xref: /openbsd-src/sys/dev/pci/if_wb.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: if_wb.c,v 1.43 2008/11/28 02:44:18 brad Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/pci/if_wb.c,v 1.26 1999/09/25 17:29:02 wpaul Exp $
35  */
36 
37 /*
38  * Winbond fast ethernet PCI NIC driver
39  *
40  * Supports various cheap network adapters based on the Winbond W89C840F
41  * fast ethernet controller chip. This includes adapters manufactured by
42  * Winbond itself and some made by Linksys.
43  *
44  * Written by Bill Paul <wpaul@ctr.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 
49 /*
50  * The Winbond W89C840F chip is a bus master; in some ways it resembles
51  * a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
52  * one major difference which is that while the registers do many of
53  * the same things as a tulip adapter, the offsets are different: where
54  * tulip registers are typically spaced 8 bytes apart, the Winbond
55  * registers are spaced 4 bytes apart. The receiver filter is also
56  * programmed differently.
57  *
58  * Like the tulip, the Winbond chip uses small descriptors containing
59  * a status word, a control word and 32-bit areas that can either be used
60  * to point to two external data blocks, or to point to a single block
61  * and another descriptor in a linked list. Descriptors can be grouped
62  * together in blocks to form fixed length rings or can be chained
63  * together in linked lists. A single packet may be spread out over
64  * several descriptors if necessary.
65  *
66  * For the receive ring, this driver uses a linked list of descriptors,
67  * each pointing to a single mbuf cluster buffer, which us large enough
68  * to hold an entire packet. The link list is looped back to created a
69  * closed ring.
70  *
71  * For transmission, the driver creates a linked list of 'super descriptors'
72  * which each contain several individual descriptors linked together.
73  * Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
74  * abuse as fragment pointers. This allows us to use a buffer management
75  * scheme very similar to that used in the ThunderLAN and Etherlink XL
76  * drivers.
77  *
78  * Autonegotiation is performed using the external PHY via the MII bus.
79  * The sample boards I have all use a Davicom PHY.
80  *
81  * Note: the author of the Linux driver for the Winbond chip alludes
82  * to some sort of flaw in the chip's design that seems to mandate some
83  * drastic workaround which significantly impairs transmit performance.
84  * I have no idea what he's on about: transmit performance with all
85  * three of my test boards seems fine.
86  */
87 
88 #include "bpfilter.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 #include <sys/timeout.h>
100 
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_types.h>
104 
105 #ifdef INET
106 #include <netinet/in.h>
107 #include <netinet/in_systm.h>
108 #include <netinet/in_var.h>
109 #include <netinet/ip.h>
110 #include <netinet/if_ether.h>
111 #endif
112 
113 #include <net/if_media.h>
114 
115 #if NBPFILTER > 0
116 #include <net/bpf.h>
117 #endif
118 
119 #include <uvm/uvm_extern.h>		/* for vtophys */
120 #define	VTOPHYS(v)	vtophys((vaddr_t)(v))
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 #include <dev/pci/pcidevs.h>
127 
128 #define WB_USEIOSPACE
129 
130 /* #define WB_BACKGROUND_AUTONEG */
131 
132 #include <dev/pci/if_wbreg.h>
133 
134 int wb_probe(struct device *, void *, void *);
135 void wb_attach(struct device *, struct device *, void *);
136 
137 void wb_bfree(caddr_t, u_int, void *);
138 void wb_newbuf(struct wb_softc *, struct wb_chain_onefrag *);
139 int wb_encap(struct wb_softc *, struct wb_chain *, struct mbuf *);
140 
141 void wb_rxeof(struct wb_softc *);
142 void wb_rxeoc(struct wb_softc *);
143 void wb_txeof(struct wb_softc *);
144 void wb_txeoc(struct wb_softc *);
145 int wb_intr(void *);
146 void wb_tick(void *);
147 void wb_start(struct ifnet *);
148 int wb_ioctl(struct ifnet *, u_long, caddr_t);
149 void wb_init(void *);
150 void wb_stop(struct wb_softc *);
151 void wb_watchdog(struct ifnet *);
152 void wb_shutdown(void *);
153 int wb_ifmedia_upd(struct ifnet *);
154 void wb_ifmedia_sts(struct ifnet *, struct ifmediareq *);
155 
156 void wb_eeprom_putbyte(struct wb_softc *, int);
157 void wb_eeprom_getword(struct wb_softc *, int, u_int16_t *);
158 void wb_read_eeprom(struct wb_softc *, caddr_t, int, int, int);
159 void wb_mii_sync(struct wb_softc *);
160 void wb_mii_send(struct wb_softc *, u_int32_t, int);
161 int wb_mii_readreg(struct wb_softc *, struct wb_mii_frame *);
162 int wb_mii_writereg(struct wb_softc *, struct wb_mii_frame *);
163 
164 void wb_setcfg(struct wb_softc *, u_int32_t);
165 u_int8_t wb_calchash(caddr_t);
166 void wb_setmulti(struct wb_softc *);
167 void wb_reset(struct wb_softc *);
168 void wb_fixmedia(struct wb_softc *);
169 int wb_list_rx_init(struct wb_softc *);
170 int wb_list_tx_init(struct wb_softc *);
171 
172 int wb_miibus_readreg(struct device *, int, int);
173 void wb_miibus_writereg(struct device *, int, int, int);
174 void wb_miibus_statchg(struct device *);
175 
176 #define WB_SETBIT(sc, reg, x)				\
177 	CSR_WRITE_4(sc, reg,				\
178 		CSR_READ_4(sc, reg) | x)
179 
180 #define WB_CLRBIT(sc, reg, x)				\
181 	CSR_WRITE_4(sc, reg,				\
182 		CSR_READ_4(sc, reg) & ~x)
183 
184 #define SIO_SET(x)					\
185 	CSR_WRITE_4(sc, WB_SIO,				\
186 		CSR_READ_4(sc, WB_SIO) | x)
187 
188 #define SIO_CLR(x)					\
189 	CSR_WRITE_4(sc, WB_SIO,				\
190 		CSR_READ_4(sc, WB_SIO) & ~x)
191 
192 /*
193  * Send a read command and address to the EEPROM, check for ACK.
194  */
195 void wb_eeprom_putbyte(sc, addr)
196 	struct wb_softc		*sc;
197 	int			addr;
198 {
199 	int			d, i;
200 
201 	d = addr | WB_EECMD_READ;
202 
203 	/*
204 	 * Feed in each bit and strobe the clock.
205 	 */
206 	for (i = 0x400; i; i >>= 1) {
207 		if (d & i) {
208 			SIO_SET(WB_SIO_EE_DATAIN);
209 		} else {
210 			SIO_CLR(WB_SIO_EE_DATAIN);
211 		}
212 		DELAY(100);
213 		SIO_SET(WB_SIO_EE_CLK);
214 		DELAY(150);
215 		SIO_CLR(WB_SIO_EE_CLK);
216 		DELAY(100);
217 	}
218 
219 	return;
220 }
221 
222 /*
223  * Read a word of data stored in the EEPROM at address 'addr.'
