xref: /openbsd-src/sys/dev/pci/if_wpi.c (revision 5054e3e78af0749a9bb00ba9a024b3ee2d90290f)
1 /*	$OpenBSD: if_wpi.c,v 1.99 2009/11/17 20:35:51 damien Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006-2008
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/sysctl.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/conf.h>
35 #include <sys/device.h>
36 
37 #include <machine/bus.h>
38 #include <machine/endian.h>
39 #include <machine/intr.h>
40 
41 #include <dev/pci/pcireg.h>
42 #include <dev/pci/pcivar.h>
43 #include <dev/pci/pcidevs.h>
44 
45 #if NBPFILTER > 0
46 #include <net/bpf.h>
47 #endif
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/if_ether.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63 
64 #include <dev/pci/if_wpireg.h>
65 #include <dev/pci/if_wpivar.h>
66 
67 static const struct pci_matchid wpi_devices[] = {
68 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 },
69 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2 }
70 };
71 
72 int		wpi_match(struct device *, void *, void *);
73 void		wpi_attach(struct device *, struct device *, void *);
74 #if NBPFILTER > 0
75 void		wpi_radiotap_attach(struct wpi_softc *);
76 #endif
77 int		wpi_detach(struct device *, int);
78 void		wpi_power(int, void *);
79 int		wpi_nic_lock(struct wpi_softc *);
80 int		wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
81 int		wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
82 		    void **, bus_size_t, bus_size_t);
83 void		wpi_dma_contig_free(struct wpi_dma_info *);
84 int		wpi_alloc_shared(struct wpi_softc *);
85 void		wpi_free_shared(struct wpi_softc *);
86 int		wpi_alloc_fwmem(struct wpi_softc *);
87 void		wpi_free_fwmem(struct wpi_softc *);
88 int		wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
89 void		wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
90 void		wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
91 int		wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
92 		    int);
93 void		wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
94 void		wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
95 int		wpi_read_eeprom(struct wpi_softc *);
96 void		wpi_read_eeprom_channels(struct wpi_softc *, int);
97 void		wpi_read_eeprom_group(struct wpi_softc *, int);
98 struct		ieee80211_node *wpi_node_alloc(struct ieee80211com *);
99 void		wpi_newassoc(struct ieee80211com *, struct ieee80211_node *,
100 		    int);
101 int		wpi_media_change(struct ifnet *);
102 int		wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
103 void		wpi_iter_func(void *, struct ieee80211_node *);
104 void		wpi_calib_timeout(void *);
105 int		wpi_ccmp_decap(struct wpi_softc *, struct mbuf *,
106 		    struct ieee80211_key *);
107 void		wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
108 		    struct wpi_rx_data *);
109 void		wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
110 void		wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
111 void		wpi_notif_intr(struct wpi_softc *);
112 void		wpi_fatal_intr(struct wpi_softc *);
113 int		wpi_intr(void *);
114 int		wpi_tx(struct wpi_softc *, struct mbuf *,
115 		    struct ieee80211_node *);
116 void		wpi_start(struct ifnet *);
117 void		wpi_watchdog(struct ifnet *);
118 int		wpi_ioctl(struct ifnet *, u_long, caddr_t);
119 int		wpi_cmd(struct wpi_softc *, int, const void *, int, int);
120 int		wpi_mrr_setup(struct wpi_softc *);
121 void		wpi_updateedca(struct ieee80211com *);
122 void		wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
123 int		wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
124 void		wpi_power_calibration(struct wpi_softc *);
125 int		wpi_set_txpower(struct wpi_softc *, int);
126 int		wpi_get_power_index(struct wpi_softc *,
127 		    struct wpi_power_group *, struct ieee80211_channel *, int);
128 int		wpi_set_pslevel(struct wpi_softc *, int, int, int);
129 int		wpi_config(struct wpi_softc *);
130 int		wpi_scan(struct wpi_softc *, uint16_t);
131 int		wpi_auth(struct wpi_softc *);
132 int		wpi_run(struct wpi_softc *);
133 int		wpi_set_key(struct ieee80211com *, struct ieee80211_node *,
134 		    struct ieee80211_key *);
135 void		wpi_delete_key(struct ieee80211com *, struct ieee80211_node *,
136 		    struct ieee80211_key *);
137 int		wpi_post_alive(struct wpi_softc *);
138 int		wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
139 int		wpi_load_firmware(struct wpi_softc *);
140 int		wpi_read_firmware(struct wpi_softc *);
141 int		wpi_clock_wait(struct wpi_softc *);
142 int		wpi_apm_init(struct wpi_softc *);
143 void		wpi_apm_stop_master(struct wpi_softc *);
144 void		wpi_apm_stop(struct wpi_softc *);
145 void		wpi_nic_config(struct wpi_softc *);
146 int		wpi_hw_init(struct wpi_softc *);
147 void		wpi_hw_stop(struct wpi_softc *);
148 int		wpi_init(struct ifnet *);
149 void		wpi_stop(struct ifnet *, int);
150 
151 #ifdef WPI_DEBUG
152 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
153 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
154 int wpi_debug = 0;
155 #else
156 #define DPRINTF(x)
157 #define DPRINTFN(n, x)
158 #endif
159 
160 struct cfdriver wpi_cd = {
161 	NULL, "wpi", DV_IFNET
162 };
163 
164 struct cfattach wpi_ca = {
165 	sizeof (struct wpi_softc), wpi_match, wpi_attach, wpi_detach
166 };
167 
168 int
169 wpi_match(struct device *parent, void *match, void *aux)
170 {
171 	return pci_matchbyid((struct pci_attach_args *)aux, wpi_devices,
172 	    nitems(wpi_devices));
173 }
174 
175 void
176 wpi_attach(struct device *parent, struct device *self, void *aux)
177 {
178 	struct wpi_softc *sc = (struct wpi_softc *)self;
179 	struct ieee80211com *ic = &sc->sc_ic;
180 	struct ifnet *ifp = &ic->ic_if;
181 	struct pci_attach_args *pa = aux;
182 	const char *intrstr;
183 	pci_intr_handle_t ih;
184 	pcireg_t memtype, reg;
185 	int i, error;
186 
187 	sc->sc_pct = pa->pa_pc;
188 	sc->sc_pcitag = pa->pa_tag;
189 	sc->sc_dmat = pa->pa_dmat;
190 
191 	/*
192 	 * Get the offset of the PCI Express Capability Structure in PCI
193 	 * Configuration Space (the vendor driver hard-codes it as E0h.)
194 	 */
195 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
196 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
197 	if (error == 0) {
198 		printf(": PCIe capability structure not found!\n");
199 		return;
200 	}
201 
202 	/* Clear device-specific "PCI retry timeout" register (41h). */
203 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
204 	reg &= ~0xff00;
205 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
206 
207 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WPI_PCI_BAR0);
208 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, memtype, 0, &sc->sc_st,
209 	    &sc->sc_sh, NULL, &sc->sc_sz, 0);
210 	if (error != 0) {
211 		printf(": can't map mem space\n");
212 		return;
213 	}
214 
215 	/* Install interrupt handler. */
216 	if (pci_intr_map(pa, &ih) != 0) {
217 		printf(": can't map interrupt\n");
218 		return;
219 	}
220 	intrstr = pci_intr_string(sc->sc_pct, ih);
221 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc,
222 	    sc->sc_dev.dv_xname);
223 	if (sc->sc_ih == NULL) {
224 		printf(": can't establish interrupt");
225 		if (intrstr != NULL)
226 			printf(" at %s", intrstr);
227 		printf("\n");
228 		return;
229 	}
230 	printf(": %s", intrstr);
231 
232 	/* Power ON adapter. */
233 	if ((error = wpi_apm_init(sc)) != 0) {
234 		printf(": could not power ON adapter\n");
235 		return;
236 	}
237 
238 	/* Read MAC address, channels, etc from EEPROM. */
239 	if ((error = wpi_read_eeprom(sc)) != 0) {
240 		printf(": could not read EEPROM\n");
241 		return;
242 	}
243 
244 	/* Allocate DMA memory for firmware transfers. */
245 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
246 		printf(": could not allocate memory for firmware\n");
247 		return;
248 	}
249 
250 	/* Allocate shared area. */
251 	if ((error = wpi_alloc_shared(sc)) != 0) {
252 		printf(": could not allocate shared area\n");
253 		goto fail1;
254 	}
255 
256 	/* Allocate TX rings. */
257 	for (i = 0; i < WPI_NTXQUEUES; i++) {
258 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
259 			printf(": could not allocate TX ring %d\n", i);
260 			goto fail2;
261 		}
262 	}
263 
264 	/* Allocate RX ring. */
265 	if ((error = wpi_alloc_rx_ring(sc, &sc->rxq)) != 0) {
266 		printf(": could not allocate Rx ring\n");
267 		goto fail2;
268 	}
269 
270 	/* Power OFF adapter. */
271 	wpi_apm_stop(sc);
272 	/* Clear pending interrupts. */
273 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
274 
275 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
276 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
277 	ic->ic_state = IEEE80211_S_INIT;
278 
279 	/* Set device capabilities. */
280 	ic->ic_caps =
281 	    IEEE80211_C_WEP |		/* WEP */
282 	    IEEE80211_C_RSN |		/* WPA/RSN */
283 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
284 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
285 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
286 	    IEEE80211_C_PMGT;		/* power saving supported */
287 
288 	/* Set supported rates. */
289 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
290 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
291 	if (sc->sc_flags & WPI_FLAG_HAS_5GHZ) {
292 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
293 		    ieee80211_std_rateset_11a;
294 	}
295 
296 	/* IBSS channel undefined for now. */
297 	ic->ic_ibss_chan = &ic->ic_channels[0];
298 
299 	ifp->if_softc = sc;
300 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
301 	ifp->if_init = wpi_init;
302 	ifp->if_ioctl = wpi_ioctl;
303 	ifp->if_start = wpi_start;
304 	ifp->if_watchdog = wpi_watchdog;
305 	IFQ_SET_READY(&ifp->if_snd);
306 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
307 
308 	if_attach(ifp);
309 	ieee80211_ifattach(ifp);
310 	ic->ic_node_alloc = wpi_node_alloc;
311 	ic->ic_newassoc = wpi_newassoc;
312 	ic->ic_updateedca = wpi_updateedca;
313 	ic->ic_set_key = wpi_set_key;
314 	ic->ic_delete_key = wpi_delete_key;
315 
316 	/* Override 802.11 state transition machine. */
317 	sc->sc_newstate = ic->ic_newstate;
318 	ic->ic_newstate = wpi_newstate;
319 	ieee80211_media_init(ifp, wpi_media_change, ieee80211_media_status);
320 
321 	sc->amrr.amrr_min_success_threshold =  1;
322 	sc->amrr.amrr_max_success_threshold = 15;
323 
324 #if NBPFILTER > 0
325 	wpi_radiotap_attach(sc);
326 #endif
327 	timeout_set(&sc->calib_to, wpi_calib_timeout, sc);
328 
329 	sc->powerhook = powerhook_establish(wpi_power, sc);
330 
331 	return;
332 
333 	/* Free allocated memory if something failed during attachment. */
334 fail2:	while (--i >= 0)
335 		wpi_free_tx_ring(sc, &sc->txq[i]);
336 	wpi_free_shared(sc);
337 fail1:	wpi_free_fwmem(sc);
338 }
339 
340 #if NBPFILTER > 0
341 /*
342  * Attach the interface to 802.11 radiotap.
