1 /* $OpenBSD: if_wpi.c,v 1.64 2008/08/27 09:05:03 damien Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 22 */ 23 24 #include "bpfilter.h" 25 26 #include <sys/param.h> 27 #include <sys/sockio.h> 28 #include <sys/sysctl.h> 29 #include <sys/mbuf.h> 30 #include <sys/kernel.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/conf.h> 35 #include <sys/device.h> 36 #include <sys/sensors.h> 37 38 #include <machine/bus.h> 39 #include <machine/endian.h> 40 #include <machine/intr.h> 41 42 #include <dev/pci/pcireg.h> 43 #include <dev/pci/pcivar.h> 44 #include <dev/pci/pcidevs.h> 45 46 #if NBPFILTER > 0 47 #include <net/bpf.h> 48 #endif 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/if_dl.h> 52 #include <net/if_media.h> 53 #include <net/if_types.h> 54 55 #include <netinet/in.h> 56 #include <netinet/in_systm.h> 57 #include <netinet/in_var.h> 58 #include <netinet/if_ether.h> 59 #include <netinet/ip.h> 60 61 #include <net80211/ieee80211_var.h> 62 #include <net80211/ieee80211_amrr.h> 63 #include <net80211/ieee80211_radiotap.h> 64 65 #include <dev/pci/if_wpireg.h> 66 #include <dev/pci/if_wpivar.h> 67 68 static const struct pci_matchid wpi_devices[] = { 69 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 }, 70 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2 } 71 }; 72 73 int wpi_match(struct device *, void *, void *); 74 void wpi_attach(struct device *, struct device *, void *); 75 #ifndef SMALL_KERNEL 76 void wpi_sensor_attach(struct wpi_softc *); 77 #endif 78 void wpi_radiotap_attach(struct wpi_softc *); 79 void wpi_power(int, void *); 80 int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *, 81 void **, bus_size_t, bus_size_t, int); 82 void wpi_dma_contig_free(struct wpi_dma_info *); 83 int wpi_alloc_shared(struct wpi_softc *); 84 void wpi_free_shared(struct wpi_softc *); 85 int wpi_alloc_fwmem(struct wpi_softc *); 86 void wpi_free_fwmem(struct wpi_softc *); 87 struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *); 88 void wpi_free_rbuf(caddr_t, u_int, void *); 89 int wpi_alloc_rpool(struct wpi_softc *); 90 void wpi_free_rpool(struct wpi_softc *); 91 int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 92 void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 93 void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 94 int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 95 int); 96 void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 97 void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 98 struct ieee80211_node *wpi_node_alloc(struct ieee80211com *); 99 void wpi_newassoc(struct ieee80211com *, struct ieee80211_node *, 100 int); 101 int wpi_media_change(struct ifnet *); 102 int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int); 103 void wpi_mem_lock(struct wpi_softc *); 104 void wpi_mem_unlock(struct wpi_softc *); 105 uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 106 void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 107 void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 108 const uint32_t *, int); 109 int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 110 int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 111 int wpi_load_firmware(struct wpi_softc *); 112 void wpi_calib_timeout(void *); 113 void wpi_iter_func(void *, struct ieee80211_node *); 114 void wpi_power_calibration(struct wpi_softc *, int); 115 void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 116 struct wpi_rx_data *); 117 void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 118 void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 119 void wpi_notif_intr(struct wpi_softc *); 120 int wpi_intr(void *); 121 void wpi_read_eeprom(struct wpi_softc *); 122 void wpi_read_eeprom_channels(struct wpi_softc *, int); 123 void wpi_read_eeprom_group(struct wpi_softc *, int); 124 uint8_t wpi_plcp_signal(int); 125 int wpi_tx_data(struct wpi_softc *, struct mbuf *, 126 struct ieee80211_node *, int); 127 void wpi_start(struct ifnet *); 128 void wpi_watchdog(struct ifnet *); 129 int wpi_ioctl(struct ifnet *, u_long, caddr_t); 130 int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 131 int wpi_mrr_setup(struct wpi_softc *); 132 int wpi_set_key(struct ieee80211com *, struct ieee80211_node *, 133 struct ieee80211_key *); 134 void wpi_updateedca(struct ieee80211com *); 135 void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 136 void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 137 int wpi_set_txpower(struct wpi_softc *, 138 struct ieee80211_channel *, int); 139 int wpi_get_power_index(struct wpi_softc *, 140 struct wpi_power_group *, struct ieee80211_channel *, int); 141 int wpi_auth(struct wpi_softc *); 142 int wpi_scan(struct wpi_softc *, uint16_t); 143 int wpi_config(struct wpi_softc *); 144 void wpi_stop_master(struct wpi_softc *); 145 int wpi_power_up(struct wpi_softc *); 146 int wpi_reset(struct wpi_softc *); 147 void wpi_hw_config(struct wpi_softc *); 148 int wpi_init(struct ifnet *); 149 void wpi_stop(struct ifnet *, int); 150 151 #ifdef WPI_DEBUG 152 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0) 153 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0) 154 int wpi_debug = 1; 155 #else 156 #define DPRINTF(x) 157 #define DPRINTFN(n, x) 158 #endif 159 160 struct cfattach wpi_ca = { 161 sizeof (struct wpi_softc), wpi_match, wpi_attach 162 }; 163 164 int 165 wpi_match(struct device *parent, void *match, void *aux) 166 { 167 return pci_matchbyid((struct pci_attach_args *)aux, wpi_devices, 168 sizeof (wpi_devices) / sizeof (wpi_devices[0])); 169 } 170 171 /* Base Address Register */ 172 #define WPI_PCI_BAR0 0x10 173 174 void 175 wpi_attach(struct device *parent, struct device *self, void *aux) 176 { 177 struct wpi_softc *sc = (struct wpi_softc *)self; 178 struct ieee80211com *ic = &sc->sc_ic; 179 struct ifnet *ifp = &ic->ic_if; 180 struct pci_attach_args *pa = aux; 181 const char *intrstr; 182 bus_space_tag_t memt; 183 bus_space_handle_t memh; 184 pci_intr_handle_t ih; 185 pcireg_t data; 186 int i, error; 187 188 sc->sc_pct = pa->pa_pc; 189 sc->sc_pcitag = pa->pa_tag; 190 191 /* clear device specific PCI configuration register 0x41 */ 192 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 193 data &= ~0x0000ff00; 194 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); 195 196 /* map the register window */ 197 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM | 198 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz, 0); 199 if (error != 0) { 200 printf(": could not map memory space\n"); 201 return; 202 } 203 204 sc->sc_st = memt; 205 sc->sc_sh = memh; 206 sc->sc_dmat = pa->pa_dmat; 207 208 if (pci_intr_map(pa, &ih) != 0) { 209 printf(": could not map interrupt\n"); 210 return; 211 } 212 213 intrstr = pci_intr_string(sc->sc_pct, ih); 214 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc, 215 sc->sc_dev.dv_xname); 216 if (sc->sc_ih == NULL) { 217 printf(": could not establish interrupt"); 218 if (intrstr != NULL) 219 printf(" at %s", intrstr); 220 printf("\n"); 221 return; 222 } 223 printf(": %s", intrstr); 224 225 /* 226 * Put adapter into a known state. 227 */ 228 if ((error = wpi_reset(sc)) != 0) { 229 printf(": could not reset adapter\n"); 230 return; 231 } 232 233 /* 234 * Allocate DMA memory for firmware transfers. 235 */ 236 if ((error = wpi_alloc_fwmem(sc)) != 0) { 237 printf(": could not allocate firmware memory\n"); 238 return; 239 } 240 241 /* 242 * Allocate shared page and Tx/Rx rings. 243 */ 244 if ((error = wpi_alloc_shared(sc)) != 0) { 245 printf(": could not allocate shared area\n"); 246 goto fail1; 247 } 248 249 if ((error = wpi_alloc_rpool(sc)) != 0) { 250 printf(": could not allocate Rx buffers\n"); 251 goto fail2; 252 } 253 254 for (i = 0; i < WPI_NTXQUEUES; i++) { 255 if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 256 printf(": could not allocate Tx ring %d\n", i); 257 goto fail3; 258 } 259 } 260 261 if ((error = wpi_alloc_rx_ring(sc, &sc->rxq)) != 0) { 262 printf(": could not allocate Rx ring\n"); 263 goto fail3; 264 } 265 266 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 267 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 268 ic->ic_state = IEEE80211_S_INIT; 269 270 /* set device capabilities */ 271 ic->ic_caps = 272 IEEE80211_C_WEP | /* s/w WEP */ 273 IEEE80211_C_RSN | /* WPA/RSN */ 274 IEEE80211_C_MONITOR | /* monitor mode supported */ 275 IEEE80211_C_TXPMGT | /* tx power management */ 276 IEEE80211_C_SHSLOT | /* short slot time supported */ 277 IEEE80211_C_SHPREAMBLE; /* short preamble supported */ 278 279 /* read supported channels and MAC address from EEPROM */ 280 wpi_read_eeprom(sc); 281 282 /* set supported .11a, .11b and .11g rates */ 283 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; 284 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 285 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 286 287 /* IBSS channel undefined for now */ 288 ic->ic_ibss_chan = &ic->ic_channels[0]; 289 290 ifp->if_softc = sc; 291 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 292 ifp->if_init = wpi_init; 293 ifp->if_ioctl = wpi_ioctl; 294 ifp->if_start = wpi_start; 295 ifp->if_watchdog = wpi_watchdog; 296 IFQ_SET_READY(&ifp->if_snd); 297 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 298 299 if_attach(ifp); 300 ieee80211_ifattach(ifp); 301 ic->ic_node_alloc = wpi_node_alloc; 302 ic->ic_newassoc = wpi_newassoc; 303 #ifdef notyet 304 ic->ic_set_key = wpi_set_key; 305 #endif 306 ic->ic_updateedca = wpi_updateedca; 307 308 /* override state transition machine */ 309 sc->sc_newstate = ic->ic_newstate; 310 ic->ic_newstate = wpi_newstate; 311 ieee80211_media_init(ifp, wpi_media_change, ieee80211_media_status); 312 313 sc->amrr.amrr_min_success_threshold = 1; 314 sc->amrr.amrr_max_success_threshold = 15; 315 316 #ifndef SMALL_KERNEL 317 wpi_sensor_attach(sc); 318 #endif 319 wpi_radiotap_attach(sc); 320 321 timeout_set(&sc->calib_to, wpi_calib_timeout, sc); 322 323 sc->powerhook = powerhook_establish(wpi_power, sc); 324 325 return; 326 327 /* free allocated memory if something failed during attachment */ 328 fail3: while (--i >= 0) 329 wpi_free_tx_ring(sc, &sc->txq[i]); 330 wpi_free_rpool(sc); 331 fail2: wpi_free_shared(sc); 332 fail1: wpi_free_fwmem(sc); 333 } 334 335 #ifndef SMALL_KERNEL 336 /* 337 * Attach the adapter's on-board thermal sensor to the sensors framework. 338 */ 339 void 340 wpi_sensor_attach(struct wpi_softc *sc) 341 { 342 strlcpy(sc->sensordev.xname, sc->sc_dev.dv_xname, 343 sizeof sc->sensordev.xname); 344 strlcpy(sc->sensor.desc, "temperature 0 - 285", 345 sizeof sc->sensor.desc); 346 sc->sensor.type = SENSOR_INTEGER; /* not in muK! */ 347 /* temperature invalid until interface is up */ 348 sc->sensor.value = 0; 349 sc->sensor.flags = SENSOR_FINVALID; 350 sensor_attach(&sc->sensordev, &sc->sensor); 351 sensordev_install(&sc->sensordev); 352 } 353 #endif 354 355 /* 356 * Attach the interface to 802.11 radiotap. 