224  */
225 void wb_eeprom_getword(sc, addr, dest)
226 	struct wb_softc		*sc;
227 	int			addr;
228 	u_int16_t		*dest;
229 {
230 	int			i;
231 	u_int16_t		word = 0;
232 
233 	/* Enter EEPROM access mode. */
234 	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
235 
236 	/*
237 	 * Send address of word we want to read.
238 	 */
239 	wb_eeprom_putbyte(sc, addr);
240 
241 	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
242 
243 	/*
244 	 * Start reading bits from EEPROM.
245 	 */
246 	for (i = 0x8000; i; i >>= 1) {
247 		SIO_SET(WB_SIO_EE_CLK);
248 		DELAY(100);
249 		if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
250 			word |= i;
251 		SIO_CLR(WB_SIO_EE_CLK);
252 		DELAY(100);
253 	}
254 
255 	/* Turn off EEPROM access mode. */
256 	CSR_WRITE_4(sc, WB_SIO, 0);
257 
258 	*dest = word;
259 
260 	return;
261 }
262 
263 /*
264  * Read a sequence of words from the EEPROM.
265  */
266 void wb_read_eeprom(sc, dest, off, cnt, swap)
267 	struct wb_softc		*sc;
268 	caddr_t			dest;
269 	int			off;
270 	int			cnt;
271 	int			swap;
272 {
273 	int			i;
274 	u_int16_t		word = 0, *ptr;
275 
276 	for (i = 0; i < cnt; i++) {
277 		wb_eeprom_getword(sc, off + i, &word);
278 		ptr = (u_int16_t *)(dest + (i * 2));
279 		if (swap)
280 			*ptr = ntohs(word);
281 		else
282 			*ptr = word;
283 	}
284 
285 	return;
286 }
287 
288 /*
289  * Sync the PHYs by setting data bit and strobing the clock 32 times.
290  */
291 void wb_mii_sync(sc)
292 	struct wb_softc		*sc;
293 {
294 	int			i;
295 
296 	SIO_SET(WB_SIO_MII_DIR|WB_SIO_MII_DATAIN);
297 
298 	for (i = 0; i < 32; i++) {
299 		SIO_SET(WB_SIO_MII_CLK);
300 		DELAY(1);
301 		SIO_CLR(WB_SIO_MII_CLK);
302 		DELAY(1);
303 	}
304 
305 	return;
306 }
307 
308 /*
309  * Clock a series of bits through the MII.
310  */
311 void wb_mii_send(sc, bits, cnt)
312 	struct wb_softc		*sc;
313 	u_int32_t		bits;
314 	int			cnt;
315 {
316 	int			i;
317 
318 	SIO_CLR(WB_SIO_MII_CLK);
319 
320 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
321                 if (bits & i) {
322 			SIO_SET(WB_SIO_MII_DATAIN);
323                 } else {
324 			SIO_CLR(WB_SIO_MII_DATAIN);
325                 }
326 		DELAY(1);
327 		SIO_CLR(WB_SIO_MII_CLK);
328 		DELAY(1);
329 		SIO_SET(WB_SIO_MII_CLK);
330 	}
331 }
332 
333 /*
334  * Read an PHY register through the MII.
335  */
336 int wb_mii_readreg(sc, frame)
337 	struct wb_softc		*sc;
338 	struct wb_mii_frame	*frame;
339 
340 {
341 	int			i, ack, s;
342 
343 	s = splnet();
344 
345 	/*
346 	 * Set up frame for RX.
347 	 */
348 	frame->mii_stdelim = WB_MII_STARTDELIM;
349 	frame->mii_opcode = WB_MII_READOP;
350 	frame->mii_turnaround = 0;
351 	frame->mii_data = 0;
352 
353 	CSR_WRITE_4(sc, WB_SIO, 0);
354 
355 	/*
356  	 * Turn on data xmit.
357 	 */
358 	SIO_SET(WB_SIO_MII_DIR);
359 
360 	wb_mii_sync(sc);
361 
362 	/*
363 	 * Send command/address info.
364 	 */
365 	wb_mii_send(sc, frame->mii_stdelim, 2);
366 	wb_mii_send(sc, frame->mii_opcode, 2);
367 	wb_mii_send(sc, frame->mii_phyaddr, 5);
368 	wb_mii_send(sc, frame->mii_regaddr, 5);
369 
370 	/* Idle bit */
371 	SIO_CLR((WB_SIO_MII_CLK|WB_SIO_MII_DATAIN));
372 	DELAY(1);
373 	SIO_SET(WB_SIO_MII_CLK);
374 	DELAY(1);
375 
376 	/* Turn off xmit. */
377 	SIO_CLR(WB_SIO_MII_DIR);
378 	/* Check for ack */
379 	SIO_CLR(WB_SIO_MII_CLK);
380 	DELAY(1);
381 	ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT;
382 	SIO_SET(WB_SIO_MII_CLK);
383 	DELAY(1);
384 	SIO_CLR(WB_SIO_MII_CLK);
385 	DELAY(1);
386 	SIO_SET(WB_SIO_MII_CLK);
387 	DELAY(1);
388 
389 	/*
390 	 * Now try reading data bits. If the ack failed, we still
391 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
392 	 */
393 	if (ack) {
394 		for(i = 0; i < 16; i++) {
395 			SIO_CLR(WB_SIO_MII_CLK);
396 			DELAY(1);
397 			SIO_SET(WB_SIO_MII_CLK);
398 			DELAY(1);
399 		}
400 		goto fail;
401 	}
402 
403 	for (i = 0x8000; i; i >>= 1) {
404 		SIO_CLR(WB_SIO_MII_CLK);
405 		DELAY(1);
406 		if (!ack) {
407 			if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT)
408 				frame->mii_data |= i;
409 			DELAY(1);
410 		}
411 		SIO_SET(WB_SIO_MII_CLK);
412 		DELAY(1);
413 	}
414 
415 fail:
416 
417 	SIO_CLR(WB_SIO_MII_CLK);
418 	DELAY(1);
419 	SIO_SET(WB_SIO_MII_CLK);
420 	DELAY(1);
421 
422 	splx(s);
423 
424 	if (ack)
425 		return(1);
426 	return(0);
427 }
428 
429 /*
430  * Write to a PHY register through the MII.
431  */
432 int wb_mii_writereg(sc, frame)
433 	struct wb_softc		*sc;
434 	struct wb_mii_frame	*frame;
435 
436 {
437 	int			s;
438 
439 	s = splnet();
440 	/*
441 	 * Set up frame for TX.
442 	 */
443 
444 	frame->mii_stdelim = WB_MII_STARTDELIM;
445 	frame->mii_opcode = WB_MII_WRITEOP;
446 	frame->mii_turnaround = WB_MII_TURNAROUND;
447 
448 	/*
449  	 * Turn on data output.
