xref: /openbsd-src/sys/dev/pci/if_wpi.c (revision 99fd087599a8791921855f21bd7e36130f39aadc)
1 /*	$OpenBSD: if_wpi.c,v 1.149 2019/09/30 01:53:05 dlg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006-2008
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/kernel.h>
30 #include <sys/rwlock.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/conf.h>
35 #include <sys/device.h>
36 #include <sys/task.h>
37 #include <sys/endian.h>
38 
39 #include <machine/bus.h>
40 #include <machine/intr.h>
41 
42 #include <dev/pci/pcireg.h>
43 #include <dev/pci/pcivar.h>
44 #include <dev/pci/pcidevs.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/if_ether.h>
55 
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/pci/if_wpireg.h>
61 #include <dev/pci/if_wpivar.h>
62 
63 static const struct pci_matchid wpi_devices[] = {
64 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 },
65 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2 }
66 };
67 
68 int		wpi_match(struct device *, void *, void *);
69 void		wpi_attach(struct device *, struct device *, void *);
70 #if NBPFILTER > 0
71 void		wpi_radiotap_attach(struct wpi_softc *);
72 #endif
73 int		wpi_detach(struct device *, int);
74 int		wpi_activate(struct device *, int);
75 void		wpi_wakeup(struct wpi_softc *);
76 void		wpi_init_task(void *);
77 int		wpi_nic_lock(struct wpi_softc *);
78 int		wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
79 int		wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
80 		    void **, bus_size_t, bus_size_t);
81 void		wpi_dma_contig_free(struct wpi_dma_info *);
82 int		wpi_alloc_shared(struct wpi_softc *);
83 void		wpi_free_shared(struct wpi_softc *);
84 int		wpi_alloc_fwmem(struct wpi_softc *);
85 void		wpi_free_fwmem(struct wpi_softc *);
86 int		wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
87 void		wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
88 void		wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
89 int		wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
90 		    int);
91 void		wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
92 void		wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
93 int		wpi_read_eeprom(struct wpi_softc *);
94 void		wpi_read_eeprom_channels(struct wpi_softc *, int);
95 void		wpi_read_eeprom_group(struct wpi_softc *, int);
96 struct		ieee80211_node *wpi_node_alloc(struct ieee80211com *);
97 void		wpi_newassoc(struct ieee80211com *, struct ieee80211_node *,
98 		    int);
99 int		wpi_media_change(struct ifnet *);
100 int		wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
101 void		wpi_iter_func(void *, struct ieee80211_node *);
102 void		wpi_calib_timeout(void *);
103 int		wpi_ccmp_decap(struct wpi_softc *, struct mbuf *,
104 		    struct ieee80211_key *);
105 void		wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
106 		    struct wpi_rx_data *, struct mbuf_list *);
107 void		wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
108 void		wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
109 void		wpi_notif_intr(struct wpi_softc *);
110 void		wpi_fatal_intr(struct wpi_softc *);
111 int		wpi_intr(void *);
112 int		wpi_tx(struct wpi_softc *, struct mbuf *,
113 		    struct ieee80211_node *);
114 void		wpi_start(struct ifnet *);
115 void		wpi_watchdog(struct ifnet *);
116 int		wpi_ioctl(struct ifnet *, u_long, caddr_t);
117 int		wpi_cmd(struct wpi_softc *, int, const void *, int, int);
118 int		wpi_mrr_setup(struct wpi_softc *);
119 void		wpi_updateedca(struct ieee80211com *);
120 void		wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
121 int		wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
122 void		wpi_power_calibration(struct wpi_softc *);
123 int		wpi_set_txpower(struct wpi_softc *, int);
124 int		wpi_get_power_index(struct wpi_softc *,
125 		    struct wpi_power_group *, struct ieee80211_channel *, int);
126 int		wpi_set_pslevel(struct wpi_softc *, int, int, int);
127 int		wpi_config(struct wpi_softc *);
128 int		wpi_scan(struct wpi_softc *, uint16_t);
129 int		wpi_auth(struct wpi_softc *);
130 int		wpi_run(struct wpi_softc *);
131 int		wpi_set_key(struct ieee80211com *, struct ieee80211_node *,
132 		    struct ieee80211_key *);
133 void		wpi_delete_key(struct ieee80211com *, struct ieee80211_node *,
134 		    struct ieee80211_key *);
135 int		wpi_post_alive(struct wpi_softc *);
136 int		wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
137 int		wpi_load_firmware(struct wpi_softc *);
138 int		wpi_read_firmware(struct wpi_softc *);
139 int		wpi_clock_wait(struct wpi_softc *);
140 int		wpi_apm_init(struct wpi_softc *);
141 void		wpi_apm_stop_master(struct wpi_softc *);
142 void		wpi_apm_stop(struct wpi_softc *);
143 void		wpi_nic_config(struct wpi_softc *);
144 int		wpi_hw_init(struct wpi_softc *);
145 void		wpi_hw_stop(struct wpi_softc *);
146 int		wpi_init(struct ifnet *);
147 void		wpi_stop(struct ifnet *, int);
148 
149 #ifdef WPI_DEBUG
150 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
151 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
152 int wpi_debug = 0;
153 #else
154 #define DPRINTF(x)
155 #define DPRINTFN(n, x)
156 #endif
157 
158 struct cfdriver wpi_cd = {
159 	NULL, "wpi", DV_IFNET
160 };
161 
162 struct cfattach wpi_ca = {
163 	sizeof (struct wpi_softc), wpi_match, wpi_attach, wpi_detach,
164 	wpi_activate
165 };
166 
167 int
168 wpi_match(struct device *parent, void *match, void *aux)
169 {
170 	return pci_matchbyid((struct pci_attach_args *)aux, wpi_devices,
171 	    nitems(wpi_devices));
172 }
173 
174 void
175 wpi_attach(struct device *parent, struct device *self, void *aux)
176 {
177 	struct wpi_softc *sc = (struct wpi_softc *)self;
178 	struct ieee80211com *ic = &sc->sc_ic;
179 	struct ifnet *ifp = &ic->ic_if;
180 	struct pci_attach_args *pa = aux;
181 	const char *intrstr;
182 	pci_intr_handle_t ih;
183 	pcireg_t memtype, reg;
184 	int i, error;
185 
186 	sc->sc_pct = pa->pa_pc;
187 	sc->sc_pcitag = pa->pa_tag;
188 	sc->sc_dmat = pa->pa_dmat;
189 
190 	/*
191 	 * Get the offset of the PCI Express Capability Structure in PCI
192 	 * Configuration Space (the vendor driver hard-codes it as E0h.)
193 	 */
194 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
195 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
196 	if (error == 0) {
197 		printf(": PCIe capability structure not found!\n");
198 		return;
199 	}
200 
201 	/* Clear device-specific "PCI retry timeout" register (41h). */
202 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
203 	reg &= ~0xff00;
204 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
205 
206 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WPI_PCI_BAR0);
207 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, memtype, 0, &sc->sc_st,
208 	    &sc->sc_sh, NULL, &sc->sc_sz, 0);
209 	if (error != 0) {
210 		printf(": can't map mem space\n");
211 		return;
212 	}
213 
214 	/* Install interrupt handler. */
215 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
216 		printf(": can't map interrupt\n");
217 		return;
218 	}
219 	intrstr = pci_intr_string(sc->sc_pct, ih);
220 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc,
221 	    sc->sc_dev.dv_xname);
222 	if (sc->sc_ih == NULL) {
223 		printf(": can't establish interrupt");
224 		if (intrstr != NULL)
225 			printf(" at %s", intrstr);
226 		printf("\n");
227 		return;
228 	}
229 	printf(": %s", intrstr);
230 
231 	/* Power ON adapter. */
232 	if ((error = wpi_apm_init(sc)) != 0) {
233 		printf(": could not power ON adapter\n");
234 		return;
235 	}
236 
237 	/* Read MAC address, channels, etc from EEPROM. */
238 	if ((error = wpi_read_eeprom(sc)) != 0) {
239 		printf(": could not read EEPROM\n");
240 		return;
241 	}
242 
243 	/* Allocate DMA memory for firmware transfers. */
244 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
245 		printf(": could not allocate memory for firmware\n");
246 		return;
247 	}
248 
249 	/* Allocate shared area. */
250 	if ((error = wpi_alloc_shared(sc)) != 0) {
251 		printf(": could not allocate shared area\n");
252 		goto fail1;
253 	}
254 
255 	/* Allocate TX rings. */
256 	for (i = 0; i < WPI_NTXQUEUES; i++) {
257 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
258 			printf(": could not allocate TX ring %d\n", i);
259 			goto fail2;
260 		}
261 	}
262 
263 	/* Allocate RX ring. */
264 	if ((error = wpi_alloc_rx_ring(sc, &sc->rxq)) != 0) {
265 		printf(": could not allocate Rx ring\n");
266 		goto fail2;
267 	}
268 
269 	/* Power OFF adapter. */
270 	wpi_apm_stop(sc);
271 	/* Clear pending interrupts. */
272 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
273 
274 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
275 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
276 	ic->ic_state = IEEE80211_S_INIT;
277 
278 	/* Set device capabilities. */
279 	ic->ic_caps =
280 	    IEEE80211_C_WEP |		/* WEP */
281 	    IEEE80211_C_RSN |		/* WPA/RSN */
282 	    IEEE80211_C_SCANALL |	/* device scans all channels at once */
283 	    IEEE80211_C_SCANALLBAND |	/* driver scans all bands at once */
284 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
285 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
286 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
287 	    IEEE80211_C_PMGT;		/* power saving supported */
288 
289 	/* Set supported rates. */
290 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
291 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
292 	if (sc->sc_flags & WPI_FLAG_HAS_5GHZ) {
293 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
294 		    ieee80211_std_rateset_11a;
295 	}
296 
297 	/* IBSS channel undefined for now. */
298 	ic->ic_ibss_chan = &ic->ic_channels[0];
299 
300 	ifp->if_softc = sc;
301 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
302 	ifp->if_ioctl = wpi_ioctl;
303 	ifp->if_start = wpi_start;
304 	ifp->if_watchdog = wpi_watchdog;
305 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
306 
307 	if_attach(ifp);
308 	ieee80211_ifattach(ifp);
309 	ic->ic_node_alloc = wpi_node_alloc;
310 	ic->ic_newassoc = wpi_newassoc;
311 	ic->ic_updateedca = wpi_updateedca;
312 	ic->ic_set_key = wpi_set_key;
313 	ic->ic_delete_key = wpi_delete_key;
314 
315 	/* Override 802.11 state transition machine. */
316 	sc->sc_newstate = ic->ic_newstate;
317 	ic->ic_newstate = wpi_newstate;
318 	ieee80211_media_init(ifp, wpi_media_change, ieee80211_media_status);
319 
320 	sc->amrr.amrr_min_success_threshold =  1;
321 	sc->amrr.amrr_max_success_threshold = 15;
322 
323 #if NBPFILTER > 0
324 	wpi_radiotap_attach(sc);
325 #endif
326 	timeout_set(&sc->calib_to, wpi_calib_timeout, sc);
327 	rw_init(&sc->sc_rwlock, "wpilock");
328 	task_set(&sc->init_task, wpi_init_task, sc);
329 	return;
330 
331 	/* Free allocated memory if something failed during attachment. */
332 fail2:	while (--i >= 0)
333 		wpi_free_tx_ring(sc, &sc->txq[i]);
334 	wpi_free_shared(sc);
335 fail1:	wpi_free_fwmem(sc);
336 }
337 
338 #if NBPFILTER > 0
339 /*
340  * Attach the interface to 802.11 radiotap.