357 */ 358 void 359 wpi_radiotap_attach(struct wpi_softc *sc) 360 { 361 #if NBPFILTER > 0 362 bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO, 363 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 364 365 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 366 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 367 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 368 369 sc->sc_txtap_len = sizeof sc->sc_txtapu; 370 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 371 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 372 #endif 373 } 374 375 void 376 wpi_power(int why, void *arg) 377 { 378 struct wpi_softc *sc = arg; 379 struct ifnet *ifp; 380 pcireg_t data; 381 int s; 382 383 if (why != PWR_RESUME) 384 return; 385 386 /* clear device specific PCI configuration register 0x41 */ 387 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 388 data &= ~0x0000ff00; 389 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); 390 391 s = splnet(); 392 ifp = &sc->sc_ic.ic_if; 393 if (ifp->if_flags & IFF_UP) { 394 ifp->if_init(ifp); 395 if (ifp->if_flags & IFF_RUNNING) 396 ifp->if_start(ifp); 397 } 398 splx(s); 399 } 400 401 int 402 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap, 403 bus_size_t size, bus_size_t alignment, int flags) 404 { 405 int nsegs, error; 406 407 dma->tag = tag; 408 dma->size = size; 409 410 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map); 411 if (error != 0) 412 goto fail; 413 414 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 415 flags); 416 if (error != 0) 417 goto fail; 418 419 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags); 420 if (error != 0) 421 goto fail; 422 423 error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size, flags); 424 if (error != 0) 425 goto fail; 426 427 memset(dma->vaddr, 0, size); 428 429 dma->paddr = dma->map->dm_segs[0].ds_addr; 430 if (kvap != NULL) 431 *kvap = dma->vaddr; 432 433 return 0; 434 435 fail: wpi_dma_contig_free(dma); 436 return error; 437 } 438 439 void 440 wpi_dma_contig_free(struct wpi_dma_info *dma) 441 { 442 if (dma->map != NULL) { 443 if (dma->vaddr != NULL) { 444 bus_dmamap_unload(dma->tag, dma->map); 445 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 446 bus_dmamem_free(dma->tag, &dma->seg, 1); 447 dma->vaddr = NULL; 448 } 449 bus_dmamap_destroy(dma->tag, dma->map); 450 dma->map = NULL; 451 } 452 } 453 454 /* 455 * Allocate a shared page between host and NIC. 456 */ 457 int 458 wpi_alloc_shared(struct wpi_softc *sc) 459 { 460 /* must be aligned on a 4K-page boundary */ 461 return wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma, 462 (void **)&sc->shared, sizeof (struct wpi_shared), PAGE_SIZE, 463 BUS_DMA_NOWAIT); 464 } 465 466 void 467 wpi_free_shared(struct wpi_softc *sc) 468 { 469 wpi_dma_contig_free(&sc->shared_dma); 470 } 471 472 /* 473 * Allocate DMA-safe memory for firmware transfer. 474 */ 475 int 476 wpi_alloc_fwmem(struct wpi_softc *sc) 477 { 478 /* allocate enough contiguous space to store text and data */ 479 return wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 480 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0, 481 BUS_DMA_NOWAIT); 482 } 483 484 void 485 wpi_free_fwmem(struct wpi_softc *sc) 486 { 487 wpi_dma_contig_free(&sc->fw_dma); 488 } 489 490 struct wpi_rbuf * 491 wpi_alloc_rbuf(struct wpi_softc *sc) 492 { 493 struct wpi_rbuf *rbuf; 494 495 rbuf = SLIST_FIRST(&sc->rxq.freelist); 496 if (rbuf == NULL) 497 return NULL; 498 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 499 return rbuf; 500 } 501 502 /* 503 * This is called automatically by the network stack when the mbuf to which our 504 * Rx buffer is attached is freed. 505 */ 506 void 507 wpi_free_rbuf(caddr_t buf, u_int size, void *arg) 508 { 509 struct wpi_rbuf *rbuf = arg; 510 struct wpi_softc *sc = rbuf->sc; 511 512 /* put the buffer back in the free list */ 513 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 514 } 515 516 int 517 wpi_alloc_rpool(struct wpi_softc *sc) 518 { 519 struct wpi_rx_ring *ring = &sc->rxq; 520 int i, error; 521 522 /* allocate a big chunk of DMA'able memory.. */ 523 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 524 WPI_RBUF_COUNT * WPI_RBUF_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT); 525 if (error != 0) { 526 printf("%s: could not allocate Rx buffers DMA memory\n", 527 sc->sc_dev.dv_xname); 528 return error; 529 } 530 531 /* ..and split it into 3KB chunks */ 532 SLIST_INIT(&ring->freelist); 533 for (i = 0; i < WPI_RBUF_COUNT; i++) { 534 struct wpi_rbuf *rbuf = &ring->rbuf[i]; 535 536 rbuf->sc = sc; /* backpointer for callbacks */ 537 rbuf->vaddr = ring->buf_dma.vaddr + i * WPI_RBUF_SIZE; 538 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE; 539 540 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 541 } 542 return 0; 543 } 544 545 void 546 wpi_free_rpool(struct wpi_softc *sc) 547 { 548 wpi_dma_contig_free(&sc->rxq.buf_dma); 549 } 550 551 int 552 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 553 { 554 int i, error; 555 556 ring->cur = 0; 557 558 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 559 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 560 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 561 if (error != 0) { 562 printf("%s: could not allocate rx ring DMA memory\n", 563 sc->sc_dev.dv_xname); 564 goto fail; 565 } 566 567 /* 568 * Setup Rx buffers. 569 */ 570 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 571 struct wpi_rx_data *data = &ring->data[i]; 572 struct wpi_rbuf *rbuf; 573 574 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 575 if (data->m == NULL) { 576 printf("%s: could not allocate rx mbuf\n", 577 sc->sc_dev.dv_xname); 578 error = ENOMEM; 579 goto fail; 580 } 581 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) { 582 m_freem(data->m); 583 data->m = NULL; 584 printf("%s: could not allocate rx buffer\n", 585 sc->sc_dev.dv_xname); 586 error = ENOMEM; 587 goto fail; 588 } 589 /* attach Rx buffer to mbuf */ 590 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 591 rbuf); 592 593 ring->desc[i] = htole32(rbuf->paddr); 594 } 595 596 return 0; 597 598 fail: wpi_free_rx_ring(sc, ring); 599 return error; 600 } 601 602 void 603 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 604 { 605 int ntries; 606 607 wpi_mem_lock(sc); 608 609 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 610 for (ntries = 0; ntries < 100; ntries++) { 611 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 612 break; 613 DELAY(10); 614 } 615 #ifdef WPI_DEBUG 616 if (ntries == 100 && wpi_debug > 0) 617 printf("%s: timeout resetting Rx ring\n", sc->sc_dev.dv_xname); 618 #endif 619 wpi_mem_unlock(sc); 620 621 ring->cur = 0; 622 } 623 624 void 625 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 626 { 627 int i; 628 629 wpi_dma_contig_free(&ring->desc_dma); 630 631 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 632 if (ring->data[i].m != NULL) 633 m_freem(ring->data[i].m); 634 } 635 } 636 637 int 638 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid) 639 { 640 bus_size_t size; 641 int i, error; 642 643 ring->qid = qid; 644 ring->queued = 0; 645 ring->cur = 0; 646 647 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc); 648 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 649 (void **)&ring->desc, size, WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 650 if (error != 0) { 651 printf("%s: could not allocate tx ring DMA memory\n", 652 sc->sc_dev.dv_xname); 653 goto fail; 654 } 655 656 /* update shared page with ring's base address */ 657 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 658 659 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd); 660 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 661 (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT); 662 if (error != 0) { 663 printf("%s: could not allocate tx cmd DMA memory\n", 664 sc->sc_dev.dv_xname); 665 goto fail; 666 } 667 668 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 669 struct wpi_tx_data *data = &ring->data[i]; 670 671 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 672 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 673 &data->map); 674 if (error != 0) { 675 printf("%s: could not create tx buf DMA map\n", 676 sc->sc_dev.dv_xname); 677 goto fail; 678 } 679 } 680 681 return 0; 682 683 fail: wpi_free_tx_ring(sc, ring); 684 return error; 685 } 686 687 void 688 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 689 { 690 uint32_t tmp; 691 int i, ntries; 692 693 wpi_mem_lock(sc); 694 695 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 696 for (ntries = 0; ntries < 100; ntries++) { 697 tmp = WPI_READ(sc, WPI_TX_STATUS); 698 if ((tmp & WPI_TX_IDLE(ring->qid)) == WPI_TX_IDLE(ring->qid)) 699 break; 700 DELAY(10); 701 } 702 #ifdef WPI_DEBUG 703 if (ntries == 100 && wpi_debug > 0) { 704 printf("%s: timeout resetting Tx ring %d\n", 705 sc->sc_dev.dv_xname, ring->qid); 706 } 707 #endif 708 wpi_mem_unlock(sc); 709 710 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 711 struct wpi_tx_data *data = &ring->data[i]; 712 713 if (data->m != NULL) { 714 bus_dmamap_unload(sc->sc_dmat, data->map); 715 m_freem(data->m); 716 data->m = NULL; 717 } 718 } 719 720 ring->queued = 0; 721 ring->cur = 0; 722 } 723 724 void 725 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 726 { 727 int i; 728 729 wpi_dma_contig_free(&ring->desc_dma); 730 wpi_dma_contig_free(&ring->cmd_dma); 731 732 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 733 struct wpi_tx_data *data = &ring->data[i]; 734 735 if (data->m != NULL) { 736 bus_dmamap_unload(sc->sc_dmat, data->map); 737 m_freem(data->m); 738 } 739 } 740 } 741 742 struct ieee80211_node * 743 wpi_node_alloc(struct ieee80211com *ic) 744 { 745 return malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT | M_ZERO); 746 } 747 748 void 749 wpi_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 750 { 751 struct wpi_softc *sc = ic->ic_if.if_softc; 752 int i; 753 754 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn); 755 756 /* set rate to some reasonable initial value */ 757 for (i = ni->ni_rates.rs_nrates - 1; 758 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 759 i--); 760 ni->ni_txrate = i; 761 } 762 763 int 764 wpi_media_change(struct ifnet *ifp) 765 { 766 int error; 767 768 error = ieee80211_media_change(ifp); 769 if (error != ENETRESET) 770 return error; 771 772 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 773 (IFF_UP | IFF_RUNNING)) { 774 wpi_stop(ifp, 0); 775 wpi_init(ifp); 776 } 777 return 0; 778 } 779 780 int 781 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 782 { 783 struct ifnet *ifp = &ic->ic_if; 784 struct wpi_softc *sc = ifp->if_softc; 