450 	 */
451 	SIO_SET(WB_SIO_MII_DIR);
452 
453 	wb_mii_sync(sc);
454 
455 	wb_mii_send(sc, frame->mii_stdelim, 2);
456 	wb_mii_send(sc, frame->mii_opcode, 2);
457 	wb_mii_send(sc, frame->mii_phyaddr, 5);
458 	wb_mii_send(sc, frame->mii_regaddr, 5);
459 	wb_mii_send(sc, frame->mii_turnaround, 2);
460 	wb_mii_send(sc, frame->mii_data, 16);
461 
462 	/* Idle bit. */
463 	SIO_SET(WB_SIO_MII_CLK);
464 	DELAY(1);
465 	SIO_CLR(WB_SIO_MII_CLK);
466 	DELAY(1);
467 
468 	/*
469 	 * Turn off xmit.
470 	 */
471 	SIO_CLR(WB_SIO_MII_DIR);
472 
473 	splx(s);
474 
475 	return(0);
476 }
477 
478 int
479 wb_miibus_readreg(dev, phy, reg)
480 	struct device *dev;
481 	int phy, reg;
482 {
483 	struct wb_softc *sc = (struct wb_softc *)dev;
484 	struct wb_mii_frame frame;
485 
486 	bzero((char *)&frame, sizeof(frame));
487 
488 	frame.mii_phyaddr = phy;
489 	frame.mii_regaddr = reg;
490 	wb_mii_readreg(sc, &frame);
491 
492 	return(frame.mii_data);
493 }
494 
495 void
496 wb_miibus_writereg(dev, phy, reg, data)
497 	struct device *dev;
498 	int phy, reg, data;
499 {
500 	struct wb_softc *sc = (struct wb_softc *)dev;
501 	struct wb_mii_frame frame;
502 
503 	bzero((char *)&frame, sizeof(frame));
504 
505 	frame.mii_phyaddr = phy;
506 	frame.mii_regaddr = reg;
507 	frame.mii_data = data;
508 
509 	wb_mii_writereg(sc, &frame);
510 
511 	return;
512 }
513 
514 void
515 wb_miibus_statchg(dev)
516 	struct device *dev;
517 {
518 	struct wb_softc *sc = (struct wb_softc *)dev;
519 
520 	wb_setcfg(sc, sc->sc_mii.mii_media_active);
521 }
522 
523 /*
524  * Program the 64-bit multicast hash filter.
525  */
526 void wb_setmulti(sc)
527 	struct wb_softc		*sc;
528 {
529 	struct ifnet		*ifp;
530 	int			h = 0;
531 	u_int32_t		hashes[2] = { 0, 0 };
532 	struct arpcom		*ac = &sc->arpcom;
533 	struct ether_multi	*enm;
534 	struct ether_multistep	step;
535 	u_int32_t		rxfilt;
536 	int			mcnt = 0;
537 
538 	ifp = &sc->arpcom.ac_if;
539 
540 	rxfilt = CSR_READ_4(sc, WB_NETCFG);
541 
542 allmulti:
543 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
544 		rxfilt |= WB_NETCFG_RX_MULTI;
545 		CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
546 		CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
547 		CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
548 		return;
549 	}
550 
551 	/* first, zot all the existing hash bits */
552 	CSR_WRITE_4(sc, WB_MAR0, 0);
553 	CSR_WRITE_4(sc, WB_MAR1, 0);
554 
555 	/* now program new ones */
556 	ETHER_FIRST_MULTI(step, ac, enm);
557 	while (enm != NULL) {
558 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
559 			ifp->if_flags |= IFF_ALLMULTI;
560 			goto allmulti;
561 		}
562 		h = ~(ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26);
563 		if (h < 32)
564 			hashes[0] |= (1 << h);
565 		else
566 			hashes[1] |= (1 << (h - 32));
567 		mcnt++;
568 		ETHER_NEXT_MULTI(step, enm);
569 	}
570 
571 	if (mcnt)
572 		rxfilt |= WB_NETCFG_RX_MULTI;
573 	else
574 		rxfilt &= ~WB_NETCFG_RX_MULTI;
575 
576 	CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
577 	CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
578 	CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
579 
580 	return;
581 }
582 
583 /*
584  * The Winbond manual states that in order to fiddle with the
585  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
586  * first have to put the transmit and/or receive logic in the idle state.
587  */
588 void
589 wb_setcfg(sc, media)
590 	struct wb_softc *sc;
591 	u_int32_t media;
592 {
593 	int			i, restart = 0;
594 
595 	if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON)) {
596 		restart = 1;
597 		WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON));
598 
599 		for (i = 0; i < WB_TIMEOUT; i++) {
600 			DELAY(10);
601 			if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
602 				(CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
603 				break;
604 		}
605 
606 		if (i == WB_TIMEOUT)
607 			printf("%s: failed to force tx and "
608 				"rx to idle state\n", sc->sc_dev.dv_xname);
609 	}
610 
611 	if (IFM_SUBTYPE(media) == IFM_10_T)
612 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
613 	else
614 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
615 
616 	if ((media & IFM_GMASK) == IFM_FDX)
617 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
618 	else
619 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
620 
621 	if (restart)
622 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON|WB_NETCFG_RX_ON);
623 
624 	return;
625 }
626 
627 void
628 wb_reset(sc)
629 	struct wb_softc *sc;
630 {
631 	int i;
632 	struct mii_data *mii = &sc->sc_mii;
633 
634 	CSR_WRITE_4(sc, WB_NETCFG, 0);
635 	CSR_WRITE_4(sc, WB_BUSCTL, 0);
636 	CSR_WRITE_4(sc, WB_TXADDR, 0);
637 	CSR_WRITE_4(sc, WB_RXADDR, 0);
638 
639 	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
640 	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
641 
642 	for (i = 0; i < WB_TIMEOUT; i++) {
643 		DELAY(10);
644 		if (!(CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET))
645 			break;
646 	}
647 	if (i == WB_TIMEOUT)
648 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
649 
650 	/* Wait a little while for the chip to get its brains in order. */
651 	DELAY(1000);
652 
653 	if (mii->mii_instance) {
654 		struct mii_softc *miisc;
655 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
656 			mii_phy_reset(miisc);
657 	}
658 }
659 
660 void
661 wb_fixmedia(sc)
662 	struct wb_softc *sc;
663 {
664 	struct mii_data *mii = &sc->sc_mii;
665 	u_int32_t media;
666 
667 	if (LIST_FIRST(&mii->mii_phys) == NULL)
668 		return;
669 
670 	mii_pollstat(mii);
671 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
672 		media = mii->mii_media_active & ~IFM_10_T;
673 		media |= IFM_100_TX;
674 	} if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
675 		media = mii->mii_media_active & ~IFM_100_TX;
676 		media |= IFM_10_T;
677 	} else
678 		return;
679 
680 	ifmedia_set(&mii->mii_media, media);
681 }
682 
683 const struct pci_matchid wb_devices[] = {
684 	{ PCI_VENDOR_WINBOND, PCI_PRODUCT_WINBOND_W89C840F },
685 	{ PCI_VENDOR_COMPEX, PCI_PRODUCT_COMPEX_RL100ATX },
686 };
687 
688 /*
689  * Probe for a Winbond chip. Check the PCI vendor and device
690  * IDs against our list and return a device name if we find a match.