341  */
342 void
343 wpi_radiotap_attach(struct wpi_softc *sc)
344 {
345 	bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
346 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
347 
348 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
349 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
350 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
351 
352 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
353 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
354 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
355 }
356 #endif
357 
358 int
359 wpi_detach(struct device *self, int flags)
360 {
361 	struct wpi_softc *sc = (struct wpi_softc *)self;
362 	struct ifnet *ifp = &sc->sc_ic.ic_if;
363 	int qid;
364 
365 	timeout_del(&sc->calib_to);
366 	task_del(systq, &sc->init_task);
367 
368 	/* Uninstall interrupt handler. */
369 	if (sc->sc_ih != NULL)
370 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
371 
372 	/* Free DMA resources. */
373 	wpi_free_rx_ring(sc, &sc->rxq);
374 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
375 		wpi_free_tx_ring(sc, &sc->txq[qid]);
376 	wpi_free_shared(sc);
377 	wpi_free_fwmem(sc);
378 
379 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
380 
381 	ieee80211_ifdetach(ifp);
382 	if_detach(ifp);
383 
384 	return 0;
385 }
386 
387 int
388 wpi_activate(struct device *self, int act)
389 {
390 	struct wpi_softc *sc = (struct wpi_softc *)self;
391 	struct ifnet *ifp = &sc->sc_ic.ic_if;
392 
393 	switch (act) {
394 	case DVACT_SUSPEND:
395 		if (ifp->if_flags & IFF_RUNNING)
396 			wpi_stop(ifp, 0);
397 		break;
398 	case DVACT_WAKEUP:
399 		wpi_wakeup(sc);
400 		break;
401 	}
402 
403 	return 0;
404 }
405 
406 void
407 wpi_wakeup(struct wpi_softc *sc)
408 {
409 	pcireg_t reg;
410 
411 	/* Clear device-specific "PCI retry timeout" register (41h). */
412 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
413 	reg &= ~0xff00;
414 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
415 
416 	wpi_init_task(sc);
417 }
418 
419 void
420 wpi_init_task(void *arg1)
421 {
422 	struct wpi_softc *sc = arg1;
423 	struct ifnet *ifp = &sc->sc_ic.ic_if;
424 	int s;
425 
426 	rw_enter_write(&sc->sc_rwlock);
427 	s = splnet();
428 
429 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
430 		wpi_init(ifp);
431 
432 	splx(s);
433 	rw_exit_write(&sc->sc_rwlock);
434 }
435 
436 int
437 wpi_nic_lock(struct wpi_softc *sc)
438 {
439 	int ntries;
440 
441 	/* Request exclusive access to NIC. */
442 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
443 
444 	/* Spin until we actually get the lock. */
445 	for (ntries = 0; ntries < 1000; ntries++) {
446 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
447 		     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
448 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
449 			return 0;
450 		DELAY(10);
451 	}
452 	return ETIMEDOUT;
453 }
454 
455 static __inline void
456 wpi_nic_unlock(struct wpi_softc *sc)
457 {
458 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
459 }
460 
461 static __inline uint32_t
462 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
463 {
464 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
465 	WPI_BARRIER_READ_WRITE(sc);
466 	return WPI_READ(sc, WPI_PRPH_RDATA);
467 }
468 
469 static __inline void
470 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
471 {
472 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
473 	WPI_BARRIER_WRITE(sc);
474 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
475 }
476 
477 static __inline void
478 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
479 {
480 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
481 }
482 
483 static __inline void
484 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
485 {
486 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
487 }
488 
489 static __inline void
490 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
491     const uint32_t *data, int count)
492 {
493 	for (; count > 0; count--, data++, addr += 4)
494 		wpi_prph_write(sc, addr, *data);
495 }
496 
497 #ifdef WPI_DEBUG
498 
499 static __inline uint32_t
500 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
501 {
502 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
503 	WPI_BARRIER_READ_WRITE(sc);
504 	return WPI_READ(sc, WPI_MEM_RDATA);
505 }
506 
507 static __inline void
508 wpi_mem_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
509 {
510 	WPI_WRITE(sc, WPI_MEM_WADDR, addr);
511 	WPI_BARRIER_WRITE(sc);
512 	WPI_WRITE(sc, WPI_MEM_WDATA, data);
513 }
514 
515 static __inline void
516 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
517     int count)
518 {
519 	for (; count > 0; count--, addr += 4)
520 		*data++ = wpi_mem_read(sc, addr);
521 }
522 
523 #endif
524 
525 int
526 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
527 {
528 	uint8_t *out = data;
529 	uint32_t val;
530 	int error, ntries;
531 
532 	if ((error = wpi_nic_lock(sc)) != 0)
533 		return error;
534 
535 	for (; count > 0; count -= 2, addr++) {
536 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
537 		WPI_CLRBITS(sc, WPI_EEPROM, WPI_EEPROM_CMD);
538 
539 		for (ntries = 0; ntries < 10; ntries++) {
540 			val = WPI_READ(sc, WPI_EEPROM);
541 			if (val & WPI_EEPROM_READ_VALID)
542 				break;
543 			DELAY(5);
544 		}
545 		if (ntries == 10) {
546 			printf("%s: could not read EEPROM\n",
547 			    sc->sc_dev.dv_xname);
548 			return ETIMEDOUT;
549 		}
550 		*out++ = val >> 16;
551 		if (count > 1)
552 			*out++ = val >> 24;
553 	}
554 
555 	wpi_nic_unlock(sc);
556 	return 0;
557 }
558 
559 int
560 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
561     bus_size_t size, bus_size_t alignment)
562 {
563 	int nsegs, error;
564 
565 	dma->tag = tag;
566 	dma->size = size;
567 
568 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
569 	    &dma->map);
570 	if (error != 0)
571 		goto fail;
572 
573 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
574 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO);
575 	if (error != 0)
576 		goto fail;
577 
578 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
579 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
580 	if (error != 0)
581 		goto fail;
582 
583 	error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
584 	    BUS_DMA_NOWAIT);
585 	if (error != 0)
586 		goto fail;
587 
588 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
589 
590 	dma->paddr = dma->map->dm_segs[0].ds_addr;
591 	if (kvap != NULL)
592 		*kvap = dma->vaddr;
593 
594 	return 0;
595 
596 fail:	wpi_dma_contig_free(dma);
597 	return error;
598 }
599 
600 void
601 wpi_dma_contig_free(struct wpi_dma_info *dma)
602 {
603 	if (dma->map != NULL) {
604 		if (dma->vaddr != NULL) {
605 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
606 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
607 			bus_dmamap_unload(dma->tag, dma->map);
608 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
609 			bus_dmamem_free(dma->tag, &dma->seg, 1);
610 			dma->vaddr = NULL;
611 		}
612 		bus_dmamap_destroy(dma->tag, dma->map);
613 		dma->map = NULL;
614 	}
615 }
616 
617 int
618 wpi_alloc_shared(struct wpi_softc *sc)
619 {
620 	/* Shared buffer must be aligned on a 4KB boundary. */
621 	return wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
622 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
623 }
624 
625 void
626 wpi_free_shared(struct wpi_softc *sc)
627 {
628 	wpi_dma_contig_free(&sc->shared_dma);
629 }
630 
631 int
632 wpi_alloc_fwmem(struct wpi_softc *sc)
633 {
634 	/* Allocate enough contiguous space to store text and data. */
635 	return wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
636 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
637 }
638 
639 void
640 wpi_free_fwmem(struct wpi_softc *sc)
641 {
642 	wpi_dma_contig_free(&sc->fw_dma);
643 }
644 
645 int
646 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
647 {
648 	bus_size_t size;
649 	int i, error;
650 
651 	ring->cur = 0;
652 
653 	/* Allocate RX descriptors (16KB aligned.) */
654 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
655 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
656 	    (void **)&ring->desc, size, 16 * 1024);
657 	if (error != 0) {
658 		printf("%s: could not allocate RX ring DMA memory\n",
659 		    sc->sc_dev.dv_xname);
660 		goto fail;
661 	}
662 
663 	/*
664 	 * Allocate and map RX buffers.
665 	 */
666 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
667 		struct wpi_rx_data *data = &ring->data[i];
668 
669 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
670 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
671 		if (error != 0) {
672 			printf("%s: could not create RX buf DMA map\n",
673 			    sc->sc_dev.dv_xname);
674 			goto fail;
675 		}
676 
677 		data->m = MCLGETI(NULL, M_DONTWAIT, NULL, WPI_RBUF_SIZE);
678 		if (data->m == NULL) {
679 			printf("%s: could not allocate RX mbuf\n",
680 			    sc->sc_dev.dv_xname);
681 			error = ENOBUFS;
682 			goto fail;
683 		}
684 
685 		error = bus_dmamap_load(sc->sc_dmat, data->map,
686 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
687 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
688 		if (error != 0) {
689 			printf("%s: can't map mbuf (error %d)\n",
690 			    sc->sc_dev.dv_xname, error);
691 			goto fail;
692 		}
693 
694 		/* Set physical address of RX buffer. */
695 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr);
696 	}
697 
698 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
699 	    BUS_DMASYNC_PREWRITE);
700 
701 	return 0;
702 
703 fail:	wpi_free_rx_ring(sc, ring);
704 	return error;
705 }
706 
707 void
708 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
709 {
710 	int ntries;
711 
712 	if (wpi_nic_lock(sc) == 0) {
713 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
714 		for (ntries = 0; ntries < 100; ntries++) {
715 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
716 			    WPI_FH_RX_STATUS_IDLE)
717 				break;
718 			DELAY(10);
719 		}
720 		wpi_nic_unlock(sc);
721 	}
722 	ring->cur = 0;
723 }
724 
725 void
726 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
727 {
728 	int i;
729 
730 	wpi_dma_contig_free(&ring->desc_dma);
731 
732 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
733 		struct wpi_rx_data *data = &ring->data[i];
734 
735 		if (data->m != NULL) {
736 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
737 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
738 			bus_dmamap_unload(sc->sc_dmat, data->map);
739 			m_freem(data->m);
740 		}
741 		if (data->map != NULL)
742 			bus_dmamap_destroy(sc->sc_dmat, data->map);
743 	}
744 }
745 
746 int
747 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
748 {
749 	bus_addr_t paddr;
750 	bus_size_t size;
751 	int i, error;
752 
753 	ring->qid = qid;
754 	ring->queued = 0;
755 	ring->cur = 0;
756 
757 	/* Allocate TX descriptors (16KB aligned.) */
758 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
759 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
760 	    (void **)&ring->desc, size, 16 * 1024);
761 	if (error != 0) {
762 		printf("%s: could not allocate TX ring DMA memory\n",
763 		    sc->sc_dev.dv_xname);
764 		goto fail;
765 	}
766 
767 	/* Update shared area with ring physical address. */
768 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
769 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
770 	    sizeof (struct wpi_shared), BUS_DMASYNC_PREWRITE);
771 
772 	/*
773 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
774 	 * to allocate commands space for other rings.
775 	 * XXX Do we really need to allocate descriptors for other rings?
776 	 */
777 	if (qid > 4)
778 		return 0;
779 
780 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
781 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
782 	    (void **)&ring->cmd, size, 4);
783 	if (error != 0) {
784 		printf("%s: could not allocate TX cmd DMA memory\n",
785 		    sc->sc_dev.dv_xname);
786 		goto fail;
787 	}
788 
789 	paddr = ring->cmd_dma.paddr;
790 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
791 		struct wpi_tx_data *data = &ring->data[i];
792 
793 		data->cmd_paddr = paddr;
794 		paddr += sizeof (struct wpi_tx_cmd);
795 
796 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
797 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
798 		    &data->map);
799 		if (error != 0) {
800 			printf("%s: could not create TX buf DMA map\n",
801 			    sc->sc_dev.dv_xname);
802 			goto fail;
803 		}
804 	}
805 	return 0;
806 
807 fail:	wpi_free_tx_ring(sc, ring);
808 	return error;
809 }
810 
811 void
812 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
813 {
814 	int i;
815 
816 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
817 		struct wpi_tx_data *data = &ring->data[i];
818 
819 		if (data->m != NULL) {
820 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
821 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
822 			bus_dmamap_unload(sc->sc_dmat, data->map);
823 			m_freem(data->m);
824 			data->m = NULL;
825 		}
826 	}
827 	/* Clear TX descriptors. */
828 	memset(ring->desc, 0, ring->desc_dma.size);
829 	sc->qfullmsk &= ~(1 << ring->qid);
830 	ring->queued = 0;
831 	ring->cur = 0;
832 }
833 
834 void
835 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
836 {
837 	int i;
838 
839 	wpi_dma_contig_free(&ring->desc_dma);
840 	wpi_dma_contig_free(&ring->cmd_dma);
841 
842 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
843 		struct wpi_tx_data *data = &ring->data[i];
844 
845 		if (data->m != NULL) {
846 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
847 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
848 			bus_dmamap_unload(sc->sc_dmat, data->map);
849 			m_freem(data->m);
850 		}
851 		if (data->map != NULL)
852 			bus_dmamap_destroy(sc->sc_dmat, data->map);
853 	}
854 }
855 
856 int
857 wpi_read_eeprom(struct wpi_softc *sc)
858 {
859 	struct ieee80211com *ic = &sc->sc_ic;
860 	char domain[4];
861 	int i;
862 
863 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
864 		printf("%s: bad EEPROM signature\n", sc->sc_dev.dv_xname);
865 		return EIO;
866 	}
867 	/* Clear HW ownership of EEPROM. */
868 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
869 
870 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
871 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
872 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
873 
874 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, letoh16(sc->rev),
875 	    sc->type));
876 
877 	/* Read and print regulatory domain (4 ASCII characters.) */
878 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
879 	printf(", %.4s", domain);
880 
881 	/* Read and print MAC address. */
882 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
883 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
884 
885 	/* Read the list of authorized channels. */
886 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
887 		wpi_read_eeprom_channels(sc, i);
888 
889 	/* Read the list of TX power groups. */
890 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
891 		wpi_read_eeprom_group(sc, i);
892 
893 	return 0;
894 }
895 
896 void
897 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
898 {
899 	struct ieee80211com *ic = &sc->sc_ic;
900 	const struct wpi_chan_band *band = &wpi_bands[n];
901 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
902 	int chan, i;
903 
904 	wpi_read_prom_data(sc, band->addr, channels,
905 	    band->nchan * sizeof (struct wpi_eeprom_chan));
906 
907 	for (i = 0; i < band->nchan; i++) {
908 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
909 			continue;
910 
911 		chan = band->chan[i];
912 
913 		if (n == 0) {	/* 2GHz band */
914 			ic->ic_channels[chan].ic_freq =
915 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
916 			ic->ic_channels[chan].ic_flags =
917 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
918 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
919 
920 		} else {	/* 5GHz band */
921 			/*
922 			 * Some adapters support channels 7, 8, 11 and 12
923 			 * both in the 2GHz and 4.9GHz bands.
924 			 * Because of limitations in our net80211 layer,
925 			 * we don't support them in the 4.9GHz band.
