xref: /openbsd-src/sys/dev/pci/if_vge.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: if_vge.c,v 1.51 2011/06/22 16:44:27 tedu Exp $	*/
2 /*	$FreeBSD: if_vge.c,v 1.3 2004/09/11 22:13:25 wpaul Exp $	*/
3 /*
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37  *
38  * Written by Bill Paul <wpaul@windriver.com>
39  * Senior Networking Software Engineer
40  * Wind River Systems
41  *
42  * Ported to OpenBSD by Peter Valchev <pvalchev@openbsd.org>
43  */
44 
45 /*
46  * The VIA Networking VT6122 is a 32bit, 33/66MHz PCI device that
47  * combines a tri-speed ethernet MAC and PHY, with the following
48  * features:
49  *
50  *	o Jumbo frame support up to 16K
51  *	o Transmit and receive flow control
52  *	o IPv4 checksum offload
53  *	o VLAN tag insertion and stripping
54  *	o TCP large send
55  *	o 64-bit multicast hash table filter
56  *	o 64 entry CAM filter
57  *	o 16K RX FIFO and 48K TX FIFO memory
58  *	o Interrupt moderation
59  *
60  * The VT6122 supports up to four transmit DMA queues. The descriptors
61  * in the transmit ring can address up to 7 data fragments; frames which
62  * span more than 7 data buffers must be coalesced, but in general the
63  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
64  * long. The receive descriptors address only a single buffer.
65  *
66  * There are two peculiar design issues with the VT6122. One is that
67  * receive data buffers must be aligned on a 32-bit boundary. This is
68  * not a problem where the VT6122 is used as a LOM device in x86-based
69  * systems, but on architectures that generate unaligned access traps, we
70  * have to do some copying.
71  *
72  * The other issue has to do with the way 64-bit addresses are handled.
73  * The DMA descriptors only allow you to specify 48 bits of addressing
74  * information. The remaining 16 bits are specified using one of the
75  * I/O registers. If you only have a 32-bit system, then this isn't
76  * an issue, but if you have a 64-bit system and more than 4GB of
77  * memory, you must have to make sure your network data buffers reside
78  * in the same 48-bit 'segment.'
79  *
80  * Special thanks to Ryan Fu at VIA Networking for providing documentation
81  * and sample NICs for testing.
82  */
83 
84 #include "bpfilter.h"
85 #include "vlan.h"
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/timeout.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #include <netinet/if_ether.h>
108 #endif
109 
110 #if NVLAN > 0
111 #include <net/if_types.h>
112 #include <net/if_vlan_var.h>
113 #endif
114 
115 #if NBPFILTER > 0
116 #include <net/bpf.h>
117 #endif
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125 
126 #include <dev/pci/if_vgereg.h>
127 #include <dev/pci/if_vgevar.h>
128 
129 int vge_probe		(struct device *, void *, void *);
130 void vge_attach		(struct device *, struct device *, void *);
131 int vge_detach		(struct device *, int);
132 
133 int vge_encap		(struct vge_softc *, struct mbuf *, int);
134 
135 int vge_allocmem		(struct vge_softc *);
136 void vge_freemem	(struct vge_softc *);
137 int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
138 int vge_rx_list_init	(struct vge_softc *);
139 int vge_tx_list_init	(struct vge_softc *);
140 void vge_rxeof		(struct vge_softc *);
141 void vge_txeof		(struct vge_softc *);
142 int vge_intr		(void *);
143 void vge_tick		(void *);
144 void vge_start		(struct ifnet *);
145 int vge_ioctl		(struct ifnet *, u_long, caddr_t);
146 int vge_init		(struct ifnet *);
147 void vge_stop		(struct vge_softc *);
148 void vge_watchdog	(struct ifnet *);
149 int vge_ifmedia_upd	(struct ifnet *);
150 void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
151 
152 #ifdef VGE_EEPROM
153 void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
154 #endif
155 void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
156 
157 void vge_miipoll_start	(struct vge_softc *);
158 void vge_miipoll_stop	(struct vge_softc *);
159 int vge_miibus_readreg	(struct device *, int, int);
160 void vge_miibus_writereg (struct device *, int, int, int);
161 void vge_miibus_statchg	(struct device *);
162 
163 void vge_cam_clear	(struct vge_softc *);
164 int vge_cam_set		(struct vge_softc *, uint8_t *);
165 void vge_setmulti	(struct vge_softc *);
166 void vge_reset		(struct vge_softc *);
167 
168 struct cfattach vge_ca = {
169 	sizeof(struct vge_softc), vge_probe, vge_attach, vge_detach
170 };
171 
172 struct cfdriver vge_cd = {
173 	NULL, "vge", DV_IFNET
174 };
175 
176 #define VGE_PCI_LOIO             0x10
177 #define VGE_PCI_LOMEM            0x14
178 
179 int vge_debug = 0;
180 #define DPRINTF(x)	if (vge_debug) printf x
181 #define DPRINTFN(n, x)	if (vge_debug >= (n)) printf x
182 
183 const struct pci_matchid vge_devices[] = {
184 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612x },
185 };
186 
187 #ifdef VGE_EEPROM
188 /*
189  * Read a word of data stored in the EEPROM at address 'addr.'