691  */
692 int
693 wb_probe(parent, match, aux)
694 	struct device *parent;
695 	void *match, *aux;
696 {
697 	return (pci_matchbyid((struct pci_attach_args *)aux, wb_devices,
698 	    sizeof(wb_devices)/sizeof(wb_devices[0])));
699 }
700 
701 /*
702  * Attach the interface. Allocate softc structures, do ifmedia
703  * setup and ethernet/BPF attach.
704  */
705 void
706 wb_attach(parent, self, aux)
707 	struct device *parent, *self;
708 	void *aux;
709 {
710 	struct wb_softc *sc = (struct wb_softc *)self;
711 	struct pci_attach_args *pa = aux;
712 	pci_chipset_tag_t pc = pa->pa_pc;
713 	pci_intr_handle_t ih;
714 	const char *intrstr = NULL;
715 	struct ifnet *ifp = &sc->arpcom.ac_if;
716 	bus_size_t size;
717 	int rseg;
718 	pcireg_t command;
719 	bus_dma_segment_t seg;
720 	bus_dmamap_t dmamap;
721 	caddr_t kva;
722 
723 	/*
724 	 * Handle power management nonsense.
725 	 */
726 
727 	command = pci_conf_read(pc, pa->pa_tag, WB_PCI_CAPID) & 0x000000FF;
728 	if (command == 0x01) {
729 
730 		command = pci_conf_read(pc, pa->pa_tag, WB_PCI_PWRMGMTCTRL);
731 		if (command & WB_PSTATE_MASK) {
732 			u_int32_t		io, mem, irq;
733 
734 			/* Save important PCI config data. */
735 			io = pci_conf_read(pc, pa->pa_tag, WB_PCI_LOIO);
736 			mem = pci_conf_read(pc, pa->pa_tag, WB_PCI_LOMEM);
737 			irq = pci_conf_read(pc, pa->pa_tag, WB_PCI_INTLINE);
738 
739 			/* Reset the power state. */
740 			printf("%s: chip is in D%d power mode "
741 			    "-- setting to D0\n", sc->sc_dev.dv_xname,
742 			    command & WB_PSTATE_MASK);
743 			command &= 0xFFFFFFFC;
744 			pci_conf_write(pc, pa->pa_tag, WB_PCI_PWRMGMTCTRL,
745 			    command);
746 
747 			/* Restore PCI config data. */
748 			pci_conf_write(pc, pa->pa_tag, WB_PCI_LOIO, io);
749 			pci_conf_write(pc, pa->pa_tag, WB_PCI_LOMEM, mem);
750 			pci_conf_write(pc, pa->pa_tag, WB_PCI_INTLINE, irq);
751 		}
752 	}
753 
754 	/*
755 	 * Map control/status registers.
756 	 */
757 
758 #ifdef WB_USEIOSPACE
759 	if (pci_mapreg_map(pa, WB_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
760 	    &sc->wb_btag, &sc->wb_bhandle, NULL, &size, 0)) {
761 		printf(": can't map i/o space\n");
762 		return;
763 	}
764 #else
765 	if (pci_mapreg_map(pa, WB_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
766 	    &sc->wb_btag, &sc->wb_bhandle, NULL, &size, 0)){
767 		printf(": can't map mem space\n");
768 		return;
769 	}
770 #endif
771 
772 	/* Allocate interrupt */
773 	if (pci_intr_map(pa, &ih)) {
774 		printf(": couldn't map interrupt\n");
775 		goto fail_1;
776 	}
777 	intrstr = pci_intr_string(pc, ih);
778 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wb_intr, sc,
779 	    self->dv_xname);
780 	if (sc->sc_ih == NULL) {
781 		printf(": couldn't establish interrupt");
782 		if (intrstr != NULL)
783 			printf(" at %s", intrstr);
784 		printf("\n");
785 		goto fail_1;
786 	}
787 	printf(": %s", intrstr);
788 
789 	sc->wb_cachesize = pci_conf_read(pc, pa->pa_tag, WB_PCI_CACHELEN)&0xff;
790 
791 	/* Reset the adapter. */
792 	wb_reset(sc);
793 
794 	/*
795 	 * Get station address from the EEPROM.
796 	 */
797 	wb_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0, 3, 0);
798 	printf(", address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
799 
800 	if (bus_dmamem_alloc(pa->pa_dmat, sizeof(struct wb_list_data),
801 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
802 		printf(": can't alloc list data\n");
803 		goto fail_2;
804 	}
805 	if (bus_dmamem_map(pa->pa_dmat, &seg, rseg,
806 	    sizeof(struct wb_list_data), &kva, BUS_DMA_NOWAIT)) {
807 		printf(": can't map list data, size %d\n",
808 		    sizeof(struct wb_list_data));
809 		goto fail_3;
810 	}
811 	if (bus_dmamap_create(pa->pa_dmat, sizeof(struct wb_list_data), 1,
812 	    sizeof(struct wb_list_data), 0, BUS_DMA_NOWAIT, &dmamap)) {
813 		printf(": can't create dma map\n");
814 		goto fail_4;
815 	}
816 	if (bus_dmamap_load(pa->pa_dmat, dmamap, kva,
817 	    sizeof(struct wb_list_data), NULL, BUS_DMA_NOWAIT)) {
818 		printf(": can't load dma map\n");
819 		goto fail_5;
820 	}
821 	sc->wb_ldata = (struct wb_list_data *)kva;
822 	bzero(sc->wb_ldata, sizeof(struct wb_list_data));
823 
824 	ifp->if_softc = sc;
825 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
826 	ifp->if_ioctl = wb_ioctl;
827 	ifp->if_start = wb_start;
828 	ifp->if_watchdog = wb_watchdog;
829 	ifp->if_baudrate = 10000000;
830 	IFQ_SET_MAXLEN(&ifp->if_snd, WB_TX_LIST_CNT - 1);
831 	IFQ_SET_READY(&ifp->if_snd);
832 
833 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
834 
835 	/*
836 	 * Do ifmedia setup.
837 	 */
838 	wb_stop(sc);
839 
840 	ifmedia_init(&sc->sc_mii.mii_media, 0, wb_ifmedia_upd, wb_ifmedia_sts);
841 	sc->sc_mii.mii_ifp = ifp;
842 	sc->sc_mii.mii_readreg = wb_miibus_readreg;
843 	sc->sc_mii.mii_writereg = wb_miibus_writereg;
844 	sc->sc_mii.mii_statchg = wb_miibus_statchg;
845 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
846 	    0);
847 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
848 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,0,NULL);
849 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
850 	} else
851 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
852 
853 	/*
854 	 * Call MI attach routines.