926 			 */
927 			if (chan <= 14)
928 				continue;
929 
930 			ic->ic_channels[chan].ic_freq =
931 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
932 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
933 			/* We have at least one valid 5GHz channel. */
934 			sc->sc_flags |= WPI_FLAG_HAS_5GHZ;
935 		}
936 
937 		/* Is active scan allowed on this channel? */
938 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
939 			ic->ic_channels[chan].ic_flags |=
940 			    IEEE80211_CHAN_PASSIVE;
941 		}
942 
943 		/* Save maximum allowed TX power for this channel. */
944 		sc->maxpwr[chan] = channels[i].maxpwr;
945 
946 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
947 		    chan, channels[i].flags, sc->maxpwr[chan]));
948 	}
949 }
950 
951 void
952 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
953 {
954 	struct wpi_power_group *group = &sc->groups[n];
955 	struct wpi_eeprom_group rgroup;
956 	int i;
957 
958 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
959 	    sizeof rgroup);
960 
961 	/* Save TX power group information. */
962 	group->chan   = rgroup.chan;
963 	group->maxpwr = rgroup.maxpwr;
964 	/* Retrieve temperature at which the samples were taken. */
965 	group->temp   = (int16_t)letoh16(rgroup.temp);
966 
967 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
968 	    group->chan, group->maxpwr, group->temp));
969 
970 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
971 		group->samples[i].index = rgroup.samples[i].index;
972 		group->samples[i].power = rgroup.samples[i].power;
973 
974 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
975 		    group->samples[i].index, group->samples[i].power));
976 	}
977 }
978 
979 struct ieee80211_node *
980 wpi_node_alloc(struct ieee80211com *ic)
981 {
982 	return malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
983 }
984 
985 void
986 wpi_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
987 {
988 	struct wpi_softc *sc = ic->ic_if.if_softc;
989 	struct wpi_node *wn = (void *)ni;
990 	uint8_t rate;
991 	int ridx, i;
992 
993 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
994 	/* Start at lowest available bit-rate, AMRR will raise. */
995 	ni->ni_txrate = 0;
996 
997 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
998 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
999 		/* Map 802.11 rate to HW rate index. */
1000 		for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
1001 			if (wpi_rates[ridx].rate == rate)
1002 				break;
1003 		wn->ridx[i] = ridx;
1004 	}
1005 }
1006 
1007 int
1008 wpi_media_change(struct ifnet *ifp)
1009 {
1010 	struct wpi_softc *sc = ifp->if_softc;
1011 	struct ieee80211com *ic = &sc->sc_ic;
1012 	uint8_t rate, ridx;
1013 	int error;
1014 
1015 	error = ieee80211_media_change(ifp);
1016 	if (error != ENETRESET)
1017 		return error;
1018 
1019 	if (ic->ic_fixed_rate != -1) {
1020 		rate = ic->ic_sup_rates[ic->ic_curmode].
1021 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1022 		/* Map 802.11 rate to HW rate index. */
1023 		for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
1024 			if (wpi_rates[ridx].rate == rate)
1025 				break;
1026 		sc->fixed_ridx = ridx;
1027 	}
1028 
1029 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1030 	    (IFF_UP | IFF_RUNNING)) {
1031 		wpi_stop(ifp, 0);
1032 		error = wpi_init(ifp);
1033 	}
1034 	return error;
1035 }
1036 
1037 int
1038 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1039 {
1040 	struct ifnet *ifp = &ic->ic_if;
1041 	struct wpi_softc *sc = ifp->if_softc;
1042 	int error;
1043 
1044 	timeout_del(&sc->calib_to);
1045 
1046 	switch (nstate) {
1047 	case IEEE80211_S_SCAN:
1048 		/* Make the link LED blink while we're scanning. */
1049 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1050 
1051 		if ((error = wpi_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1052 			printf("%s: could not initiate scan\n",
1053 			    sc->sc_dev.dv_xname);
1054 			return error;
1055 		}
1056 		if (ifp->if_flags & IFF_DEBUG)
1057 			printf("%s: %s -> %s\n", ifp->if_xname,
1058 			    ieee80211_state_name[ic->ic_state],
1059 			    ieee80211_state_name[nstate]);
1060 		ieee80211_set_link_state(ic, LINK_STATE_DOWN);
1061 		ieee80211_node_cleanup(ic, ic->ic_bss);
1062 		ic->ic_state = nstate;
1063 		return 0;
1064 
1065 	case IEEE80211_S_ASSOC:
1066 		if (ic->ic_state != IEEE80211_S_RUN)
1067 			break;
1068 		/* FALLTHROUGH */
1069 	case IEEE80211_S_AUTH:
1070 		/* Reset state to handle reassociations correctly. */
1071 		sc->rxon.associd = 0;
1072 		sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1073 
1074 		if ((error = wpi_auth(sc)) != 0) {
1075 			printf("%s: could not move to auth state\n",
1076 			    sc->sc_dev.dv_xname);
1077 			return error;
1078 		}
1079 		break;
1080 
1081 	case IEEE80211_S_RUN:
1082 		if ((error = wpi_run(sc)) != 0) {
1083 			printf("%s: could not move to run state\n",
1084 			    sc->sc_dev.dv_xname);
1085 			return error;
1086 		}
1087 		break;
1088 
1089 	case IEEE80211_S_INIT:
1090 		break;
1091 	}
1092 
1093 	return sc->sc_newstate(ic, nstate, arg);
1094 }
1095 
1096 void
1097 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1098 {
1099 	struct wpi_softc *sc = arg;
1100 	struct wpi_node *wn = (struct wpi_node *)ni;
1101 
1102 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1103 }
1104 
1105 void
1106 wpi_calib_timeout(void *arg)
1107 {
1108 	struct wpi_softc *sc = arg;
1109 	struct ieee80211com *ic = &sc->sc_ic;
1110 	int s;
1111 
1112 	s = splnet();
1113 	/* Automatic rate control triggered every 500ms. */
1114 	if (ic->ic_fixed_rate == -1) {
1115 		if (ic->ic_opmode == IEEE80211_M_STA)
1116 			wpi_iter_func(sc, ic->ic_bss);
1117 		else
1118 			ieee80211_iterate_nodes(ic, wpi_iter_func, sc);
1119 	}
1120 
1121 	/* Force automatic TX power calibration every 60 secs. */
1122 	if (++sc->calib_cnt >= 120) {
1123 		wpi_power_calibration(sc);
1124 		sc->calib_cnt = 0;
1125 	}
1126 	splx(s);
1127 
1128 	/* Automatic rate control triggered every 500ms. */
1129 	timeout_add_msec(&sc->calib_to, 500);
1130 }
1131 
1132 int
1133 wpi_ccmp_decap(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_key *k)
1134 {
1135 	struct ieee80211_frame *wh;
1136 	uint64_t pn, *prsc;
1137 	uint8_t *ivp;
1138 	uint8_t tid;
1139 	int hdrlen;
1140 
1141 	wh = mtod(m, struct ieee80211_frame *);
1142 	hdrlen = ieee80211_get_hdrlen(wh);
1143 	ivp = (uint8_t *)wh + hdrlen;
1144 
1145 	/* Check that ExtIV bit is be set. */
1146 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1147 		DPRINTF(("CCMP decap ExtIV not set\n"));
1148 		return 1;
1149 	}
1150 	tid = ieee80211_has_qos(wh) ?
1151 	    ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1152 	prsc = &k->k_rsc[tid];
1153 
1154 	/* Extract the 48-bit PN from the CCMP header. */
1155 	pn = (uint64_t)ivp[0]       |
1156 	     (uint64_t)ivp[1] <<  8 |
1157 	     (uint64_t)ivp[4] << 16 |
1158 	     (uint64_t)ivp[5] << 24 |
1159 	     (uint64_t)ivp[6] << 32 |
1160 	     (uint64_t)ivp[7] << 40;
1161 	if (pn <= *prsc) {
1162 		/*
1163 		 * Not necessarily a replayed frame since we did not check
1164 		 * the sequence number of the 802.11 header yet.
1165 		 */
1166 		DPRINTF(("CCMP replayed\n"));
1167 		return 1;
1168 	}
1169 	/* Update last seen packet number. */
1170 	*prsc = pn;
1171 
1172 	/* Clear Protected bit and strip IV. */
1173 	wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1174 	memmove(mtod(m, caddr_t) + IEEE80211_CCMP_HDRLEN, wh, hdrlen);
1175 	m_adj(m, IEEE80211_CCMP_HDRLEN);
1176 	/* Strip MIC. */
1177 	m_adj(m, -IEEE80211_CCMP_MICLEN);
1178 	return 0;
1179 }
1180 
1181 void
1182 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1183     struct wpi_rx_data *data, struct mbuf_list *ml)
1184 {
1185 	struct ieee80211com *ic = &sc->sc_ic;
1186 	struct ifnet *ifp = &ic->ic_if;
1187 	struct wpi_rx_ring *ring = &sc->rxq;
1188 	struct wpi_rx_stat *stat;
1189 	struct wpi_rx_head *head;
1190 	struct wpi_rx_tail *tail;
1191 	struct ieee80211_frame *wh;
1192 	struct ieee80211_rxinfo rxi;
1193 	struct ieee80211_node *ni;
1194 	struct mbuf *m, *m1;
1195 	uint32_t flags;
1196 	int error;
1197 
1198 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, WPI_RBUF_SIZE,
1199 	    BUS_DMASYNC_POSTREAD);
1200 	stat = (struct wpi_rx_stat *)(desc + 1);
1201 
1202 	if (stat->len > WPI_STAT_MAXLEN) {
1203 		printf("%s: invalid RX statistic header\n",
1204 		    sc->sc_dev.dv_xname);
1205 		ifp->if_ierrors++;
1206 		return;
1207 	}
1208 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1209 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + letoh16(head->len));
1210 	flags = letoh32(tail->flags);
1211 
1212 	/* Discard frames with a bad FCS early. */
1213 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1214 		DPRINTFN(2, ("rx tail flags error %x\n", flags));
1215 		ifp->if_ierrors++;
1216 		return;
1217 	}
1218 	/* Discard frames that are too short. */
1219 	if (letoh16(head->len) < sizeof (*wh)) {
1220 		DPRINTF(("frame too short: %d\n", letoh16(head->len)));
1221 		ic->ic_stats.is_rx_tooshort++;
1222 		ifp->if_ierrors++;
1223 		return;
1224 	}
1225 
1226 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, WPI_RBUF_SIZE);
1227 	if (m1 == NULL) {
1228 		ic->ic_stats.is_rx_nombuf++;
1229 		ifp->if_ierrors++;
1230 		return;
1231 	}
1232 	bus_dmamap_unload(sc->sc_dmat, data->map);
1233 
1234 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1235 	    WPI_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1236 	if (error != 0) {
1237 		m_freem(m1);
1238 
1239 		/* Try to reload the old mbuf. */
1240 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1241 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1242 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1243 		if (error != 0) {
1244 			panic("%s: could not load old RX mbuf",
1245 			    sc->sc_dev.dv_xname);
1246 		}
1247 		/* Physical address may have changed. */
1248 		ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1249 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1250 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1251 		    BUS_DMASYNC_PREWRITE);
1252 		ifp->if_ierrors++;
1253 		return;
1254 	}
1255 
1256 	m = data->m;
1257 	data->m = m1;
1258 	/* Update RX descriptor. */
1259 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1260 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1261 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1262 	    BUS_DMASYNC_PREWRITE);
1263 
1264 	/* Finalize mbuf. */
1265 	m->m_data = (caddr_t)(head + 1);
1266 	m->m_pkthdr.len = m->m_len = letoh16(head->len);
1267 
1268 	/* Grab a reference to the source node. */
1269 	wh = mtod(m, struct ieee80211_frame *);
1270 	ni = ieee80211_find_rxnode(ic, wh);
1271 
1272 	rxi.rxi_flags = 0;
1273 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1274 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1275 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
1276 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
1277 		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP) {
1278 			ic->ic_stats.is_ccmp_dec_errs++;
1279 			ifp->if_ierrors++;
1280 			m_freem(m);
1281 			return;
1282 		}
1283 		/* Check whether decryption was successful or not. */
1284 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1285 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
1286 			ic->ic_stats.is_ccmp_dec_errs++;
1287 			ifp->if_ierrors++;
1288 			m_freem(m);
1289 			return;
1290 		}
1291 		if (wpi_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) {
1292 			ifp->if_ierrors++;
1293 			m_freem(m);
1294 			return;
1295 		}
1296 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1297 	}
1298 
1299 #if NBPFILTER > 0
1300 	if (sc->sc_drvbpf != NULL) {
1301 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1302 
1303 		tap->wr_flags = 0;
1304 		if (letoh16(head->flags) & 0x4)
1305 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1306 		tap->wr_chan_freq =
1307 		    htole16(ic->ic_channels[head->chan].ic_freq);
1308 		tap->wr_chan_flags =
1309 		    htole16(ic->ic_channels[head->chan].ic_flags);
1310 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1311 		tap->wr_dbm_antnoise = (int8_t)letoh16(stat->noise);
1312 		tap->wr_tsft = tail->tstamp;
1313 		tap->wr_antenna = (letoh16(head->flags) >> 4) & 0xf;
1314 		switch (head->rate) {
1315 		/* CCK rates. */