785 struct ieee80211_node *ni; 786 int error; 787 788 timeout_del(&sc->calib_to); 789 790 switch (nstate) { 791 case IEEE80211_S_SCAN: 792 /* make the link LED blink while we're scanning */ 793 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 794 795 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) { 796 printf("%s: could not initiate scan\n", 797 sc->sc_dev.dv_xname); 798 return error; 799 } 800 ic->ic_state = nstate; 801 return 0; 802 803 case IEEE80211_S_ASSOC: 804 if (ic->ic_state != IEEE80211_S_RUN) 805 break; 806 /* FALLTHROUGH */ 807 case IEEE80211_S_AUTH: 808 /* reset state to handle reassociations correctly */ 809 sc->config.associd = 0; 810 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 811 812 if ((error = wpi_auth(sc)) != 0) { 813 printf("%s: could not send authentication request\n", 814 sc->sc_dev.dv_xname); 815 return error; 816 } 817 break; 818 819 case IEEE80211_S_RUN: 820 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 821 /* link LED blinks while monitoring */ 822 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 823 break; 824 } 825 ni = ic->ic_bss; 826 827 wpi_enable_tsf(sc, ni); 828 829 /* update adapter's configuration */ 830 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 831 /* short preamble/slot time are negotiated when associating */ 832 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 833 WPI_CONFIG_SHSLOT); 834 if (ic->ic_flags & IEEE80211_F_SHSLOT) 835 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 836 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 837 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 838 sc->config.filter |= htole32(WPI_FILTER_BSS); 839 840 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 841 sc->config.flags)); 842 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 843 sizeof (struct wpi_config), 1); 844 if (error != 0) { 845 printf("%s: could not update configuration\n", 846 sc->sc_dev.dv_xname); 847 return error; 848 } 849 850 /* configuration has changed, set Tx power accordingly */ 851 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 852 printf("%s: could not set Tx power\n", 853 sc->sc_dev.dv_xname); 854 return error; 855 } 856 857 if (ic->ic_opmode == IEEE80211_M_STA) { 858 /* fake a join to init the tx rate */ 859 wpi_newassoc(ic, ni, 1); 860 } 861 862 /* start periodic calibration timer */ 863 sc->calib_cnt = 0; 864 timeout_add(&sc->calib_to, hz / 2); 865 866 /* link LED always on while associated */ 867 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 868 break; 869 870 case IEEE80211_S_INIT: 871 break; 872 } 873 874 return sc->sc_newstate(ic, nstate, arg); 875 } 876 877 /* 878 * Grab exclusive access to NIC memory. 879 */ 880 void 881 wpi_mem_lock(struct wpi_softc *sc) 882 { 883 uint32_t tmp; 884 int ntries; 885 886 tmp = WPI_READ(sc, WPI_GPIO_CTL); 887 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 888 889 /* spin until we actually get the lock */ 890 for (ntries = 0; ntries < 1000; ntries++) { 891 if ((WPI_READ(sc, WPI_GPIO_CTL) & 892 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 893 break; 894 DELAY(10); 895 } 896 if (ntries == 1000) 897 printf("%s: could not lock memory\n", sc->sc_dev.dv_xname); 898 } 899 900 /* 901 * Release lock on NIC memory. 902 */ 903 void 904 wpi_mem_unlock(struct wpi_softc *sc) 905 { 906 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 907 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 908 } 909 910 uint32_t 911 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 912 { 913 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 914 return WPI_READ(sc, WPI_READ_MEM_DATA); 915 } 916 917 void 918 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 919 { 920 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 921 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 922 } 923 924 void 925 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 926 const uint32_t *data, int wlen) 927 { 928 for (; wlen > 0; wlen--, data++, addr += 4) 929 wpi_mem_write(sc, addr, *data); 930 } 931 932 /* 933 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC 934 * instead of using the traditional bit-bang method. 935 */ 936 int 937 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 938 { 939 uint8_t *out = data; 940 uint32_t val; 941 int ntries; 942 943 wpi_mem_lock(sc); 944 for (; len > 0; len -= 2, addr++) { 945 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 946 947 for (ntries = 0; ntries < 10; ntries++) { 948 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & 949 WPI_EEPROM_READY) 950 break; 951 DELAY(5); 952 } 953 if (ntries == 10) { 954 printf("%s: could not read EEPROM\n", 955 sc->sc_dev.dv_xname); 956 return ETIMEDOUT; 957 } 958 *out++ = val >> 16; 959 if (len > 1) 960 *out++ = val >> 24; 961 } 962 wpi_mem_unlock(sc); 963 964 return 0; 965 } 966 967 /* 968 * The firmware boot code is small and is intended to be copied directly into 969 * the NIC internal memory. 970 */ 971 int 972 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size) 973 { 974 int ntries; 975 976 size /= sizeof (uint32_t); 977 978 wpi_mem_lock(sc); 979 980 /* copy microcode image into NIC memory */ 981 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 982 (const uint32_t *)ucode, size); 983 984 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 985 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 986 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 987 988 /* run microcode */ 989 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 990 991 /* wait for transfer to complete */ 992 for (ntries = 0; ntries < 1000; ntries++) { 993 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN)) 994 break; 995 DELAY(10); 996 } 997 if (ntries == 1000) { 998 wpi_mem_unlock(sc); 999 printf("%s: could not load boot firmware\n", 1000 sc->sc_dev.dv_xname); 1001 return ETIMEDOUT; 1002 } 1003 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1004 1005 wpi_mem_unlock(sc); 1006 1007 return 0; 1008 } 1009 1010 int 1011 wpi_load_firmware(struct wpi_softc *sc) 1012 { 1013 struct wpi_dma_info *dma = &sc->fw_dma; 1014 const struct wpi_firmware_hdr *hdr; 1015 const uint8_t *init_text, *init_data, *main_text, *main_data; 1016 const uint8_t *boot_text; 1017 uint32_t init_textsz, init_datasz, main_textsz, main_datasz; 1018 uint32_t boot_textsz; 1019 u_char *fw; 1020 size_t size; 1021 int error; 1022 1023 /* load firmware image from disk */ 1024 if ((error = loadfirmware("wpi-3945abg", &fw, &size)) != 0) { 1025 printf("%s: error, %d, could not read firmware %s\n", 1026 sc->sc_dev.dv_xname, error, "wpi-3945abg"); 1027 goto fail1; 1028 } 1029 1030 /* extract firmware header information */ 1031 if (size < sizeof (struct wpi_firmware_hdr)) { 1032 printf("%s: truncated firmware header: %d bytes\n", 1033 sc->sc_dev.dv_xname, size); 1034 error = EINVAL; 1035 goto fail2; 1036 } 1037 hdr = (const struct wpi_firmware_hdr *)fw; 1038 main_textsz = letoh32(hdr->main_textsz); 1039 main_datasz = letoh32(hdr->main_datasz); 1040 init_textsz = letoh32(hdr->init_textsz); 1041 init_datasz = letoh32(hdr->init_datasz); 1042 boot_textsz = letoh32(hdr->boot_textsz); 1043 1044 /* sanity-check firmware segments sizes */ 1045 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ || 1046 main_datasz > WPI_FW_MAIN_DATA_MAXSZ || 1047 init_textsz > WPI_FW_INIT_TEXT_MAXSZ || 1048 init_datasz > WPI_FW_INIT_DATA_MAXSZ || 1049 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ || 1050 (boot_textsz & 3) != 0) { 1051 printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname); 1052 error = EINVAL; 1053 goto fail2; 1054 } 1055 1056 /* check that all firmware segments are present */ 1057 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz + 1058 main_datasz + init_textsz + init_datasz + boot_textsz) { 1059 printf("%s: firmware file too short: %d bytes\n", 1060 sc->sc_dev.dv_xname, size); 1061 error = EINVAL; 1062 goto fail2; 1063 } 1064 1065 /* get pointers to firmware segments */ 1066 main_text = (const uint8_t *)(hdr + 1); 1067 main_data = main_text + main_textsz; 1068 init_text = main_data + main_datasz; 1069 init_data = init_text + init_textsz; 1070 boot_text = init_data + init_datasz; 1071 1072 /* copy initialization images into pre-allocated DMA-safe memory */ 1073 memcpy(dma->vaddr, init_data, init_datasz); 1074 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz); 1075 1076 /* tell adapter where to find initialization images */ 1077 wpi_mem_lock(sc); 1078 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1079 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz); 1080 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1081 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 1082 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz); 1083 wpi_mem_unlock(sc); 1084 1085 /* load firmware boot code */ 1086 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) { 1087 printf("%s: could not load boot firmware\n", 1088 sc->sc_dev.dv_xname); 1089 goto fail2; 1090 } 1091 1092 /* now press "execute" ;-) */ 1093 WPI_WRITE(sc, WPI_RESET, 0); 1094 1095 /* wait at most one second for first alive notification */ 1096 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1097 /* this isn't what was supposed to happen.. */ 1098 printf("%s: timeout waiting for adapter to initialize\n", 1099 sc->sc_dev.dv_xname); 1100 goto fail2; 1101 } 1102 1103 /* copy runtime images into pre-allocated DMA-safe memory */ 1104 memcpy(dma->vaddr, main_data, main_datasz); 1105 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz); 1106 1107 /* tell adapter where to find runtime images */ 1108 wpi_mem_lock(sc); 1109 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 1110 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz); 1111 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 1112 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 1113 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz); 1114 wpi_mem_unlock(sc); 1115 1116 /* wait at most one second for second alive notification */ 1117 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) { 1118 /* this isn't what was supposed to happen.. */ 1119 printf("%s: timeout waiting for adapter to initialize\n", 1120 sc->sc_dev.dv_xname); 1121 } 1122 1123 fail2: free(fw, M_DEVBUF); 1124 fail1: return error; 1125 } 1126 1127 void 1128 wpi_calib_timeout(void *arg) 1129 { 1130 struct wpi_softc *sc = arg; 1131 struct ieee80211com *ic = &sc->sc_ic; 1132 int temp, s; 1133 1134 /* automatic rate control triggered every 500ms */ 1135 if (ic->ic_fixed_rate == -1) { 1136 s = splnet(); 1137 if (ic->ic_opmode == IEEE80211_M_STA) 1138 wpi_iter_func(sc, ic->ic_bss); 1139 else 1140 ieee80211_iterate_nodes(ic, wpi_iter_func, sc); 1141 splx(s); 1142 } 1143 1144 /* update sensor data */ 1145 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 1146 sc->sensor.value = temp + 260; 1147 1148 /* automatic power calibration every 60s */ 1149 if (++sc->calib_cnt >= 120) { 1150 wpi_power_calibration(sc, temp); 1151 sc->calib_cnt = 0; 1152 } 1153 1154 timeout_add(&sc->calib_to, hz / 2); 1155 } 1156 1157 void 1158 wpi_iter_func(void *arg, struct ieee80211_node *ni) 1159 { 1160 struct wpi_softc *sc = arg; 1161 struct wpi_node *wn = (struct wpi_node *)ni; 1162 1163 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1164 } 1165 1166 /* 1167 * This function is called periodically (every 60 seconds) to adjust output 1168 * power to temperature changes. 