343  */
344 void
345 wpi_radiotap_attach(struct wpi_softc *sc)
346 {
347 	bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
348 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
349 
350 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
351 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
352 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
353 
354 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
355 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
356 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
357 }
358 #endif
359 
360 int
361 wpi_detach(struct device *self, int flags)
362 {
363 	struct wpi_softc *sc = (struct wpi_softc *)self;
364 	struct ifnet *ifp = &sc->sc_ic.ic_if;
365 	int qid;
366 
367 	timeout_del(&sc->calib_to);
368 
369 	/* Uninstall interrupt handler. */
370 	if (sc->sc_ih != NULL)
371 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
372 
373 	if (sc->powerhook != NULL)
374 		powerhook_disestablish(sc->powerhook);
375 
376 	/* Free DMA resources. */
377 	wpi_free_rx_ring(sc, &sc->rxq);
378 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
379 		wpi_free_tx_ring(sc, &sc->txq[qid]);
380 	wpi_free_shared(sc);
381 	wpi_free_fwmem(sc);
382 
383 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
384 
385 	ieee80211_ifdetach(ifp);
386 	if_detach(ifp);
387 
388 	return 0;
389 }
390 
391 void
392 wpi_power(int why, void *arg)
393 {
394 	struct wpi_softc *sc = arg;
395 	struct ifnet *ifp;
396 	pcireg_t reg;
397 	int s;
398 
399 	if (why != PWR_RESUME)
400 		return;
401 
402 	/* Clear device-specific "PCI retry timeout" register (41h). */
403 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
404 	reg &= ~0xff00;
405 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
406 
407 	s = splnet();
408 	ifp = &sc->sc_ic.ic_if;
409 	if (ifp->if_flags & IFF_UP) {
410 		ifp->if_init(ifp);
411 		if (ifp->if_flags & IFF_RUNNING)
412 			ifp->if_start(ifp);
413 	}
414 	splx(s);
415 }
416 
417 int
418 wpi_nic_lock(struct wpi_softc *sc)
419 {
420 	int ntries;
421 
422 	/* Request exclusive access to NIC. */
423 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
424 
425 	/* Spin until we actually get the lock. */
426 	for (ntries = 0; ntries < 1000; ntries++) {
427 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
428 		     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
429 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
430 			return 0;
431 		DELAY(10);
432 	}
433 	return ETIMEDOUT;
434 }
435 
436 static __inline void
437 wpi_nic_unlock(struct wpi_softc *sc)
438 {
439 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
440 }
441 
442 static __inline uint32_t
443 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
444 {
445 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
446 	WPI_BARRIER_READ_WRITE(sc);
447 	return WPI_READ(sc, WPI_PRPH_RDATA);
448 }
449 
450 static __inline void
451 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
452 {
453 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
454 	WPI_BARRIER_WRITE(sc);
455 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
456 }
457 
458 static __inline void
459 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
460 {
461 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
462 }
463 
464 static __inline void
465 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
466 {
467 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
468 }
469 
470 static __inline void
471 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
472     const uint32_t *data, int count)
473 {
474 	for (; count > 0; count--, data++, addr += 4)
475 		wpi_prph_write(sc, addr, *data);
476 }
477 
478 static __inline uint32_t
479 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
480 {
481 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
482 	WPI_BARRIER_READ_WRITE(sc);
483 	return WPI_READ(sc, WPI_MEM_RDATA);
484 }
485 
486 static __inline void
487 wpi_mem_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
488 {
489 	WPI_WRITE(sc, WPI_MEM_WADDR, addr);
490 	WPI_BARRIER_WRITE(sc);
491 	WPI_WRITE(sc, WPI_MEM_WDATA, data);
492 }
493 
494 static __inline void
495 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
496     int count)
497 {
498 	for (; count > 0; count--, addr += 4)
499 		*data++ = wpi_mem_read(sc, addr);
500 }
501 
502 int
503 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
504 {
505 	uint8_t *out = data;
506 	uint32_t val;
507 	int error, ntries;
508 
509 	if ((error = wpi_nic_lock(sc)) != 0)
510 		return error;
511 
512 	for (; count > 0; count -= 2, addr++) {
513 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
514 		WPI_CLRBITS(sc, WPI_EEPROM, WPI_EEPROM_CMD);
515 
516 		for (ntries = 0; ntries < 10; ntries++) {
517 			val = WPI_READ(sc, WPI_EEPROM);
518 			if (val & WPI_EEPROM_READ_VALID)
519 				break;
520 			DELAY(5);
521 		}
522 		if (ntries == 10) {
523 			printf("%s: could not read EEPROM\n",
524 			    sc->sc_dev.dv_xname);
525 			return ETIMEDOUT;
526 		}
527 		*out++ = val >> 16;
528 		if (count > 1)
529 			*out++ = val >> 24;
530 	}
531 
532 	wpi_nic_unlock(sc);
533 	return 0;
534 }
535 
536 int
537 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
538     bus_size_t size, bus_size_t alignment)
539 {
540 	int nsegs, error;
541 
542 	dma->tag = tag;
543 	dma->size = size;
544 
545 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
546 	    &dma->map);
547 	if (error != 0)
548 		goto fail;
549 
550 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
551 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO);
552 	if (error != 0)
553 		goto fail;
554 
555 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
556 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
557 	if (error != 0)
558 		goto fail;
559 
560 	error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
561 	    BUS_DMA_NOWAIT);
562 	if (error != 0)
563 		goto fail;
564 
565 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
566 
567 	dma->paddr = dma->map->dm_segs[0].ds_addr;
568 	if (kvap != NULL)
569 		*kvap = dma->vaddr;
570 
571 	return 0;
572 
573 fail:	wpi_dma_contig_free(dma);
574 	return error;
575 }
576 
577 void
578 wpi_dma_contig_free(struct wpi_dma_info *dma)
579 {
580 	if (dma->map != NULL) {
581 		if (dma->vaddr != NULL) {
582 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
583 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
584 			bus_dmamap_unload(dma->tag, dma->map);
585 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
586 			bus_dmamem_free(dma->tag, &dma->seg, 1);
587 			dma->vaddr = NULL;
588 		}
589 		bus_dmamap_destroy(dma->tag, dma->map);
590 		dma->map = NULL;
591 	}
592 }
593 
594 int
595 wpi_alloc_shared(struct wpi_softc *sc)
596 {
597 	/* Shared buffer must be aligned on a 4KB boundary. */
598 	return wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
599 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
600 }
601 
602 void
603 wpi_free_shared(struct wpi_softc *sc)
604 {
605 	wpi_dma_contig_free(&sc->shared_dma);
606 }
607 
608 int
609 wpi_alloc_fwmem(struct wpi_softc *sc)
610 {
611 	/* Allocate enough contiguous space to store text and data. */
612 	return wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
613 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
614 }
615 
616 void
617 wpi_free_fwmem(struct wpi_softc *sc)
618 {
619 	wpi_dma_contig_free(&sc->fw_dma);
620 }
621 
622 int
623 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
624 {
625 	bus_size_t size;
626 	int i, error;
627 
628 	ring->cur = 0;
629 
630 	/* Allocate RX descriptors (16KB aligned.) */
631 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
632 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
633 	    (void **)&ring->desc, size, 16 * 1024);
634 	if (error != 0) {
635 		printf("%s: could not allocate RX ring DMA memory\n",
636 		    sc->sc_dev.dv_xname);
637 		goto fail;
638 	}
639 
640 	/*
641 	 * Allocate and map RX buffers.
642 	 */
643 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
644 		struct wpi_rx_data *data = &ring->data[i];
645 
646 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
647 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
648 		if (error != 0) {
649 			printf("%s: could not create RX buf DMA map\n",
650 			    sc->sc_dev.dv_xname);
651 			goto fail;
652 		}
653 
654 		data->m = MCLGETI(NULL, M_DONTWAIT, NULL, WPI_RBUF_SIZE);
655 		if (data->m == NULL) {
656 			printf("%s: could not allocate RX mbuf\n",
657 			    sc->sc_dev.dv_xname);
658 			error = ENOBUFS;
659 			goto fail;
660 		}
661 
662 		error = bus_dmamap_load(sc->sc_dmat, data->map,
663 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
664 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
665 		if (error != 0) {
666 			printf("%s: can't map mbuf (error %d)\n",
667 			    sc->sc_dev.dv_xname, error);
668 			goto fail;
669 		}
670 
671 		/* Set physical address of RX buffer. */
672 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr);
673 	}
674 
675 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
676 	    BUS_DMASYNC_PREWRITE);
677 
678 	return 0;
679 
680 fail:	wpi_free_rx_ring(sc, ring);
681 	return error;
682 }
683 
684 void
685 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
686 {
687 	int ntries;
688 
689 	if (wpi_nic_lock(sc) == 0) {
690 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
691 		for (ntries = 0; ntries < 100; ntries++) {
692 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
693 			    WPI_FH_RX_STATUS_IDLE)
694 				break;
695 			DELAY(10);
696 		}
697 		wpi_nic_unlock(sc);
698 	}
699 	ring->cur = 0;
700 }
701 
702 void
703 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
704 {
705 	int i;
706 
707 	wpi_dma_contig_free(&ring->desc_dma);
708 
709 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
710 		struct wpi_rx_data *data = &ring->data[i];
711 
712 		if (data->m != NULL) {
713 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
714 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
715 			bus_dmamap_unload(sc->sc_dmat, data->map);
716 			m_freem(data->m);
717 		}
718 		if (data->map != NULL)
719 			bus_dmamap_destroy(sc->sc_dmat, data->map);
720 	}
721 }
722 
723 int
724 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
725 {
726 	bus_addr_t paddr;
727 	bus_size_t size;
728 	int i, error;
729 
730 	ring->qid = qid;
731 	ring->queued = 0;
732 	ring->cur = 0;
733 
734 	/* Allocate TX descriptors (16KB aligned.) */
735 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
736 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
737 	    (void **)&ring->desc, size, 16 * 1024);
738 	if (error != 0) {
739 		printf("%s: could not allocate TX ring DMA memory\n",
740 		    sc->sc_dev.dv_xname);
741 		goto fail;
742 	}
743 
744 	/* Update shared area with ring physical address. */
745 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
746 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
747 	    sizeof (struct wpi_shared), BUS_DMASYNC_PREWRITE);
748 
749 	/*
750 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
751 	 * to allocate commands space for other rings.
752 	 * XXX Do we really need to allocate descriptors for other rings?
753 	 */
754 	if (qid > 4)
755 		return 0;
756 
757 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
758 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
759 	    (void **)&ring->cmd, size, 4);
760 	if (error != 0) {
761 		printf("%s: could not allocate TX cmd DMA memory\n",
762 		    sc->sc_dev.dv_xname);
763 		goto fail;
764 	}
765 
766 	paddr = ring->cmd_dma.paddr;
767 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
768 		struct wpi_tx_data *data = &ring->data[i];
769 
770 		data->cmd_paddr = paddr;
771 		paddr += sizeof (struct wpi_tx_cmd);
772 
773 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
774 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
775 		    &data->map);
776 		if (error != 0) {
777 			printf("%s: could not create TX buf DMA map\n",
778 			    sc->sc_dev.dv_xname);
779 			goto fail;
780 		}
781 	}
782 	return 0;
783 
784 fail:	wpi_free_tx_ring(sc, ring);
785 	return error;
786 }
787 
788 void
789 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
790 {
791 	int i;
792 
793 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
794 		struct wpi_tx_data *data = &ring->data[i];
795 
796 		if (data->m != NULL) {
797 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
798 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
799 			bus_dmamap_unload(sc->sc_dmat, data->map);
800 			m_freem(data->m);
801 			data->m = NULL;
802 		}
803 	}
804 	/* Clear TX descriptors. */
805 	memset(ring->desc, 0, ring->desc_dma.size);
806 	sc->qfullmsk &= ~(1 << ring->qid);
807 	ring->queued = 0;
808 	ring->cur = 0;
809 }
810 
811 void
812 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
813 {
814 	int i;
815 
816 	wpi_dma_contig_free(&ring->desc_dma);
817 	wpi_dma_contig_free(&ring->cmd_dma);
818 
819 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
820 		struct wpi_tx_data *data = &ring->data[i];
821 
822 		if (data->m != NULL) {
823 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
824 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
825 			bus_dmamap_unload(sc->sc_dmat, data->map);
826 			m_freem(data->m);
827 		}
828 		if (data->map != NULL)
829 			bus_dmamap_destroy(sc->sc_dmat, data->map);
830 	}
831 }
832 
833 int
834 wpi_read_eeprom(struct wpi_softc *sc)
835 {
836 	struct ieee80211com *ic = &sc->sc_ic;
837 	char domain[4];
838 	int i;
839 
840 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
841 		printf("%s: bad EEPROM signature\n", sc->sc_dev.dv_xname);
842 		return EIO;
843 	}
844 	/* Clear HW ownership of EEPROM. */
845 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
846 
847 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
848 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
849 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
850 
851 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, letoh16(sc->rev),
852 	    sc->type));
853 
854 	/* Read and print regulatory domain (4 ASCII characters.) */
855 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
856 	printf(", %.4s", domain);
857 
858 	/* Read and print MAC address. */
859 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
860 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
861 
862 	/* Read the list of authorized channels. */
863 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
864 		wpi_read_eeprom_channels(sc, i);
865 
866 	/* Read the list of TX power groups. */
867 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
868 		wpi_read_eeprom_group(sc, i);
869 
870 	return 0;
871 }
872 
873 void
874 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
875 {
876 	struct ieee80211com *ic = &sc->sc_ic;
877 	const struct wpi_chan_band *band = &wpi_bands[n];
878 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
879 	int chan, i;
880 
881 	wpi_read_prom_data(sc, band->addr, channels,
882 	    band->nchan * sizeof (struct wpi_eeprom_chan));
883 
884 	for (i = 0; i < band->nchan; i++) {
885 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
886 			continue;
887 
888 		chan = band->chan[i];
889 
890 		if (n == 0) {	/* 2GHz band */
891 			ic->ic_channels[chan].ic_freq =
892 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
893 			ic->ic_channels[chan].ic_flags =
894 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
895 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
896 
897 		} else {	/* 5GHz band */
898 			/*
899 			 * Some adapters support channels 7, 8, 11 and 12
900 			 * both in the 2GHz and 4.9GHz bands.
901 			 * Because of limitations in our net80211 layer,
902 			 * we don't support them in the 4.9GHz band.