855 	 */
856 	if_attach(ifp);
857 	ether_ifattach(ifp);
858 
859 	shutdownhook_establish(wb_shutdown, sc);
860 	return;
861 
862 fail_5:
863 	bus_dmamap_destroy(pa->pa_dmat, dmamap);
864 
865 fail_4:
866 	bus_dmamem_unmap(pa->pa_dmat, kva,
867 	    sizeof(struct wb_list_data));
868 
869 fail_3:
870 	bus_dmamem_free(pa->pa_dmat, &seg, rseg);
871 
872 fail_2:
873 	pci_intr_disestablish(pc, sc->sc_ih);
874 
875 fail_1:
876 	bus_space_unmap(sc->wb_btag, sc->wb_bhandle, size);
877 }
878 
879 /*
880  * Initialize the transmit descriptors.
881  */
882 int wb_list_tx_init(sc)
883 	struct wb_softc		*sc;
884 {
885 	struct wb_chain_data	*cd;
886 	struct wb_list_data	*ld;
887 	int			i;
888 
889 	cd = &sc->wb_cdata;
890 	ld = sc->wb_ldata;
891 
892 	for (i = 0; i < WB_TX_LIST_CNT; i++) {
893 		cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
894 		if (i == (WB_TX_LIST_CNT - 1)) {
895 			cd->wb_tx_chain[i].wb_nextdesc =
896 				&cd->wb_tx_chain[0];
897 		} else {
898 			cd->wb_tx_chain[i].wb_nextdesc =
899 				&cd->wb_tx_chain[i + 1];
900 		}
901 	}
902 
903 	cd->wb_tx_free = &cd->wb_tx_chain[0];
904 	cd->wb_tx_tail = cd->wb_tx_head = NULL;
905 
906 	return(0);
907 }
908 
909 
910 /*
911  * Initialize the RX descriptors and allocate mbufs for them. Note that
912  * we arrange the descriptors in a closed ring, so that the last descriptor
913  * points back to the first.
914  */
915 int wb_list_rx_init(sc)
916 	struct wb_softc		*sc;
917 {
918 	struct wb_chain_data	*cd;
919 	struct wb_list_data	*ld;
920 	int			i;
921 
922 	cd = &sc->wb_cdata;
923 	ld = sc->wb_ldata;
924 
925 	for (i = 0; i < WB_RX_LIST_CNT; i++) {
926 		cd->wb_rx_chain[i].wb_ptr =
927 			(struct wb_desc *)&ld->wb_rx_list[i];
928 		cd->wb_rx_chain[i].wb_buf = (void *)&ld->wb_rxbufs[i];
929 		wb_newbuf(sc, &cd->wb_rx_chain[i]);
930 		if (i == (WB_RX_LIST_CNT - 1)) {
931 			cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[0];
932 			ld->wb_rx_list[i].wb_next =
933 					VTOPHYS(&ld->wb_rx_list[0]);
934 		} else {
935 			cd->wb_rx_chain[i].wb_nextdesc =
936 					&cd->wb_rx_chain[i + 1];
937 			ld->wb_rx_list[i].wb_next =
938 					VTOPHYS(&ld->wb_rx_list[i + 1]);
939 		}
940 	}
941 
942 	cd->wb_rx_head = &cd->wb_rx_chain[0];
943 
944 	return(0);
945 }
946 
947 /*
948  * Initialize an RX descriptor and attach an MBUF cluster.
949  */
950 void
951 wb_newbuf(sc, c)
952 	struct wb_softc *sc;
953 	struct wb_chain_onefrag *c;
954 {
955 	c->wb_ptr->wb_data = VTOPHYS(c->wb_buf + sizeof(u_int64_t));
956 	c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | ETHER_MAX_DIX_LEN;
957 	c->wb_ptr->wb_status = WB_RXSTAT;
958 }
959 
960 /*
961  * A frame has been uploaded: pass the resulting mbuf chain up to
962  * the higher level protocols.
963  */
964 void wb_rxeof(sc)
965 	struct wb_softc		*sc;
966 {
967         struct ifnet		*ifp;
968 	struct wb_chain_onefrag	*cur_rx;
969 	int			total_len = 0;
970 	u_int32_t		rxstat;
971 
972 	ifp = &sc->arpcom.ac_if;
973 
974 	while(!((rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status) &
975 							WB_RXSTAT_OWN)) {
976 		struct mbuf *m;
977 
978 		cur_rx = sc->wb_cdata.wb_rx_head;
979 		sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
980 
981 		if ((rxstat & WB_RXSTAT_MIIERR) ||
982 		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) < WB_MIN_FRAMELEN) ||
983 		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) > ETHER_MAX_DIX_LEN) ||
984 		    !(rxstat & WB_RXSTAT_LASTFRAG) ||
985 		    !(rxstat & WB_RXSTAT_RXCMP)) {
986 			ifp->if_ierrors++;
987 			wb_newbuf(sc, cur_rx);
988 			printf("%s: receiver babbling: possible chip "
989 				"bug, forcing reset\n", sc->sc_dev.dv_xname);
990 			wb_fixmedia(sc);
991 			wb_reset(sc);
992 			wb_init(sc);
993 			return;
994 		}
995 
996 		if (rxstat & WB_RXSTAT_RXERR) {
997 			ifp->if_ierrors++;
998 			wb_newbuf(sc, cur_rx);
999 			break;
1000 		}
1001 
1002 		/* No errors; receive the packet. */
1003 		total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
1004 
1005 		/*
1006 		 * XXX The Winbond chip includes the CRC with every
1007 		 * received frame, and there's no way to turn this
1008 		 * behavior off (at least, I can't find anything in
1009 	 	 * the manual that explains how to do it) so we have
1010 		 * to trim off the CRC manually.
1011 		 */
1012 		total_len -= ETHER_CRC_LEN;
1013 
1014 		m = m_devget(cur_rx->wb_buf + sizeof(u_int64_t), total_len,
1015 		    ETHER_ALIGN, ifp, NULL);
1016 		wb_newbuf(sc, cur_rx);
1017 		if (m == NULL) {
1018 			ifp->if_ierrors++;
1019 			break;
1020 		}
1021 
1022 		ifp->if_ipackets++;
1023 
1024 #if NBPFILTER > 0
1025 		/*
1026 		 * Handle BPF listeners. Let the BPF user see the packet.
1027 		 */
1028 		if (ifp->if_bpf)
1029 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
1030 #endif
1031 		/* pass it on. */
1032 		ether_input_mbuf(ifp, m);
1033 	}
1034 
1035 	return;
1036 }
1037 
1038 void wb_rxeoc(sc)
1039 	struct wb_softc		*sc;
1040 {
1041 	wb_rxeof(sc);
1042 
1043 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1044 	CSR_WRITE_4(sc, WB_RXADDR, VTOPHYS(&sc->wb_ldata->wb_rx_list[0]));
1045 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1046 	if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
1047 		CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1048 
1049 	return;
1050 }
1051 
1052 /*
1053  * A frame was downloaded to the chip. It's safe for us to clean up
1054  * the list buffers.
