sections. */ 2999 fw->main.text = (const uint8_t *)(hdr + 1); 3000 fw->main.data = fw->main.text + fw->main.textsz; 3001 fw->init.text = fw->main.data + fw->main.datasz; 3002 fw->init.data = fw->init.text + fw->init.textsz; 3003 fw->boot.text = fw->init.data + fw->init.datasz; 3004 3005 return 0; 3006 } 3007 3008 int 3009 wpi_clock_wait(struct wpi_softc *sc) 3010 { 3011 int ntries; 3012 3013 /* Set "initialization complete" bit. */ 3014 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); 3015 3016 /* Wait for clock stabilization. */ 3017 for (ntries = 0; ntries < 25000; ntries++) { 3018 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY) 3019 return 0; 3020 DELAY(100); 3021 } 3022 printf("%s: timeout waiting for clock stabilization\n", 3023 sc->sc_dev.dv_xname); 3024 return ETIMEDOUT; 3025 } 3026 3027 int 3028 wpi_apm_init(struct wpi_softc *sc) 3029 { 3030 int error; 3031 3032 WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT); 3033 /* Disable L0s. */ 3034 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX); 3035 3036 if ((error = wpi_clock_wait(sc)) != 0) 3037 return error; 3038 3039 if ((error = wpi_nic_lock(sc)) != 0) 3040 return error; 3041 /* Enable DMA. */ 3042 wpi_prph_write(sc, WPI_APMG_CLK_ENA, 3043 WPI_APMG_CLK_DMA_CLK_RQT | WPI_APMG_CLK_BSM_CLK_RQT); 3044 DELAY(20); 3045 /* Disable L1. */ 3046 wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS); 3047 wpi_nic_unlock(sc); 3048 3049 return 0; 3050 } 3051 3052 void 3053 wpi_apm_stop_master(struct wpi_softc *sc) 3054 { 3055 int ntries; 3056 3057 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER); 3058 3059 if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) == 3060 WPI_GP_CNTRL_MAC_PS) 3061 return; /* Already asleep. */ 3062 3063 for (ntries = 0; ntries < 100; ntries++) { 3064 if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED) 3065 return; 3066 DELAY(10); 3067 } 3068 printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); 3069 } 3070 3071 void 3072 wpi_apm_stop(struct wpi_softc *sc) 3073 { 3074 wpi_apm_stop_master(sc); 3075 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW); 3076 } 3077 3078 void 3079 wpi_nic_config(struct wpi_softc *sc) 3080 { 3081 pcireg_t reg; 3082 uint8_t rev; 3083 3084 /* Voodoo from the reference driver. */ 3085 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG); 3086 rev = PCI_REVISION(reg); 3087 if ((rev & 0xc0) == 0x40) 3088 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB); 3089 else if (!(rev & 0x80)) 3090 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM); 3091 3092 if (sc->cap == 0x80) 3093 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC); 3094 3095 if ((letoh16(sc->rev) & 0xf0) == 0xd0) 3096 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 3097 else 3098 WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 3099 3100 if (sc->type > 1) 3101 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B); 3102 } 3103 3104 int 3105 wpi_hw_init(struct wpi_softc *sc) 3106 { 3107 int chnl, ntries, error; 3108 3109 /* Clear pending interrupts. */ 3110 WPI_WRITE(sc, WPI_INT, 0xffffffff); 3111 3112 if ((error = wpi_apm_init(sc)) != 0) { 3113 printf("%s: could not power ON adapter\n", 3114 sc->sc_dev.dv_xname); 3115 return error; 3116 } 3117 3118 /* Select VMAIN power source. */ 3119 if ((error = wpi_nic_lock(sc)) != 0) 3120 return error; 3121 wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK); 3122 wpi_nic_unlock(sc); 3123 /* Spin until VMAIN gets selected. */ 3124 for (ntries = 0; ntries < 5000; ntries++) { 3125 if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN) 3126 break; 3127 DELAY(10); 3128 } 3129 if (ntries == 5000) { 3130 printf("%s: timeout selecting power source\n", 3131 sc->sc_dev.dv_xname); 3132 return ETIMEDOUT; 3133 } 3134 3135 /* Perform adapter initialization. */ 3136 (void)wpi_nic_config(sc); 3137 3138 /* Initialize RX ring. */ 3139 if ((error = wpi_nic_lock(sc)) != 0) 3140 return error; 3141 /* Set physical address of RX ring. */ 3142 WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr); 3143 /* Set physical address of RX read pointer. */ 3144 WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr + 3145 offsetof(struct wpi_shared, next)); 3146 WPI_WRITE(sc, WPI_FH_RX_WPTR, 0); 3147 /* Enable RX. */ 3148 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 3149 WPI_FH_RX_CONFIG_DMA_ENA | 3150 WPI_FH_RX_CONFIG_RDRBD_ENA | 3151 WPI_FH_RX_CONFIG_WRSTATUS_ENA | 3152 WPI_FH_RX_CONFIG_MAXFRAG | 3153 WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) | 3154 WPI_FH_RX_CONFIG_IRQ_DST_HOST | 3155 WPI_FH_RX_CONFIG_IRQ_RBTH(1)); 3156 (void)WPI_READ(sc, WPI_FH_RSSR_TBL); /* barrier */ 3157 WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7); 3158 wpi_nic_unlock(sc); 3159 3160 /* Initialize TX rings. */ 3161 if ((error = wpi_nic_lock(sc)) != 0) 3162 return error; 3163 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2); /* bypass mode */ 3164 wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1); /* enable RA0 */ 3165 /* Enable all 6 TX rings. */ 3166 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f); 