190  */
191 void
192 vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest)
193 {
194 	int			i;
195 	u_int16_t		word = 0;
196 
197 	/*
198 	 * Enter EEPROM embedded programming mode. In order to
199 	 * access the EEPROM at all, we first have to set the
200 	 * EELOAD bit in the CHIPCFG2 register.
201 	 */
202 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
203 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
204 
205 	/* Select the address of the word we want to read */
206 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
207 
208 	/* Issue read command */
209 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
210 
211 	/* Wait for the done bit to be set. */
212 	for (i = 0; i < VGE_TIMEOUT; i++) {
213 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
214 			break;
215 	}
216 
217 	if (i == VGE_TIMEOUT) {
218 		printf("%s: EEPROM read timed out\n", sc->vge_dev.dv_xname);
219 		*dest = 0;
220 		return;
221 	}
222 
223 	/* Read the result */
224 	word = CSR_READ_2(sc, VGE_EERDDAT);
225 
226 	/* Turn off EEPROM access mode. */
227 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
228 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
229 
230 	*dest = word;
231 }
232 #endif
233 
234 /*
235  * Read a sequence of words from the EEPROM.
236  */
237 void
238 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt,
239     int swap)
240 {
241 	int			i;
242 #ifdef VGE_EEPROM
243 	u_int16_t		word = 0, *ptr;
244 
245 	for (i = 0; i < cnt; i++) {
246 		vge_eeprom_getword(sc, off + i, &word);
247 		ptr = (u_int16_t *)(dest + (i * 2));
248 		if (swap)
249 			*ptr = ntohs(word);
250 		else
251 			*ptr = word;
252 	}
253 #else
254 	for (i = 0; i < ETHER_ADDR_LEN; i++)
255 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
256 #endif
257 }
258 
259 void
260 vge_miipoll_stop(struct vge_softc *sc)
261 {
262 	int			i;
263 
264 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
265 
266 	for (i = 0; i < VGE_TIMEOUT; i++) {
267 		DELAY(1);
268 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
269 			break;
270 	}
271 
272 	if (i == VGE_TIMEOUT)
273 		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
274 }
275 
276 void
277 vge_miipoll_start(struct vge_softc *sc)
278 {
279 	int			i;
280 
281 	/* First, make sure we're idle. */
282 
283 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
284 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
285 
286 	for (i = 0; i < VGE_TIMEOUT; i++) {
287 		DELAY(1);
288 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
289 			break;
290 	}
291 
292 	if (i == VGE_TIMEOUT) {
293 		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
294 		return;
295 	}
296 
297 	/* Now enable auto poll mode. */
298 
299 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
300 
301 	/* And make sure it started. */
302 
303 	for (i = 0; i < VGE_TIMEOUT; i++) {
304 		DELAY(1);
305 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
306 			break;
307 	}
308 
309 	if (i == VGE_TIMEOUT)
310 		printf("%s: failed to start MII autopoll\n", sc->vge_dev.dv_xname);
311 }
312 
313 int
314 vge_miibus_readreg(struct device *dev, int phy, int reg)
315 {
316 	struct vge_softc	*sc = (struct vge_softc *)dev;
317 	int			i, s;
318 	u_int16_t		rval = 0;
319 
320 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
321 		return(0);
322 
323 	s = splnet();
324 
325 	vge_miipoll_stop(sc);
326 
327 	/* Specify the register we want to read. */
328 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
329 
330 	/* Issue read command. */
331 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
332 
333 	/* Wait for the read command bit to self-clear. */
334 	for (i = 0; i < VGE_TIMEOUT; i++) {
335 		DELAY(1);
336 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
337 			break;
338 	}
339 
340 	if (i == VGE_TIMEOUT)
341 		printf("%s: MII read timed out\n", sc->vge_dev.dv_xname);
342 	else
343 		rval = CSR_READ_2(sc, VGE_MIIDATA);
344 
345 	vge_miipoll_start(sc);
346 	splx(s);
347 
348 	return (rval);
349 }
350 
351 void
352 vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
353 {
354 	struct vge_softc	*sc = (struct vge_softc *)dev;
355 	int			i, s;
356 