903 			 */
904 			if (chan <= 14)
905 				continue;
906 
907 			ic->ic_channels[chan].ic_freq =
908 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
909 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
910 		}
911 
912 		/* Is active scan allowed on this channel? */
913 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
914 			ic->ic_channels[chan].ic_flags |=
915 			    IEEE80211_CHAN_PASSIVE;
916 		}
917 
918 		/* Save maximum allowed TX power for this channel. */
919 		sc->maxpwr[chan] = channels[i].maxpwr;
920 
921 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
922 		    chan, channels[i].flags, sc->maxpwr[chan]));
923 	}
924 }
925 
926 void
927 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
928 {
929 	struct wpi_power_group *group = &sc->groups[n];
930 	struct wpi_eeprom_group rgroup;
931 	int i;
932 
933 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
934 	    sizeof rgroup);
935 
936 	/* Save TX power group information. */
937 	group->chan   = rgroup.chan;
938 	group->maxpwr = rgroup.maxpwr;
939 	/* Retrieve temperature at which the samples were taken. */
940 	group->temp   = (int16_t)letoh16(rgroup.temp);
941 
942 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
943 	    group->chan, group->maxpwr, group->temp));
944 
945 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
946 		group->samples[i].index = rgroup.samples[i].index;
947 		group->samples[i].power = rgroup.samples[i].power;
948 
949 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
950 		    group->samples[i].index, group->samples[i].power));
951 	}
952 }
953 
954 struct ieee80211_node *
955 wpi_node_alloc(struct ieee80211com *ic)
956 {
957 	return malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
958 }
959 
960 void
961 wpi_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
962 {
963 	struct wpi_softc *sc = ic->ic_if.if_softc;
964 	struct wpi_node *wn = (void *)ni;
965 	uint8_t rate;
966 	int ridx, i;
967 
968 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
969 	/* Start at lowest available bit-rate, AMRR will raise. */
970 	ni->ni_txrate = 0;
971 
972 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
973 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
974 		/* Map 802.11 rate to HW rate index. */
975 		for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
976 			if (wpi_rates[ridx].rate == rate)
977 				break;
978 		wn->ridx[i] = ridx;
979 	}
980 }
981 
982 int
983 wpi_media_change(struct ifnet *ifp)
984 {
985 	struct wpi_softc *sc = ifp->if_softc;
986 	struct ieee80211com *ic = &sc->sc_ic;
987 	uint8_t rate, ridx;
988 	int error;
989 
990 	error = ieee80211_media_change(ifp);
991 	if (error != ENETRESET)
992 		return error;
993 
994 	if (ic->ic_fixed_rate != -1) {
995 		rate = ic->ic_sup_rates[ic->ic_curmode].
996 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
997 		/* Map 802.11 rate to HW rate index. */
998 		for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
999 			if (wpi_rates[ridx].rate == rate)
1000 				break;
1001 		sc->fixed_ridx = ridx;
1002 	}
1003 
1004 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1005 	    (IFF_UP | IFF_RUNNING)) {
1006 		wpi_stop(ifp, 0);
1007 		error = wpi_init(ifp);
1008 	}
1009 	return error;
1010 }
1011 
1012 int
1013 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1014 {
1015 	struct ifnet *ifp = &ic->ic_if;
1016 	struct wpi_softc *sc = ifp->if_softc;
1017 	int error;
1018 
1019 	timeout_del(&sc->calib_to);
1020 
1021 	switch (nstate) {
1022 	case IEEE80211_S_SCAN:
1023 		/* Make the link LED blink while we're scanning. */
1024 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1025 
1026 		if ((error = wpi_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1027 			printf("%s: could not initiate scan\n",
1028 			    sc->sc_dev.dv_xname);
1029 			return error;
1030 		}
1031 		ic->ic_state = nstate;
1032 		return 0;
1033 
1034 	case IEEE80211_S_ASSOC:
1035 		if (ic->ic_state != IEEE80211_S_RUN)
1036 			break;
1037 		/* FALLTHROUGH */
1038 	case IEEE80211_S_AUTH:
1039 		/* Reset state to handle reassociations correctly. */
1040 		sc->rxon.associd = 0;
1041 		sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1042 
1043 		if ((error = wpi_auth(sc)) != 0) {
1044 			printf("%s: could not move to auth state\n",
1045 			    sc->sc_dev.dv_xname);
1046 			return error;
1047 		}
1048 		break;
1049 
1050 	case IEEE80211_S_RUN:
1051 		if ((error = wpi_run(sc)) != 0) {
1052 			printf("%s: could not move to run state\n",
1053 			    sc->sc_dev.dv_xname);
1054 			return error;
1055 		}
1056 		break;
1057 
1058 	case IEEE80211_S_INIT:
1059 		break;
1060 	}
1061 
1062 	return sc->sc_newstate(ic, nstate, arg);
1063 }
1064 
1065 void
1066 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1067 {
1068 	struct wpi_softc *sc = arg;
1069 	struct wpi_node *wn = (struct wpi_node *)ni;
1070 
1071 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1072 }
1073 
1074 void
1075 wpi_calib_timeout(void *arg)
1076 {
1077 	struct wpi_softc *sc = arg;
1078 	struct ieee80211com *ic = &sc->sc_ic;
1079 	int s;
1080 
1081 	s = splnet();
1082 	/* Automatic rate control triggered every 500ms. */
1083 	if (ic->ic_fixed_rate == -1) {
1084 		if (ic->ic_opmode == IEEE80211_M_STA)
1085 			wpi_iter_func(sc, ic->ic_bss);
1086 		else
1087 			ieee80211_iterate_nodes(ic, wpi_iter_func, sc);
1088 	}
1089 
1090 	/* Force automatic TX power calibration every 60 secs. */
1091 	if (++sc->calib_cnt >= 120) {
1092 		wpi_power_calibration(sc);
1093 		sc->calib_cnt = 0;
1094 	}
1095 	splx(s);
1096 
1097 	/* Automatic rate control triggered every 500ms. */
1098 	timeout_add_msec(&sc->calib_to, 500);
1099 }
1100 
1101 int
1102 wpi_ccmp_decap(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_key *k)
1103 {
1104 	struct ieee80211_frame *wh;
1105 	uint64_t pn, *prsc;
1106 	uint8_t *ivp;
1107 	uint8_t tid;
1108 	int hdrlen;
1109 
1110 	wh = mtod(m, struct ieee80211_frame *);
1111 	hdrlen = ieee80211_get_hdrlen(wh);
1112 	ivp = (uint8_t *)wh + hdrlen;
1113 
1114 	/* Check that ExtIV bit is be set. */
1115 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1116 		DPRINTF(("CCMP decap ExtIV not set\n"));
1117 		return 1;
1118 	}
1119 	tid = ieee80211_has_qos(wh) ?
1120 	    ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1121 	prsc = &k->k_rsc[tid];
1122 
1123 	/* Extract the 48-bit PN from the CCMP header. */
1124 	pn = (uint64_t)ivp[0]       |
1125 	     (uint64_t)ivp[1] <<  8 |
1126 	     (uint64_t)ivp[4] << 16 |
1127 	     (uint64_t)ivp[5] << 24 |
1128 	     (uint64_t)ivp[6] << 32 |
1129 	     (uint64_t)ivp[7] << 40;
1130 	if (pn <= *prsc) {
1131 		/*
1132 		 * Not necessarily a replayed frame since we did not check
1133 		 * the sequence number of the 802.11 header yet.
1134 		 */
1135 		DPRINTF(("CCMP replayed\n"));
1136 		return 1;
1137 	}
1138 	/* Update last seen packet number. */
1139 	*prsc = pn;
1140 
1141 	/* Clear Protected bit and strip IV. */
1142 	wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1143 	ovbcopy(wh, mtod(m, caddr_t) + IEEE80211_CCMP_HDRLEN, hdrlen);
1144 	m_adj(m, IEEE80211_CCMP_HDRLEN);
1145 	/* Strip MIC. */
1146 	m_adj(m, -IEEE80211_CCMP_MICLEN);
1147 	return 0;
1148 }
1149 
1150 void
1151 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1152     struct wpi_rx_data *data)
1153 {
1154 	struct ieee80211com *ic = &sc->sc_ic;
1155 	struct ifnet *ifp = &ic->ic_if;
1156 	struct wpi_rx_ring *ring = &sc->rxq;
1157 	struct wpi_rx_stat *stat;
1158 	struct wpi_rx_head *head;
1159 	struct wpi_rx_tail *tail;
1160 	struct ieee80211_frame *wh;
1161 	struct ieee80211_rxinfo rxi;
1162 	struct ieee80211_node *ni;
1163 	struct mbuf *m, *m1;
1164 	uint32_t flags;
1165 	int error;
1166 
1167 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, WPI_RBUF_SIZE,
1168 	    BUS_DMASYNC_POSTREAD);
1169 	stat = (struct wpi_rx_stat *)(desc + 1);
1170 
1171 	if (stat->len > WPI_STAT_MAXLEN) {
1172 		printf("%s: invalid RX statistic header\n",
1173 		    sc->sc_dev.dv_xname);
1174 		ifp->if_ierrors++;
1175 		return;
1176 	}
1177 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1178 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + letoh16(head->len));
1179 	flags = letoh32(tail->flags);
1180 
1181 	/* Discard frames with a bad FCS early. */
1182 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1183 		DPRINTFN(2, ("rx tail flags error %x\n", flags));
1184 		ifp->if_ierrors++;
1185 		return;
1186 	}
1187 	/* Discard frames that are too short. */
1188 	if (letoh16(head->len) < sizeof (*wh)) {
1189 		DPRINTF(("frame too short: %d\n", letoh16(head->len)));
1190 		ic->ic_stats.is_rx_tooshort++;
1191 		ifp->if_ierrors++;
1192 		return;
1193 	}
1194 
1195 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, WPI_RBUF_SIZE);
1196 	if (m1 == NULL) {
1197 		ic->ic_stats.is_rx_nombuf++;
1198 		ifp->if_ierrors++;
1199 		return;
1200 	}
1201 	bus_dmamap_unload(sc->sc_dmat, data->map);
1202 
1203 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1204 	    WPI_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1205 	if (error != 0) {
1206 		m_freem(m1);
1207 
1208 		/* Try to reload the old mbuf. */
1209 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1210 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1211 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1212 		if (error != 0) {
1213 			panic("%s: could not load old RX mbuf",
1214 			    sc->sc_dev.dv_xname);
1215 		}
1216 		/* Physical address may have changed. */
1217 		ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1218 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1219 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1220 		    BUS_DMASYNC_PREWRITE);
1221 		ifp->if_ierrors++;
1222 		return;
1223 	}
1224 
1225 	m = data->m;
1226 	data->m = m1;
1227 	/* Update RX descriptor. */
1228 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1229 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1230 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1231 	    BUS_DMASYNC_PREWRITE);
1232 
1233 	/* Finalize mbuf. */
1234 	m->m_pkthdr.rcvif = ifp;
1235 	m->m_data = (caddr_t)(head + 1);
1236 	m->m_pkthdr.len = m->m_len = letoh16(head->len);
1237 
1238 	/* Grab a reference to the source node. */
1239 	wh = mtod(m, struct ieee80211_frame *);
1240 	ni = ieee80211_find_rxnode(ic, wh);
1241 
1242 	rxi.rxi_flags = 0;
1243 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1244 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1245 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
1246 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
1247 		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP) {
1248 			ic->ic_stats.is_ccmp_dec_errs++;
1249 			ifp->if_ierrors++;
1250 			m_freem(m);
1251 			return;
1252 		}
1253 		/* Check whether decryption was successful or not. */
1254 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1255 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
1256 			ic->ic_stats.is_ccmp_dec_errs++;
1257 			ifp->if_ierrors++;
1258 			m_freem(m);
1259 			return;
1260 		}
1261 		if (wpi_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) {
1262 			ifp->if_ierrors++;
1263 			m_freem(m);
1264 			return;
1265 		}
1266 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1267 	}
1268 
1269 #if NBPFILTER > 0
1270 	if (sc->sc_drvbpf != NULL) {
1271 		struct mbuf mb;
1272 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1273 
1274 		tap->wr_flags = 0;
1275 		if (letoh16(head->flags) & 0x4)
1276 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1277 		tap->wr_chan_freq =
1278 		    htole16(ic->ic_channels[head->chan].ic_freq);
1279 		tap->wr_chan_flags =
1280 		    htole16(ic->ic_channels[head->chan].ic_flags);
1281 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1282 		tap->wr_dbm_antnoise = (int8_t)letoh16(stat->noise);
1283 		tap->wr_tsft = tail->tstamp;
1284 		tap->wr_antenna = (letoh16(head->flags) >> 4) & 0xf;
1285 		switch (head->rate) {
1286 		/* CCK rates. */
1287 		case  10: tap->wr_rate =   2; break;
1288 		case  20: tap->wr_rate =   4; break;
1289 		case  55: tap->wr_rate =  11; break;
1290 		case 110: tap->wr_rate =  22; break;
1291 		/* OFDM rates. */
1292 		case 0xd: tap->wr_rate =  12; break;
1293 		case 0xf: tap->wr_rate =  18; break;
1294 		case 0x5: tap->wr_rate =  24; break;
1295 		case 0x7: tap->wr_rate =  36; break;
1296 		case 0x9: tap->wr_rate =  48; break;
1297 		case 0xb: tap->wr_rate =  72; break;
1298 		case 0x1: tap->wr_rate =  96; break;
1299 		case 0x3: tap->wr_rate = 108; break;