1316 		case  10: tap->wr_rate =   2; break;
1317 		case  20: tap->wr_rate =   4; break;
1318 		case  55: tap->wr_rate =  11; break;
1319 		case 110: tap->wr_rate =  22; break;
1320 		/* OFDM rates. */
1321 		case 0xd: tap->wr_rate =  12; break;
1322 		case 0xf: tap->wr_rate =  18; break;
1323 		case 0x5: tap->wr_rate =  24; break;
1324 		case 0x7: tap->wr_rate =  36; break;
1325 		case 0x9: tap->wr_rate =  48; break;
1326 		case 0xb: tap->wr_rate =  72; break;
1327 		case 0x1: tap->wr_rate =  96; break;
1328 		case 0x3: tap->wr_rate = 108; break;
1329 		/* Unknown rate: should not happen. */
1330 		default:  tap->wr_rate =   0;
1331 		}
1332 
1333 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
1334 		    m, BPF_DIRECTION_IN);
1335 	}
1336 #endif
1337 
1338 	/* Send the frame to the 802.11 layer. */
1339 	rxi.rxi_rssi = stat->rssi;
1340 	rxi.rxi_tstamp = 0;	/* unused */
1341 	ieee80211_inputm(ifp, m, ni, &rxi, ml);
1342 
1343 	/* Node is no longer needed. */
1344 	ieee80211_release_node(ic, ni);
1345 }
1346 
1347 void
1348 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1349 {
1350 	struct ieee80211com *ic = &sc->sc_ic;
1351 	struct ifnet *ifp = &ic->ic_if;
1352 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1353 	struct wpi_tx_data *data = &ring->data[desc->idx];
1354 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1355 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1356 
1357 	/* Update rate control statistics. */
1358 	wn->amn.amn_txcnt++;
1359 	if (stat->retrycnt > 0)
1360 		wn->amn.amn_retrycnt++;
1361 
1362 	if ((letoh32(stat->status) & 0xff) != 1)
1363 		ifp->if_oerrors++;
1364 
1365 	/* Unmap and free mbuf. */
1366 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1367 	    BUS_DMASYNC_POSTWRITE);
1368 	bus_dmamap_unload(sc->sc_dmat, data->map);
1369 	m_freem(data->m);
1370 	data->m = NULL;
1371 	ieee80211_release_node(ic, data->ni);
1372 	data->ni = NULL;
1373 
1374 	sc->sc_tx_timer = 0;
1375 	if (--ring->queued < WPI_TX_RING_LOMARK) {
1376 		sc->qfullmsk &= ~(1 << ring->qid);
1377 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
1378 			ifq_clr_oactive(&ifp->if_snd);
1379 			(*ifp->if_start)(ifp);
1380 		}
1381 	}
1382 }
1383 
1384 void
1385 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1386 {
1387 	struct wpi_tx_ring *ring = &sc->txq[4];
1388 	struct wpi_tx_data *data;
1389 
1390 	if ((desc->qid & 7) != 4)
1391 		return;	/* Not a command ack. */
1392 
1393 	data = &ring->data[desc->idx];
1394 
1395 	/* If the command was mapped in an mbuf, free it. */
1396 	if (data->m != NULL) {
1397 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1398 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1399 		bus_dmamap_unload(sc->sc_dmat, data->map);
1400 		m_freem(data->m);
1401 		data->m = NULL;
1402 	}
1403 	wakeup(&ring->cmd[desc->idx]);
1404 }
1405 
1406 void
1407 wpi_notif_intr(struct wpi_softc *sc)
1408 {
1409 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1410 	struct ieee80211com *ic = &sc->sc_ic;
1411 	struct ifnet *ifp = &ic->ic_if;
1412 	uint32_t hw;
1413 
1414 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1415 	    sizeof (struct wpi_shared), BUS_DMASYNC_POSTREAD);
1416 
1417 	hw = letoh32(sc->shared->next);
1418 	while (sc->rxq.cur != hw) {
1419 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1420 		struct wpi_rx_desc *desc;
1421 
1422 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
1423 		    BUS_DMASYNC_POSTREAD);
1424 		desc = mtod(data->m, struct wpi_rx_desc *);
1425 
1426 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1427 		    "len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
1428 		    letoh32(desc->len)));
1429 
1430 		if (!(desc->qid & 0x80))	/* Reply to a command. */
1431 			wpi_cmd_done(sc, desc);
1432 
1433 		switch (desc->type) {
1434 		case WPI_RX_DONE:
1435 			/* An 802.11 frame has been received. */
1436 			wpi_rx_done(sc, desc, data, &ml);
1437 			break;
1438 
1439 		case WPI_TX_DONE:
1440 			/* An 802.11 frame has been transmitted. */
1441 			wpi_tx_done(sc, desc);
1442 			break;
1443 
1444 		case WPI_UC_READY:
1445 		{
1446 			struct wpi_ucode_info *uc =
1447 			    (struct wpi_ucode_info *)(desc + 1);
1448 
1449 			/* The microcontroller is ready. */
1450 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1451 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
1452 			DPRINTF(("microcode alive notification version %x "
1453 			    "alive %x\n", letoh32(uc->version),
1454 			    letoh32(uc->valid)));
1455 
1456 			if (letoh32(uc->valid) != 1) {
1457 				printf("%s: microcontroller initialization "
1458 				    "failed\n", sc->sc_dev.dv_xname);
1459 			}
1460 			if (uc->subtype != WPI_UCODE_INIT) {
1461 				/* Save the address of the error log. */
1462 				sc->errptr = letoh32(uc->errptr);
1463 			}
1464 			break;
1465 		}
1466 		case WPI_STATE_CHANGED:
1467 		{
1468 			uint32_t *status = (uint32_t *)(desc + 1);
1469 
1470 			/* Enabled/disabled notification. */
1471 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1472 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
1473 			DPRINTF(("state changed to %x\n", letoh32(*status)));
1474 
1475 			if (letoh32(*status) & 1) {
1476 				/* The radio button has to be pushed. */
1477 				printf("%s: Radio transmitter is off\n",
1478 				    sc->sc_dev.dv_xname);
1479 				/* Turn the interface down. */
1480 				wpi_stop(ifp, 1);
1481 				return;	/* No further processing. */
1482 			}
1483 			break;
1484 		}
1485 		case WPI_START_SCAN:
1486 		{
1487 			struct wpi_start_scan *scan =
1488 			    (struct wpi_start_scan *)(desc + 1);
1489 
1490 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1491 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
1492 			DPRINTFN(2, ("scanning channel %d status %x\n",
1493 			    scan->chan, letoh32(scan->status)));
1494 
1495 			/* Fix current channel. */
1496 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1497 			break;
1498 		}
1499 		case WPI_STOP_SCAN:
1500 		{
1501 			struct wpi_stop_scan *scan =
1502 			    (struct wpi_stop_scan *)(desc + 1);
1503 
1504 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1505 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
1506 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1507 			    scan->nchan, scan->status, scan->chan));
1508 
1509 			if (scan->status == 1 && scan->chan <= 14 &&
1510 			    (sc->sc_flags & WPI_FLAG_HAS_5GHZ)) {
1511 				/*
1512 				 * We just finished scanning 2GHz channels,
1513 				 * start scanning 5GHz ones.
1514 				 */
1515 				if (wpi_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
1516 					break;
1517 			}
1518 			ieee80211_end_scan(ifp);
1519 			break;
1520 		}
1521 		}
1522 
1523 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1524 	}
1525 	if_input(&ic->ic_if, &ml);
1526 
1527 	/* Tell the firmware what we have processed. */
1528 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1529 	WPI_WRITE(sc, WPI_FH_RX_WPTR, hw & ~7);
1530 }
1531 
1532 #ifdef WPI_DEBUG
1533 /*
1534  * Dump the error log of the firmware when a firmware panic occurs.  Although
1535  * we can't debug the firmware because it is neither open source nor free, it
1536  * can help us to identify certain classes of problems.
1537  */
1538 void
1539 wpi_fatal_intr(struct wpi_softc *sc)
1540 {
1541 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1542 	struct wpi_fwdump dump;
1543 	uint32_t i, offset, count;
1544 
1545 	/* Check that the error log address is valid. */
1546 	if (sc->errptr < WPI_FW_DATA_BASE ||
1547 	    sc->errptr + sizeof (dump) >
1548 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
1549 		printf("%s: bad firmware error log address 0x%08x\n",
1550 		    sc->sc_dev.dv_xname, sc->errptr);
1551 		return;
1552 	}
1553 
1554 	if (wpi_nic_lock(sc) != 0) {
1555 		printf("%s: could not read firmware error log\n",
1556 		    sc->sc_dev.dv_xname);
1557 		return;
1558 	}
1559 	/* Read number of entries in the log. */
1560 	count = wpi_mem_read(sc, sc->errptr);
1561 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
1562 		printf("%s: invalid count field (count=%u)\n",
1563 		    sc->sc_dev.dv_xname, count);
1564 		wpi_nic_unlock(sc);
1565 		return;
1566 	}
1567 	/* Skip "count" field. */
1568 	offset = sc->errptr + sizeof (uint32_t);
1569 	printf("firmware error log (count=%u):\n", count);
1570 	for (i = 0; i < count; i++) {
1571 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
1572 		    sizeof (dump) / sizeof (uint32_t));
1573 
1574 		printf("  error type = \"%s\" (0x%08X)\n",
1575 		    (dump.desc < N(wpi_fw_errmsg)) ?
1576 			wpi_fw_errmsg[dump.desc] : "UNKNOWN",
1577 		    dump.desc);
1578 		printf("  error data      = 0x%08X\n",
1579 		    dump.data);
1580 		printf("  branch link     = 0x%08X%08X\n",
1581 		    dump.blink[0], dump.blink[1]);
1582 		printf("  interrupt link  = 0x%08X%08X\n",
1583 		    dump.ilink[0], dump.ilink[1]);
1584 		printf("  time            = %u\n", dump.time);
1585 
1586 		offset += sizeof (dump);
1587 	}
1588 	wpi_nic_unlock(sc);
1589 	/* Dump driver status (TX and RX rings) while we're here. */
1590 	printf("driver status:\n");
1591 	for (i = 0; i < 6; i++) {
1592 		struct wpi_tx_ring *ring = &sc->txq[i];
1593 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
1594 		    i, ring->qid, ring->cur, ring->queued);
1595 	}
1596 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
1597 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
1598 #undef N
1599 }
1600 #endif
1601 
1602 int
1603 wpi_intr(void *arg)
1604 {
1605 	struct wpi_softc *sc = arg;
1606 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1607 	uint32_t r1, r2;
1608 
1609 	/* Disable interrupts. */
1610 	WPI_WRITE(sc, WPI_MASK, 0);
1611 
1612 	r1 = WPI_READ(sc, WPI_INT);
1613 	r2 = WPI_READ(sc, WPI_FH_INT);
1614 
1615 	if (r1 == 0 && r2 == 0) {
1616 		if (ifp->if_flags & IFF_UP)
1617 			WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
1618 		return 0;	/* Interrupt not for us. */
1619 	}
1620 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
1621 		return 0;	/* Hardware gone! */
1622 
1623 	/* Acknowledge interrupts. */
1624 	WPI_WRITE(sc, WPI_INT, r1);
1625 	WPI_WRITE(sc, WPI_FH_INT, r2);
1626 
1627 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
1628 		printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1629 		/* Dump firmware error log and stop. */
1630 #ifdef WPI_DEBUG
1631 		wpi_fatal_intr(sc);
1632 #endif
1633 		wpi_stop(ifp, 1);
1634 		task_add(systq, &sc->init_task);
1635 		return 1;
1636 	}
1637 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
1638 	    (r2 & WPI_FH_INT_RX))
1639 		wpi_notif_intr(sc);
1640 
1641 	if (r1 & WPI_INT_ALIVE)
1642 		wakeup(sc);	/* Firmware is alive. */
1643 
1644 	/* Re-enable interrupts. */
1645 	if (ifp->if_flags & IFF_UP)
1646 		WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
1647 
1648 	return 1;
1649 }
1650 
1651 int
1652 wpi_tx(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1653 {
1654 	struct ieee80211com *ic = &sc->sc_ic;
1655 	struct wpi_node *wn = (void *)ni;
1656 	struct wpi_tx_ring *ring;
1657 	struct wpi_tx_desc *desc;
1658 	struct wpi_tx_data *data;
1659 	struct wpi_tx_cmd *cmd;
1660 	struct wpi_cmd_data *tx;
1661 	const struct wpi_rate *rinfo;
1662 	struct ieee80211_frame *wh;
1663 	struct ieee80211_key *k = NULL;
1664 	enum ieee80211_edca_ac ac;
1665 	uint32_t flags;
1666 	uint16_t qos;
1667 	u_int hdrlen;
1668 	uint8_t *ivp, tid, ridx, type;
1669 	int i, totlen, hasqos, error;
1670 
1671 	wh = mtod(m, struct ieee80211_frame *);
1672 	hdrlen = ieee80211_get_hdrlen(wh);
1673 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1674 
1675 	/* Select EDCA Access Category and TX ring for this frame. */
1676 	if ((hasqos = ieee80211_has_qos(wh))) {
1677 		qos = ieee80211_get_qos(wh);
1678 		tid = qos & IEEE80211_QOS_TID;
1679 		ac = ieee80211_up_to_ac(ic, tid);
1680 	} else {
1681 		tid = 0;
1682 		ac = EDCA_AC_BE;
1683 	}
1684 
1685 	ring = &sc->txq[ac];
1686 	desc = &ring->desc[ring->cur];
1687 	data = &ring->data[ring->cur];
1688 
1689 	/* Choose a TX rate index. */
1690 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1691 	    type != IEEE80211_FC0_TYPE_DATA) {
1692 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1693 		    WPI_RIDX_OFDM6 : WPI_RIDX_CCK1;
1694 	} else if (ic->ic_fixed_rate != -1) {
1695 		ridx = sc->fixed_ridx;