357 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
358 		return;
359 
360 	s = splnet();
361 	vge_miipoll_stop(sc);
362 
363 	/* Specify the register we want to write. */
364 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
365 
366 	/* Specify the data we want to write. */
367 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
368 
369 	/* Issue write command. */
370 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
371 
372 	/* Wait for the write command bit to self-clear. */
373 	for (i = 0; i < VGE_TIMEOUT; i++) {
374 		DELAY(1);
375 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
376 			break;
377 	}
378 
379 	if (i == VGE_TIMEOUT) {
380 		printf("%s: MII write timed out\n", sc->vge_dev.dv_xname);
381 	}
382 
383 	vge_miipoll_start(sc);
384 	splx(s);
385 }
386 
387 void
388 vge_cam_clear(struct vge_softc *sc)
389 {
390 	int			i;
391 
392 	/*
393 	 * Turn off all the mask bits. This tells the chip
394 	 * that none of the entries in the CAM filter are valid.
395 	 * desired entries will be enabled as we fill the filter in.
396 	 */
397 
398 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
399 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
400 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
401 	for (i = 0; i < 8; i++)
402 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
403 
404 	/* Clear the VLAN filter too. */
405 
406 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
407 	for (i = 0; i < 8; i++)
408 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
409 
410 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
411 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
412 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
413 
414 	sc->vge_camidx = 0;
415 }
416 
417 int
418 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
419 {
420 	int			i, error = 0;
421 
422 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
423 		return(ENOSPC);
424 
425 	/* Select the CAM data page. */
426 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
427 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
428 
429 	/* Set the filter entry we want to update and enable writing. */
430 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
431 
432 	/* Write the address to the CAM registers */
433 	for (i = 0; i < ETHER_ADDR_LEN; i++)
434 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
435 
436 	/* Issue a write command. */
437 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
438 
439 	/* Wake for it to clear. */
440 	for (i = 0; i < VGE_TIMEOUT; i++) {
441 		DELAY(1);
442 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
443 			break;
444 	}
445 
446 	if (i == VGE_TIMEOUT) {
447 		printf("%s: setting CAM filter failed\n", sc->vge_dev.dv_xname);
448 		error = EIO;
449 		goto fail;
450 	}
451 
452 	/* Select the CAM mask page. */
453 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
454 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
455 
456 	/* Set the mask bit that enables this filter. */
457 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
458 	    1<<(sc->vge_camidx & 7));
459 
460 	sc->vge_camidx++;
461 
462 fail:
463 	/* Turn off access to CAM. */
464 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
465 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
466 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
467 
468 	return (error);
469 }
470 
471 /*
472  * Program the multicast filter. We use the 64-entry CAM filter
473  * for perfect filtering. If there's more than 64 multicast addresses,
474  * we use the hash filter instead.
475  */
476 void
477 vge_setmulti(struct vge_softc *sc)
478 {
479 	struct arpcom		*ac = &sc->arpcom;
480 	struct ifnet		*ifp = &ac->ac_if;
481 	struct ether_multi	*enm;
482 	struct ether_multistep	step;
483 	int			error;
484 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
485 
486 	/* First, zot all the multicast entries. */
487 	vge_cam_clear(sc);
488 	CSR_WRITE_4(sc, VGE_MAR0, 0);
489 	CSR_WRITE_4(sc, VGE_MAR1, 0);
490 	ifp->if_flags &= ~IFF_ALLMULTI;
491 
492 	/*
493 	 * If the user wants allmulti or promisc mode, enable reception
494 	 * of all multicast frames.