1300 		/* Unknown rate: should not happen. */
1301 		default:  tap->wr_rate =   0;
1302 		}
1303 
1304 		mb.m_data = (caddr_t)tap;
1305 		mb.m_len = sc->sc_rxtap_len;
1306 		mb.m_next = m;
1307 		mb.m_nextpkt = NULL;
1308 		mb.m_type = 0;
1309 		mb.m_flags = 0;
1310 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1311 	}
1312 #endif
1313 
1314 	/* Send the frame to the 802.11 layer. */
1315 	rxi.rxi_rssi = stat->rssi;
1316 	rxi.rxi_tstamp = 0;	/* unused */
1317 	ieee80211_input(ifp, m, ni, &rxi);
1318 
1319 	/* Node is no longer needed. */
1320 	ieee80211_release_node(ic, ni);
1321 }
1322 
1323 void
1324 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1325 {
1326 	struct ieee80211com *ic = &sc->sc_ic;
1327 	struct ifnet *ifp = &ic->ic_if;
1328 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1329 	struct wpi_tx_data *data = &ring->data[desc->idx];
1330 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1331 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1332 
1333 	/* Update rate control statistics. */
1334 	wn->amn.amn_txcnt++;
1335 	if (stat->retrycnt > 0)
1336 		wn->amn.amn_retrycnt++;
1337 
1338 	if ((letoh32(stat->status) & 0xff) != 1)
1339 		ifp->if_oerrors++;
1340 	else
1341 		ifp->if_opackets++;
1342 
1343 	/* Unmap and free mbuf. */
1344 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1345 	    BUS_DMASYNC_POSTWRITE);
1346 	bus_dmamap_unload(sc->sc_dmat, data->map);
1347 	m_freem(data->m);
1348 	data->m = NULL;
1349 	ieee80211_release_node(ic, data->ni);
1350 	data->ni = NULL;
1351 
1352 	sc->sc_tx_timer = 0;
1353 	if (--ring->queued < WPI_TX_RING_LOMARK) {
1354 		sc->qfullmsk &= ~(1 << ring->qid);
1355 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
1356 			ifp->if_flags &= ~IFF_OACTIVE;
1357 			(*ifp->if_start)(ifp);
1358 		}
1359 	}
1360 }
1361 
1362 void
1363 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1364 {
1365 	struct wpi_tx_ring *ring = &sc->txq[4];
1366 	struct wpi_tx_data *data;
1367 
1368 	if ((desc->qid & 7) != 4)
1369 		return;	/* Not a command ack. */
1370 
1371 	data = &ring->data[desc->idx];
1372 
1373 	/* If the command was mapped in an mbuf, free it. */
1374 	if (data->m != NULL) {
1375 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1376 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1377 		bus_dmamap_unload(sc->sc_dmat, data->map);
1378 		m_freem(data->m);
1379 		data->m = NULL;
1380 	}
1381 	wakeup(&ring->cmd[desc->idx]);
1382 }
1383 
1384 void
1385 wpi_notif_intr(struct wpi_softc *sc)
1386 {
1387 	struct ieee80211com *ic = &sc->sc_ic;
1388 	struct ifnet *ifp = &ic->ic_if;
1389 	uint32_t hw;
1390 
1391 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1392 	    sizeof (struct wpi_shared), BUS_DMASYNC_POSTREAD);
1393 
1394 	hw = letoh32(sc->shared->next);
1395 	while (sc->rxq.cur != hw) {
1396 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1397 		struct wpi_rx_desc *desc;
1398 
1399 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
1400 		    BUS_DMASYNC_POSTREAD);
1401 		desc = mtod(data->m, struct wpi_rx_desc *);
1402 
1403 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1404 		    "len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
1405 		    letoh32(desc->len)));
1406 
1407 		if (!(desc->qid & 0x80))	/* Reply to a command. */
1408 			wpi_cmd_done(sc, desc);
1409 
1410 		switch (desc->type) {
1411 		case WPI_RX_DONE:
1412 			/* An 802.11 frame has been received. */
1413 			wpi_rx_done(sc, desc, data);
1414 			break;
1415 
1416 		case WPI_TX_DONE:
1417 			/* An 802.11 frame has been transmitted. */
1418 			wpi_tx_done(sc, desc);
1419 			break;
1420 
1421 		case WPI_UC_READY:
1422 		{
1423 			struct wpi_ucode_info *uc =
1424 			    (struct wpi_ucode_info *)(desc + 1);
1425 
1426 			/* The microcontroller is ready. */
1427 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1428 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
1429 			DPRINTF(("microcode alive notification version %x "
1430 			    "alive %x\n", letoh32(uc->version),
1431 			    letoh32(uc->valid)));
1432 
1433 			if (letoh32(uc->valid) != 1) {
1434 				printf("%s: microcontroller initialization "
1435 				    "failed\n", sc->sc_dev.dv_xname);
1436 			}
1437 			if (uc->subtype != WPI_UCODE_INIT) {
1438 				/* Save the address of the error log. */
1439 				sc->errptr = letoh32(uc->errptr);
1440 			}
1441 			break;
1442 		}
1443 		case WPI_STATE_CHANGED:
1444 		{
1445 			uint32_t *status = (uint32_t *)(desc + 1);
1446 
1447 			/* Enabled/disabled notification. */
1448 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1449 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
1450 			DPRINTF(("state changed to %x\n", letoh32(*status)));
1451 
1452 			if (letoh32(*status) & 1) {
1453 				/* The radio button has to be pushed. */
1454 				printf("%s: Radio transmitter is off\n",
1455 				    sc->sc_dev.dv_xname);
1456 				/* Turn the interface down. */
1457 				ifp->if_flags &= ~IFF_UP;
1458 				wpi_stop(ifp, 1);
1459 				return;	/* No further processing. */
1460 			}
1461 			break;
1462 		}
1463 		case WPI_START_SCAN:
1464 		{
1465 			struct wpi_start_scan *scan =
1466 			    (struct wpi_start_scan *)(desc + 1);
1467 
1468 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1469 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
1470 			DPRINTFN(2, ("scanning channel %d status %x\n",
1471 			    scan->chan, letoh32(scan->status)));
1472 
1473 			/* Fix current channel. */
1474 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1475 			break;
1476 		}
1477 		case WPI_STOP_SCAN:
1478 		{
1479 			struct wpi_stop_scan *scan =
1480 			    (struct wpi_stop_scan *)(desc + 1);
1481 
1482 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1483 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
1484 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1485 			    scan->nchan, scan->status, scan->chan));
1486 
1487 			if (scan->status == 1 && scan->chan <= 14 &&
1488 			    (sc->sc_flags & WPI_FLAG_HAS_5GHZ)) {
1489 				/*
1490 				 * We just finished scanning 2GHz channels,
1491 				 * start scanning 5GHz ones.
1492 				 */
1493 				if (wpi_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
1494 					break;
1495 			}
1496 			ieee80211_end_scan(ifp);
1497 			break;
1498 		}
1499 		}
1500 
1501 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1502 	}
1503 
1504 	/* Tell the firmware what we have processed. */
1505 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1506 	WPI_WRITE(sc, WPI_FH_RX_WPTR, hw & ~7);
1507 }
1508 
1509 /*
1510  * Dump the error log of the firmware when a firmware panic occurs.  Although
1511  * we can't debug the firmware because it is neither open source nor free, it
1512  * can help us to identify certain classes of problems.
1513  */
1514 void
1515 wpi_fatal_intr(struct wpi_softc *sc)
1516 {
1517 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1518 	struct wpi_fwdump dump;
1519 	uint32_t i, offset, count;
1520 
1521 	/* Check that the error log address is valid. */
1522 	if (sc->errptr < WPI_FW_DATA_BASE ||
1523 	    sc->errptr + sizeof (dump) >
1524 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
1525 		printf("%s: bad firmware error log address 0x%08x\n",
1526 		    sc->sc_dev.dv_xname, sc->errptr);
1527 		return;
1528 	}
1529 
1530 	if (wpi_nic_lock(sc) != 0) {
1531 		printf("%s: could not read firmware error log\n",
1532 		    sc->sc_dev.dv_xname);
1533 		return;
1534 	}
1535 	/* Read number of entries in the log. */
1536 	count = wpi_mem_read(sc, sc->errptr);
1537 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
1538 		printf("%s: invalid count field (count=%u)\n",
1539 		    sc->sc_dev.dv_xname, count);
1540 		wpi_nic_unlock(sc);
1541 		return;
1542 	}
1543 	/* Skip "count" field. */
1544 	offset = sc->errptr + sizeof (uint32_t);
1545 	printf("firmware error log (count=%u):\n", count);
1546 	for (i = 0; i < count; i++) {
1547 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
1548 		    sizeof (dump) / sizeof (uint32_t));
1549 
1550 		printf("  error type = \"%s\" (0x%08X)\n",
1551 		    (dump.desc < N(wpi_fw_errmsg)) ?
1552 			wpi_fw_errmsg[dump.desc] : "UNKNOWN",
1553 		    dump.desc);
1554 		printf("  error data      = 0x%08X\n",
1555 		    dump.data);
1556 		printf("  branch link     = 0x%08X%08X\n",
1557 		    dump.blink[0], dump.blink[1]);
1558 		printf("  interrupt link  = 0x%08X%08X\n",
1559 		    dump.ilink[0], dump.ilink[1]);
1560 		printf("  time            = %u\n", dump.time);
1561 
1562 		offset += sizeof (dump);
1563 	}
1564 	wpi_nic_unlock(sc);
1565 	/* Dump driver status (TX and RX rings) while we're here. */
1566 	printf("driver status:\n");
1567 	for (i = 0; i < 6; i++) {
1568 		struct wpi_tx_ring *ring = &sc->txq[i];
1569 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
1570 		    i, ring->qid, ring->cur, ring->queued);
1571 	}
1572 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
1573 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
1574 #undef N
1575 }
1576 
1577 int
1578 wpi_intr(void *arg)
1579 {
1580 	struct wpi_softc *sc = arg;
1581 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1582 	uint32_t r1, r2;
1583 
1584 	/* Disable interrupts. */
1585 	WPI_WRITE(sc, WPI_MASK, 0);
1586 
1587 	r1 = WPI_READ(sc, WPI_INT);
1588 	r2 = WPI_READ(sc, WPI_FH_INT);
1589 
1590 	if (r1 == 0 && r2 == 0) {
1591 		if (ifp->if_flags & IFF_UP)
1592 			WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
1593 		return 0;	/* Interrupt not for us. */
1594 	}
1595 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
1596 		return 0;	/* Hardware gone! */
1597 
1598 	/* Acknowledge interrupts. */
1599 	WPI_WRITE(sc, WPI_INT, r1);
1600 	WPI_WRITE(sc, WPI_FH_INT, r2);
1601 
1602 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
1603 		printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1604 		/* Dump firmware error log and stop. */
1605 		wpi_fatal_intr(sc);
1606 		ifp->if_flags &= ~IFF_UP;
1607 		wpi_stop(ifp, 1);
1608 		return 1;
1609 	}
1610 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
1611 	    (r2 & WPI_FH_INT_RX))
1612 		wpi_notif_intr(sc);
1613 
1614 	if (r1 & WPI_INT_ALIVE)
1615 		wakeup(sc);	/* Firmware is alive. */
1616 
1617 	/* Re-enable interrupts. */
1618 	if (ifp->if_flags & IFF_UP)
1619 		WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
1620 
1621 	return 1;
1622 }
1623 
1624 int
1625 wpi_tx(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1626 {
1627 	struct ieee80211com *ic = &sc->sc_ic;
1628 	struct wpi_node *wn = (void *)ni;
1629 	struct wpi_tx_ring *ring;
1630 	struct wpi_tx_desc *desc;
1631 	struct wpi_tx_data *data;
1632 	struct wpi_tx_cmd *cmd;
1633 	struct wpi_cmd_data *tx;
1634 	const struct wpi_rate *rinfo;
1635 	struct ieee80211_frame *wh;
1636 	struct ieee80211_key *k = NULL;
1637 	struct mbuf *m1;
1638 	enum ieee80211_edca_ac ac;
1639 	uint32_t flags;
1640 	uint16_t qos;
1641 	u_int hdrlen;
1642 	uint8_t *ivp, tid, ridx, type;
1643 	int i, totlen, hasqos, error;
1644 
1645 	wh = mtod(m, struct ieee80211_frame *);
1646 	hdrlen = ieee80211_get_hdrlen(wh);
1647 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1648 
1649 	/* Select EDCA Access Category and TX ring for this frame. */
1650 	if ((hasqos = ieee80211_has_qos(wh))) {
1651 		qos = ieee80211_get_qos(wh);
1652 		tid = qos & IEEE80211_QOS_TID;
1653 		ac = ieee80211_up_to_ac(ic, tid);
1654 	} else {
1655 		tid = 0;
1656 		ac = EDCA_AC_BE;
1657 	}
1658 
1659 	ring = &sc->txq[ac];
1660 	desc = &ring->desc[ring->cur];
1661 	data = &ring->data[ring->cur];
1662 
1663 	/* Choose a TX rate index. */
1664 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1665 	    type != IEEE80211_FC0_TYPE_DATA) {
1666 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1667 		    WPI_RIDX_OFDM6 : WPI_RIDX_CCK1;
1668 	} else if (ic->ic_fixed_rate != -1) {
1669 		ridx = sc->fixed_ridx;
1670 	} else
1671 		ridx = wn->ridx[ni->ni_txrate];
1672 	rinfo = &wpi_rates[ridx];
1673 
1674 #if NBPFILTER > 0
1675 	if (sc->sc_drvbpf != NULL) {
1676 		struct mbuf mb;
1677 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1678 
1679 		tap->wt_flags = 0;
1680 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1681 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1682 		tap->wt_rate = rinfo->rate;
1683 		tap->wt_hwqueue = ac;
1684 		if ((ic->ic_flags & IEEE80211_F_WEPON) &&
1685 		    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
1686 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1687 
1688 		mb.m_data = (caddr_t)tap;
1689 		mb.m_len = sc->sc_txtap_len;
1690 		mb.m_next = m;