1696 	} else
1697 		ridx = wn->ridx[ni->ni_txrate];
1698 	rinfo = &wpi_rates[ridx];
1699 
1700 #if NBPFILTER > 0
1701 	if (sc->sc_drvbpf != NULL) {
1702 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1703 
1704 		tap->wt_flags = 0;
1705 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1706 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1707 		tap->wt_rate = rinfo->rate;
1708 		tap->wt_hwqueue = ac;
1709 		if ((ic->ic_flags & IEEE80211_F_WEPON) &&
1710 		    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
1711 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1712 
1713 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
1714 		    m, BPF_DIRECTION_OUT);
1715 	}
1716 #endif
1717 
1718 	totlen = m->m_pkthdr.len;
1719 
1720 	/* Encrypt the frame if need be. */
1721 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1722 		/* Retrieve key for TX. */
1723 		k = ieee80211_get_txkey(ic, wh, ni);
1724 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
1725 			/* Do software encryption. */
1726 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1727 				return ENOBUFS;
1728 			/* 802.11 header may have moved. */
1729 			wh = mtod(m, struct ieee80211_frame *);
1730 			totlen = m->m_pkthdr.len;
1731 
1732 		} else	/* HW appends CCMP MIC. */
1733 			totlen += IEEE80211_CCMP_HDRLEN;
1734 	}
1735 
1736 	/* Prepare TX firmware command. */
1737 	cmd = &ring->cmd[ring->cur];
1738 	cmd->code = WPI_CMD_TX_DATA;
1739 	cmd->flags = 0;
1740 	cmd->qid = ring->qid;
1741 	cmd->idx = ring->cur;
1742 
1743 	tx = (struct wpi_cmd_data *)cmd->data;
1744 	/* NB: No need to clear tx, all fields are reinitialized here. */
1745 
1746 	flags = 0;
1747 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1748 		/* Unicast frame, check if an ACK is expected. */
1749 		if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
1750 		    IEEE80211_QOS_ACK_POLICY_NOACK)
1751 			flags |= WPI_TX_NEED_ACK;
1752 	}
1753 
1754 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1755 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1756 		/* NB: Group frames are sent using CCK in 802.11b/g. */
1757 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
1758 			flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
1759 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1760 		    ridx <= WPI_RIDX_OFDM54) {
1761 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1762 				flags |= WPI_TX_NEED_CTS | WPI_TX_FULL_TXOP;
1763 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1764 				flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
1765 		}
1766 	}
1767 
1768 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1769 	    type != IEEE80211_FC0_TYPE_DATA)
1770 		tx->id = WPI_ID_BROADCAST;
1771 	else
1772 		tx->id = wn->id;
1773 
1774 	if (type == IEEE80211_FC0_TYPE_MGT) {
1775 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1776 
1777 #ifndef IEEE80211_STA_ONLY
1778 		/* Tell HW to set timestamp in probe responses. */
1779 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1780 			flags |= WPI_TX_INSERT_TSTAMP;
1781 #endif
1782 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1783 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1784 			tx->timeout = htole16(3);
1785 		else
1786 			tx->timeout = htole16(2);
1787 	} else
1788 		tx->timeout = htole16(0);
1789 
1790 	tx->len = htole16(totlen);
1791 	tx->tid = tid;
1792 	tx->rts_ntries = 7;
1793 	tx->data_ntries = 15;
1794 	tx->ofdm_mask = 0xff;
1795 	tx->cck_mask = 0x0f;
1796 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1797 	tx->plcp = rinfo->plcp;
1798 
1799 	/* Copy 802.11 header in TX command. */
1800 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1801 
1802 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
1803 		/* Trim 802.11 header and prepend CCMP IV. */
1804 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
1805 		ivp = mtod(m, uint8_t *);
1806 		k->k_tsc++;
1807 		ivp[0] = k->k_tsc;
1808 		ivp[1] = k->k_tsc >> 8;
1809 		ivp[2] = 0;
1810 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
1811 		ivp[4] = k->k_tsc >> 16;
1812 		ivp[5] = k->k_tsc >> 24;
1813 		ivp[6] = k->k_tsc >> 32;
1814 		ivp[7] = k->k_tsc >> 40;
1815 
1816 		tx->security = WPI_CIPHER_CCMP;
1817 		memcpy(tx->key, k->k_key, k->k_len);
1818 	} else {
1819 		/* Trim 802.11 header. */
1820 		m_adj(m, hdrlen);
1821 		tx->security = 0;
1822 	}
1823 	tx->flags = htole32(flags);
1824 
1825 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1826 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1827 	if (error != 0 && error != EFBIG) {
1828 		printf("%s: can't map mbuf (error %d)\n",
1829 		    sc->sc_dev.dv_xname, error);
1830 		m_freem(m);
1831 		return error;
1832 	}
1833 	if (error != 0) {
1834 		/* Too many DMA segments, linearize mbuf. */
1835 		if (m_defrag(m, M_DONTWAIT)) {
1836 			m_freem(m);
1837 			return ENOBUFS;
1838 		}
1839 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1840 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1841 		if (error != 0) {
1842 			printf("%s: can't map mbuf (error %d)\n",
1843 			    sc->sc_dev.dv_xname, error);
1844 			m_freem(m);
1845 			return error;
1846 		}
1847 	}
1848 
1849 	data->m = m;
1850 	data->ni = ni;
1851 
1852 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1853 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
1854 
1855 	/* Fill TX descriptor. */
1856 	desc->flags = htole32(WPI_PAD32(m->m_pkthdr.len) << 28 |
1857 	    (1 + data->map->dm_nsegs) << 24);
1858 	/* First DMA segment is used by the TX command. */
1859 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1860 	    ring->cur * sizeof (struct wpi_tx_cmd));
1861 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1862 	    ((hdrlen + 3) & ~3));
1863 	/* Other DMA segments are for data payload. */
1864 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1865 		desc->segs[i].addr =
1866 		    htole32(data->map->dm_segs[i - 1].ds_addr);
1867 		desc->segs[i].len  =
1868 		    htole32(data->map->dm_segs[i - 1].ds_len);
1869 	}
1870 
1871 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1872 	    BUS_DMASYNC_PREWRITE);
1873 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
1874 	    (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
1875 	    BUS_DMASYNC_PREWRITE);
1876 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1877 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
1878 	    BUS_DMASYNC_PREWRITE);
1879 
1880 	/* Kick TX ring. */
1881 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1882 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1883 
1884 	/* Mark TX ring as full if we reach a certain threshold. */
1885 	if (++ring->queued > WPI_TX_RING_HIMARK)
1886 		sc->qfullmsk |= 1 << ring->qid;
1887 
1888 	return 0;
1889 }
1890 
1891 void
1892 wpi_start(struct ifnet *ifp)
1893 {
1894 	struct wpi_softc *sc = ifp->if_softc;
1895 	struct ieee80211com *ic = &sc->sc_ic;
1896 	struct ieee80211_node *ni;
1897 	struct mbuf *m;
1898 
1899 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1900 		return;
1901 
1902 	for (;;) {
1903 		if (sc->qfullmsk != 0) {
1904 			ifq_set_oactive(&ifp->if_snd);
1905 			break;
1906 		}
1907 		/* Send pending management frames first. */
1908 		m = mq_dequeue(&ic->ic_mgtq);
1909 		if (m != NULL) {
1910 			ni = m->m_pkthdr.ph_cookie;
1911 			goto sendit;
1912 		}
1913 		if (ic->ic_state != IEEE80211_S_RUN)
1914 			break;
1915 
1916 		/* Encapsulate and send data frames. */
1917 		IFQ_DEQUEUE(&ifp->if_snd, m);
1918 		if (m == NULL)
1919 			break;
1920 #if NBPFILTER > 0
1921 		if (ifp->if_bpf != NULL)
1922 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1923 #endif
1924 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1925 			continue;
1926 sendit:
1927 #if NBPFILTER > 0
1928 		if (ic->ic_rawbpf != NULL)
1929 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1930 #endif
1931 		if (wpi_tx(sc, m, ni) != 0) {
1932 			ieee80211_release_node(ic, ni);
1933 			ifp->if_oerrors++;
1934 			continue;
1935 		}
1936 
1937 		sc->sc_tx_timer = 5;
1938 		ifp->if_timer = 1;
1939 	}
1940 }
1941 
1942 void
1943 wpi_watchdog(struct ifnet *ifp)
1944 {
1945 	struct wpi_softc *sc = ifp->if_softc;
1946 
1947 	ifp->if_timer = 0;
1948 
1949 	if (sc->sc_tx_timer > 0) {
1950 		if (--sc->sc_tx_timer == 0) {
1951 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1952 			wpi_stop(ifp, 1);
1953 			ifp->if_oerrors++;
1954 			return;
1955 		}
1956 		ifp->if_timer = 1;
1957 	}
1958 
1959 	ieee80211_watchdog(ifp);
1960 }
1961 
1962 int
1963 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1964 {
1965 	struct wpi_softc *sc = ifp->if_softc;
1966 	struct ieee80211com *ic = &sc->sc_ic;
1967 	int s, error = 0;
1968 
1969 	error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
1970 	if (error)
1971 		return error;
1972 	s = splnet();
1973 
1974 	switch (cmd) {
1975 	case SIOCSIFADDR:
1976 		ifp->if_flags |= IFF_UP;
1977 		/* FALLTHROUGH */
1978 	case SIOCSIFFLAGS:
1979 		if (ifp->if_flags & IFF_UP) {
1980 			if (!(ifp->if_flags & IFF_RUNNING))
1981 				error = wpi_init(ifp);
1982 		} else {
1983 			if (ifp->if_flags & IFF_RUNNING)
1984 				wpi_stop(ifp, 1);
1985 		}
1986 		break;
1987 
1988 	case SIOCS80211POWER:
1989 		error = ieee80211_ioctl(ifp, cmd, data);
1990 		if (error != ENETRESET)
1991 			break;
1992 		if (ic->ic_state == IEEE80211_S_RUN) {
1993 			if (ic->ic_flags & IEEE80211_F_PMGTON)
1994 				error = wpi_set_pslevel(sc, 0, 3, 0);
1995 			else	/* back to CAM */
1996 				error = wpi_set_pslevel(sc, 0, 0, 0);
1997 		} else {
1998 			/* Defer until transition to IEEE80211_S_RUN. */
1999 			error = 0;
2000 		}
2001 		break;
2002 
2003 	default:
2004 		error = ieee80211_ioctl(ifp, cmd, data);
2005 	}
2006 
2007 	if (error == ENETRESET) {
2008 		error = 0;
2009 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2010 		    (IFF_UP | IFF_RUNNING)) {
2011 			wpi_stop(ifp, 0);
2012 			error = wpi_init(ifp);
2013 		}
2014 	}
2015 
2016 	splx(s);
2017 	rw_exit_write(&sc->sc_rwlock);
2018 	return error;
2019 }
2020 
2021 /*
2022  * Send a command to the firmware.
2023  */
2024 int
2025 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2026 {
2027 	struct wpi_tx_ring *ring = &sc->txq[4];
2028 	struct wpi_tx_desc *desc;
2029 	struct wpi_tx_data *data;
2030 	struct wpi_tx_cmd *cmd;
2031 	struct mbuf *m;
2032 	bus_addr_t paddr;
2033 	int totlen, error;
2034 
2035 	desc = &ring->desc[ring->cur];
2036 	data = &ring->data[ring->cur];
2037 	totlen = 4 + size;
2038 
2039 	if (size > sizeof cmd->data) {
2040 		/* Command is too large to fit in a descriptor. */
2041 		if (totlen > MCLBYTES)
2042 			return EINVAL;
2043 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2044 		if (m == NULL)
2045 			return ENOMEM;
2046 		if (totlen > MHLEN) {
2047 			MCLGET(m, M_DONTWAIT);
2048 			if (!(m->m_flags & M_EXT)) {
2049 				m_freem(m);
2050 				return ENOMEM;
2051 			}
2052 		}
2053 		cmd = mtod(m, struct wpi_tx_cmd *);
2054 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
2055 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2056 		if (error != 0) {
2057 			m_freem(m);
2058 			return error;
2059 		}
2060 		data->m = m;
2061 		paddr = data->map->dm_segs[0].ds_addr;
2062 	} else {
2063 		cmd = &ring->cmd[ring->cur];
2064 		paddr = data->cmd_paddr;
2065 	}
2066 
2067 	cmd->code = code;
2068 	cmd->flags = 0;
2069 	cmd->qid = ring->qid;
2070 	cmd->idx = ring->cur;
2071 	memcpy(cmd->data, buf, size);
2072 
2073 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2074 	desc->segs[0].addr = htole32(paddr);
2075 	desc->segs[0].len  = htole32(totlen);
2076 
2077 	if (size > sizeof cmd->data) {
2078 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
2079 		    BUS_DMASYNC_PREWRITE);
2080 	} else {
2081 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2082 		    (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
2083 		    BUS_DMASYNC_PREWRITE);
2084 	}
2085 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2086 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
2087 	    BUS_DMASYNC_PREWRITE);
2088 
2089 	/* Kick command ring. */
2090 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2091 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2092 
2093 	return async ? 0 : tsleep_nsec(cmd, PCATCH, "wpicmd", SEC_TO_NSEC(1));
2094 }
2095 
2096 /*
2097  * Configure HW multi-rate retries.