1169 */ 1170 void 1171 wpi_power_calibration(struct wpi_softc *sc, int temp) 1172 { 1173 /* sanity-check read value */ 1174 if (temp < -260 || temp > 25) { 1175 /* this can't be correct, ignore */ 1176 DPRINTF(("out-of-range temperature reported: %d\n", temp)); 1177 return; 1178 } 1179 1180 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 1181 1182 /* adjust Tx power if need be */ 1183 if (abs(temp - sc->temp) <= 6) 1184 return; 1185 1186 sc->temp = temp; 1187 1188 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) { 1189 /* just warn, too bad for the automatic calibration... */ 1190 printf("%s: could not adjust Tx power\n", 1191 sc->sc_dev.dv_xname); 1192 } 1193 } 1194 1195 void 1196 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1197 struct wpi_rx_data *data) 1198 { 1199 struct ieee80211com *ic = &sc->sc_ic; 1200 struct ifnet *ifp = &ic->ic_if; 1201 struct wpi_rx_ring *ring = &sc->rxq; 1202 struct wpi_rx_stat *stat; 1203 struct wpi_rx_head *head; 1204 struct wpi_rx_tail *tail; 1205 struct wpi_rbuf *rbuf; 1206 struct ieee80211_frame *wh; 1207 struct ieee80211_rxinfo rxi; 1208 struct ieee80211_node *ni; 1209 struct mbuf *m, *mnew; 1210 1211 stat = (struct wpi_rx_stat *)(desc + 1); 1212 1213 if (stat->len > WPI_STAT_MAXLEN) { 1214 printf("%s: invalid rx statistic header\n", 1215 sc->sc_dev.dv_xname); 1216 ifp->if_ierrors++; 1217 return; 1218 } 1219 1220 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1221 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + letoh16(head->len)); 1222 1223 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x " 1224 "chan=%d tstamp=%llu\n", ring->cur, letoh32(desc->len), 1225 letoh16(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1226 letoh64(tail->tstamp))); 1227 1228 /* 1229 * Discard Rx frames with bad CRC early (XXX we may want to pass them 1230 * to radiotap in monitor mode). 1231 */ 1232 if ((letoh32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1233 DPRINTFN(2, ("rx tail flags error %x\n", 1234 letoh32(tail->flags))); 1235 ifp->if_ierrors++; 1236 return; 1237 } 1238 1239 m = data->m; 1240 /* finalize mbuf */ 1241 m->m_pkthdr.rcvif = ifp; 1242 m->m_data = (caddr_t)(head + 1); 1243 m->m_pkthdr.len = m->m_len = letoh16(head->len); 1244 1245 if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) { 1246 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1247 if (mnew == NULL) { 1248 ifp->if_ierrors++; 1249 return; 1250 } 1251 1252 /* attach Rx buffer to mbuf */ 1253 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf, 1254 rbuf); 1255 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 1256 1257 data->m = mnew; 1258 1259 /* update Rx descriptor */ 1260 ring->desc[ring->cur] = htole32(rbuf->paddr); 1261 } else { 1262 /* no free rbufs, copy frame */ 1263 m = m_copym2(m, 0, M_COPYALL, M_DONTWAIT); 1264 if (m == NULL) { 1265 /* no free mbufs either, drop frame */ 1266 ifp->if_ierrors++; 1267 return; 1268 } 1269 } 1270 1271 #if NBPFILTER > 0 1272 if (sc->sc_drvbpf != NULL) { 1273 struct mbuf mb; 1274 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1275 1276 tap->wr_flags = 0; 1277 tap->wr_chan_freq = 1278 htole16(ic->ic_channels[head->chan].ic_freq); 1279 tap->wr_chan_flags = 1280 htole16(ic->ic_channels[head->chan].ic_flags); 1281 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1282 tap->wr_dbm_antnoise = (int8_t)letoh16(stat->noise); 1283 tap->wr_tsft = tail->tstamp; 1284 tap->wr_antenna = (letoh16(head->flags) >> 4) & 0xf; 1285 switch (head->rate) { 1286 /* CCK rates */ 1287 case 10: tap->wr_rate = 2; break; 1288 case 20: tap->wr_rate = 4; break; 1289 case 55: tap->wr_rate = 11; break; 1290 case 110: tap->wr_rate = 22; break; 1291 /* OFDM rates */ 1292 case 0xd: tap->wr_rate = 12; break; 1293 case 0xf: tap->wr_rate = 18; break; 1294 case 0x5: tap->wr_rate = 24; break; 1295 case 0x7: tap->wr_rate = 36; break; 1296 case 0x9: tap->wr_rate = 48; break; 1297 case 0xb: tap->wr_rate = 72; break; 1298 case 0x1: tap->wr_rate = 96; break; 1299 case 0x3: tap->wr_rate = 108; break; 1300 /* unknown rate: should not happen */ 1301 default: tap->wr_rate = 0; 1302 } 1303 if (letoh16(head->flags) & 0x4) 1304 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1305 1306 mb.m_data = (caddr_t)tap; 1307 mb.m_len = sc->sc_rxtap_len; 1308 mb.m_next = m; 1309 mb.m_nextpkt = NULL; 1310 mb.m_type = 0; 1311 mb.m_flags = 0; 1312 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 1313 } 1314 #endif 1315 1316 /* grab a reference to the source node */ 1317 wh = mtod(m, struct ieee80211_frame *); 1318 ni = ieee80211_find_rxnode(ic, wh); 1319 1320 /* send the frame to the 802.11 layer */ 1321 rxi.rxi_flags = 0; 1322 rxi.rxi_rssi = stat->rssi; 1323 rxi.rxi_tstamp = 0; /* unused */ 1324 ieee80211_input(ifp, m, ni, &rxi); 1325 1326 /* node is no longer needed */ 1327 ieee80211_release_node(ic, ni); 1328 } 1329 1330 void 1331 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1332 { 1333 struct ieee80211com *ic = &sc->sc_ic; 1334 struct ifnet *ifp = &ic->ic_if; 1335 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1336 struct wpi_tx_data *data = &ring->data[desc->idx]; 1337 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1338 struct wpi_node *wn = (struct wpi_node *)data->ni; 1339 1340 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x " 1341 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries, 1342 stat->nkill, stat->rate, letoh32(stat->duration), 1343 letoh32(stat->status))); 1344 1345 /* 1346 * Update rate control statistics for the node. 1347 * XXX we should not count mgmt frames since they're always sent at 1348 * the lowest available bit-rate. 1349 */ 1350 wn->amn.amn_txcnt++; 1351 if (stat->ntries > 0) { 1352 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries)); 1353 wn->amn.amn_retrycnt++; 1354 } 1355 1356 if ((letoh32(stat->status) & 0xff) != 1) 1357 ifp->if_oerrors++; 1358 else 1359 ifp->if_opackets++; 1360 1361 bus_dmamap_unload(sc->sc_dmat, data->map); 1362 m_freem(data->m); 1363 data->m = NULL; 1364 ieee80211_release_node(ic, data->ni); 1365 data->ni = NULL; 1366 1367 ring->queued--; 1368 1369 sc->sc_tx_timer = 0; 1370 ifp->if_flags &= ~IFF_OACTIVE; 1371 (*ifp->if_start)(ifp); 1372 } 1373 1374 void 1375 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1376 { 1377 struct wpi_tx_ring *ring = &sc->txq[4]; 1378 struct wpi_tx_data *data; 1379 1380 if ((desc->qid & 7) != 4) 1381 return; /* not a command ack */ 1382 1383 data = &ring->data[desc->idx]; 1384 1385 /* if the command was mapped in a mbuf, free it */ 1386 if (data->m != NULL) { 1387 bus_dmamap_unload(sc->sc_dmat, data->map); 1388 m_freem(data->m); 1389 data->m = NULL; 1390 } 1391 1392 wakeup(&ring->cmd[desc->idx]); 1393 } 1394 1395 void 1396 wpi_notif_intr(struct wpi_softc *sc) 1397 { 1398 struct ieee80211com *ic = &sc->sc_ic; 1399 struct ifnet *ifp = &ic->ic_if; 1400 uint32_t hw; 1401 1402 hw = letoh32(sc->shared->next); 1403 while (sc->rxq.cur != hw) { 1404 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 1405 struct wpi_rx_desc *desc = (void *)data->m->m_ext.ext_buf; 1406 1407 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d " 1408 "len=%d\n", desc->qid, desc->idx, desc->flags, desc->type, 1409 letoh32(desc->len))); 1410 1411 if (!(desc->qid & 0x80)) /* reply to a command */ 1412 wpi_cmd_intr(sc, desc); 1413 1414 switch (desc->type) { 1415 case WPI_RX_DONE: 1416 /* a 802.11 frame was received */ 1417 wpi_rx_intr(sc, desc, data); 1418 break; 1419 1420 case WPI_TX_DONE: 1421 /* a 802.11 frame has been transmitted */ 1422 wpi_tx_intr(sc, desc); 1423 break; 1424 1425 case WPI_UC_READY: 1426 { 1427 struct wpi_ucode_info *uc = 1428 (struct wpi_ucode_info *)(desc + 1); 1429 1430 /* the microcontroller is ready */ 1431 DPRINTF(("microcode alive notification version %x " 1432 "alive %x\n", letoh32(uc->version), 1433 letoh32(uc->valid))); 1434 1435 if (letoh32(uc->valid) != 1) { 1436 printf("%s: microcontroller initialization " 1437 "failed\n", sc->sc_dev.dv_xname); 1438 } 1439 break; 1440 } 1441 case WPI_STATE_CHANGED: 1442 { 1443 uint32_t *status = (uint32_t *)(desc + 1); 1444 1445 /* enabled/disabled notification */ 1446 DPRINTF(("state changed to %x\n", letoh32(*status))); 1447 1448 if (letoh32(*status) & 1) { 1449 /* the radio button has to be pushed */ 1450 printf("%s: Radio transmitter is off\n", 1451 sc->sc_dev.dv_xname); 1452 /* turn the interface down */ 1453 ifp->if_flags &= ~IFF_UP; 1454 wpi_stop(ifp, 1); 1455 return; /* no further processing */ 1456 } 1457 break; 1458 } 1459 case WPI_START_SCAN: 1460 { 1461 struct wpi_start_scan *scan = 1462 (struct wpi_start_scan *)(desc + 1); 1463 1464 DPRINTFN(2, ("scanning channel %d status %x\n", 1465 scan->chan, letoh32(scan->status))); 1466 1467 /* fix current channel */ 1468 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 1469 break; 1470 } 1471 case WPI_STOP_SCAN: 1472 { 1473 struct wpi_stop_scan *scan = 1474 (struct wpi_stop_scan *)(desc + 1); 1475 1476 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 1477 scan->nchan, scan->status, scan->chan)); 1478 1479 if (scan->status == 1 && scan->chan <= 14) { 1480 /* 1481 * We just finished scanning 802.11g channels, 1482 * start scanning 802.11a ones. 1483 */ 1484 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0) 1485 break; 1486 } 1487 ieee80211_end_scan(ifp); 1488 break; 1489 } 1490 } 1491 1492 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1493 } 1494 1495 /* tell the firmware what we have processed */ 1496 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1497 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1498 } 1499 1500 int 1501 wpi_intr(void *arg) 1502 { 1503 struct wpi_softc *sc = arg; 1504 struct ifnet *ifp = &sc->sc_ic.ic_if; 1505 uint32_t r; 1506 1507 r = WPI_READ(sc, WPI_INTR); 1508 if (r == 0 || r == 0xffffffff) 1509 return 0; /* not for us */ 1510 1511 DPRINTFN(6, ("interrupt reg %x\n", r)); 1512 1513 /* disable interrupts */ 1514 WPI_WRITE(sc, WPI_MASK, 0); 1515 /* ack interrupts */ 1516 WPI_WRITE(sc, WPI_INTR, r); 1517 1518 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1519 /* SYSTEM FAILURE, SYSTEM FAILURE */ 1520 printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname); 1521 ifp->if_flags &= ~IFF_UP; 1522 wpi_stop(ifp, 1); 1523 return 1; 1524 } 1525 1526 if (r & WPI_RX_INTR) 1527 wpi_notif_intr(sc); 1528 1529 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1530 wakeup(sc); 1531 1532 /* re-enable interrupts */ 1533 if (ifp->if_flags & IFF_UP) 1534 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1535 1536 return 1; 1537 } 1538 1539 uint8_t 1540 wpi_plcp_signal(int rate) 1541 { 1542 switch (rate) { 1543 /* CCK rates (returned values are device-dependent) */ 1544 case 2: return 10; 1545 case 4: return 20; 1546 case 11: return 55; 1547 case 22: return 110; 1548 1549 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1550 /* R1-R4, (u)ral is R4-R1 */ 1551 case 12: return 0xd; 1552 case 18: return 0xf; 1553 case 24: return 0x5; 1554 case 36: return 0x7; 1555 case 48: return 0x9; 1556 case 72: return 0xb; 1557 case 96: return 0x1; 1558 case 108: return 0x3; 1559 1560 /* unsupported rates (should not get there) */ 1561 default: return 0; 1562 } 1563 } 1564 1565 /* quickly determine if a given rate is CCK or OFDM */ 1566 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1567 1568 int 1569 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1570 int ac) 1571 { 1572 struct ieee80211com *ic = &sc->sc_ic; 1573 struct wpi_tx_ring *ring = &sc->txq[ac]; 1574 struct wpi_tx_desc *desc; 1575 struct wpi_tx_data *data; 1576 struct wpi_tx_cmd *cmd; 1577 struct wpi_cmd_data *tx; 1578 struct ieee80211_frame *wh; 1579 struct ieee80211_key *k; 1580 struct mbuf *mnew; 1581 u_int hdrlen; 1582 int i, rate, error; 1583 1584 desc = &ring->desc[ring->cur]; 1585 data = &ring->data[ring->cur]; 1586 1587 wh = mtod(m0, struct ieee80211_frame *); 1588 hdrlen = ieee80211_get_hdrlen(wh); 1589 1590 /* pickup a rate */ 1591 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1592 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1593 IEEE80211_FC0_TYPE_MGT)) { 1594 /* mgmt/multicast frames are sent at the lowest avail. rate */ 1595 rate = ni->ni_rates.rs_rates[0]; 1596 } else if (ic->ic_fixed_rate != -1) { 1597 rate = ic->ic_sup_rates[ic->ic_curmode]. 1598 rs_rates[ic->ic_fixed_rate]; 1599 } else 1600 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1601 rate &= IEEE80211_RATE_VAL; 1602 1603 #if NBPFILTER > 0 1604 if (sc->sc_drvbpf != NULL) { 1605 struct mbuf mb; 1606 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1607 1608 tap->wt_flags = 0; 1609 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1610 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1611 tap->wt_rate = rate; 1612 tap->wt_hwqueue = ac; 1613 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1614 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1615 1616 mb.m_data = (caddr_t)tap; 1617 mb.m_len = sc->sc_txtap_len; 1618 mb.m_next = m0; 1619 mb.m_nextpkt = NULL; 1620 mb.m_type = 0; 1621 mb.m_flags = 0; 1622 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 1623 } 1624 #endif 1625 1626 cmd = &ring->cmd[ring->cur]; 1627 cmd->code = WPI_CMD_TX_DATA; 1628 cmd->flags = 0; 1629 cmd->qid = ring->qid; 1630 cmd->idx = ring->cur; 1631 1632 tx = (struct wpi_cmd_data *)cmd->data; 1633 /* no need to zero tx, all fields are reinitialized here */ 1634 tx->flags = 0; 1635 1636 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1637 k = ieee80211_get_txkey(ic, wh, ni); 1638 1639 if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) 1640 return ENOBUFS; 1641 1642 wh = mtod(m0, struct ieee80211_frame *); 1643 } 1644 1645 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1646 tx->id = WPI_ID_BSS; 1647 tx->flags |= htole32(WPI_TX_NEED_ACK); 1648 } else 1649 tx->id = WPI_ID_BROADCAST; 1650 1651 /* check if RTS/CTS or CTS-to-self protection must be used */ 1652 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1653 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 1654 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > 1655 ic->ic_rtsthreshold) { 1656 tx->flags |= htole32(WPI_TX_NEED_RTS | 1657 WPI_TX_FULL_TXOP); 1658 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1659 WPI_RATE_IS_OFDM(rate)) { 1660 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { 1661 tx->flags |= htole32(WPI_TX_NEED_CTS | 1662 WPI_TX_FULL_TXOP); 1663 } else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { 1664 tx->flags |= htole32(WPI_TX_NEED_RTS | 1665 WPI_TX_FULL_TXOP); 1666 } 1667 } 1668 } 1669 1670 tx->flags |= htole32(WPI_TX_AUTO_SEQ); 1671 1672 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1673 IEEE80211_FC0_TYPE_MGT) { 1674 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1675 1676 /* tell h/w to set timestamp in probe responses */ 1677 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1678 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1679 1680 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1681 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1682 tx->timeout = htole16(3); 1683 else 1684 tx->timeout = htole16(2); 1685 } else 1686 tx->timeout = htole16(0); 1687 1688 tx->len = htole16(m0->m_pkthdr.len); 1689 tx->rate = wpi_plcp_signal(rate); 1690 tx->rts_ntries = 7; 1691 tx->data_ntries = 15; 1692 tx->ofdm_mask = 0xff; 1693 tx->cck_mask = 0x0f; 1694 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1695 1696 /* copy and trim IEEE802.11 header */ 1697 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 1698 m_adj(m0, hdrlen); 1699 1700 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1701 BUS_DMA_NOWAIT); 1702 if (error != 0 && error != EFBIG) { 1703 printf("%s: could not map mbuf (error %d)\n", 1704 sc->sc_dev.dv_xname, error); 1705 m_freem(m0); 1706 return error; 1707 } 1708 if (error != 0) { 1709 /* too many fragments, linearize */ 1710 1711 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 1712 if (mnew == NULL) { 1713 m_freem(m0); 1714 return ENOMEM; 1715 } 1716 M_DUP_PKTHDR(mnew, m0); 1717 if (m0->m_pkthdr.len > MHLEN) { 1718 MCLGET(mnew, M_DONTWAIT); 1719 if (!(mnew->m_flags & M_EXT)) { 1720 m_freem(m0); 1721 m_freem(mnew); 1722 return ENOMEM; 1723 } 1724 } 1725 1726 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t)); 1727 m_freem(m0); 1728 mnew->m_len = mnew->m_pkthdr.len; 1729 m0 = mnew; 1730 1731 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, 1732 BUS_DMA_NOWAIT); 1733 if (error != 0) { 1734 printf("%s: could not map mbuf (error %d)\n", 1735 sc->sc_dev.dv_xname, error); 1736 m_freem(m0); 1737 return error; 1738 } 1739 } 1740 1741 data->m = m0; 1742 data->ni = ni; 1743 1744 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1745 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs)); 1746 1747 /* first scatter/gather segment is used by the tx data command */ 1748 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1749 (1 + data->map->dm_nsegs) << 24); 1750 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1751 ring->cur * sizeof (struct wpi_tx_cmd)); 1752 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) + 1753 ((hdrlen + 3) & ~3)); 1754 for (i = 1; i <= data->map->dm_nsegs; i++) { 1755 desc->segs[i].addr = 1756 htole32(data->map->dm_segs[i - 1].ds_addr); 1757 desc->segs[i].len = 1758 htole32(data->map->dm_segs[i - 1].ds_len); 1759 } 1760 1761 ring->queued++; 1762 1763 /* kick ring */ 1764 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 1765 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 1766 1767 return 0; 1768 } 1769 1770 void 1771 wpi_start(struct ifnet *ifp) 1772 { 1773 struct wpi_softc *sc = ifp->if_softc; 1774 struct ieee80211com *ic = &sc->sc_ic; 1775 struct ieee80211_node *ni; 1776 struct mbuf *m0; 1777 1778 /* 1779 * net80211 may still try to send management frames even if the 1780 * IFF_RUNNING flag is not set... 1781 */ 1782 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1783 return; 1784 1785 for (;;) { 1786 IF_POLL(&ic->ic_mgtq, m0); 1787 if (m0 != NULL) { 1788 /* management frames go into ring 0 */ 1789 if (sc->txq[0].queued >= WPI_TX_RING_COUNT - 8) { 1790 ifp->if_flags |= IFF_OACTIVE; 1791 break; 1792 } 1793 IF_DEQUEUE(&ic->ic_mgtq, m0); 1794 1795 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1796 m0->m_pkthdr.rcvif = NULL; 1797 #if NBPFILTER > 0 1798 if (ic->ic_rawbpf != NULL) 1799 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1800 #endif 1801 if (wpi_tx_data(sc, m0, ni, 0) != 0) 1802 break; 1803 1804 } else { 1805 if (ic->ic_state != IEEE80211_S_RUN) 1806 break; 1807 IFQ_POLL(&ifp->if_snd, m0); 1808 if (m0 == NULL) 1809 break; 1810 if (sc->txq[0].queued >= WPI_TX_RING_COUNT - 8) { 1811 /* there is no place left in this ring */ 1812 ifp->if_flags |= IFF_OACTIVE; 1813 break; 1814 } 1815 IFQ_DEQUEUE(&ifp->if_snd, m0); 1816 #if NBPFILTER > 0 1817 if (ifp->if_bpf != NULL) 1818 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); 1819 #endif 1820 m0 = ieee80211_encap(ifp, m0, &ni); 1821 if (m0 == NULL) 1822 continue; 1823 #if NBPFILTER > 0 1824 if (ic->ic_rawbpf != NULL) 1825 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 1826 #endif 1827 if (wpi_tx_data(sc, m0, ni, 0) != 0) { 1828 if (ni != NULL) 1829 ieee80211_release_node(ic, ni); 1830 ifp->if_oerrors++; 1831 break; 1832 } 1833 } 1834 1835 sc->sc_tx_timer = 5; 1836 ifp->if_timer = 1; 1837 } 1838 } 1839 1840 void 1841 wpi_watchdog(struct ifnet *ifp) 1842 { 1843 struct wpi_softc *sc = ifp->if_softc; 1844 1845 ifp->if_timer = 0; 1846 1847 if (sc->sc_tx_timer > 0) { 1848 if (--sc->sc_tx_timer == 0) { 1849 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1850 ifp->if_flags &= ~IFF_UP; 1851 wpi_stop(ifp, 1); 1852 ifp->if_oerrors++; 1853 return; 1854 } 1855 ifp->if_timer = 1; 1856 } 1857 1858 ieee80211_watchdog(ifp); 1859 } 1860 1861 int 1862 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1863 { 1864 struct wpi_softc *sc = ifp->if_softc; 1865 struct ieee80211com *ic = &sc->sc_ic; 1866 struct ifaddr *ifa; 1867 struct ifreq *ifr; 1868 int s, error = 0; 1869 1870 s = splnet(); 1871 1872 switch (cmd) { 1873 case SIOCSIFADDR: 1874 ifa = (struct ifaddr *)data; 1875 ifp->if_flags |= IFF_UP; 1876 #ifdef INET 1877 if (ifa->ifa_addr->sa_family == AF_INET) 1878 arp_ifinit(&ic->ic_ac, ifa); 1879 #endif 1880 /* FALLTHROUGH */ 1881 case SIOCSIFFLAGS: 1882 if (ifp->if_flags & IFF_UP) { 1883 if (!(ifp->if_flags & IFF_RUNNING)) 1884 wpi_init(ifp); 1885 } else { 1886 if (ifp->if_flags & IFF_RUNNING) 1887 wpi_stop(ifp, 1); 1888 } 1889 break; 1890 1891 case SIOCADDMULTI: 1892 case SIOCDELMULTI: 1893 ifr = (struct ifreq *)data; 1894 error = (cmd == SIOCADDMULTI) ? 