1691 		mb.m_nextpkt = NULL;
1692 		mb.m_type = 0;
1693 		mb.m_flags = 0;
1694 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1695 	}
1696 #endif
1697 
1698 	totlen = m->m_pkthdr.len;
1699 
1700 	/* Encrypt the frame if need be. */
1701 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1702 		/* Retrieve key for TX. */
1703 		k = ieee80211_get_txkey(ic, wh, ni);
1704 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
1705 			/* Do software encryption. */
1706 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1707 				return ENOBUFS;
1708 			/* 802.11 header may have moved. */
1709 			wh = mtod(m, struct ieee80211_frame *);
1710 			totlen = m->m_pkthdr.len;
1711 
1712 		} else	/* HW appends CCMP MIC. */
1713 			totlen += IEEE80211_CCMP_HDRLEN;
1714 	}
1715 
1716 	/* Prepare TX firmware command. */
1717 	cmd = &ring->cmd[ring->cur];
1718 	cmd->code = WPI_CMD_TX_DATA;
1719 	cmd->flags = 0;
1720 	cmd->qid = ring->qid;
1721 	cmd->idx = ring->cur;
1722 
1723 	tx = (struct wpi_cmd_data *)cmd->data;
1724 	/* NB: No need to clear tx, all fields are reinitialized here. */
1725 
1726 	flags = 0;
1727 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1728 		/* Unicast frame, check if an ACK is expected. */
1729 		if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
1730 		    IEEE80211_QOS_ACK_POLICY_NOACK)
1731 			flags |= WPI_TX_NEED_ACK;
1732 	}
1733 
1734 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1735 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1736 		/* NB: Group frames are sent using CCK in 802.11b/g. */
1737 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
1738 			flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
1739 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1740 		    ridx <= WPI_RIDX_OFDM54) {
1741 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1742 				flags |= WPI_TX_NEED_CTS | WPI_TX_FULL_TXOP;
1743 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1744 				flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
1745 		}
1746 	}
1747 
1748 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1749 	    type != IEEE80211_FC0_TYPE_DATA)
1750 		tx->id = WPI_ID_BROADCAST;
1751 	else
1752 		tx->id = wn->id;
1753 
1754 	if (type == IEEE80211_FC0_TYPE_MGT) {
1755 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1756 
1757 #ifndef IEEE80211_STA_ONLY
1758 		/* Tell HW to set timestamp in probe responses. */
1759 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1760 			flags |= WPI_TX_INSERT_TSTAMP;
1761 #endif
1762 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1763 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1764 			tx->timeout = htole16(3);
1765 		else
1766 			tx->timeout = htole16(2);
1767 	} else
1768 		tx->timeout = htole16(0);
1769 
1770 	tx->len = htole16(totlen);
1771 	tx->tid = tid;
1772 	tx->rts_ntries = 7;
1773 	tx->data_ntries = 15;
1774 	tx->ofdm_mask = 0xff;
1775 	tx->cck_mask = 0x0f;
1776 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1777 	tx->plcp = rinfo->plcp;
1778 
1779 	/* Copy 802.11 header in TX command. */
1780 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1781 
1782 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
1783 		/* Trim 802.11 header and prepend CCMP IV. */
1784 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
1785 		ivp = mtod(m, uint8_t *);
1786 		k->k_tsc++;
1787 		ivp[0] = k->k_tsc;
1788 		ivp[1] = k->k_tsc >> 8;
1789 		ivp[2] = 0;
1790 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
1791 		ivp[4] = k->k_tsc >> 16;
1792 		ivp[5] = k->k_tsc >> 24;
1793 		ivp[6] = k->k_tsc >> 32;
1794 		ivp[7] = k->k_tsc >> 40;
1795 
1796 		tx->security = WPI_CIPHER_CCMP;
1797 		memcpy(tx->key, k->k_key, k->k_len);
1798 	} else {
1799 		/* Trim 802.11 header. */
1800 		m_adj(m, hdrlen);
1801 		tx->security = 0;
1802 	}
1803 	tx->flags = htole32(flags);
1804 
1805 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1806 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1807 	if (error != 0 && error != EFBIG) {
1808 		printf("%s: can't map mbuf (error %d)\n",
1809 		    sc->sc_dev.dv_xname, error);
1810 		m_freem(m);
1811 		return error;
1812 	}
1813 	if (error != 0) {
1814 		/* Too many DMA segments, linearize mbuf. */
1815 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
1816 		if (m1 == NULL) {
1817 			m_freem(m);
1818 			return ENOBUFS;
1819 		}
1820 		if (m->m_pkthdr.len > MHLEN) {
1821 			MCLGET(m1, M_DONTWAIT);
1822 			if (!(m1->m_flags & M_EXT)) {
1823 				m_freem(m);
1824 				m_freem(m1);
1825 				return ENOBUFS;
1826 			}
1827 		}
1828 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, caddr_t));
1829 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
1830 		m_freem(m);
1831 		m = m1;
1832 
1833 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1834 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1835 		if (error != 0) {
1836 			printf("%s: can't map mbuf (error %d)\n",
1837 			    sc->sc_dev.dv_xname, error);
1838 			m_freem(m);
1839 			return error;
1840 		}
1841 	}
1842 
1843 	data->m = m;
1844 	data->ni = ni;
1845 
1846 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1847 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
1848 
1849 	/* Fill TX descriptor. */
1850 	desc->flags = htole32(WPI_PAD32(m->m_pkthdr.len) << 28 |
1851 	    (1 + data->map->dm_nsegs) << 24);
1852 	/* First DMA segment is used by the TX command. */
1853 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1854 	    ring->cur * sizeof (struct wpi_tx_cmd));
1855 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1856 	    ((hdrlen + 3) & ~3));
1857 	/* Other DMA segments are for data payload. */
1858 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1859 		desc->segs[i].addr =
1860 		    htole32(data->map->dm_segs[i - 1].ds_addr);
1861 		desc->segs[i].len  =
1862 		    htole32(data->map->dm_segs[i - 1].ds_len);
1863 	}
1864 
1865 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1866 	    BUS_DMASYNC_PREWRITE);
1867 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
1868 	    (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
1869 	    BUS_DMASYNC_PREWRITE);
1870 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1871 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
1872 	    BUS_DMASYNC_PREWRITE);
1873 
1874 	/* Kick TX ring. */
1875 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1876 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1877 
1878 	/* Mark TX ring as full if we reach a certain threshold. */
1879 	if (++ring->queued > WPI_TX_RING_HIMARK)
1880 		sc->qfullmsk |= 1 << ring->qid;
1881 
1882 	return 0;
1883 }
1884 
1885 void
1886 wpi_start(struct ifnet *ifp)
1887 {
1888 	struct wpi_softc *sc = ifp->if_softc;
1889 	struct ieee80211com *ic = &sc->sc_ic;
1890 	struct ieee80211_node *ni;
1891 	struct mbuf *m;
1892 
1893 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1894 		return;
1895 
1896 	for (;;) {
1897 		if (sc->qfullmsk != 0) {
1898 			ifp->if_flags |= IFF_OACTIVE;
1899 			break;
1900 		}
1901 		/* Send pending management frames first. */
1902 		IF_DEQUEUE(&ic->ic_mgtq, m);
1903 		if (m != NULL) {
1904 			ni = (void *)m->m_pkthdr.rcvif;
1905 			goto sendit;
1906 		}
1907 		if (ic->ic_state != IEEE80211_S_RUN)
1908 			break;
1909 
1910 		/* Encapsulate and send data frames. */
1911 		IFQ_DEQUEUE(&ifp->if_snd, m);
1912 		if (m == NULL)
1913 			break;
1914 #if NBPFILTER > 0
1915 		if (ifp->if_bpf != NULL)
1916 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1917 #endif
1918 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1919 			continue;
1920 sendit:
1921 #if NBPFILTER > 0
1922 		if (ic->ic_rawbpf != NULL)
1923 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1924 #endif
1925 		if (wpi_tx(sc, m, ni) != 0) {
1926 			ieee80211_release_node(ic, ni);
1927 			ifp->if_oerrors++;
1928 			continue;
1929 		}
1930 
1931 		sc->sc_tx_timer = 5;
1932 		ifp->if_timer = 1;
1933 	}
1934 }
1935 
1936 void
1937 wpi_watchdog(struct ifnet *ifp)
1938 {
1939 	struct wpi_softc *sc = ifp->if_softc;
1940 
1941 	ifp->if_timer = 0;
1942 
1943 	if (sc->sc_tx_timer > 0) {
1944 		if (--sc->sc_tx_timer == 0) {
1945 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1946 			ifp->if_flags &= ~IFF_UP;
1947 			wpi_stop(ifp, 1);
1948 			ifp->if_oerrors++;
1949 			return;
1950 		}
1951 		ifp->if_timer = 1;
1952 	}
1953 
1954 	ieee80211_watchdog(ifp);
1955 }
1956 
1957 int
1958 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1959 {
1960 	struct wpi_softc *sc = ifp->if_softc;
1961 	struct ieee80211com *ic = &sc->sc_ic;
1962 	struct ifaddr *ifa;
1963 	struct ifreq *ifr;
1964 	int s, error = 0;
1965 
1966 	s = splnet();
1967 
1968 	switch (cmd) {
1969 	case SIOCSIFADDR:
1970 		ifa = (struct ifaddr *)data;
1971 		ifp->if_flags |= IFF_UP;
1972 #ifdef INET
1973 		if (ifa->ifa_addr->sa_family == AF_INET)
1974 			arp_ifinit(&ic->ic_ac, ifa);
1975 #endif
1976 		/* FALLTHROUGH */
1977 	case SIOCSIFFLAGS:
1978 		if (ifp->if_flags & IFF_UP) {
1979 			if (!(ifp->if_flags & IFF_RUNNING))
1980 				error = wpi_init(ifp);
1981 		} else {
1982 			if (ifp->if_flags & IFF_RUNNING)
1983 				wpi_stop(ifp, 1);
1984 		}
1985 		break;
1986 
1987 	case SIOCADDMULTI:
1988 	case SIOCDELMULTI:
1989 		ifr = (struct ifreq *)data;
1990 		error = (cmd == SIOCADDMULTI) ?
1991 		    ether_addmulti(ifr, &ic->ic_ac) :
1992 		    ether_delmulti(ifr, &ic->ic_ac);
1993 
1994 		if (error == ENETRESET)
1995 			error = 0;
1996 		break;
1997 
1998 	case SIOCS80211POWER:
1999 		error = ieee80211_ioctl(ifp, cmd, data);
2000 		if (error != ENETRESET)
2001 			break;
2002 		if (ic->ic_state == IEEE80211_S_RUN) {
2003 			if (ic->ic_flags & IEEE80211_F_PMGTON)
2004 				error = wpi_set_pslevel(sc, 0, 3, 0);
2005 			else	/* back to CAM */
2006 				error = wpi_set_pslevel(sc, 0, 0, 0);
2007 		} else {
2008 			/* Defer until transition to IEEE80211_S_RUN. */
2009 			error = 0;
2010 		}
2011 		break;
2012 
2013 	default:
2014 		error = ieee80211_ioctl(ifp, cmd, data);
2015 	}
2016 
2017 	if (error == ENETRESET) {
2018 		error = 0;
2019 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2020 		    (IFF_UP | IFF_RUNNING)) {
2021 			wpi_stop(ifp, 0);
2022 			error = wpi_init(ifp);
2023 		}
2024 	}
2025 
2026 	splx(s);
2027 	return error;
2028 }
2029 
2030 /*
2031  * Send a command to the firmware.
2032  */
2033 int
2034 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2035 {
2036 	struct wpi_tx_ring *ring = &sc->txq[4];
2037 	struct wpi_tx_desc *desc;
2038 	struct wpi_tx_data *data;
2039 	struct wpi_tx_cmd *cmd;
2040 	struct mbuf *m;
2041 	bus_addr_t paddr;
2042 	int totlen, error;
2043 
2044 	desc = &ring->desc[ring->cur];
2045 	data = &ring->data[ring->cur];
2046 	totlen = 4 + size;
2047 
2048 	if (size > sizeof cmd->data) {
2049 		/* Command is too large to fit in a descriptor. */
2050 		if (totlen > MCLBYTES)
2051 			return EINVAL;
2052 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2053 		if (m == NULL)
2054 			return ENOMEM;
2055 		if (totlen > MHLEN) {
2056 			MCLGET(m, M_DONTWAIT);
2057 			if (!(m->m_flags & M_EXT)) {
2058 				m_freem(m);
2059 				return ENOMEM;
2060 			}
2061 		}
2062 		cmd = mtod(m, struct wpi_tx_cmd *);
2063 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
2064 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2065 		if (error != 0) {
2066 			m_freem(m);
2067 			return error;
2068 		}
2069 		data->m = m;
2070 		paddr = data->map->dm_segs[0].ds_addr;
2071 	} else {
2072 		cmd = &ring->cmd[ring->cur];
2073 		paddr = data->cmd_paddr;
2074 	}
2075 
2076 	cmd->code = code;
2077 	cmd->flags = 0;
2078 	cmd->qid = ring->qid;
2079 	cmd->idx = ring->cur;
2080 	memcpy(cmd->data, buf, size);
2081 
2082 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2083 	desc->segs[0].addr = htole32(paddr);
2084 	desc->segs[0].len  = htole32(totlen);
2085 
2086 	if (size > sizeof cmd->data) {
2087 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
2088 		    BUS_DMASYNC_PREWRITE);
2089 	} else {
2090 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2091 		    (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
2092 		    BUS_DMASYNC_PREWRITE);
2093 	}
2094 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2095 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
2096 	    BUS_DMASYNC_PREWRITE);
2097 
2098 	/* Kick command ring. */
2099 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2100 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2101 
2102 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2103 }
2104 
2105 /*
2106  * Configure HW multi-rate retries.