2098  */
2099 int
2100 wpi_mrr_setup(struct wpi_softc *sc)
2101 {
2102 	struct ieee80211com *ic = &sc->sc_ic;
2103 	struct wpi_mrr_setup mrr;
2104 	int i, error;
2105 
2106 	/* CCK rates (not used with 802.11a). */
2107 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2108 		mrr.rates[i].flags = 0;
2109 		mrr.rates[i].plcp = wpi_rates[i].plcp;
2110 		/* Fallback to the immediate lower CCK rate (if any.) */
2111 		mrr.rates[i].next =
2112 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2113 		/* Try one time at this rate before falling back to "next". */
2114 		mrr.rates[i].ntries = 1;
2115 	}
2116 	/* OFDM rates (not used with 802.11b). */
2117 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2118 		mrr.rates[i].flags = 0;
2119 		mrr.rates[i].plcp = wpi_rates[i].plcp;
2120 		/* Fallback to the immediate lower rate (if any.) */
2121 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2122 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2123 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2124 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2125 		    i - 1;
2126 		/* Try one time at this rate before falling back to "next". */
2127 		mrr.rates[i].ntries = 1;
2128 	}
2129 	/* Setup MRR for control frames. */
2130 	mrr.which = htole32(WPI_MRR_CTL);
2131 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2132 	if (error != 0) {
2133 		printf("%s: could not setup MRR for control frames\n",
2134 		    sc->sc_dev.dv_xname);
2135 		return error;
2136 	}
2137 	/* Setup MRR for data frames. */
2138 	mrr.which = htole32(WPI_MRR_DATA);
2139 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2140 	if (error != 0) {
2141 		printf("%s: could not setup MRR for data frames\n",
2142 		    sc->sc_dev.dv_xname);
2143 		return error;
2144 	}
2145 	return 0;
2146 }
2147 
2148 void
2149 wpi_updateedca(struct ieee80211com *ic)
2150 {
2151 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2152 	struct wpi_softc *sc = ic->ic_softc;
2153 	struct wpi_edca_params cmd;
2154 	int aci;
2155 
2156 	memset(&cmd, 0, sizeof cmd);
2157 	cmd.flags = htole32(WPI_EDCA_UPDATE);
2158 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2159 		const struct ieee80211_edca_ac_params *ac =
2160 		    &ic->ic_edca_ac[aci];
2161 		cmd.ac[aci].aifsn = ac->ac_aifsn;
2162 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->ac_ecwmin));
2163 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->ac_ecwmax));
2164 		cmd.ac[aci].txoplimit =
2165 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
2166 	}
2167 	(void)wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
2168 #undef WPI_EXP2
2169 }
2170 
2171 void
2172 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2173 {
2174 	struct wpi_cmd_led led;
2175 
2176 	led.which = which;
2177 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2178 	led.off = off;
2179 	led.on = on;
2180 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2181 }
2182 
2183 int
2184 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
2185 {
2186 	struct wpi_cmd_timing cmd;
2187 	uint64_t val, mod;
2188 
2189 	memset(&cmd, 0, sizeof cmd);
2190 	memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
2191 	cmd.bintval = htole16(ni->ni_intval);
2192 	cmd.lintval = htole16(10);
2193 
2194 	/* Compute remaining time until next beacon. */
2195 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2196 	mod = letoh64(cmd.tstamp) % val;
2197 	cmd.binitval = htole32((uint32_t)(val - mod));
2198 
2199 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
2200 	    ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
2201 
2202 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
2203 }
2204 
2205 /*
2206  * This function is called periodically (every minute) to adjust TX power
2207  * based on temperature variation.
2208  */
2209 void
2210 wpi_power_calibration(struct wpi_softc *sc)
2211 {
2212 	int temp;
2213 
2214 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
2215 	/* Sanity-check temperature. */
2216 	if (temp < -260 || temp > 25) {
2217 		/* This can't be correct, ignore. */
2218 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
2219 		return;
2220 	}
2221 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
2222 	/* Adjust TX power if need be (delta > 6). */
2223 	if (abs(temp - sc->temp) > 6) {
2224 		/* Record temperature of last calibration. */
2225 		sc->temp = temp;
2226 		(void)wpi_set_txpower(sc, 1);
2227 	}
2228 }
2229 
2230 /*
2231  * Set TX power for current channel (each rate has its own power settings).
2232  */
2233 int
2234 wpi_set_txpower(struct wpi_softc *sc, int async)
2235 {
2236 	struct ieee80211com *ic = &sc->sc_ic;
2237 	struct ieee80211_channel *ch;
2238 	struct wpi_power_group *group;
2239 	struct wpi_cmd_txpower cmd;
2240 	u_int chan;
2241 	int idx, i;
2242 
2243 	/* Retrieve current channel from last RXON. */
2244 	chan = sc->rxon.chan;
2245 	DPRINTF(("setting TX power for channel %d\n", chan));
2246 	ch = &ic->ic_channels[chan];
2247 
2248 	/* Find the TX power group to which this channel belongs. */
2249 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2250 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2251 			if (chan <= group->chan)
2252 				break;
2253 	} else
2254 		group = &sc->groups[0];
2255 
2256 	memset(&cmd, 0, sizeof cmd);
2257 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2258 	cmd.chan = htole16(chan);
2259 
2260 	/* Set TX power for all OFDM and CCK rates. */
2261 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
2262 		/* Retrieve TX power for this channel/rate. */
2263 		idx = wpi_get_power_index(sc, group, ch, i);
2264 
2265 		cmd.rates[i].plcp = wpi_rates[i].plcp;
2266 
2267 		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2268 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2269 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2270 		} else {
2271 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2272 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2273 		}
2274 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2275 		    wpi_rates[i].rate, idx));
2276 	}
2277 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
2278 }
2279 
2280 /*
2281  * Determine TX power index for a given channel/rate combination.
2282  * This takes into account the regulatory information from EEPROM and the
2283  * current temperature.
2284  */
2285 int
2286 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2287     struct ieee80211_channel *c, int ridx)
2288 {
2289 /* Fixed-point arithmetic division using a n-bit fractional part. */
2290 #define fdivround(a, b, n)	\
2291 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2292 
2293 /* Linear interpolation. */
2294 #define interpolate(x, x1, y1, x2, y2, n)	\
2295 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2296 
2297 	struct ieee80211com *ic = &sc->sc_ic;
2298 	struct wpi_power_sample *sample;
2299 	int pwr, idx;
2300 	u_int chan;
2301 
2302 	/* Get channel number. */
2303 	chan = ieee80211_chan2ieee(ic, c);
2304 
2305 	/* Default TX power is group maximum TX power minus 3dB. */
2306 	pwr = group->maxpwr / 2;
2307 
2308 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
2309 	switch (ridx) {
2310 	case WPI_RIDX_OFDM36:
2311 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2312 		break;
2313 	case WPI_RIDX_OFDM48:
2314 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2315 		break;
2316 	case WPI_RIDX_OFDM54:
2317 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2318 		break;
2319 	}
2320 
2321 	/* Never exceed the channel maximum allowed TX power. */
2322 	pwr = MIN(pwr, sc->maxpwr[chan]);
2323 
2324 	/* Retrieve TX power index into gain tables from samples. */
2325 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2326 		if (pwr > sample[1].power)
2327 			break;
2328 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
2329 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2330 	    sample[1].power, sample[1].index, 19);
2331 
2332 	/*-
2333 	 * Adjust power index based on current temperature:
2334 	 * - if cooler than factory-calibrated: decrease output power
2335 	 * - if warmer than factory-calibrated: increase output power
2336 	 */
2337 	idx -= (sc->temp - group->temp) * 11 / 100;
2338 
2339 	/* Decrease TX power for CCK rates (-5dB). */
2340 	if (ridx >= WPI_RIDX_CCK1)
2341 		idx += 10;
2342 
2343 	/* Make sure idx stays in a valid range. */
2344 	if (idx < 0)
2345 		idx = 0;
2346 	else if (idx > WPI_MAX_PWR_INDEX)
2347 		idx = WPI_MAX_PWR_INDEX;
2348 	return idx;
2349 
2350 #undef interpolate
2351 #undef fdivround
2352 }
2353 
2354 /*
2355  * Set STA mode power saving level (between 0 and 5).
2356  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
2357  */
2358 int
2359 wpi_set_pslevel(struct wpi_softc *sc, int dtim, int level, int async)
2360 {
2361 	struct wpi_pmgt_cmd cmd;
2362 	const struct wpi_pmgt *pmgt;
2363 	uint32_t max, skip_dtim;
2364 	pcireg_t reg;
2365 	int i;
2366 
2367 	/* Select which PS parameters to use. */
2368 	if (dtim <= 10)
2369 		pmgt = &wpi_pmgt[0][level];
2370 	else
2371 		pmgt = &wpi_pmgt[1][level];
2372 
2373 	memset(&cmd, 0, sizeof cmd);
2374 	if (level != 0)	/* not CAM */
2375 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
2376 	/* Retrieve PCIe Active State Power Management (ASPM). */
2377 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
2378 	    sc->sc_cap_off + PCI_PCIE_LCSR);
2379 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
2380 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
2381 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
2382 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
2383 
2384 	if (dtim == 0) {
2385 		dtim = 1;
2386 		skip_dtim = 0;
2387 	} else
2388 		skip_dtim = pmgt->skip_dtim;
2389 	if (skip_dtim != 0) {
2390 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
2391 		max = pmgt->intval[4];
2392 		if (max == (uint32_t)-1)
2393 			max = dtim * (skip_dtim + 1);
2394 		else if (max > dtim)
2395 			max = (max / dtim) * dtim;
2396 	} else
2397 		max = dtim;
2398 	for (i = 0; i < 5; i++)
2399 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
2400 
2401 	DPRINTF(("setting power saving level to %d\n", level));
2402 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
2403 }
2404 
2405 int
2406 wpi_config(struct wpi_softc *sc)
2407 {
2408 	struct ieee80211com *ic = &sc->sc_ic;
2409 	struct ifnet *ifp = &ic->ic_if;
2410 	struct wpi_bluetooth bluetooth;
2411 	struct wpi_node_info node;
2412 	int error;
2413 
2414 	/* Set power saving level to CAM during initialization. */
2415 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
2416 		printf("%s: could not set power saving level\n",
2417 		    sc->sc_dev.dv_xname);
2418 		return error;
2419 	}
2420 
2421 	/* Configure bluetooth coexistence. */
2422 	memset(&bluetooth, 0, sizeof bluetooth);
2423 	bluetooth.flags = WPI_BT_COEX_MODE_4WIRE;
2424 	bluetooth.lead_time = WPI_BT_LEAD_TIME_DEF;
2425 	bluetooth.max_kill = WPI_BT_MAX_KILL_DEF;
2426 	error = wpi_cmd(sc, WPI_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
2427 	if (error != 0) {
2428 		printf("%s: could not configure bluetooth coexistence\n",
2429 		    sc->sc_dev.dv_xname);
2430 		return error;
2431 	}
2432 
2433 	/* Configure adapter. */
2434 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
2435 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2436 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
2437 	/* Set default channel. */
2438 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2439 	sc->rxon.flags = htole32(WPI_RXON_TSF);
2440 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
2441 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
2442 	switch (ic->ic_opmode) {
2443 	case IEEE80211_M_STA:
2444 		sc->rxon.mode = WPI_MODE_STA;
2445 		sc->rxon.filter = htole32(WPI_FILTER_MULTICAST);
2446 		break;
2447 	case IEEE80211_M_MONITOR:
2448 		sc->rxon.mode = WPI_MODE_MONITOR;
2449 		sc->rxon.filter = htole32(WPI_FILTER_MULTICAST |
2450 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2451 		break;
2452 	default:
2453 		/* Should not get there. */
2454 		break;
2455 	}
2456 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
2457 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
2458 	DPRINTF(("setting configuration\n"));
2459 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2460 	    0);
2461 	if (error != 0) {
2462 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2463 		return error;
2464 	}
2465 
2466 	/* Configuration has changed, set TX power accordingly. */
2467 	if ((error = wpi_set_txpower(sc, 0)) != 0) {
2468 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2469 		return error;
2470 	}
2471 
2472 	/* Add broadcast node. */
2473 	memset(&node, 0, sizeof node);
2474 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
2475 	node.id = WPI_ID_BROADCAST;
2476 	node.plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
2477 	node.action = htole32(WPI_ACTION_SET_RATE);
2478 	node.antenna = WPI_ANTENNA_BOTH;
2479 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2480 	if (error != 0) {
2481 		printf("%s: could not add broadcast node\n",
2482 		    sc->sc_dev.dv_xname);
2483 		return error;
2484 	}
2485 
2486 	if ((error = wpi_mrr_setup(sc)) != 0) {
2487 		printf("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2488 		return error;
2489 	}
2490 	return 0;
2491 }
2492 
2493 int
2494 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2495 {
2496 	struct ieee80211com *ic = &sc->sc_ic;
2497 	struct wpi_scan_hdr *hdr;
2498 	struct wpi_cmd_data *tx;
2499 	struct wpi_scan_essid *essid;
2500 	struct wpi_scan_chan *chan;
2501 	struct ieee80211_frame *wh;
2502 	struct ieee80211_rateset *rs;
2503 	struct ieee80211_channel *c;
2504 	uint8_t *buf, *frm;
2505 	int buflen, error;
2506 
2507 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
2508 	if (buf == NULL) {
2509 		printf("%s: could not allocate buffer for scan command\n",
2510 		    sc->sc_dev.dv_xname);
2511 		return ENOMEM;
2512 	}
2513 	hdr = (struct wpi_scan_hdr *)buf;
2514 	/*
2515 	 * Move to the next channel if no frames are received within 10ms
2516 	 * after sending the probe request.