1895 ether_addmulti(ifr, &ic->ic_ac) : 1896 ether_delmulti(ifr, &ic->ic_ac); 1897 1898 if (error == ENETRESET) 1899 error = 0; 1900 break; 1901 1902 default: 1903 error = ieee80211_ioctl(ifp, cmd, data); 1904 } 1905 1906 if (error == ENETRESET) { 1907 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1908 (IFF_UP | IFF_RUNNING)) { 1909 wpi_stop(ifp, 0); 1910 wpi_init(ifp); 1911 } 1912 error = 0; 1913 } 1914 1915 splx(s); 1916 return error; 1917 } 1918 1919 void 1920 wpi_read_eeprom(struct wpi_softc *sc) 1921 { 1922 struct ieee80211com *ic = &sc->sc_ic; 1923 char domain[4]; 1924 int i; 1925 1926 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1); 1927 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2); 1928 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 1929 1930 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, letoh16(sc->rev), 1931 sc->type)); 1932 1933 /* read and print regulatory domain */ 1934 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4); 1935 printf(", %.4s", domain); 1936 1937 /* read and print MAC address */ 1938 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 1939 printf(", address %s\n", ether_sprintf(ic->ic_myaddr)); 1940 1941 /* read the list of authorized channels */ 1942 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 1943 wpi_read_eeprom_channels(sc, i); 1944 1945 /* read the list of power groups */ 1946 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 1947 wpi_read_eeprom_group(sc, i); 1948 } 1949 1950 void 1951 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 1952 { 1953 struct ieee80211com *ic = &sc->sc_ic; 1954 const struct wpi_chan_band *band = &wpi_bands[n]; 1955 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 1956 int chan, i; 1957 1958 wpi_read_prom_data(sc, band->addr, channels, 1959 band->nchan * sizeof (struct wpi_eeprom_chan)); 1960 1961 for (i = 0; i < band->nchan; i++) { 1962 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) 1963 continue; 1964 1965 chan = band->chan[i]; 1966 1967 if (n == 0) { /* 2GHz band */ 1968 ic->ic_channels[chan].ic_freq = 1969 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 1970 ic->ic_channels[chan].ic_flags = 1971 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 1972 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 1973 1974 } else { /* 5GHz band */ 1975 /* 1976 * Some 3945ABG adapters support channels 7, 8, 11 1977 * and 12 in the 2GHz *and* 5GHz bands. 1978 * Because of limitations in our net80211(9) stack, 1979 * we can't support these channels in 5GHz band. 1980 */ 1981 if (chan <= 14) 1982 continue; 1983 1984 ic->ic_channels[chan].ic_freq = 1985 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 1986 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 1987 } 1988 1989 /* is active scan allowed on this channel? */ 1990 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 1991 ic->ic_channels[chan].ic_flags |= 1992 IEEE80211_CHAN_PASSIVE; 1993 } 1994 1995 /* save maximum allowed power for this channel */ 1996 sc->maxpwr[chan] = channels[i].maxpwr; 1997 1998 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 1999 chan, channels[i].flags, sc->maxpwr[chan])); 2000 } 2001 } 2002 2003 void 2004 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 2005 { 2006 struct wpi_power_group *group = &sc->groups[n]; 2007 struct wpi_eeprom_group rgroup; 2008 int i; 2009 2010 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 2011 sizeof rgroup); 2012 2013 /* save power group information */ 2014 group->chan = rgroup.chan; 2015 group->maxpwr = rgroup.maxpwr; 2016 /* temperature at which the samples were taken */ 2017 group->temp = (int16_t)letoh16(rgroup.temp); 2018 2019 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 2020 group->chan, group->maxpwr, group->temp)); 2021 2022 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 2023 group->samples[i].index = rgroup.samples[i].index; 2024 group->samples[i].power = rgroup.samples[i].power; 2025 2026 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 2027 group->samples[i].index, group->samples[i].power)); 2028 } 2029 } 2030 2031 /* 2032 * Send a command to the firmware. 2033 */ 2034 int 2035 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2036 { 2037 struct wpi_tx_ring *ring = &sc->txq[4]; 2038 struct wpi_tx_desc *desc; 2039 struct wpi_tx_cmd *cmd; 2040 2041 KASSERT(size <= sizeof cmd->data); 2042 2043 desc = &ring->desc[ring->cur]; 2044 cmd = &ring->cmd[ring->cur]; 2045 2046 cmd->code = code; 2047 cmd->flags = 0; 2048 cmd->qid = ring->qid; 2049 cmd->idx = ring->cur; 2050 memcpy(cmd->data, buf, size); 2051 2052 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2053 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2054 ring->cur * sizeof (struct wpi_tx_cmd)); 2055 desc->segs[0].len = htole32(4 + size); 2056 2057 /* kick cmd ring */ 2058 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2059 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2060 2061 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz); 2062 } 2063 2064 /* 2065 * Configure h/w multi-rate retries. 2066 */ 2067 int 2068 wpi_mrr_setup(struct wpi_softc *sc) 2069 { 2070 struct ieee80211com *ic = &sc->sc_ic; 2071 struct wpi_mrr_setup mrr; 2072 int i, error; 2073 2074 /* CCK rates (not used with 802.11a) */ 2075 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2076 mrr.rates[i].flags = 0; 2077 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2078 /* fallback to the immediate lower CCK rate (if any) */ 2079 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2080 /* try one time at this rate before falling back to "next" */ 2081 mrr.rates[i].ntries = 1; 2082 } 2083 2084 /* OFDM rates (not used with 802.11b) */ 2085 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2086 mrr.rates[i].flags = 0; 2087 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 2088 /* fallback to the immediate lower rate (if any) */ 2089 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2090 mrr.rates[i].next = (i == WPI_OFDM6) ? 2091 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2092 WPI_OFDM6 : WPI_CCK2) : 2093 i - 1; 2094 /* try one time at this rate before falling back to "next" */ 2095 mrr.rates[i].ntries = 1; 2096 } 2097 2098 /* setup MRR for control frames */ 2099 mrr.which = htole32(WPI_MRR_CTL); 2100 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2101 if (error != 0) { 2102 printf("%s: could not setup MRR for control frames\n", 2103 sc->sc_dev.dv_xname); 2104 return error; 2105 } 2106 2107 /* setup MRR for data frames */ 2108 mrr.which = htole32(WPI_MRR_DATA); 2109 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2110 if (error != 0) { 2111 printf("%s: could not setup MRR for data frames\n", 2112 sc->sc_dev.dv_xname); 2113 return error; 2114 } 2115 2116 return 0; 2117 } 2118 2119 /* 2120 * Install a pairwise key into the hardware. 2121 */ 2122 int 2123 wpi_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 2124 struct ieee80211_key *k) 2125 { 2126 struct wpi_softc *sc = ic->ic_softc; 2127 struct wpi_node_info node; 2128 2129 if (k->k_flags & IEEE80211_KEY_GROUP) 2130 return 0; 2131 2132 memset(&node, 0, sizeof node); 2133 2134 switch (k->k_cipher) { 2135 case IEEE80211_CIPHER_CCMP: 2136 node.security = htole16(WPI_CIPHER_CCMP); 2137 node.security |= htole16(k->k_id << 8); 2138 memcpy(node.key, k->k_key, k->k_len); 2139 break; 2140 default: 2141 return 0; 2142 } 2143 2144 node.id = WPI_ID_BSS; 2145 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 2146 node.control = WPI_NODE_UPDATE; 2147 node.flags = WPI_FLAG_SET_KEY; 2148 2149 return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2150 } 2151 2152 void 2153 wpi_updateedca(struct ieee80211com *ic) 2154 { 2155 #define WPI_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 2156 struct wpi_softc *sc = ic->ic_softc; 2157 struct wpi_edca_params cmd; 2158 int aci; 2159 2160 memset(&cmd, 0, sizeof cmd); 2161 cmd.flags = htole32(WPI_EDCA_UPDATE); 2162 for (aci = 0; aci < EDCA_NUM_AC; aci++) { 2163 const struct ieee80211_edca_ac_params *ac = 2164 &ic->ic_edca_ac[aci]; 2165 cmd.ac[aci].aifsn = ac->ac_aifsn; 2166 cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->ac_ecwmin)); 2167 cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->ac_ecwmax)); 2168 cmd.ac[aci].txoplimit = 2169 htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit)); 2170 } 2171 (void)wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 2172 #undef WPI_EXP2 2173 } 2174 2175 void 2176 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2177 { 2178 struct wpi_cmd_led led; 2179 2180 led.which = which; 2181 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2182 led.off = off; 2183 led.on = on; 2184 2185 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2186 } 2187 2188 void 2189 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2190 { 2191 struct wpi_cmd_tsf tsf; 2192 uint64_t val, mod; 2193 2194 memset(&tsf, 0, sizeof tsf); 2195 memcpy(&tsf.tstamp, ni->ni_tstamp, sizeof (uint64_t)); 2196 tsf.bintval = htole16(ni->ni_intval); 2197 tsf.lintval = htole16(10); 2198 2199 /* compute remaining time until next beacon */ 2200 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 2201 mod = letoh64(tsf.tstamp) % val; 2202 tsf.binitval = htole32((uint32_t)(val - mod)); 2203 2204 DPRINTF(("TSF bintval=%u tstamp=%llu, init=%u\n", 2205 ni->ni_intval, letoh64(tsf.tstamp), (uint32_t)(val - mod))); 2206 2207 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2208 printf("%s: could not enable TSF\n", sc->sc_dev.dv_xname); 2209 } 2210 2211 /* 2212 * Update Tx power to match what is defined for channel `c'. 2213 */ 2214 int 2215 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 2216 { 2217 struct ieee80211com *ic = &sc->sc_ic; 2218 struct wpi_power_group *group; 2219 struct wpi_cmd_txpower txpower; 2220 u_int chan; 2221 int i; 2222 2223 /* get channel number */ 2224 chan = ieee80211_chan2ieee(ic, c); 2225 2226 /* find the power group to which this channel belongs */ 2227 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2228 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 2229 if (chan <= group->chan) 2230 break; 2231 } else 2232 group = &sc->groups[0]; 2233 2234 memset(&txpower, 0, sizeof txpower); 2235 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 2236 txpower.chan = htole16(chan); 2237 2238 /* set Tx power for all OFDM and CCK rates */ 2239 for (i = 0; i <= 11 ; i++) { 2240 /* retrieve Tx power for this channel/rate combination */ 2241 int idx = wpi_get_power_index(sc, group, c, 2242 wpi_ridx_to_rate[i]); 2243 2244 txpower.rates[i].plcp = wpi_ridx_to_plcp[i]; 2245 2246 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2247 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 2248 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 2249 } else { 2250 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 2251 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 2252 } 2253 DPRINTF(("chan %d/rate %d: power index %d\n", chan, 2254 wpi_ridx_to_rate[i], idx)); 2255 } 2256 2257 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 2258 } 2259 2260 /* 2261 * Determine Tx power index for a given channel/rate combination. 