495 	 */
496 	if (ifp->if_flags & IFF_PROMISC) {
497 allmulti:
498 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
499 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
500 		ifp->if_flags |= IFF_ALLMULTI;
501 		return;
502 	}
503 
504 	/* Now program new ones */
505 	ETHER_FIRST_MULTI(step, ac, enm);
506 	while (enm != NULL) {
507 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN))
508 			goto allmulti;
509 
510 		error = vge_cam_set(sc, enm->enm_addrlo);
511 		if (error)
512 			break;
513 
514 		ETHER_NEXT_MULTI(step, enm);
515 	}
516 
517 	/* If there were too many addresses, use the hash filter. */
518 	if (error) {
519 		vge_cam_clear(sc);
520 
521 		ETHER_FIRST_MULTI(step, ac, enm);
522 		while (enm != NULL) {
523 			h = ether_crc32_be(enm->enm_addrlo,
524 			    ETHER_ADDR_LEN) >> 26;
525 			hashes[h >> 5] |= 1 << (h & 0x1f);
526 
527 			ETHER_NEXT_MULTI(step, enm);
528 		}
529 
530 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
531 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
532 	}
533 }
534 
535 void
536 vge_reset(struct vge_softc *sc)
537 {
538 	int			i;
539 
540 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
541 
542 	for (i = 0; i < VGE_TIMEOUT; i++) {
543 		DELAY(5);
544 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
545 			break;
546 	}
547 
548 	if (i == VGE_TIMEOUT) {
549 		printf("%s: soft reset timed out", sc->vge_dev.dv_xname);
550 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
551 		DELAY(2000);
552 	}
553 
554 	DELAY(5000);
555 
556 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
557 
558 	for (i = 0; i < VGE_TIMEOUT; i++) {
559 		DELAY(5);
560 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
561 			break;
562 	}
563 
564 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
565 }
566 
567 /*
568  * Probe for a VIA gigabit chip. Check the PCI vendor and device
569  * IDs against our list and return a device name if we find a match.
570  */
571 int
572 vge_probe(struct device *dev, void *match, void *aux)
573 {
574 	return (pci_matchbyid((struct pci_attach_args *)aux, vge_devices,
575 	    nitems(vge_devices)));
576 }
577 
578 /*
579  * Allocate memory for RX/TX rings
580  */
581 int
582 vge_allocmem(struct vge_softc *sc)
583 {
584 	int			nseg, rseg;
585 	int			i, error;
586 
587 	nseg = 32;
588 
589 	/* Allocate DMA'able memory for the TX ring */
590 
591 	error = bus_dmamap_create(sc->sc_dmat, VGE_TX_LIST_SZ, 1,
592 	    VGE_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
593 	    &sc->vge_ldata.vge_tx_list_map);
594 	if (error)
595 		return (ENOMEM);
596 	error = bus_dmamem_alloc(sc->sc_dmat, VGE_TX_LIST_SZ,
597 	    ETHER_ALIGN, 0,
598 	    &sc->vge_ldata.vge_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
599 	if (error) {
600 		printf("%s: can't alloc TX list\n", sc->vge_dev.dv_xname);
601 		return (ENOMEM);
602 	}
603 
604 	/* Load the map for the TX ring. */
605 	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg,
606 	     1, VGE_TX_LIST_SZ,
607 	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
608 	memset(sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
609 	if (error) {
610 		printf("%s: can't map TX dma buffers\n",
611 		    sc->vge_dev.dv_xname);
612 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
613 		return (ENOMEM);
614 	}
615 
616 	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map,
617 	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
618 	if (error) {
619 		printf("%s: can't load TX dma map\n", sc->vge_dev.dv_xname);
620 		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
621 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
622 		    VGE_TX_LIST_SZ);
623 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
624 		return (ENOMEM);
625 	}
626 
627 	/* Create DMA maps for TX buffers */
628 
629 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
630 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
631 		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
632 		    &sc->vge_ldata.vge_tx_dmamap[i]);
633 		if (error) {
634 			printf("%s: can't create DMA map for TX\n",
635 			    sc->vge_dev.dv_xname);
636 			return (ENOMEM);
637 		}
638 	}
639 
640 	/* Allocate DMA'able memory for the RX ring */
641 