2107  */
2108 int
2109 wpi_mrr_setup(struct wpi_softc *sc)
2110 {
2111 	struct ieee80211com *ic = &sc->sc_ic;
2112 	struct wpi_mrr_setup mrr;
2113 	int i, error;
2114 
2115 	/* CCK rates (not used with 802.11a). */
2116 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2117 		mrr.rates[i].flags = 0;
2118 		mrr.rates[i].plcp = wpi_rates[i].plcp;
2119 		/* Fallback to the immediate lower CCK rate (if any.) */
2120 		mrr.rates[i].next =
2121 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2122 		/* Try one time at this rate before falling back to "next". */
2123 		mrr.rates[i].ntries = 1;
2124 	}
2125 	/* OFDM rates (not used with 802.11b). */
2126 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2127 		mrr.rates[i].flags = 0;
2128 		mrr.rates[i].plcp = wpi_rates[i].plcp;
2129 		/* Fallback to the immediate lower rate (if any.) */
2130 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2131 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2132 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2133 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2134 		    i - 1;
2135 		/* Try one time at this rate before falling back to "next". */
2136 		mrr.rates[i].ntries = 1;
2137 	}
2138 	/* Setup MRR for control frames. */
2139 	mrr.which = htole32(WPI_MRR_CTL);
2140 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2141 	if (error != 0) {
2142 		printf("%s: could not setup MRR for control frames\n",
2143 		    sc->sc_dev.dv_xname);
2144 		return error;
2145 	}
2146 	/* Setup MRR for data frames. */
2147 	mrr.which = htole32(WPI_MRR_DATA);
2148 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2149 	if (error != 0) {
2150 		printf("%s: could not setup MRR for data frames\n",
2151 		    sc->sc_dev.dv_xname);
2152 		return error;
2153 	}
2154 	return 0;
2155 }
2156 
2157 void
2158 wpi_updateedca(struct ieee80211com *ic)
2159 {
2160 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2161 	struct wpi_softc *sc = ic->ic_softc;
2162 	struct wpi_edca_params cmd;
2163 	int aci;
2164 
2165 	memset(&cmd, 0, sizeof cmd);
2166 	cmd.flags = htole32(WPI_EDCA_UPDATE);
2167 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2168 		const struct ieee80211_edca_ac_params *ac =
2169 		    &ic->ic_edca_ac[aci];
2170 		cmd.ac[aci].aifsn = ac->ac_aifsn;
2171 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->ac_ecwmin));
2172 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->ac_ecwmax));
2173 		cmd.ac[aci].txoplimit =
2174 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
2175 	}
2176 	(void)wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
2177 #undef WPI_EXP2
2178 }
2179 
2180 void
2181 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2182 {
2183 	struct wpi_cmd_led led;
2184 
2185 	led.which = which;
2186 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2187 	led.off = off;
2188 	led.on = on;
2189 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2190 }
2191 
2192 int
2193 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
2194 {
2195 	struct wpi_cmd_timing cmd;
2196 	uint64_t val, mod;
2197 
2198 	memset(&cmd, 0, sizeof cmd);
2199 	memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
2200 	cmd.bintval = htole16(ni->ni_intval);
2201 	cmd.lintval = htole16(10);
2202 
2203 	/* Compute remaining time until next beacon. */
2204 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2205 	mod = letoh64(cmd.tstamp) % val;
2206 	cmd.binitval = htole32((uint32_t)(val - mod));
2207 
2208 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
2209 	    ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
2210 
2211 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
2212 }
2213 
2214 /*
2215  * This function is called periodically (every minute) to adjust TX power
2216  * based on temperature variation.
2217  */
2218 void
2219 wpi_power_calibration(struct wpi_softc *sc)
2220 {
2221 	int temp;
2222 
2223 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
2224 	/* Sanity-check temperature. */
2225 	if (temp < -260 || temp > 25) {
2226 		/* This can't be correct, ignore. */
2227 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
2228 		return;
2229 	}
2230 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
2231 	/* Adjust TX power if need be (delta > 6). */
2232 	if (abs(temp - sc->temp) > 6) {
2233 		/* Record temperature of last calibration. */
2234 		sc->temp = temp;
2235 		(void)wpi_set_txpower(sc, 1);
2236 	}
2237 }
2238 
2239 /*
2240  * Set TX power for current channel (each rate has its own power settings).
2241  */
2242 int
2243 wpi_set_txpower(struct wpi_softc *sc, int async)
2244 {
2245 	struct ieee80211com *ic = &sc->sc_ic;
2246 	struct ieee80211_channel *ch;
2247 	struct wpi_power_group *group;
2248 	struct wpi_cmd_txpower cmd;
2249 	u_int chan;
2250 	int idx, i;
2251 
2252 	/* Retrieve current channel from last RXON. */
2253 	chan = sc->rxon.chan;
2254 	DPRINTF(("setting TX power for channel %d\n", chan));
2255 	ch = &ic->ic_channels[chan];
2256 
2257 	/* Find the TX power group to which this channel belongs. */
2258 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2259 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2260 			if (chan <= group->chan)
2261 				break;
2262 	} else
2263 		group = &sc->groups[0];
2264 
2265 	memset(&cmd, 0, sizeof cmd);
2266 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2267 	cmd.chan = htole16(chan);
2268 
2269 	/* Set TX power for all OFDM and CCK rates. */
2270 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
2271 		/* Retrieve TX power for this channel/rate. */
2272 		idx = wpi_get_power_index(sc, group, ch, i);
2273 
2274 		cmd.rates[i].plcp = wpi_rates[i].plcp;
2275 
2276 		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2277 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2278 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2279 		} else {
2280 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2281 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2282 		}
2283 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2284 		    wpi_rates[i].rate, idx));
2285 	}
2286 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
2287 }
2288 
2289 /*
2290  * Determine TX power index for a given channel/rate combination.
2291  * This takes into account the regulatory information from EEPROM and the
2292  * current temperature.
2293  */
2294 int
2295 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2296     struct ieee80211_channel *c, int ridx)
2297 {
2298 /* Fixed-point arithmetic division using a n-bit fractional part. */
2299 #define fdivround(a, b, n)	\
2300 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2301 
2302 /* Linear interpolation. */
2303 #define interpolate(x, x1, y1, x2, y2, n)	\
2304 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2305 
2306 	struct ieee80211com *ic = &sc->sc_ic;
2307 	struct wpi_power_sample *sample;
2308 	int pwr, idx;
2309 	u_int chan;
2310 
2311 	/* Get channel number. */
2312 	chan = ieee80211_chan2ieee(ic, c);
2313 
2314 	/* Default TX power is group maximum TX power minus 3dB. */
2315 	pwr = group->maxpwr / 2;
2316 
2317 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
2318 	switch (ridx) {
2319 	case WPI_RIDX_OFDM36:
2320 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2321 		break;
2322 	case WPI_RIDX_OFDM48:
2323 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2324 		break;
2325 	case WPI_RIDX_OFDM54:
2326 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2327 		break;
2328 	}
2329 
2330 	/* Never exceed the channel maximum allowed TX power. */
2331 	pwr = MIN(pwr, sc->maxpwr[chan]);
2332 
2333 	/* Retrieve TX power index into gain tables from samples. */
2334 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2335 		if (pwr > sample[1].power)
2336 			break;
2337 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
2338 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2339 	    sample[1].power, sample[1].index, 19);
2340 
2341 	/*-
2342 	 * Adjust power index based on current temperature:
2343 	 * - if cooler than factory-calibrated: decrease output power
2344 	 * - if warmer than factory-calibrated: increase output power
2345 	 */
2346 	idx -= (sc->temp - group->temp) * 11 / 100;
2347 
2348 	/* Decrease TX power for CCK rates (-5dB). */
2349 	if (ridx >= WPI_RIDX_CCK1)
2350 		idx += 10;
2351 
2352 	/* Make sure idx stays in a valid range. */
2353 	if (idx < 0)
2354 		idx = 0;
2355 	else if (idx > WPI_MAX_PWR_INDEX)
2356 		idx = WPI_MAX_PWR_INDEX;
2357 	return idx;
2358 
2359 #undef interpolate
2360 #undef fdivround
2361 }
2362 
2363 /*
2364  * Set STA mode power saving level (between 0 and 5).
2365  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
2366  */
2367 int
2368 wpi_set_pslevel(struct wpi_softc *sc, int dtim, int level, int async)
2369 {
2370 	struct wpi_pmgt_cmd cmd;
2371 	const struct wpi_pmgt *pmgt;
2372 	uint32_t max, skip_dtim;
2373 	pcireg_t reg;
2374 	int i;
2375 
2376 	/* Select which PS parameters to use. */
2377 	if (dtim <= 10)
2378 		pmgt = &wpi_pmgt[0][level];
2379 	else
2380 		pmgt = &wpi_pmgt[1][level];
2381 
2382 	memset(&cmd, 0, sizeof cmd);
2383 	if (level != 0)	/* not CAM */
2384 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
2385 	/* Retrieve PCIe Active State Power Management (ASPM). */
2386 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
2387 	    sc->sc_cap_off + PCI_PCIE_LCSR);
2388 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
2389 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
2390 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
2391 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
2392 
2393 	if (dtim == 0) {
2394 		dtim = 1;
2395 		skip_dtim = 0;
2396 	} else
2397 		skip_dtim = pmgt->skip_dtim;
2398 	if (skip_dtim != 0) {
2399 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
2400 		max = pmgt->intval[4];
2401 		if (max == (uint32_t)-1)
2402 			max = dtim * (skip_dtim + 1);
2403 		else if (max > dtim)
2404 			max = (max / dtim) * dtim;
2405 	} else
2406 		max = dtim;
2407 	for (i = 0; i < 5; i++)
2408 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
2409 
2410 	DPRINTF(("setting power saving level to %d\n", level));
2411 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
2412 }
2413 
2414 int
2415 wpi_config(struct wpi_softc *sc)
2416 {
2417 	struct ieee80211com *ic = &sc->sc_ic;
2418 	struct ifnet *ifp = &ic->ic_if;
2419 	struct wpi_bluetooth bluetooth;
2420 	struct wpi_node_info node;
2421 	int error;
2422 
2423 	/* Set power saving level to CAM during initialization. */
2424 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
2425 		printf("%s: could not set power saving level\n",
2426 		    sc->sc_dev.dv_xname);
2427 		return error;
2428 	}
2429 
2430 	/* Configure bluetooth coexistence. */
2431 	memset(&bluetooth, 0, sizeof bluetooth);
2432 	bluetooth.flags = WPI_BT_COEX_MODE_4WIRE;
2433 	bluetooth.lead_time = WPI_BT_LEAD_TIME_DEF;
2434 	bluetooth.max_kill = WPI_BT_MAX_KILL_DEF;
2435 	error = wpi_cmd(sc, WPI_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
2436 	if (error != 0) {
2437 		printf("%s: could not configure bluetooth coexistence\n",
2438 		    sc->sc_dev.dv_xname);
2439 		return error;
2440 	}
2441 
2442 	/* Configure adapter. */
2443 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
2444 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2445 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
2446 	/* Set default channel. */
2447 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2448 	sc->rxon.flags = htole32(WPI_RXON_TSF);
2449 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
2450 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
2451 	switch (ic->ic_opmode) {
2452 	case IEEE80211_M_STA:
2453 		sc->rxon.mode = WPI_MODE_STA;
2454 		sc->rxon.filter = htole32(WPI_FILTER_MULTICAST);
2455 		break;
2456 	case IEEE80211_M_MONITOR:
2457 		sc->rxon.mode = WPI_MODE_MONITOR;
2458 		sc->rxon.filter = htole32(WPI_FILTER_MULTICAST |
2459 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2460 		break;
2461 	default:
2462 		/* Should not get there. */
2463 		break;
2464 	}
2465 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
2466 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
2467 	DPRINTF(("setting configuration\n"));
2468 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2469 	    0);
2470 	if (error != 0) {
2471 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2472 		return error;
2473 	}
2474 
2475 	/* Configuration has changed, set TX power accordingly. */
2476 	if ((error = wpi_set_txpower(sc, 0)) != 0) {
2477 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2478 		return error;
2479 	}
2480 
2481 	/* Add broadcast node. */
2482 	memset(&node, 0, sizeof node);
2483 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
2484 	node.id = WPI_ID_BROADCAST;
2485 	node.plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
2486 	node.action = htole32(WPI_ACTION_SET_RATE);
2487 	node.antenna = WPI_ANTENNA_BOTH;
2488 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2489 	if (error != 0) {
2490 		printf("%s: could not add broadcast node\n",
2491 		    sc->sc_dev.dv_xname);
2492 		return error;
2493 	}
2494 
2495 	if ((error = wpi_mrr_setup(sc)) != 0) {
2496 		printf("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2497 		return error;
2498 	}
2499 	return 0;
2500 }
2501 
2502 int
2503 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2504 {
2505 	struct ieee80211com *ic = &sc->sc_ic;
2506 	struct wpi_scan_hdr *hdr;
2507 	struct wpi_cmd_data *tx;
2508 	struct wpi_scan_essid *essid;
2509 	struct wpi_scan_chan *chan;
2510 	struct ieee80211_frame *wh;
2511 	struct ieee80211_rateset *rs;
2512 	struct ieee80211_channel *c;
2513 	uint8_t *buf, *frm;
2514 	int buflen, error;
2515 
2516 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
2517 	if (buf == NULL) {
2518 		printf("%s: could not allocate buffer for scan command\n",
2519 		    sc->sc_dev.dv_xname);
2520 		return ENOMEM;
2521 	}
2522 	hdr = (struct wpi_scan_hdr *)buf;
2523 	/*
2524 	 * Move to the next channel if no frames are received within 10ms
2525 	 * after sending the probe request.