2262 * This takes into account the regulatory information from EEPROM and the 2263 * current temperature. 2264 */ 2265 int 2266 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 2267 struct ieee80211_channel *c, int rate) 2268 { 2269 /* fixed-point arithmetic division using a n-bit fractional part */ 2270 #define fdivround(a, b, n) \ 2271 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 2272 2273 /* linear interpolation */ 2274 #define interpolate(x, x1, y1, x2, y2, n) \ 2275 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 2276 2277 struct ieee80211com *ic = &sc->sc_ic; 2278 struct wpi_power_sample *sample; 2279 int pwr, idx; 2280 u_int chan; 2281 2282 /* get channel number */ 2283 chan = ieee80211_chan2ieee(ic, c); 2284 2285 /* default power is group's maximum power - 3dB */ 2286 pwr = group->maxpwr / 2; 2287 2288 /* decrease power for highest OFDM rates to reduce distortion */ 2289 switch (rate) { 2290 case 72: /* 36Mb/s */ 2291 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 2292 break; 2293 case 96: /* 48Mb/s */ 2294 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 2295 break; 2296 case 108: /* 54Mb/s */ 2297 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 2298 break; 2299 } 2300 2301 /* never exceed channel's maximum allowed Tx power */ 2302 pwr = MIN(pwr, sc->maxpwr[chan]); 2303 2304 /* retrieve power index into gain tables from samples */ 2305 for (sample = group->samples; sample < &group->samples[3]; sample++) 2306 if (pwr > sample[1].power) 2307 break; 2308 /* fixed-point linear interpolation using a 19-bit fractional part */ 2309 idx = interpolate(pwr, sample[0].power, sample[0].index, 2310 sample[1].power, sample[1].index, 19); 2311 2312 /*- 2313 * Adjust power index based on current temperature: 2314 * - if cooler than factory-calibrated: decrease output power 2315 * - if warmer than factory-calibrated: increase output power 2316 */ 2317 idx -= (sc->temp - group->temp) * 11 / 100; 2318 2319 /* decrease power for CCK rates (-5dB) */ 2320 if (!WPI_RATE_IS_OFDM(rate)) 2321 idx += 10; 2322 2323 /* keep power index in a valid range */ 2324 if (idx < 0) 2325 return 0; 2326 if (idx > WPI_MAX_PWR_INDEX) 2327 return WPI_MAX_PWR_INDEX; 2328 return idx; 2329 2330 #undef interpolate 2331 #undef fdivround 2332 } 2333 2334 int 2335 wpi_auth(struct wpi_softc *sc) 2336 { 2337 struct ieee80211com *ic = &sc->sc_ic; 2338 struct ieee80211_node *ni = ic->ic_bss; 2339 struct wpi_node_info node; 2340 int error; 2341 2342 /* update adapter's configuration */ 2343 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2344 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2345 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2346 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2347 WPI_CONFIG_24GHZ); 2348 } 2349 switch (ic->ic_curmode) { 2350 case IEEE80211_MODE_11A: 2351 sc->config.cck_mask = 0; 2352 sc->config.ofdm_mask = 0x15; 2353 break; 2354 case IEEE80211_MODE_11B: 2355 sc->config.cck_mask = 0x03; 2356 sc->config.ofdm_mask = 0; 2357 break; 2358 default: /* assume 802.11b/g */ 2359 sc->config.cck_mask = 0x0f; 2360 sc->config.ofdm_mask = 0x15; 2361 } 2362 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2363 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2364 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2365 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2366 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2367 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2368 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2369 sizeof (struct wpi_config), 1); 2370 if (error != 0) { 2371 printf("%s: could not configure\n", sc->sc_dev.dv_xname); 2372 return error; 2373 } 2374 2375 /* configuration has changed, set Tx power accordingly */ 2376 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2377 printf("%s: could not set Tx power\n", sc->sc_dev.dv_xname); 2378 return error; 2379 } 2380 2381 /* add default node */ 2382 memset(&node, 0, sizeof node); 2383 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid); 2384 node.id = WPI_ID_BSS; 2385 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2386 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2387 node.action = htole32(WPI_ACTION_SET_RATE); 2388 node.antenna = WPI_ANTENNA_BOTH; 2389 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2390 if (error != 0) { 2391 printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname); 2392 return error; 2393 } 2394 2395 return 0; 2396 } 2397 2398 /* 2399 * Send a scan request to the firmware. Since this command is huge, we map it 2400 * into a mbuf instead of using the pre-allocated set of commands. 2401 */ 2402 int 2403 wpi_scan(struct wpi_softc *sc, uint16_t flags) 2404 { 2405 struct ieee80211com *ic = &sc->sc_ic; 2406 struct wpi_tx_ring *ring = &sc->txq[4]; 2407 struct wpi_tx_desc *desc; 2408 struct wpi_tx_data *data; 2409 struct wpi_tx_cmd *cmd; 2410 struct wpi_scan_hdr *hdr; 2411 struct wpi_cmd_data *tx; 2412 struct wpi_scan_essid *essid; 2413 struct wpi_scan_chan *chan; 2414 struct ieee80211_frame *wh; 2415 struct ieee80211_rateset *rs; 2416 struct ieee80211_channel *c; 2417 enum ieee80211_phymode mode; 2418 uint8_t *frm; 2419 int pktlen, error; 2420 2421 desc = &ring->desc[ring->cur]; 2422 data = &ring->data[ring->cur]; 2423 2424 MGETHDR(data->m, M_DONTWAIT, MT_DATA); 2425 if (data->m == NULL) { 2426 printf("%s: could not allocate mbuf for scan command\n", 2427 sc->sc_dev.dv_xname); 2428 return ENOMEM; 2429 } 2430 MCLGET(data->m, M_DONTWAIT); 2431 if (!(data->m->m_flags & M_EXT)) { 2432 m_freem(data->m); 2433 data->m = NULL; 2434 printf("%s: could not allocate mbuf for scan command\n", 2435 sc->sc_dev.dv_xname); 2436 return ENOMEM; 2437 } 2438 2439 cmd = mtod(data->m, struct wpi_tx_cmd *); 2440 cmd->code = WPI_CMD_SCAN; 2441 cmd->flags = 0; 2442 cmd->qid = ring->qid; 2443 cmd->idx = ring->cur; 2444 2445 hdr = (struct wpi_scan_hdr *)cmd->data; 2446 memset(hdr, 0, sizeof (struct wpi_scan_hdr)); 2447 /* 2448 * Move to the next channel if no packets are received within 5 msecs 2449 * after sending the probe request (this helps to reduce the duration 2450 * of active scans). 2451 */ 2452 hdr->quiet = htole16(5); /* timeout in milliseconds */ 2453 hdr->plcp_threshold = htole16(1); /* min # of packets */ 2454 2455 tx = (struct wpi_cmd_data *)(hdr + 1); 2456 memset(tx, 0, sizeof (struct wpi_cmd_data)); 2457 tx->flags = htole32(WPI_TX_AUTO_SEQ); 2458 tx->id = WPI_ID_BROADCAST; 2459 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 2460 2461 if (flags & IEEE80211_CHAN_A) { 2462 hdr->crc_threshold = htole16(1); 2463 /* send probe requests at 6Mbps */ 2464 tx->rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2465 } else { 2466 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2467 /* send probe requests at 1Mbps */ 2468 tx->rate = wpi_ridx_to_plcp[WPI_CCK1]; 2469 } 2470 2471 essid = (struct wpi_scan_essid *)(tx + 1); 2472 memset(essid, 0, 4 * sizeof (struct wpi_scan_essid)); 2473 essid[0].id = IEEE80211_ELEMID_SSID; 2474 essid[0].len = ic->ic_des_esslen; 2475 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 2476 2477 /* 2478 * Build a probe request frame. Most of the following code is a 2479 * copy & paste of what is done in net80211. 2480 */ 2481 wh = (struct ieee80211_frame *)&essid[4]; 2482 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2483 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2484 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2485 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 2486 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2487 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 2488 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2489 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2490 2491 frm = (uint8_t *)(wh + 1); 2492 2493 /* add SSID IE */ 2494 frm = ieee80211_add_ssid(frm, ic->ic_des_essid, ic->ic_des_esslen); 2495 2496 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan); 2497 rs = &ic->ic_sup_rates[mode]; 2498 2499 /* add supported rates IE */ 2500 frm = ieee80211_add_rates(frm, rs); 2501 2502 /* add supported xrates IE */ 2503 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 2504 frm = ieee80211_add_xrates(frm, rs); 2505 2506 /* setup length of probe request */ 2507 tx->len = htole16(frm - (uint8_t *)wh); 2508 2509 chan = (struct wpi_scan_chan *)frm; 2510 for (c = &ic->ic_channels[1]; 2511 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2512 if ((c->ic_flags & flags) != flags) 2513 continue; 2514 2515 chan->chan = ieee80211_chan2ieee(ic, c); 2516 chan->flags = 0; 2517 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2518 chan->flags |= WPI_CHAN_ACTIVE; 2519 if (ic->ic_des_esslen != 0) 2520 chan->flags |= WPI_CHAN_DIRECT; 2521 } 2522 chan->dsp_gain = 0x6e; 2523 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2524 chan->rf_gain = 0x3b; 2525 chan->active = htole16(10); 2526 chan->passive = htole16(110); 2527 } else { 2528 chan->rf_gain = 0x28; 2529 chan->active = htole16(20); 2530 chan->passive = htole16(120); 2531 } 2532 hdr->nchan++; 2533 chan++; 2534 2535 frm += sizeof (struct wpi_scan_chan); 2536 } 2537 2538 hdr->len = htole16(frm - (uint8_t *)hdr); 2539 pktlen = frm - (uint8_t *)cmd; 2540 2541 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL, 2542 BUS_DMA_NOWAIT); 2543 if (error != 0) { 2544 printf("%s: could not map scan command\n", 2545 sc->sc_dev.dv_xname); 2546 m_freem(data->m); 2547 data->m = NULL; 2548 return error; 2549 } 2550 2551 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2552 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr); 2553 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len); 2554 2555 /* kick cmd ring */ 2556 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2557 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2558 2559 return 0; /* will be notified async. of failure/success */ 2560 } 2561 2562 int 2563 wpi_config(struct wpi_softc *sc) 2564 { 2565 struct ieee80211com *ic = &sc->sc_ic; 2566 struct ifnet *ifp = &ic->ic_if; 2567 struct wpi_power power; 2568 struct wpi_bluetooth bluetooth; 2569 struct wpi_node_info node; 2570 int error; 2571 2572 /* set power mode */ 2573 memset(&power, 0, sizeof power); 2574 power.flags = htole32(WPI_POWER_CAM | 0x8); 2575 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2576 if (error != 0) { 2577 printf("%s: could not set power mode\n", sc->sc_dev.dv_xname); 2578 return error; 2579 } 2580 2581 /* configure bluetooth coexistence */ 2582 memset(&bluetooth, 0, sizeof bluetooth); 2583 bluetooth.flags = 3; 2584 bluetooth.lead = 0xaa; 2585 bluetooth.kill = 1; 2586 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2587 0); 2588 if (error != 0) { 2589 