1055  */
1056 void wb_txeof(sc)
1057 	struct wb_softc		*sc;
1058 {
1059 	struct wb_chain		*cur_tx;
1060 	struct ifnet		*ifp;
1061 
1062 	ifp = &sc->arpcom.ac_if;
1063 
1064 	/* Clear the timeout timer. */
1065 	ifp->if_timer = 0;
1066 
1067 	if (sc->wb_cdata.wb_tx_head == NULL)
1068 		return;
1069 
1070 	/*
1071 	 * Go through our tx list and free mbufs for those
1072 	 * frames that have been transmitted.
1073 	 */
1074 	while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
1075 		u_int32_t		txstat;
1076 
1077 		cur_tx = sc->wb_cdata.wb_tx_head;
1078 		txstat = WB_TXSTATUS(cur_tx);
1079 
1080 		if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
1081 			break;
1082 
1083 		if (txstat & WB_TXSTAT_TXERR) {
1084 			ifp->if_oerrors++;
1085 			if (txstat & WB_TXSTAT_ABORT)
1086 				ifp->if_collisions++;
1087 			if (txstat & WB_TXSTAT_LATECOLL)
1088 				ifp->if_collisions++;
1089 		}
1090 
1091 		ifp->if_collisions += (txstat & WB_TXSTAT_COLLCNT) >> 3;
1092 
1093 		ifp->if_opackets++;
1094 		m_freem(cur_tx->wb_mbuf);
1095 		cur_tx->wb_mbuf = NULL;
1096 
1097 		if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
1098 			sc->wb_cdata.wb_tx_head = NULL;
1099 			sc->wb_cdata.wb_tx_tail = NULL;
1100 			break;
1101 		}
1102 
1103 		sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
1104 	}
1105 
1106 	return;
1107 }
1108 
1109 /*
1110  * TX 'end of channel' interrupt handler.
1111  */
1112 void wb_txeoc(sc)
1113 	struct wb_softc		*sc;
1114 {
1115 	struct ifnet		*ifp;
1116 
1117 	ifp = &sc->arpcom.ac_if;
1118 
1119 	ifp->if_timer = 0;
1120 
1121 	if (sc->wb_cdata.wb_tx_head == NULL) {
1122 		ifp->if_flags &= ~IFF_OACTIVE;
1123 		sc->wb_cdata.wb_tx_tail = NULL;
1124 	} else {
1125 		if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
1126 			WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
1127 			ifp->if_timer = 5;
1128 			CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1129 		}
1130 	}
1131 
1132 	return;
1133 }
1134 
1135 int wb_intr(arg)
1136 	void			*arg;
1137 {
1138 	struct wb_softc		*sc;
1139 	struct ifnet		*ifp;
1140 	u_int32_t		status;
1141 	int			r = 0;
1142 
1143 	sc = arg;
1144 	ifp = &sc->arpcom.ac_if;
1145 
1146 	if (!(ifp->if_flags & IFF_UP))
1147 		return (r);
1148 
1149 	/* Disable interrupts. */
1150 	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1151 
1152 	for (;;) {
1153 
1154 		status = CSR_READ_4(sc, WB_ISR);
1155 		if (status)
1156 			CSR_WRITE_4(sc, WB_ISR, status);
1157 
1158 		if ((status & WB_INTRS) == 0)
1159 			break;
1160 
1161 		r = 1;
1162 
1163 		if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
1164 			ifp->if_ierrors++;
1165 			wb_reset(sc);
1166 			if (status & WB_ISR_RX_ERR)
1167 				wb_fixmedia(sc);
1168 			wb_init(sc);
1169 			continue;
1170 		}
1171 
1172 		if (status & WB_ISR_RX_OK)
1173 			wb_rxeof(sc);
1174 
1175 		if (status & WB_ISR_RX_IDLE)
1176 			wb_rxeoc(sc);
1177 
1178 		if (status & WB_ISR_TX_OK)
1179 			wb_txeof(sc);
1180 
1181 		if (status & WB_ISR_TX_NOBUF)
1182 			wb_txeoc(sc);
1183 
1184 		if (status & WB_ISR_TX_IDLE) {
1185 			wb_txeof(sc);
1186 			if (sc->wb_cdata.wb_tx_head != NULL) {
1187 				WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1188 				CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1189 			}
1190 		}
1191 
1192 		if (status & WB_ISR_TX_UNDERRUN) {
1193 			ifp->if_oerrors++;
1194 			wb_txeof(sc);
1195 			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1196 			/* Jack up TX threshold */
1197 			sc->wb_txthresh += WB_TXTHRESH_CHUNK;
1198 			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1199 			WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1200 			WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1201 		}
1202 
1203 		if (status & WB_ISR_BUS_ERR) {
1204 			wb_reset(sc);
1205 			wb_init(sc);
1206 		}
1207 
1208 	}
1209 
1210 	/* Re-enable interrupts. */
1211 	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1212 
1213 	if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
1214 		wb_start(ifp);
1215 	}
1216 
1217 	return (r);
1218 }
1219 
1220 void
1221 wb_tick(xsc)
1222 	void *xsc;
1223 {
1224 	struct wb_softc *sc = xsc;
1225 	int s;
1226 
1227 	s = splnet();
1228 	mii_tick(&sc->sc_mii);
1229 	splx(s);
1230 	timeout_add_sec(&sc->wb_tick_tmo, 1);
1231 }
1232 
1233 /*
1234  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1235  * pointers to the fragment pointers.
1236  */
1237 int wb_encap(sc, c, m_head)
1238 	struct wb_softc		*sc;
1239 	struct wb_chain		*c;
1240 	struct mbuf		*m_head;
1241 {
1242 	int			frag = 0;
1243 	struct wb_desc		*f = NULL;
1244 	int			total_len;
1245 	struct mbuf		*m;
1246 
1247 	/*
1248  	 * Start packing the mbufs in this chain into
1249 	 * the fragment pointers. Stop when we run out
1250  	 * of fragments or hit the end of the mbuf chain.
1251 	 */
1252 	m = m_head;
1253 	total_len = 0;
1254 
1255 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1256 		if (m->m_len != 0) {
1257 			if (frag == WB_MAXFRAGS)
1258 				break;
1259 			total_len += m->m_len;
1260 			f = &c->wb_ptr->wb_frag[frag];
1261 			f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
1262 			if (frag == 0) {
1263 				f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
1264 				f->wb_status = 0;
1265 			} else
1266 				f->wb_status = WB_TXSTAT_OWN;
1267 			f->wb_next = VTOPHYS(&c->wb_ptr->wb_frag[frag + 1]);
1268 			f->wb_data = VTOPHYS(mtod(m, vaddr_t));
1269 			frag++;
1270 		}
1271 	}
1272 
1273 	/*
1274 	 * Handle special case: we used up all 16 fragments,
1275 	 * but we have more mbufs left in the chain. Copy the
1276 	 * data into an mbuf cluster. Note that we don't
1277 	 * bother clearing the values in the other fragment
1278 	 * pointers/counters; it wouldn't gain us anything,
1279 	 * and would waste cycles.