2526 	 */
2527 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
2528 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
2529 
2530 	tx = (struct wpi_cmd_data *)(hdr + 1);
2531 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
2532 	tx->id = WPI_ID_BROADCAST;
2533 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2534 
2535 	if (flags & IEEE80211_CHAN_5GHZ) {
2536 		hdr->crc_threshold = htole16(1);
2537 		/* Send probe requests at 6Mbps. */
2538 		tx->plcp = wpi_rates[WPI_RIDX_OFDM6].plcp;
2539 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2540 	} else {
2541 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
2542 		/* Send probe requests at 1Mbps. */
2543 		tx->plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
2544 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2545 	}
2546 
2547 	essid = (struct wpi_scan_essid *)(tx + 1);
2548 	if (ic->ic_des_esslen != 0) {
2549 		essid[0].id  = IEEE80211_ELEMID_SSID;
2550 		essid[0].len = ic->ic_des_esslen;
2551 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2552 	}
2553 	/*
2554 	 * Build a probe request frame.  Most of the following code is a
2555 	 * copy & paste of what is done in net80211.
2556 	 */
2557 	wh = (struct ieee80211_frame *)(essid + 4);
2558 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2559 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2560 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2561 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2562 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2563 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2564 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
2565 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
2566 
2567 	frm = (uint8_t *)(wh + 1);
2568 	frm = ieee80211_add_ssid(frm, NULL, 0);
2569 	frm = ieee80211_add_rates(frm, rs);
2570 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
2571 		frm = ieee80211_add_xrates(frm, rs);
2572 
2573 	/* Set length of probe request. */
2574 	tx->len = htole16(frm - (uint8_t *)wh);
2575 
2576 	chan = (struct wpi_scan_chan *)frm;
2577 	for (c  = &ic->ic_channels[1];
2578 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2579 		if ((c->ic_flags & flags) != flags)
2580 			continue;
2581 
2582 		chan->chan = ieee80211_chan2ieee(ic, c);
2583 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
2584 		chan->flags = 0;
2585 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
2586 			chan->flags |= WPI_CHAN_ACTIVE;
2587 		if (ic->ic_des_esslen != 0)
2588 			chan->flags |= WPI_CHAN_NPBREQS(1);
2589 		chan->dsp_gain = 0x6e;
2590 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2591 			chan->rf_gain = 0x3b;
2592 			chan->active  = htole16(24);
2593 			chan->passive = htole16(110);
2594 		} else {
2595 			chan->rf_gain = 0x28;
2596 			chan->active  = htole16(36);
2597 			chan->passive = htole16(120);
2598 		}
2599 		hdr->nchan++;
2600 		chan++;
2601 	}
2602 
2603 	buflen = (uint8_t *)chan - buf;
2604 	hdr->len = htole16(buflen);
2605 
2606 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
2607 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
2608 	free(buf, M_DEVBUF);
2609 	return error;
2610 }
2611 
2612 int
2613 wpi_auth(struct wpi_softc *sc)
2614 {
2615 	struct ieee80211com *ic = &sc->sc_ic;
2616 	struct ieee80211_node *ni = ic->ic_bss;
2617 	struct wpi_node_info node;
2618 	int error;
2619 
2620 	/* Update adapter configuration. */
2621 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
2622 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2623 	sc->rxon.flags = htole32(WPI_RXON_TSF);
2624 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2625 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
2626 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2627 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
2628 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2629 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
2630 	switch (ic->ic_curmode) {
2631 	case IEEE80211_MODE_11A:
2632 		sc->rxon.cck_mask  = 0;
2633 		sc->rxon.ofdm_mask = 0x15;
2634 		break;
2635 	case IEEE80211_MODE_11B:
2636 		sc->rxon.cck_mask  = 0x03;
2637 		sc->rxon.ofdm_mask = 0;
2638 		break;
2639 	default:	/* Assume 802.11b/g. */
2640 		sc->rxon.cck_mask  = 0x0f;
2641 		sc->rxon.ofdm_mask = 0x15;
2642 	}
2643 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
2644 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
2645 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2646 	    1);
2647 	if (error != 0) {
2648 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2649 		return error;
2650 	}
2651 
2652 	/* Configuration has changed, set TX power accordingly. */
2653 	if ((error = wpi_set_txpower(sc, 1)) != 0) {
2654 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2655 		return error;
2656 	}
2657 	/*
2658 	 * Reconfiguring RXON clears the firmware nodes table so we must
2659 	 * add the broadcast node again.
2660 	 */
2661 	memset(&node, 0, sizeof node);
2662 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
2663 	node.id = WPI_ID_BROADCAST;
2664 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2665 	    wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
2666 	node.action = htole32(WPI_ACTION_SET_RATE);
2667 	node.antenna = WPI_ANTENNA_BOTH;
2668 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2669 	if (error != 0) {
2670 		printf("%s: could not add broadcast node\n",
2671 		    sc->sc_dev.dv_xname);
2672 		return error;
2673 	}
2674 	return 0;
2675 }
2676 
2677 int
2678 wpi_run(struct wpi_softc *sc)
2679 {
2680 	struct ieee80211com *ic = &sc->sc_ic;
2681 	struct ieee80211_node *ni = ic->ic_bss;
2682 	struct wpi_node_info node;
2683 	int error;
2684 
2685 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2686 		/* Link LED blinks while monitoring. */
2687 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2688 		return 0;
2689 	}
2690 	if ((error = wpi_set_timing(sc, ni)) != 0) {
2691 		printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
2692 		return error;
2693 	}
2694 
2695 	/* Update adapter configuration. */
2696 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
2697 	/* Short preamble and slot time are negotiated when associating. */
2698 	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
2699 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2700 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
2701 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2702 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
2703 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
2704 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
2705 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2706 	    1);
2707 	if (error != 0) {
2708 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2709 		return error;
2710 	}
2711 
2712 	/* Configuration has changed, set TX power accordingly. */
2713 	if ((error = wpi_set_txpower(sc, 1)) != 0) {
2714 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2715 		return error;
2716 	}
2717 
2718 	/* Fake a join to init the TX rate. */
2719 	((struct wpi_node *)ni)->id = WPI_ID_BSS;
2720 	wpi_newassoc(ic, ni, 1);
2721 
2722 	/* Add BSS node. */
2723 	memset(&node, 0, sizeof node);
2724 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid);
2725 	node.id = WPI_ID_BSS;
2726 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2727 	    wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
2728 	node.action = htole32(WPI_ACTION_SET_RATE);
2729 	node.antenna = WPI_ANTENNA_BOTH;
2730 	DPRINTF(("adding BSS node\n"));
2731 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2732 	if (error != 0) {
2733 		printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2734 		return error;
2735 	}
2736 
2737 	/* Start periodic calibration timer. */
2738 	sc->calib_cnt = 0;
2739 	timeout_add(&sc->calib_to, hz / 2);
2740 
2741 	/* Link LED always on while associated. */
2742 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2743 
2744 	/* Enable power-saving mode if requested by user. */
2745 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
2746 		(void)wpi_set_pslevel(sc, 0, 3, 1);
2747 
2748 	return 0;
2749 }
2750 
2751 /*
2752  * We support CCMP hardware encryption/decryption of unicast frames only.
2753  * HW support for TKIP really sucks.  We should let TKIP die anyway.
2754  */
2755 int
2756 wpi_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2757     struct ieee80211_key *k)
2758 {
2759 	struct wpi_softc *sc = ic->ic_softc;
2760 	struct wpi_node *wn = (void *)ni;
2761 	struct wpi_node_info node;
2762 	uint16_t kflags;
2763 
2764 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
2765 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
2766 		return ieee80211_set_key(ic, ni, k);
2767 
2768 	kflags = WPI_KFLAG_CCMP | WPI_KFLAG_KID(k->k_id);
2769 	memset(&node, 0, sizeof node);
2770 	node.id = wn->id;
2771 	node.control = WPI_NODE_UPDATE;
2772 	node.flags = WPI_FLAG_SET_KEY;
2773 	node.kflags = htole16(kflags);
2774 	memcpy(node.key, k->k_key, k->k_len);
2775 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
2776 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2777 }
2778 
2779 void
2780 wpi_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2781     struct ieee80211_key *k)
2782 {
2783 	struct wpi_softc *sc = ic->ic_softc;
2784 	struct wpi_node *wn = (void *)ni;
2785 	struct wpi_node_info node;
2786 
2787 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
2788 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
2789 		/* See comment about other ciphers above. */
2790 		ieee80211_delete_key(ic, ni, k);
2791 		return;
2792 	}
2793 	if (ic->ic_state != IEEE80211_S_RUN)
2794 		return;	/* Nothing to do. */
2795 	memset(&node, 0, sizeof node);
2796 	node.id = wn->id;
2797 	node.control = WPI_NODE_UPDATE;
2798 	node.flags = WPI_FLAG_SET_KEY;
2799 	node.kflags = 0;
2800 	DPRINTF(("delete keys for node %d\n", node.id));
2801 	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2802 }
2803 
2804 int
2805 wpi_post_alive(struct wpi_softc *sc)
2806 {
2807 	int ntries, error;
2808 
2809 	/* Check (again) that the radio is not disabled. */
2810 	if ((error = wpi_nic_lock(sc)) != 0)
2811 		return error;
2812 	/* NB: Runtime firmware must be up and running. */
2813 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
2814 		printf("%s: radio is disabled by hardware switch\n",
2815 		    sc->sc_dev.dv_xname);
2816 		wpi_nic_unlock(sc);
2817 		return EPERM;	/* :-) */
2818 	}
2819 	wpi_nic_unlock(sc);
2820 
2821 	/* Wait for thermal sensor to calibrate. */
2822 	for (ntries = 0; ntries < 1000; ntries++) {
2823 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
2824 			break;
2825 		DELAY(10);
2826 	}
2827 	if (ntries == 1000) {
2828 		printf("%s: timeout waiting for thermal sensor calibration\n",
2829 		    sc->sc_dev.dv_xname);
2830 		return ETIMEDOUT;
2831 	}
2832 	DPRINTF(("temperature %d\n", sc->temp));
2833 	return 0;
2834 }
2835 
2836 /*
2837  * The firmware boot code is small and is intended to be copied directly into
2838  * the NIC internal memory (no DMA transfer.)