642 	error = bus_dmamap_create(sc->sc_dmat, VGE_RX_LIST_SZ, 1,
643 	    VGE_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
644 	    &sc->vge_ldata.vge_rx_list_map);
645 	if (error)
646 		return (ENOMEM);
647 	error = bus_dmamem_alloc(sc->sc_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
648 	    0, &sc->vge_ldata.vge_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
649 	if (error) {
650 		printf("%s: can't alloc RX list\n", sc->vge_dev.dv_xname);
651 		return (ENOMEM);
652 	}
653 
654 	/* Load the map for the RX ring. */
655 
656 	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg,
657 	     1, VGE_RX_LIST_SZ,
658 	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
659 	memset(sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
660 	if (error) {
661 		printf("%s: can't map RX dma buffers\n",
662 		    sc->vge_dev.dv_xname);
663 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
664 		return (ENOMEM);
665 	}
666 	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map,
667 	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
668 	if (error) {
669 		printf("%s: can't load RX dma map\n", sc->vge_dev.dv_xname);
670 		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
671 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
672 		    VGE_RX_LIST_SZ);
673 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
674 		return (ENOMEM);
675 	}
676 
677 	/* Create DMA maps for RX buffers */
678 
679 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
680 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
681 		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
682 		    &sc->vge_ldata.vge_rx_dmamap[i]);
683 		if (error) {
684 			printf("%s: can't create DMA map for RX\n",
685 			    sc->vge_dev.dv_xname);
686 			return (ENOMEM);
687 		}
688 	}
689 
690 	return (0);
691 }
692 
693 void
694 vge_freemem(struct vge_softc *sc)
695 {
696 	int i;
697 
698 	for (i = 0; i < VGE_RX_DESC_CNT; i++)
699 		bus_dmamap_destroy(sc->sc_dmat,
700 		    sc->vge_ldata.vge_rx_dmamap[i]);
701 
702 	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
703 	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
704 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
705 	    VGE_RX_LIST_SZ);
706 	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, 1);
707 
708 	for (i = 0; i < VGE_TX_DESC_CNT; i++)
709 		bus_dmamap_destroy(sc->sc_dmat,
710 		    sc->vge_ldata.vge_tx_dmamap[i]);
711 
712 	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
713 	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
714 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
715 	    VGE_TX_LIST_SZ);
716 	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, 1);
717 }
718 
719 /*
720  * Attach the interface. Allocate softc structures, do ifmedia
721  * setup and ethernet/BPF attach.
722  */
723 void
724 vge_attach(struct device *parent, struct device *self, void *aux)
725 {
726 	u_char			eaddr[ETHER_ADDR_LEN];
727 	struct vge_softc	*sc = (struct vge_softc *)self;
728 	struct pci_attach_args	*pa = aux;
729 	pci_chipset_tag_t	pc = pa->pa_pc;
730 	pci_intr_handle_t	ih;
731 	const char		*intrstr = NULL;
732 	struct ifnet		*ifp;
733 	int			error = 0;
734 
735 	/*
736 	 * Map control/status registers.
737 	 */
738 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
739 	    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
740 		if (pci_mapreg_map(pa, VGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
741 		    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
742 			printf(": can't map mem or i/o space\n");
743 			return;
744 		}
745 	}
746 
747 	/* Allocate interrupt */
748 	if (pci_intr_map(pa, &ih)) {
749 		printf(": couldn't map interrupt\n");
750 		return;
751 	}
752 	intrstr = pci_intr_string(pc, ih);
753 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc,
754 	    sc->vge_dev.dv_xname);
755 	if (sc->vge_intrhand == NULL) {
756 		printf(": couldn't establish interrupt");
757 		if (intrstr != NULL)
758 			printf(" at %s", intrstr);
759 		return;
760 	}
761 	printf(": %s", intrstr);
762 
763 	sc->sc_dmat = pa->pa_dmat;
764 	sc->sc_pc = pa->pa_pc;
765 
766 	/* Reset the adapter. */
767 	vge_reset(sc);
768 
769 	/*
770 	 * Get station address from the EEPROM.