1280 	 */
1281 	if (m != NULL) {
1282 		struct mbuf		*m_new = NULL;
1283 
1284 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1285 		if (m_new == NULL)
1286 			return(1);
1287 		if (m_head->m_pkthdr.len > MHLEN) {
1288 			MCLGET(m_new, M_DONTWAIT);
1289 			if (!(m_new->m_flags & M_EXT)) {
1290 				m_freem(m_new);
1291 				return(1);
1292 			}
1293 		}
1294 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1295 					mtod(m_new, caddr_t));
1296 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1297 		m_freem(m_head);
1298 		m_head = m_new;
1299 		f = &c->wb_ptr->wb_frag[0];
1300 		f->wb_status = 0;
1301 		f->wb_data = VTOPHYS(mtod(m_new, caddr_t));
1302 		f->wb_ctl = total_len = m_new->m_len;
1303 		f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
1304 		frag = 1;
1305 	}
1306 
1307 	if (total_len < WB_MIN_FRAMELEN) {
1308 		f = &c->wb_ptr->wb_frag[frag];
1309 		f->wb_ctl = WB_MIN_FRAMELEN - total_len;
1310 		f->wb_data = VTOPHYS(&sc->wb_cdata.wb_pad);
1311 		f->wb_ctl |= WB_TXCTL_TLINK;
1312 		f->wb_status = WB_TXSTAT_OWN;
1313 		frag++;
1314 	}
1315 
1316 	c->wb_mbuf = m_head;
1317 	c->wb_lastdesc = frag - 1;
1318 	WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
1319 	WB_TXNEXT(c) = VTOPHYS(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
1320 
1321 	return(0);
1322 }
1323 
1324 /*
1325  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1326  * to the mbuf data regions directly in the transmit lists. We also save a
1327  * copy of the pointers since the transmit list fragment pointers are
1328  * physical addresses.
1329  */
1330 
1331 void wb_start(ifp)
1332 	struct ifnet		*ifp;
1333 {
1334 	struct wb_softc		*sc;
1335 	struct mbuf		*m_head = NULL;
1336 	struct wb_chain		*cur_tx = NULL, *start_tx;
1337 
1338 	sc = ifp->if_softc;
1339 
1340 	/*
1341 	 * Check for an available queue slot. If there are none,
1342 	 * punt.
1343 	 */
1344 	if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
1345 		ifp->if_flags |= IFF_OACTIVE;
1346 		return;
1347 	}
1348 
1349 	start_tx = sc->wb_cdata.wb_tx_free;
1350 
1351 	while(sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
1352 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1353 		if (m_head == NULL)
1354 			break;
1355 
1356 		/* Pick a descriptor off the free list. */
1357 		cur_tx = sc->wb_cdata.wb_tx_free;
1358 		sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
1359 
1360 		/* Pack the data into the descriptor. */
1361 		wb_encap(sc, cur_tx, m_head);
1362 
1363 		if (cur_tx != start_tx)
1364 			WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
1365 
1366 #if NBPFILTER > 0
1367 		/*
1368 		 * If there's a BPF listener, bounce a copy of this frame
1369 		 * to him.
1370 		 */
1371 		if (ifp->if_bpf)
1372 			bpf_mtap(ifp->if_bpf, cur_tx->wb_mbuf,
1373 			    BPF_DIRECTION_OUT);
1374 #endif
1375 	}
1376 
1377 	/*
1378 	 * If there are no packets queued, bail.
1379 	 */
1380 	if (cur_tx == NULL)
1381 		return;
1382 
1383 	/*
1384 	 * Place the request for the upload interrupt
1385 	 * in the last descriptor in the chain. This way, if
1386 	 * we're chaining several packets at once, we'll only
1387 	 * get an interrupt once for the whole chain rather than
1388 	 * once for each packet.
1389 	 */
1390 	WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
1391 	cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT;
1392 	sc->wb_cdata.wb_tx_tail = cur_tx;
1393 
1394 	if (sc->wb_cdata.wb_tx_head == NULL) {
1395 		sc->wb_cdata.wb_tx_head = start_tx;
1396 		WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
1397 		CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1398 	} else {
1399 		/*
1400 		 * We need to distinguish between the case where
1401 		 * the own bit is clear because the chip cleared it
1402 		 * and where the own bit is clear because we haven't
1403 		 * set it yet. The magic value WB_UNSET is just some
1404 		 * ramdomly chosen number which doesn't have the own
1405 	 	 * bit set. When we actually transmit the frame, the
1406 		 * status word will have _only_ the own bit set, so
1407 		 * the txeoc handler will be able to tell if it needs
1408 		 * to initiate another transmission to flush out pending
1409 		 * frames.
1410 		 */
1411 		WB_TXOWN(start_tx) = WB_UNSENT;
1412 	}
1413 
1414 	/*
1415 	 * Set a timeout in case the chip goes out to lunch.
1416 	 */
1417 	ifp->if_timer = 5;
1418 
1419 	return;
1420 }
1421 
1422 void wb_init(xsc)
1423 	void			*xsc;
1424 {
1425 	struct wb_softc *sc = xsc;
1426 	struct ifnet *ifp = &sc->arpcom.ac_if;
1427 	int s, i;
1428 
1429 	s = splnet();
1430 
1431 	/*
1432 	 * Cancel pending I/O and free all RX/TX buffers.
1433 	 */
1434 	wb_stop(sc);
1435 	wb_reset(sc);
1436 
1437 	sc->wb_txthresh = WB_TXTHRESH_INIT;
1438 
1439 	/*
1440 	 * Set cache alignment and burst length.
1441 	 */
1442 #ifdef foo
1443 	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
1444 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1445 	WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1446 #endif
1447 
1448 	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_MUSTBEONE|WB_BUSCTL_ARBITRATION);
1449 	WB_SETBIT(sc, WB_BUSCTL, WB_BURSTLEN_16LONG);
1450 	switch(sc->wb_cachesize) {
1451 	case 32:
1452 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_32LONG);
1453 		break;
1454 	case 16:
1455 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_16LONG);
1456 		break;
1457 	case 8:
1458 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_8LONG);
1459 		break;
1460 	case 0:
1461 	default:
1462 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_NONE);
1463 		break;
1464 	}
1465 
1466 	/* This doesn't tend to work too well at 100Mbps. */
1467 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
1468 
1469 	/* Init our MAC address */
1470 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1471 		CSR_WRITE_1(sc, WB_NODE0 + i, sc->arpcom.ac_enaddr[i]);
1472 	}
1473 
1474 	/* Init circular RX list. */
1475 	if (wb_list_rx_init(sc) == ENOBUFS) {
1476 		printf("%s: initialization failed: no "
1477 			"memory for rx buffers\n", sc->sc_dev.dv_xname);
1478 		wb_stop(sc);
1479 		splx(s);
1480 		return;
1481 	}
1482 
1483 	/* Init TX descriptors. */
1484 	wb_list_tx_init(sc);
1485 
1486 	/* If we want promiscuous mode, set the allframes bit. */
1487 	if (ifp->if_flags & IFF_PROMISC) {
1488 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1489 	} else {
1490 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1491 	}
1492 
1493 	/*
1494 	 * Set capture broadcast bit to capture broadcast frames.