2839  */
2840 int
2841 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
2842 {
2843 	int error, ntries;
2844 
2845 	size /= sizeof (uint32_t);
2846 
2847 	if ((error = wpi_nic_lock(sc)) != 0)
2848 		return error;
2849 
2850 	/* Copy microcode image into NIC memory. */
2851 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
2852 	    (const uint32_t *)ucode, size);
2853 
2854 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
2855 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
2856 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
2857 
2858 	/* Start boot load now. */
2859 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
2860 
2861 	/* Wait for transfer to complete. */
2862 	for (ntries = 0; ntries < 1000; ntries++) {
2863 		if (!(wpi_prph_read(sc, WPI_BSM_WR_CTRL) &
2864 		    WPI_BSM_WR_CTRL_START))
2865 			break;
2866 		DELAY(10);
2867 	}
2868 	if (ntries == 1000) {
2869 		printf("%s: could not load boot firmware\n",
2870 		    sc->sc_dev.dv_xname);
2871 		wpi_nic_unlock(sc);
2872 		return ETIMEDOUT;
2873 	}
2874 
2875 	/* Enable boot after power up. */
2876 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
2877 
2878 	wpi_nic_unlock(sc);
2879 	return 0;
2880 }
2881 
2882 int
2883 wpi_load_firmware(struct wpi_softc *sc)
2884 {
2885 	struct wpi_fw_info *fw = &sc->fw;
2886 	struct wpi_dma_info *dma = &sc->fw_dma;
2887 	int error;
2888 
2889 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
2890 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
2891 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
2892 	    BUS_DMASYNC_PREWRITE);
2893 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
2894 	    fw->init.text, fw->init.textsz);
2895 	bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
2896 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
2897 
2898 	/* Tell adapter where to find initialization sections. */
2899 	if ((error = wpi_nic_lock(sc)) != 0)
2900 		return error;
2901 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
2902 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
2903 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
2904 	    dma->paddr + WPI_FW_DATA_MAXSZ);
2905 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
2906 	wpi_nic_unlock(sc);
2907 
2908 	/* Load firmware boot code. */
2909 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
2910 	if (error != 0) {
2911 		printf("%s: could not load boot firmware\n",
2912 		    sc->sc_dev.dv_xname);
2913 		return error;
2914 	}
2915 	/* Now press "execute". */
2916 	WPI_WRITE(sc, WPI_RESET, 0);
2917 
2918 	/* Wait at most one second for first alive notification. */
2919 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
2920 		printf("%s: timeout waiting for adapter to initialize\n",
2921 		    sc->sc_dev.dv_xname);
2922 		return error;
2923 	}
2924 
2925 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
2926 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
2927 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
2928 	    BUS_DMASYNC_PREWRITE);
2929 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
2930 	    fw->main.text, fw->main.textsz);
2931 	bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
2932 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
2933 
2934 	/* Tell adapter where to find runtime sections. */
2935 	if ((error = wpi_nic_lock(sc)) != 0)
2936 		return error;
2937 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
2938 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
2939 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
2940 	    dma->paddr + WPI_FW_DATA_MAXSZ);
2941 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
2942 	    WPI_FW_UPDATED | fw->main.textsz);
2943 	wpi_nic_unlock(sc);
2944 
2945 	return 0;
2946 }
2947 
2948 int
2949 wpi_read_firmware(struct wpi_softc *sc)
2950 {
2951 	struct wpi_fw_info *fw = &sc->fw;
2952 	const struct wpi_firmware_hdr *hdr;
2953 	size_t size;
2954 	int error;
2955 
2956 	/* Read firmware image from filesystem. */
2957 	if ((error = loadfirmware("wpi-3945abg", &fw->data, &size)) != 0) {
2958 		printf("%s: error, %d, could not read firmware %s\n",
2959 		    sc->sc_dev.dv_xname, error, "wpi-3945abg");
2960 		return error;
2961 	}
2962 	if (size < sizeof (*hdr)) {
2963 		printf("%s: truncated firmware header: %d bytes\n",
2964 		    sc->sc_dev.dv_xname, size);
2965 		free(fw->data, M_DEVBUF);
2966 		return EINVAL;
2967 	}
2968 	/* Extract firmware header information. */
2969 	hdr = (struct wpi_firmware_hdr *)fw->data;
2970 	fw->main.textsz = letoh32(hdr->main_textsz);
2971 	fw->main.datasz = letoh32(hdr->main_datasz);
2972 	fw->init.textsz = letoh32(hdr->init_textsz);
2973 	fw->init.datasz = letoh32(hdr->init_datasz);
2974 	fw->boot.textsz = letoh32(hdr->boot_textsz);
2975 	fw->boot.datasz = 0;
2976 
2977 	/* Sanity-check firmware header. */
2978 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
2979 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
2980 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
2981 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
2982 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
2983 	    (fw->boot.textsz & 3) != 0) {
2984 		printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname);
2985 		free(fw->data, M_DEVBUF);
2986 		return EINVAL;
2987 	}
2988 
2989 	/* Check that all firmware sections fit. */
2990 	if (size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
2991 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
2992 		printf("%s: firmware file too short: %d bytes\n",
2993 		    sc->sc_dev.dv_xname, size);
2994 		free(fw->data, M_DEVBUF);
2995 		return EINVAL;
2996 	}
2997 
2998 	/* Get pointers to firmware sections. */
2999 	fw->main.text = (const uint8_t *)(hdr + 1);
3000 	fw->main.data = fw->main.text + fw->main.textsz;
3001 	fw->init.text = fw->main.data + fw->main.datasz;
3002 	fw->init.data = fw->init.text + fw->init.textsz;
3003 	fw->boot.text = fw->init.data + fw->init.datasz;
3004 
3005 	return 0;
3006 }
3007 
3008 int
3009 wpi_clock_wait(struct wpi_softc *sc)
3010 {
3011 	int ntries;
3012 
3013 	/* Set "initialization complete" bit. */
3014 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
3015 
3016 	/* Wait for clock stabilization. */
3017 	for (ntries = 0; ntries < 25000; ntries++) {
3018 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
3019 			return 0;
3020 		DELAY(100);
3021 	}
3022 	printf("%s: timeout waiting for clock stabilization\n",
3023 	    sc->sc_dev.dv_xname);
3024 	return ETIMEDOUT;
3025 }
3026 
3027 int
3028 wpi_apm_init(struct wpi_softc *sc)
3029 {
3030 	int error;
3031 
3032 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
3033 	/* Disable L0s. */
3034 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
3035 
3036 	if ((error = wpi_clock_wait(sc)) != 0)
3037 		return error;
3038 
3039 	if ((error = wpi_nic_lock(sc)) != 0)
3040 		return error;
3041 	/* Enable DMA. */
3042 	wpi_prph_write(sc, WPI_APMG_CLK_ENA,
3043 	    WPI_APMG_CLK_DMA_CLK_RQT | WPI_APMG_CLK_BSM_CLK_RQT);
3044 	DELAY(20);
3045 	/* Disable L1. */
3046 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
3047 	wpi_nic_unlock(sc);
3048 
3049 	return 0;
3050 }
3051 
3052 void
3053 wpi_apm_stop_master(struct wpi_softc *sc)
3054 {
3055 	int ntries;
3056 
3057 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
3058 
3059 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
3060 	    WPI_GP_CNTRL_MAC_PS)
3061 		return;	/* Already asleep. */
3062 
3063 	for (ntries = 0; ntries < 100; ntries++) {
3064 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
3065 			return;
3066 		DELAY(10);
3067 	}
3068 	printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
3069 }
3070 
3071 void
3072 wpi_apm_stop(struct wpi_softc *sc)
3073 {
3074 	wpi_apm_stop_master(sc);
3075 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
3076 }
3077 
3078 void
3079 wpi_nic_config(struct wpi_softc *sc)
3080 {
3081 	pcireg_t reg;
3082 	uint8_t rev;
3083 
3084 	/* Voodoo from the reference driver. */
3085 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3086 	rev = PCI_REVISION(reg);
3087 	if ((rev & 0xc0) == 0x40)
3088 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
3089 	else if (!(rev & 0x80))
3090 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
3091 
3092 	if (sc->cap == 0x80)
3093 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
3094 
3095 	if ((letoh16(sc->rev) & 0xf0) == 0xd0)
3096 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
3097 	else
3098 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
3099 
3100 	if (sc->type > 1)
3101 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
3102 }
3103 
3104 int
3105 wpi_hw_init(struct wpi_softc *sc)
3106 {
3107 	int chnl, ntries, error;
3108 
3109 	/* Clear pending interrupts. */
3110 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3111 
3112 	if ((error = wpi_apm_init(sc)) != 0) {
3113 		printf("%s: could not power ON adapter\n",
3114 		    sc->sc_dev.dv_xname);
3115 		return error;
3116 	}
3117 
3118 	/* Select VMAIN power source. */
3119 	if ((error = wpi_nic_lock(sc)) != 0)
3120 		return error;
3121 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
3122 	wpi_nic_unlock(sc);
3123 	/* Spin until VMAIN gets selected. */
3124 	for (ntries = 0; ntries < 5000; ntries++) {
3125 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
3126 			break;
3127 		DELAY(10);
3128 	}
3129 	if (ntries == 5000) {
3130 		printf("%s: timeout selecting power source\n",
3131 		    sc->sc_dev.dv_xname);
3132 		return ETIMEDOUT;
3133 	}
3134 
3135 	/* Perform adapter initialization. */
3136 	(void)wpi_nic_config(sc);
3137 
3138 	/* Initialize RX ring. */
3139 	if ((error = wpi_nic_lock(sc)) != 0)
3140 		return error;
3141 	/* Set physical address of RX ring. */
3142 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
3143 	/* Set physical address of RX read pointer. */
3144 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
3145 	    offsetof(struct wpi_shared, next));
3146 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
3147 	/* Enable RX. */
3148 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
3149 	    WPI_FH_RX_CONFIG_DMA_ENA |
3150 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
3151 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
3152 	    WPI_FH_RX_CONFIG_MAXFRAG |
3153 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
3154 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
3155 	    WPI_FH_RX_CONFIG_IRQ_RBTH(1));
3156 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
3157 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
3158 	wpi_nic_unlock(sc);
3159 
3160 	/* Initialize TX rings. */
3161 	if ((error = wpi_nic_lock(sc)) != 0)
3162 		return error;
3163 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
3164 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
3165 	/* Enable all 6 TX rings. */
3166 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
3167 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
3168 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
3169 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
3170 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
3171 	/* Set physical address of TX rings. */
3172 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
3173 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
3174 
3175 	/* Enable all DMA channels. */
3176 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
3177 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
3178 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
3179 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
3180 	}
3181 	wpi_nic_unlock(sc);
3182 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
3183 
3184 	/* Clear "radio off" and "commands blocked" bits. */
3185 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3186 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
3187 
3188 	/* Clear pending interrupts. */
3189 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3190 	/* Enable interrupts. */
3191 	WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
3192 
3193 	/* _Really_ make sure "radio off" bit is cleared! */
3194 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3195 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3196 
3197 	if ((error = wpi_load_firmware(sc)) != 0) {
3198 		printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
3199 		return error;
3200 	}
3201 	/* Wait at most one second for firmware alive notification. */
3202 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
3203 		printf("%s: timeout waiting for adapter to initialize\n",
3204 		    sc->sc_dev.dv_xname);
3205 		return error;
3206 	}
3207 	/* Do post-firmware initialization. */
3208 	return wpi_post_alive(sc);
3209 }
3210 
3211 void
3212 wpi_hw_stop(struct wpi_softc *sc)
3213 {
3214 	int chnl, qid, ntries;
3215 	uint32_t tmp;
3216 
3217 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
3218 
3219 	/* Disable interrupts. */
3220 	WPI_WRITE(sc, WPI_MASK, 0);
3221 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3222 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
3223 
3224 	/* Make sure we no longer hold the NIC lock. */
3225 	wpi_nic_unlock(sc);
3226 
3227 	if (wpi_nic_lock(sc) == 0) {
3228 		/* Stop TX scheduler. */
3229 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
3230 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
3231 
3232 		/* Stop all DMA channels. */
3233 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
3234 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
3235 			for (ntries = 0; ntries < 100; ntries++) {
3236 				tmp = WPI_READ(sc, WPI_FH_TX_STATUS);
3237 				if ((tmp & WPI_FH_TX_STATUS_IDLE(chnl)) ==
3238 				    WPI_FH_TX_STATUS_IDLE(chnl))
3239 					break;
3240 				DELAY(10);
3241 			}
3242 		}
3243 		wpi_nic_unlock(sc);
3244 	}
3245 
3246 	/* Stop RX ring. */
3247 	wpi_reset_rx_ring(sc, &sc->rxq);
3248 
3249 	/* Reset all TX rings. */
3250 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
3251 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
3252 
3253 	if (wpi_nic_lock(sc) == 0) {
3254 		wpi_prph_write(sc, WPI_APMG_CLK_DIS, WPI_APMG_CLK_DMA_CLK_RQT);
3255 		wpi_nic_unlock(sc);
3256 	}
3257 	DELAY(5);
3258 	/* Power OFF adapter. */
3259 	wpi_apm_stop(sc);
3260 }
3261 
3262 int
3263 wpi_init(struct ifnet *ifp)
3264 {
3265 	struct wpi_softc *sc = ifp->if_softc;
3266 	struct ieee80211com *ic = &sc->sc_ic;
3267 	int error;
3268 
3269 #ifdef notyet
3270 	/* Check that the radio is not disabled by hardware switch. */
3271 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
3272 		printf("%s: radio is disabled by hardware switch\n",
3273 		    sc->sc_dev.dv_xname);
3274 		error = EPERM;	/* :-) */
3275 		goto fail;
3276 	}
3277 #endif
3278 	/* Read firmware images from the filesystem. */
3279 	if ((error = wpi_read_firmware(sc)) != 0) {
3280 		printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
3281 		goto fail;
3282 	}
3283 
3284 	/* Initialize hardware and upload firmware. */
3285 	error = wpi_hw_init(sc);
3286 	free(sc->fw.data, M_DEVBUF);
3287 	if (error != 0) {
3288 		printf("%s: could not initialize hardware\n",
3289 		    sc->sc_dev.dv_xname);
3290 		goto fail;
3291 	}
3292 
3293 	/* Configure adapter now that it is ready. */
3294 	if ((error = wpi_config(sc)) != 0) {
3295 		printf("%s: could not configure device\n",
3296 		    sc->sc_dev.dv_xname);
3297 		goto fail;
3298 	}
3299 
3300 	ifp->if_flags &= ~IFF_OACTIVE;
3301 	ifp->if_flags |= IFF_RUNNING;
3302 
3303 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
3304 		ieee80211_begin_scan(ifp);
3305 	else
3306 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3307 
3308 	return 0;
3309 
3310 fail:	wpi_stop(ifp, 1);
3311 	return error;
3312 }
3313 
3314 void
3315 wpi_stop(struct ifnet *ifp, int disable)
3316 {
3317 	struct wpi_softc *sc = ifp->if_softc;
3318 	struct ieee80211com *ic = &sc->sc_ic;
3319 
3320 	ifp->if_timer = sc->sc_tx_timer = 0;
3321 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3322 
3323 	/* In case we were scanning, release the scan "lock". */
3324 	ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED;
3325 
3326 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3327 
3328 	/* Power OFF hardware. */
3329 	wpi_hw_stop(sc);
3330 }
3331