3167 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000); 3168 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002); 3169 wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4); 3170 wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5); 3171 /* Set physical address of TX rings. */ 3172 WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr); 3173 WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5); 3174 3175 /* Enable all DMA channels. */ 3176 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 3177 WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0); 3178 WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0); 3179 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008); 3180 } 3181 wpi_nic_unlock(sc); 3182 (void)WPI_READ(sc, WPI_FH_TX_BASE); /* barrier */ 3183 3184 /* Clear "radio off" and "commands blocked" bits. */ 3185 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 3186 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED); 3187 3188 /* Clear pending interrupts. */ 3189 WPI_WRITE(sc, WPI_INT, 0xffffffff); 3190 /* Enable interrupts. */ 3191 WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK); 3192 3193 /* _Really_ make sure "radio off" bit is cleared! */ 3194 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 3195 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 3196 3197 if ((error = wpi_load_firmware(sc)) != 0) { 3198 printf("%s: could not load firmware\n", sc->sc_dev.dv_xname); 3199 return error; 3200 } 3201 /* Wait at most one second for firmware alive notification. */ 3202 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 3203 printf("%s: timeout waiting for adapter to initialize\n", 3204 sc->sc_dev.dv_xname); 3205 return error; 3206 } 3207 /* Do post-firmware initialization. */ 3208 return wpi_post_alive(sc); 3209 } 3210 3211 void 3212 wpi_hw_stop(struct wpi_softc *sc) 3213 { 3214 int chnl, qid, ntries; 3215 uint32_t tmp; 3216 3217 WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO); 3218 3219 /* Disable interrupts. */ 3220 WPI_WRITE(sc, WPI_MASK, 0); 3221 WPI_WRITE(sc, WPI_INT, 0xffffffff); 3222 WPI_WRITE(sc, WPI_FH_INT, 0xffffffff); 3223 3224 /* Make sure we no longer hold the NIC lock. */ 3225 wpi_nic_unlock(sc); 3226 3227 if (wpi_nic_lock(sc) == 0) { 3228 /* Stop TX scheduler. */ 3229 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0); 3230 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0); 3231 3232 /* Stop all DMA channels. */ 3233 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 3234 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0); 3235 for (ntries = 0; ntries < 100; ntries++) { 3236 tmp = WPI_READ(sc, WPI_FH_TX_STATUS); 3237 if ((tmp & WPI_FH_TX_STATUS_IDLE(chnl)) == 3238 WPI_FH_TX_STATUS_IDLE(chnl)) 3239 break; 3240 DELAY(10); 3241 } 3242 } 3243 wpi_nic_unlock(sc); 3244 } 3245 3246 /* Stop RX ring. */ 3247 wpi_reset_rx_ring(sc, &sc->rxq); 3248 3249 /* Reset all TX rings. */ 3250 for (qid = 0; qid < WPI_NTXQUEUES; qid++) 3251 wpi_reset_tx_ring(sc, &sc->txq[qid]); 3252 3253 if (wpi_nic_lock(sc) == 0) { 3254 wpi_prph_write(sc, WPI_APMG_CLK_DIS, WPI_APMG_CLK_DMA_CLK_RQT); 3255 wpi_nic_unlock(sc); 3256 } 3257 DELAY(5); 3258 /* Power OFF adapter. */ 3259 wpi_apm_stop(sc); 3260 } 3261 3262 int 3263 wpi_init(struct ifnet *ifp) 3264 { 3265 struct wpi_softc *sc = ifp->if_softc; 3266 struct ieee80211com *ic = &sc->sc_ic; 3267 int error; 3268 3269 #ifdef notyet 3270 /* Check that the radio is not disabled by hardware switch. */ 3271 if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) { 3272 printf("%s: radio is disabled by hardware switch\n", 3273 sc->sc_dev.dv_xname); 3274 error = EPERM; /* :-) */ 3275 goto fail; 3276 } 3277 #endif 3278 /* Read firmware images from the filesystem. */ 3279 if ((error = wpi_read_firmware(sc)) != 0) { 3280 printf("%s: could not read firmware\n", sc->sc_dev.dv_xname); 3281 goto fail; 3282 } 3283 3284 /* Initialize hardware and upload firmware. */ 3285 error = wpi_hw_init(sc); 3286 free(sc->fw.data, M_DEVBUF, sc->fw.datalen); 3287 if (error != 0) { 3288 printf("%s: could not initialize hardware\n", 3289 sc->sc_dev.dv_xname); 3290 goto fail; 3291 } 3292 3293 /* Configure adapter now that it is ready. */ 3294 if ((error = wpi_config(sc)) != 0) { 3295 printf("%s: could not configure device\n", 3296 sc->sc_dev.dv_xname); 3297 goto fail; 3298 } 3299 3300 ifq_clr_oactive(&ifp->if_snd); 3301 ifp->if_flags |= IFF_RUNNING; 3302 3303 if (ic->ic_opmode != IEEE80211_M_MONITOR) 3304 ieee80211_begin_scan(ifp); 3305 else 3306 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3307 3308 return 0; 3309 3310 fail: wpi_stop(ifp, 1); 3311 return error; 3312 } 3313 3314 void 3315 wpi_stop(struct ifnet *ifp, int disable) 3316 { 3317 struct wpi_softc *sc = ifp->if_softc; 3318 struct ieee80211com *ic = &sc->sc_ic; 3319 3320 ifp->if_timer = sc->sc_tx_timer = 0; 3321 ifp->if_flags &= ~IFF_RUNNING; 3322 ifq_clr_oactive(&ifp->if_snd); 3323 3324 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 3325 3326 /* Power OFF hardware. */ 3327 wpi_hw_stop(sc); 3328 } 3329