1495 	 */
1496 	if (ifp->if_flags & IFF_BROADCAST) {
1497 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1498 	} else {
1499 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1500 	}
1501 
1502 	/*
1503 	 * Program the multicast filter, if necessary.
1504 	 */
1505 	wb_setmulti(sc);
1506 
1507 	/*
1508 	 * Load the address of the RX list.
1509 	 */
1510 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1511 	CSR_WRITE_4(sc, WB_RXADDR, VTOPHYS(&sc->wb_ldata->wb_rx_list[0]));
1512 
1513 	/*
1514 	 * Enable interrupts.
1515 	 */
1516 	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1517 	CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
1518 
1519 	/* Enable receiver and transmitter. */
1520 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1521 	CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1522 
1523 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1524 	CSR_WRITE_4(sc, WB_TXADDR, VTOPHYS(&sc->wb_ldata->wb_tx_list[0]));
1525 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1526 
1527 	ifp->if_flags |= IFF_RUNNING;
1528 	ifp->if_flags &= ~IFF_OACTIVE;
1529 
1530 	splx(s);
1531 
1532 	timeout_set(&sc->wb_tick_tmo, wb_tick, sc);
1533 	timeout_add_sec(&sc->wb_tick_tmo, 1);
1534 
1535 	return;
1536 }
1537 
1538 /*
1539  * Set media options.
1540  */
1541 int
1542 wb_ifmedia_upd(ifp)
1543 	struct ifnet *ifp;
1544 {
1545 	struct wb_softc *sc = ifp->if_softc;
1546 
1547 	if (ifp->if_flags & IFF_UP)
1548 		wb_init(sc);
1549 
1550 	return(0);
1551 }
1552 
1553 /*
1554  * Report current media status.
1555  */
1556 void
1557 wb_ifmedia_sts(ifp, ifmr)
1558 	struct ifnet		*ifp;
1559 	struct ifmediareq	*ifmr;
1560 {
1561 	struct wb_softc *sc = ifp->if_softc;
1562 	struct mii_data *mii = &sc->sc_mii;
1563 
1564 	mii_pollstat(mii);
1565 	ifmr->ifm_active = mii->mii_media_active;
1566 	ifmr->ifm_status = mii->mii_media_status;
1567 }
1568 
1569 int wb_ioctl(ifp, command, data)
1570 	struct ifnet		*ifp;
1571 	u_long			command;
1572 	caddr_t			data;
1573 {
1574 	struct wb_softc		*sc = ifp->if_softc;
1575 	struct ifaddr		*ifa = (struct ifaddr *) data;
1576 	struct ifreq		*ifr = (struct ifreq *) data;
1577 	int			s, error = 0;
1578 
1579 	s = splnet();
1580 
1581 	switch(command) {
1582 	case SIOCSIFADDR:
1583 		ifp->if_flags |= IFF_UP;
1584 		switch (ifa->ifa_addr->sa_family) {
1585 #ifdef INET
1586 		case AF_INET:
1587 			wb_init(sc);
1588 			arp_ifinit(&sc->arpcom, ifa);
1589 			break;
1590 #endif /* INET */
1591 		default:
1592 			wb_init(sc);
1593 		}
1594 		break;
1595 
1596 	case SIOCSIFFLAGS:
1597 		if (ifp->if_flags & IFF_UP) {
1598 			wb_init(sc);
1599 		} else {
1600 			if (ifp->if_flags & IFF_RUNNING)
1601 				wb_stop(sc);
1602 		}
1603 		error = 0;
1604 		break;
1605 
1606 	case SIOCGIFMEDIA:
1607 	case SIOCSIFMEDIA:
1608 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1609 		break;
1610 
1611 	default:
1612 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1613 	}
1614 
1615 	if (error == ENETRESET) {
1616 		if (ifp->if_flags & IFF_RUNNING)
1617 			wb_setmulti(sc);
1618 		error = 0;
1619 	}
1620 
1621 	splx(s);
1622 	return(error);
1623 }
1624 
1625 void wb_watchdog(ifp)
1626 	struct ifnet		*ifp;
1627 {
1628 	struct wb_softc		*sc;
1629 
1630 	sc = ifp->if_softc;
1631 
1632 	ifp->if_oerrors++;
1633 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1634 
1635 #ifdef foo
1636 	if (!(wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1637 		printf("%s: no carrier - transceiver cable problem?\n",
1638 		    sc->sc_dev.dv_xname);
1639 #endif
1640 	wb_stop(sc);
1641 	wb_reset(sc);
1642 	wb_init(sc);
1643 
1644 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1645 		wb_start(ifp);
1646 
1647 	return;
1648 }
1649 
1650 /*
1651  * Stop the adapter and free any mbufs allocated to the
1652  * RX and TX lists.
1653  */
1654 void wb_stop(sc)
1655 	struct wb_softc		*sc;
1656 {
1657 	int			i;
1658 	struct ifnet		*ifp;
1659 
1660 	ifp = &sc->arpcom.ac_if;
1661 	ifp->if_timer = 0;
1662 
1663 	timeout_del(&sc->wb_tick_tmo);
1664 
1665 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1666 
1667 	WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON|WB_NETCFG_TX_ON));
1668 	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1669 	CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
1670 	CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
1671 
1672 	/*
1673 	 * Free data in the RX lists.
1674 	 */
1675 	bzero((char *)&sc->wb_ldata->wb_rx_list,
1676 		sizeof(sc->wb_ldata->wb_rx_list));
1677 
1678 	/*
1679 	 * Free the TX list buffers.
1680 	 */
1681 	for (i = 0; i < WB_TX_LIST_CNT; i++) {
1682 		if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
1683 			m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
1684 			sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
1685 		}
1686 	}
1687 
1688 	bzero((char *)&sc->wb_ldata->wb_tx_list,
1689 		sizeof(sc->wb_ldata->wb_tx_list));
1690 }
1691 
1692 /*
1693  * Stop all chip I/O so that the kernel's probe routines don't
1694  * get confused by errant DMAs when rebooting.
1695  */
1696 void wb_shutdown(arg)
1697 	void			*arg;
1698 {
1699 	struct wb_softc		*sc = (struct wb_softc *)arg;
1700 
1701 	wb_stop(sc);
1702 
1703 	return;
1704 }
1705 
1706 struct cfattach wb_ca = {
1707 	sizeof(struct wb_softc), wb_probe, wb_attach
1708 };
1709 
1710 struct cfdriver wb_cd = {
1711 	0, "wb", DV_IFNET
1712 };
1713