2517 	 */
2518 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
2519 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
2520 
2521 	tx = (struct wpi_cmd_data *)(hdr + 1);
2522 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
2523 	tx->id = WPI_ID_BROADCAST;
2524 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2525 
2526 	if (flags & IEEE80211_CHAN_5GHZ) {
2527 		hdr->crc_threshold = htole16(1);
2528 		/* Send probe requests at 6Mbps. */
2529 		tx->plcp = wpi_rates[WPI_RIDX_OFDM6].plcp;
2530 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2531 	} else {
2532 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
2533 		/* Send probe requests at 1Mbps. */
2534 		tx->plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
2535 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2536 	}
2537 
2538 	essid = (struct wpi_scan_essid *)(tx + 1);
2539 	if (ic->ic_des_esslen != 0) {
2540 		essid[0].id  = IEEE80211_ELEMID_SSID;
2541 		essid[0].len = ic->ic_des_esslen;
2542 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2543 	}
2544 	/*
2545 	 * Build a probe request frame.  Most of the following code is a
2546 	 * copy & paste of what is done in net80211.
2547 	 */
2548 	wh = (struct ieee80211_frame *)(essid + 4);
2549 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2550 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2551 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2552 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2553 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2554 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2555 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
2556 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
2557 
2558 	frm = (uint8_t *)(wh + 1);
2559 	frm = ieee80211_add_ssid(frm, NULL, 0);
2560 	frm = ieee80211_add_rates(frm, rs);
2561 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
2562 		frm = ieee80211_add_xrates(frm, rs);
2563 
2564 	/* Set length of probe request. */
2565 	tx->len = htole16(frm - (uint8_t *)wh);
2566 
2567 	chan = (struct wpi_scan_chan *)frm;
2568 	for (c  = &ic->ic_channels[1];
2569 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2570 		if ((c->ic_flags & flags) != flags)
2571 			continue;
2572 
2573 		chan->chan = ieee80211_chan2ieee(ic, c);
2574 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
2575 		chan->flags = 0;
2576 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
2577 			chan->flags |= WPI_CHAN_ACTIVE;
2578 		if (ic->ic_des_esslen != 0)
2579 			chan->flags |= WPI_CHAN_NPBREQS(1);
2580 		chan->dsp_gain = 0x6e;
2581 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2582 			chan->rf_gain = 0x3b;
2583 			chan->active  = htole16(24);
2584 			chan->passive = htole16(110);
2585 		} else {
2586 			chan->rf_gain = 0x28;
2587 			chan->active  = htole16(36);
2588 			chan->passive = htole16(120);
2589 		}
2590 		hdr->nchan++;
2591 		chan++;
2592 	}
2593 
2594 	buflen = (uint8_t *)chan - buf;
2595 	hdr->len = htole16(buflen);
2596 
2597 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
2598 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
2599 	free(buf, M_DEVBUF, WPI_SCAN_MAXSZ);
2600 	return error;
2601 }
2602 
2603 int
2604 wpi_auth(struct wpi_softc *sc)
2605 {
2606 	struct ieee80211com *ic = &sc->sc_ic;
2607 	struct ieee80211_node *ni = ic->ic_bss;
2608 	struct wpi_node_info node;
2609 	int error;
2610 
2611 	/* Update adapter configuration. */
2612 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
2613 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2614 	sc->rxon.flags = htole32(WPI_RXON_TSF);
2615 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2616 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
2617 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2618 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
2619 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2620 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
2621 	switch (ic->ic_curmode) {
2622 	case IEEE80211_MODE_11A:
2623 		sc->rxon.cck_mask  = 0;
2624 		sc->rxon.ofdm_mask = 0x15;
2625 		break;
2626 	case IEEE80211_MODE_11B:
2627 		sc->rxon.cck_mask  = 0x03;
2628 		sc->rxon.ofdm_mask = 0;
2629 		break;
2630 	default:	/* Assume 802.11b/g. */
2631 		sc->rxon.cck_mask  = 0x0f;
2632 		sc->rxon.ofdm_mask = 0x15;
2633 	}
2634 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
2635 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
2636 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2637 	    1);
2638 	if (error != 0) {
2639 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2640 		return error;
2641 	}
2642 
2643 	/* Configuration has changed, set TX power accordingly. */
2644 	if ((error = wpi_set_txpower(sc, 1)) != 0) {
2645 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2646 		return error;
2647 	}
2648 	/*
2649 	 * Reconfiguring RXON clears the firmware nodes table so we must
2650 	 * add the broadcast node again.
2651 	 */
2652 	memset(&node, 0, sizeof node);
2653 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
2654 	node.id = WPI_ID_BROADCAST;
2655 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2656 	    wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
2657 	node.action = htole32(WPI_ACTION_SET_RATE);
2658 	node.antenna = WPI_ANTENNA_BOTH;
2659 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2660 	if (error != 0) {
2661 		printf("%s: could not add broadcast node\n",
2662 		    sc->sc_dev.dv_xname);
2663 		return error;
2664 	}
2665 	return 0;
2666 }
2667 
2668 int
2669 wpi_run(struct wpi_softc *sc)
2670 {
2671 	struct ieee80211com *ic = &sc->sc_ic;
2672 	struct ieee80211_node *ni = ic->ic_bss;
2673 	struct wpi_node_info node;
2674 	int error;
2675 
2676 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2677 		/* Link LED blinks while monitoring. */
2678 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2679 		return 0;
2680 	}
2681 	if ((error = wpi_set_timing(sc, ni)) != 0) {
2682 		printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
2683 		return error;
2684 	}
2685 
2686 	/* Update adapter configuration. */
2687 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
2688 	/* Short preamble and slot time are negotiated when associating. */
2689 	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
2690 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2691 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
2692 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2693 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
2694 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
2695 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
2696 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2697 	    1);
2698 	if (error != 0) {
2699 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2700 		return error;
2701 	}
2702 
2703 	/* Configuration has changed, set TX power accordingly. */
2704 	if ((error = wpi_set_txpower(sc, 1)) != 0) {
2705 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2706 		return error;
2707 	}
2708 
2709 	/* Fake a join to init the TX rate. */
2710 	((struct wpi_node *)ni)->id = WPI_ID_BSS;
2711 	wpi_newassoc(ic, ni, 1);
2712 
2713 	/* Add BSS node. */
2714 	memset(&node, 0, sizeof node);
2715 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid);
2716 	node.id = WPI_ID_BSS;
2717 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2718 	    wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
2719 	node.action = htole32(WPI_ACTION_SET_RATE);
2720 	node.antenna = WPI_ANTENNA_BOTH;
2721 	DPRINTF(("adding BSS node\n"));
2722 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2723 	if (error != 0) {
2724 		printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2725 		return error;
2726 	}
2727 
2728 	/* Start periodic calibration timer. */
2729 	sc->calib_cnt = 0;
2730 	timeout_add_msec(&sc->calib_to, 500);
2731 
2732 	/* Link LED always on while associated. */
2733 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2734 
2735 	/* Enable power-saving mode if requested by user. */
2736 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
2737 		(void)wpi_set_pslevel(sc, 0, 3, 1);
2738 
2739 	return 0;
2740 }
2741 
2742 /*
2743  * We support CCMP hardware encryption/decryption of unicast frames only.
2744  * HW support for TKIP really sucks.  We should let TKIP die anyway.
2745  */
2746 int
2747 wpi_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2748     struct ieee80211_key *k)
2749 {
2750 	struct wpi_softc *sc = ic->ic_softc;
2751 	struct wpi_node *wn = (void *)ni;
2752 	struct wpi_node_info node;
2753 	uint16_t kflags;
2754 
2755 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
2756 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
2757 		return ieee80211_set_key(ic, ni, k);
2758 
2759 	kflags = WPI_KFLAG_CCMP | WPI_KFLAG_KID(k->k_id);
2760 	memset(&node, 0, sizeof node);
2761 	node.id = wn->id;
2762 	node.control = WPI_NODE_UPDATE;
2763 	node.flags = WPI_FLAG_SET_KEY;
2764 	node.kflags = htole16(kflags);
2765 	memcpy(node.key, k->k_key, k->k_len);
2766 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
2767 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2768 }
2769 
2770 void
2771 wpi_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2772     struct ieee80211_key *k)
2773 {
2774 	struct wpi_softc *sc = ic->ic_softc;
2775 	struct wpi_node *wn = (void *)ni;
2776 	struct wpi_node_info node;
2777 
2778 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
2779 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
2780 		/* See comment about other ciphers above. */
2781 		ieee80211_delete_key(ic, ni, k);
2782 		return;
2783 	}
2784 	if (ic->ic_state != IEEE80211_S_RUN)
2785 		return;	/* Nothing to do. */
2786 	memset(&node, 0, sizeof node);
2787 	node.id = wn->id;
2788 	node.control = WPI_NODE_UPDATE;
2789 	node.flags = WPI_FLAG_SET_KEY;
2790 	node.kflags = 0;
2791 	DPRINTF(("delete keys for node %d\n", node.id));
2792 	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2793 }
2794 
2795 int
2796 wpi_post_alive(struct wpi_softc *sc)
2797 {
2798 	int ntries, error;
2799 
2800 	/* Check (again) that the radio is not disabled. */
2801 	if ((error = wpi_nic_lock(sc)) != 0)
2802 		return error;
2803 	/* NB: Runtime firmware must be up and running. */
2804 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
2805 		printf("%s: radio is disabled by hardware switch\n",
2806 		    sc->sc_dev.dv_xname);
2807 		wpi_nic_unlock(sc);
2808 		return EPERM;	/* :-) */
2809 	}
2810 	wpi_nic_unlock(sc);
2811 
2812 	/* Wait for thermal sensor to calibrate. */
2813 	for (ntries = 0; ntries < 1000; ntries++) {
2814 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
2815 			break;
2816 		DELAY(10);
2817 	}
2818 	if (ntries == 1000) {
2819 		printf("%s: timeout waiting for thermal sensor calibration\n",
2820 		    sc->sc_dev.dv_xname);
2821 		return ETIMEDOUT;
2822 	}
2823 	DPRINTF(("temperature %d\n", sc->temp));
2824 	return 0;
2825 }
2826 
2827 /*
2828  * The firmware boot code is small and is intended to be copied directly into
2829  * the NIC internal memory (no DMA transfer.)