printf("%s: could not configure bluetooth coexistence\n", 2590 sc->sc_dev.dv_xname); 2591 return error; 2592 } 2593 2594 /* configure adapter */ 2595 memset(&sc->config, 0, sizeof (struct wpi_config)); 2596 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 2597 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 2598 /* set default channel */ 2599 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 2600 sc->config.flags = htole32(WPI_CONFIG_TSF); 2601 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) { 2602 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2603 WPI_CONFIG_24GHZ); 2604 } 2605 sc->config.filter = 0; 2606 switch (ic->ic_opmode) { 2607 case IEEE80211_M_STA: 2608 sc->config.mode = WPI_MODE_STA; 2609 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2610 break; 2611 #ifndef IEEE80211_STA_ONLY 2612 #ifdef notyet 2613 case IEEE80211_M_IBSS: 2614 case IEEE80211_M_AHDEMO: 2615 sc->config.mode = WPI_MODE_IBSS; 2616 break; 2617 case IEEE80211_M_HOSTAP: 2618 sc->config.mode = WPI_MODE_HOSTAP; 2619 break; 2620 #endif 2621 #endif 2622 case IEEE80211_M_MONITOR: 2623 sc->config.mode = WPI_MODE_MONITOR; 2624 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2625 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2626 break; 2627 default: 2628 /* should not get there */ 2629 break; 2630 } 2631 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2632 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2633 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2634 sizeof (struct wpi_config), 0); 2635 if (error != 0) { 2636 printf("%s: configure command failed\n", sc->sc_dev.dv_xname); 2637 return error; 2638 } 2639 2640 /* configuration has changed, set Tx power accordingly */ 2641 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) { 2642 printf("%s: could not set Tx power\n", sc->sc_dev.dv_xname); 2643 return error; 2644 } 2645 2646 /* add broadcast node */ 2647 memset(&node, 0, sizeof node); 2648 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 2649 node.id = WPI_ID_BROADCAST; 2650 node.rate = wpi_plcp_signal(2); 2651 node.action = htole32(WPI_ACTION_SET_RATE); 2652 node.antenna = WPI_ANTENNA_BOTH; 2653 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2654 if (error != 0) { 2655 printf("%s: could not add broadcast node\n", 2656 sc->sc_dev.dv_xname); 2657 return error; 2658 } 2659 2660 if ((error = wpi_mrr_setup(sc)) != 0) { 2661 printf("%s: could not setup MRR\n", sc->sc_dev.dv_xname); 2662 return error; 2663 } 2664 2665 return 0; 2666 } 2667 2668 void 2669 wpi_stop_master(struct wpi_softc *sc) 2670 { 2671 uint32_t tmp; 2672 int ntries; 2673 2674 tmp = WPI_READ(sc, WPI_RESET); 2675 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER); 2676 2677 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2678 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2679 return; /* already asleep */ 2680 2681 for (ntries = 0; ntries < 100; ntries++) { 2682 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2683 break; 2684 DELAY(10); 2685 } 2686 if (ntries == 100) { 2687 printf("%s: timeout waiting for master\n", 2688 sc->sc_dev.dv_xname); 2689 } 2690 } 2691 2692 int 2693 wpi_power_up(struct wpi_softc *sc) 2694 { 2695 uint32_t tmp; 2696 int ntries; 2697 2698 wpi_mem_lock(sc); 2699 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2700 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2701 wpi_mem_unlock(sc); 2702 2703 for (ntries = 0; ntries < 5000; ntries++) { 2704 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2705 break; 2706 DELAY(10); 2707 } 2708 if (ntries == 5000) { 2709 printf("%s: timeout waiting for NIC to power up\n", 2710 sc->sc_dev.dv_xname); 2711 return ETIMEDOUT; 2712 } 2713 return 0; 2714 } 2715 2716 int 2717 wpi_reset(struct wpi_softc *sc) 2718 { 2719 uint32_t tmp; 2720 int ntries; 2721 2722 /* clear any pending interrupts */ 2723 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2724 2725 tmp = WPI_READ(sc, WPI_PLL_CTL); 2726 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2727 2728 tmp = WPI_READ(sc, WPI_CHICKEN); 2729 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2730 2731 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2732 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2733 2734 /* wait for clock stabilization */ 2735 for (ntries = 0; ntries < 25000; ntries++) { 2736 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2737 break; 2738 DELAY(100); 2739 } 2740 if (ntries == 25000) { 2741 printf("%s: timeout waiting for clock stabilization\n", 2742 sc->sc_dev.dv_xname); 2743 return ETIMEDOUT; 2744 } 2745 2746 /* initialize EEPROM */ 2747 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2748 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2749 printf("%s: EEPROM not found\n", sc->sc_dev.dv_xname); 2750 return EIO; 2751 } 2752 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2753 2754 return 0; 2755 } 2756 2757 void 2758 wpi_hw_config(struct wpi_softc *sc) 2759 { 2760 uint32_t rev, hw; 2761 2762 /* voodoo from the reference driver */ 2763 hw = WPI_READ(sc, WPI_HWCONFIG); 2764 2765 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG); 2766 rev = PCI_REVISION(rev); 2767 if ((rev & 0xc0) == 0x40) 2768 hw |= WPI_HW_ALM_MB; 2769 else if (!(rev & 0x80)) 2770 hw |= WPI_HW_ALM_MM; 2771 2772 if (sc->cap == 0x80) 2773 hw |= WPI_HW_SKU_MRC; 2774 2775 hw &= ~WPI_HW_REV_D; 2776 if ((letoh16(sc->rev) & 0xf0) == 0xd0) 2777 hw |= WPI_HW_REV_D; 2778 2779 if (sc->type > 1) 2780 hw |= WPI_HW_TYPE_B; 2781 2782 DPRINTF(("setting h/w config %x\n", hw)); 2783 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2784 } 2785 2786 int 2787 wpi_init(struct ifnet *ifp) 2788 { 2789 struct wpi_softc *sc = ifp->if_softc; 2790 struct ieee80211com *ic = &sc->sc_ic; 2791 uint32_t tmp; 2792 int qid, ntries, error; 2793 2794 (void)wpi_reset(sc); 2795 2796 wpi_mem_lock(sc); 2797 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 2798 DELAY(20); 2799 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 2800 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 2801 wpi_mem_unlock(sc); 2802 2803 (void)wpi_power_up(sc); 2804 wpi_hw_config(sc); 2805 2806 /* init Rx ring */ 2807 wpi_mem_lock(sc); 2808 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 2809 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 2810 offsetof(struct wpi_shared, next)); 2811 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 2812 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 2813 wpi_mem_unlock(sc); 2814 2815 /* init Tx rings */ 2816 wpi_mem_lock(sc); 2817 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 2818 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 2819 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 2820 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 2821 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 2822 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 2823 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 2824 2825 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 2826 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 2827 2828 for (qid = 0; qid < 6; qid++) { 2829 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 2830 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 2831 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 2832 } 2833 wpi_mem_unlock(sc); 2834 2835 /* clear "radio off" and "disable command" bits (reversed logic) */ 2836 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2837 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 2838 2839 /* clear any pending interrupts */ 2840 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2841 /* enable interrupts */ 2842 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 2843 2844 /* not sure why/if this is necessary... */ 2845 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2846 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2847 2848 if ((error = wpi_load_firmware(sc)) != 0) { 2849 printf("%s: could not load firmware\n", sc->sc_dev.dv_xname); 2850 goto fail1; 2851 } 2852 2853 /* check that the radio is not disabled by RF switch */ 2854 wpi_mem_lock(sc); 2855 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL); 2856 wpi_mem_unlock(sc); 2857 if (!(tmp & 1)) { 2858 printf("%s: radio is disabled by hardware switch\n", 2859 sc->sc_dev.dv_xname); 2860 error = EPERM; /* XXX ;-) */ 2861 goto fail1; 2862 } 2863 2864 /* wait for thermal sensors to calibrate */ 2865 for (ntries = 0; ntries < 1000; ntries++) { 2866 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 2867 break; 2868 DELAY(10); 2869 } 2870 if (ntries == 1000) { 2871 printf("%s: timeout waiting for thermal sensors calibration\n", 2872 sc->sc_dev.dv_xname); 2873 error = ETIMEDOUT; 2874 goto fail1; 2875 } 2876 DPRINTF(("temperature %d\n", sc->temp)); 2877 sc->sensor.value = sc->temp + 260; 2878 sc->sensor.flags &= ~SENSOR_FINVALID; 2879 2880 if ((error = wpi_config(sc)) != 0) { 2881 printf("%s: could not configure device\n", 2882 sc->sc_dev.dv_xname); 2883 goto fail1; 2884 } 2885 2886 ifp->if_flags &= ~IFF_OACTIVE; 2887 ifp->if_flags |= IFF_RUNNING; 2888 2889 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2890 ieee80211_begin_scan(ifp); 2891 else 2892 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2893 2894 return 0; 2895 2896 fail1: wpi_stop(ifp, 1); 2897 return error; 2898 } 2899 2900 void 2901 wpi_stop(struct ifnet *ifp, int disable) 2902 { 2903 struct wpi_softc *sc = ifp->if_softc; 2904 struct ieee80211com *ic = &sc->sc_ic; 2905 uint32_t tmp; 2906 int i; 2907 2908 ifp->if_timer = sc->sc_tx_timer = 0; 2909 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2910 2911 /* in case we were scanning, release the scan "lock" */ 2912 ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; 2913 2914 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2915 2916 /* disable interrupts */ 2917 WPI_WRITE(sc, WPI_MASK, 0); 2918 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 2919 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 2920 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 2921 2922 wpi_mem_lock(sc); 2923 wpi_mem_write(sc, WPI_MEM_MODE, 0); 2924 wpi_mem_unlock(sc); 2925 2926 /* reset all Tx rings */ 2927 for (i = 0; i < WPI_NTXQUEUES; i++) 2928 wpi_reset_tx_ring(sc, &sc->txq[i]); 2929 2930 /* reset Rx ring */ 2931 wpi_reset_rx_ring(sc, &sc->rxq); 2932 2933 /* temperature is no longer valid */ 2934 sc->sensor.value = 0; 2935 sc->sensor.flags |= SENSOR_FINVALID; 2936 2937 wpi_mem_lock(sc); 2938 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 2939 wpi_mem_unlock(sc); 2940 2941 DELAY(5); 2942 2943 wpi_stop_master(sc); 2944 tmp = WPI_READ(sc, WPI_RESET); 2945 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 2946 } 2947 2948 struct cfdriver wpi_cd = { 2949 NULL, "wpi", DV_IFNET 2950 }; 2951