2830  */
2831 int
2832 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
2833 {
2834 	int error, ntries;
2835 
2836 	size /= sizeof (uint32_t);
2837 
2838 	if ((error = wpi_nic_lock(sc)) != 0)
2839 		return error;
2840 
2841 	/* Copy microcode image into NIC memory. */
2842 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
2843 	    (const uint32_t *)ucode, size);
2844 
2845 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
2846 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
2847 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
2848 
2849 	/* Start boot load now. */
2850 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
2851 
2852 	/* Wait for transfer to complete. */
2853 	for (ntries = 0; ntries < 1000; ntries++) {
2854 		if (!(wpi_prph_read(sc, WPI_BSM_WR_CTRL) &
2855 		    WPI_BSM_WR_CTRL_START))
2856 			break;
2857 		DELAY(10);
2858 	}
2859 	if (ntries == 1000) {
2860 		printf("%s: could not load boot firmware\n",
2861 		    sc->sc_dev.dv_xname);
2862 		wpi_nic_unlock(sc);
2863 		return ETIMEDOUT;
2864 	}
2865 
2866 	/* Enable boot after power up. */
2867 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
2868 
2869 	wpi_nic_unlock(sc);
2870 	return 0;
2871 }
2872 
2873 int
2874 wpi_load_firmware(struct wpi_softc *sc)
2875 {
2876 	struct wpi_fw_info *fw = &sc->fw;
2877 	struct wpi_dma_info *dma = &sc->fw_dma;
2878 	int error;
2879 
2880 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
2881 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
2882 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
2883 	    BUS_DMASYNC_PREWRITE);
2884 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
2885 	    fw->init.text, fw->init.textsz);
2886 	bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
2887 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
2888 
2889 	/* Tell adapter where to find initialization sections. */
2890 	if ((error = wpi_nic_lock(sc)) != 0)
2891 		return error;
2892 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
2893 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
2894 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
2895 	    dma->paddr + WPI_FW_DATA_MAXSZ);
2896 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
2897 	wpi_nic_unlock(sc);
2898 
2899 	/* Load firmware boot code. */
2900 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
2901 	if (error != 0) {
2902 		printf("%s: could not load boot firmware\n",
2903 		    sc->sc_dev.dv_xname);
2904 		return error;
2905 	}
2906 	/* Now press "execute". */
2907 	WPI_WRITE(sc, WPI_RESET, 0);
2908 
2909 	/* Wait at most one second for first alive notification. */
2910 	if ((error = tsleep_nsec(sc, PCATCH, "wpiinit", SEC_TO_NSEC(1))) != 0) {
2911 		printf("%s: timeout waiting for adapter to initialize\n",
2912 		    sc->sc_dev.dv_xname);
2913 		return error;
2914 	}
2915 
2916 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
2917 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
2918 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
2919 	    BUS_DMASYNC_PREWRITE);
2920 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
2921 	    fw->main.text, fw->main.textsz);
2922 	bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
2923 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
2924 
2925 	/* Tell adapter where to find runtime sections. */
2926 	if ((error = wpi_nic_lock(sc)) != 0)
2927 		return error;
2928 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
2929 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
2930 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
2931 	    dma->paddr + WPI_FW_DATA_MAXSZ);
2932 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
2933 	    WPI_FW_UPDATED | fw->main.textsz);
2934 	wpi_nic_unlock(sc);
2935 
2936 	return 0;
2937 }
2938 
2939 int
2940 wpi_read_firmware(struct wpi_softc *sc)
2941 {
2942 	struct wpi_fw_info *fw = &sc->fw;
2943 	const struct wpi_firmware_hdr *hdr;
2944 	int error;
2945 
2946 	/* Read firmware image from filesystem. */
2947 	if ((error = loadfirmware("wpi-3945abg", &fw->data, &fw->datalen)) != 0) {
2948 		printf("%s: error, %d, could not read firmware %s\n",
2949 		    sc->sc_dev.dv_xname, error, "wpi-3945abg");
2950 		return error;
2951 	}
2952 	if (fw->datalen < sizeof (*hdr)) {
2953 		printf("%s: truncated firmware header: %zu bytes\n",
2954 		    sc->sc_dev.dv_xname, fw->datalen);
2955 		free(fw->data, M_DEVBUF, fw->datalen);
2956 		return EINVAL;
2957 	}
2958 	/* Extract firmware header information. */
2959 	hdr = (struct wpi_firmware_hdr *)fw->data;
2960 	fw->main.textsz = letoh32(hdr->main_textsz);
2961 	fw->main.datasz = letoh32(hdr->main_datasz);
2962 	fw->init.textsz = letoh32(hdr->init_textsz);
2963 	fw->init.datasz = letoh32(hdr->init_datasz);
2964 	fw->boot.textsz = letoh32(hdr->boot_textsz);
2965 	fw->boot.datasz = 0;
2966 
2967 	/* Sanity-check firmware header. */
2968 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
2969 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
2970 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
2971 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
2972 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
2973 	    (fw->boot.textsz & 3) != 0) {
2974 		printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname);
2975 		free(fw->data, M_DEVBUF, fw->datalen);
2976 		return EINVAL;
2977 	}
2978 
2979 	/* Check that all firmware sections fit. */
2980 	if (fw->datalen < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
2981 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
2982 		printf("%s: firmware file too short: %zu bytes\n",
2983 		    sc->sc_dev.dv_xname, fw->datalen);
2984 		free(fw->data, M_DEVBUF, fw->datalen);
2985 		return EINVAL;
2986 	}
2987 
2988 	/* Get pointers to firmware sections. */
2989 	fw->main.text = (const uint8_t *)(hdr + 1);
2990 	fw->main.data = fw->main.text + fw->main.textsz;
2991 	fw->init.text = fw->main.data + fw->main.datasz;
2992 	fw->init.data = fw->init.text + fw->init.textsz;
2993 	fw->boot.text = fw->init.data + fw->init.datasz;
2994 
2995 	return 0;
2996 }
2997 
2998 int
2999 wpi_clock_wait(struct wpi_softc *sc)
3000 {
3001 	int ntries;
3002 
3003 	/* Set "initialization complete" bit. */
3004 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
3005 
3006 	/* Wait for clock stabilization. */
3007 	for (ntries = 0; ntries < 25000; ntries++) {
3008 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
3009 			return 0;
3010 		DELAY(100);
3011 	}
3012 	printf("%s: timeout waiting for clock stabilization\n",
3013 	    sc->sc_dev.dv_xname);
3014 	return ETIMEDOUT;
3015 }
3016 
3017 int
3018 wpi_apm_init(struct wpi_softc *sc)
3019 {
3020 	int error;
3021 
3022 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
3023 	/* Disable L0s. */
3024 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
3025 
3026 	if ((error = wpi_clock_wait(sc)) != 0)
3027 		return error;
3028 
3029 	if ((error = wpi_nic_lock(sc)) != 0)
3030 		return error;
3031 	/* Enable DMA. */
3032 	wpi_prph_write(sc, WPI_APMG_CLK_ENA,
3033 	    WPI_APMG_CLK_DMA_CLK_RQT | WPI_APMG_CLK_BSM_CLK_RQT);
3034 	DELAY(20);
3035 	/* Disable L1. */
3036 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
3037 	wpi_nic_unlock(sc);
3038 
3039 	return 0;
3040 }
3041 
3042 void
3043 wpi_apm_stop_master(struct wpi_softc *sc)
3044 {
3045 	int ntries;
3046 
3047 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
3048 
3049 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
3050 	    WPI_GP_CNTRL_MAC_PS)
3051 		return;	/* Already asleep. */
3052 
3053 	for (ntries = 0; ntries < 100; ntries++) {
3054 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
3055 			return;
3056 		DELAY(10);
3057 	}
3058 	printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
3059 }
3060 
3061 void
3062 wpi_apm_stop(struct wpi_softc *sc)
3063 {
3064 	wpi_apm_stop_master(sc);
3065 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
3066 }
3067 
3068 void
3069 wpi_nic_config(struct wpi_softc *sc)
3070 {
3071 	pcireg_t reg;
3072 	uint8_t rev;
3073 
3074 	/* Voodoo from the reference driver. */
3075 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3076 	rev = PCI_REVISION(reg);
3077 	if ((rev & 0xc0) == 0x40)
3078 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
3079 	else if (!(rev & 0x80))
3080 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
3081 
3082 	if (sc->cap == 0x80)
3083 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
3084 
3085 	if ((letoh16(sc->rev) & 0xf0) == 0xd0)
3086 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
3087 	else
3088 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
3089 
3090 	if (sc->type > 1)
3091 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
3092 }
3093 
3094 int
3095 wpi_hw_init(struct wpi_softc *sc)
3096 {
3097 	int chnl, ntries, error;
3098 
3099 	/* Clear pending interrupts. */
3100 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3101 
3102 	if ((error = wpi_apm_init(sc)) != 0) {
3103 		printf("%s: could not power ON adapter\n",
3104 		    sc->sc_dev.dv_xname);
3105 		return error;
3106 	}
3107 
3108 	/* Select VMAIN power source. */
3109 	if ((error = wpi_nic_lock(sc)) != 0)
3110 		return error;
3111 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
3112 	wpi_nic_unlock(sc);
3113 	/* Spin until VMAIN gets selected. */
3114 	for (ntries = 0; ntries < 5000; ntries++) {
3115 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
3116 			break;
3117 		DELAY(10);
3118 	}
3119 	if (ntries == 5000) {
3120 		printf("%s: timeout selecting power source\n",
3121 		    sc->sc_dev.dv_xname);
3122 		return ETIMEDOUT;
3123 	}
3124 
3125 	/* Perform adapter initialization. */
3126 	(void)wpi_nic_config(sc);
3127 
3128 	/* Initialize RX ring. */
3129 	if ((error = wpi_nic_lock(sc)) != 0)
3130 		return error;
3131 	/* Set physical address of RX ring. */
3132 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
3133 	/* Set physical address of RX read pointer. */
3134 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
3135 	    offsetof(struct wpi_shared, next));
3136 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
3137 	/* Enable RX. */
3138 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
3139 	    WPI_FH_RX_CONFIG_DMA_ENA |
3140 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
3141 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
3142 	    WPI_FH_RX_CONFIG_MAXFRAG |
3143 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
3144 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
3145 	    WPI_FH_RX_CONFIG_IRQ_RBTH(1));
3146 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
3147 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
3148 	wpi_nic_unlock(sc);
3149 
3150 	/* Initialize TX rings. */
3151 	if ((error = wpi_nic_lock(sc)) != 0)
3152 		return error;
3153 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
3154 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
3155 	/* Enable all 6 TX rings. */
3156 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
3157 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
3158 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
3159 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
3160 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
3161 	/* Set physical address of TX rings. */
3162 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
3163 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
3164 
3165 	/* Enable all DMA channels. */
3166 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
3167 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
3168 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
3169 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
3170 	}
3171 	wpi_nic_unlock(sc);
3172 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
3173 
3174 	/* Clear "radio off" and "commands blocked" bits. */
3175 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3176 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
3177 
3178 	/* Clear pending interrupts. */
3179 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3180 	/* Enable interrupts. */
3181 	WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
3182 
3183 	/* _Really_ make sure "radio off" bit is cleared! */
3184 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3185 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3186 
3187 	if ((error = wpi_load_firmware(sc)) != 0) {
3188 		printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
3189 		return error;
3190 	}
3191 	/* Wait at most one second for firmware alive notification. */
3192 	if ((error = tsleep_nsec(sc, PCATCH, "wpiinit", SEC_TO_NSEC(1))) != 0) {
3193 		printf("%s: timeout waiting for adapter to initialize\n",
3194 		    sc->sc_dev.dv_xname);
3195 		return error;
3196 	}
3197 	/* Do post-firmware initialization. */
3198 	return wpi_post_alive(sc);
3199 }
3200 
3201 void
3202 wpi_hw_stop(struct wpi_softc *sc)
3203 {
3204 	int chnl, qid, ntries;
3205 	uint32_t tmp;
3206 
3207 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
3208 
3209 	/* Disable interrupts. */
3210 	WPI_WRITE(sc, WPI_MASK, 0);
3211 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3212 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
3213 
3214 	/* Make sure we no longer hold the NIC lock. */
3215 	wpi_nic_unlock(sc);
3216 
3217 	if (wpi_nic_lock(sc) == 0) {
3218 		/* Stop TX scheduler. */
3219 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
3220 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
3221 
3222 		/* Stop all DMA channels. */
3223 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
3224 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
3225 			for (ntries = 0; ntries < 100; ntries++) {
3226 				tmp = WPI_READ(sc, WPI_FH_TX_STATUS);
3227 				if ((tmp & WPI_FH_TX_STATUS_IDLE(chnl)) ==
3228 				    WPI_FH_TX_STATUS_IDLE(chnl))
3229 					break;
3230 				DELAY(10);
3231 			}
3232 		}
3233 		wpi_nic_unlock(sc);
3234 	}
3235 
3236 	/* Stop RX ring. */
3237 	wpi_reset_rx_ring(sc, &sc->rxq);
3238 
3239 	/* Reset all TX rings. */
3240 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
3241 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
3242 
3243 	if (wpi_nic_lock(sc) == 0) {
3244 		wpi_prph_write(sc, WPI_APMG_CLK_DIS, WPI_APMG_CLK_DMA_CLK_RQT);
3245 		wpi_nic_unlock(sc);
3246 	}
3247 	DELAY(5);
3248 	/* Power OFF adapter. */
3249 	wpi_apm_stop(sc);
3250 }
3251 
3252 int
3253 wpi_init(struct ifnet *ifp)
3254 {
3255 	struct wpi_softc *sc = ifp->if_softc;
3256 	struct ieee80211com *ic = &sc->sc_ic;
3257 	int error;
3258 
3259 #ifdef notyet
3260 	/* Check that the radio is not disabled by hardware switch. */
3261 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
3262 		printf("%s: radio is disabled by hardware switch\n",
3263 		    sc->sc_dev.dv_xname);
3264 		error = EPERM;	/* :-) */
3265 		goto fail;
3266 	}
3267 #endif
3268 	/* Read firmware images from the filesystem. */
3269 	if ((error = wpi_read_firmware(sc)) != 0) {
3270 		printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
3271 		goto fail;
3272 	}
3273 
3274 	/* Initialize hardware and upload firmware. */
3275 	error = wpi_hw_init(sc);
3276 	free(sc->fw.data, M_DEVBUF, sc->fw.datalen);
3277 	if (error != 0) {
3278 		printf("%s: could not initialize hardware\n",
3279 		    sc->sc_dev.dv_xname);
3280 		goto fail;
3281 	}
3282 
3283 	/* Configure adapter now that it is ready. */
3284 	if ((error = wpi_config(sc)) != 0) {
3285 		printf("%s: could not configure device\n",
3286 		    sc->sc_dev.dv_xname);
3287 		goto fail;
3288 	}
3289 
3290 	ifq_clr_oactive(&ifp->if_snd);
3291 	ifp->if_flags |= IFF_RUNNING;
3292 
3293 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
3294 		ieee80211_begin_scan(ifp);
3295 	else
3296 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3297 
3298 	return 0;
3299 
3300 fail:	wpi_stop(ifp, 1);
3301 	return error;
3302 }
3303 
3304 void
3305 wpi_stop(struct ifnet *ifp, int disable)
3306 {
3307 	struct wpi_softc *sc = ifp->if_softc;
3308 	struct ieee80211com *ic = &sc->sc_ic;
3309 
3310 	ifp->if_timer = sc->sc_tx_timer = 0;
3311 	ifp->if_flags &= ~IFF_RUNNING;
3312 	ifq_clr_oactive(&ifp->if_snd);
3313 
3314 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3315 
3316 	/* Power OFF hardware. */
3317 	wpi_hw_stop(sc);
3318 }
3319