771 	 */
772 	vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 1);
773 
774 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
775 
776 	printf(", address %s\n",
777 	    ether_sprintf(sc->arpcom.ac_enaddr));
778 
779 	error = vge_allocmem(sc);
780 
781 	if (error)
782 		return;
783 
784 	ifp = &sc->arpcom.ac_if;
785 	ifp->if_softc = sc;
786 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
787 	ifp->if_ioctl = vge_ioctl;
788 	ifp->if_start = vge_start;
789 	ifp->if_watchdog = vge_watchdog;
790 	ifp->if_baudrate = 1000000000;
791 #ifdef VGE_JUMBO
792 	ifp->if_hardmtu = VGE_JUMBO_MTU;
793 #endif
794 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
795 	IFQ_SET_READY(&ifp->if_snd);
796 
797 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
798 				IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
799 
800 #if NVLAN > 0
801 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
802 #endif
803 
804 	/* Set interface name */
805 	strlcpy(ifp->if_xname, sc->vge_dev.dv_xname, IFNAMSIZ);
806 
807 	/* Do MII setup */
808 	sc->sc_mii.mii_ifp = ifp;
809 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
810 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
811 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
812 	ifmedia_init(&sc->sc_mii.mii_media, 0,
813 	    vge_ifmedia_upd, vge_ifmedia_sts);
814 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
815 	    MII_OFFSET_ANY, 0);
816 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
817 		printf("%s: no PHY found!\n", sc->vge_dev.dv_xname);
818 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL,
819 		    0, NULL);
820 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
821 	} else
822 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
823 
824 	timeout_set(&sc->timer_handle, vge_tick, sc);
825 
826 	/*
827 	 * Call MI attach routine.
828 	 */
829 	if_attach(ifp);
830 	ether_ifattach(ifp);
831 }
832 
833 int
834 vge_detach(struct device *self, int flags)
835 {
836 	struct vge_softc *sc = (void *)self;
837 	struct ifnet *ifp = &sc->arpcom.ac_if;
838 
839 	pci_intr_disestablish(sc->sc_pc, sc->vge_intrhand);
840 
841 	vge_stop(sc);
842 
843 	/* Detach all PHYs */
844 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
845 
846 	/* Delete any remaining media. */
847 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
848 
849 	ether_ifdetach(ifp);
850 	if_detach(ifp);
851 
852 	vge_freemem(sc);
853 
854 	bus_space_unmap(sc->vge_btag, sc->vge_bhandle, sc->vge_bsize);
855 	return (0);
856 }
857 
858 int
859 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
860 {
861 	struct mbuf		*m_new = NULL;
862 	struct vge_rx_desc	*r;
863 	bus_dmamap_t		rxmap = sc->vge_ldata.vge_rx_dmamap[idx];
864 	int			i;
865 
866 	if (m == NULL) {
867 		/* Allocate a new mbuf */
868 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
869 		if (m_new == NULL)
870 			return (ENOBUFS);
871 
872 		/* Allocate a cluster */
873 		MCLGET(m_new, M_DONTWAIT);
874 		if (!(m_new->m_flags & M_EXT)) {
875 			m_freem(m_new);
876 			return (ENOBUFS);
877 		}
878 
879 		m = m_new;
880 	} else
881 		m->m_data = m->m_ext.ext_buf;
882 
883 	m->m_len = m->m_pkthdr.len = MCLBYTES;
884 	/* Fix-up alignment so payload is doubleword-aligned */
885 	/* XXX m_adj(m, ETHER_ALIGN); */
886 
887 	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
888 		return (ENOBUFS);
889 
890 	if (rxmap->dm_nsegs > 1)
891 		goto out;
892 
893 	/* Map the segments into RX descriptors */
894 	r = &sc->vge_ldata.vge_rx_list[idx];
895 
896 	if (letoh32(r->vge_sts) & VGE_RDSTS_OWN) {
897 		printf("%s: tried to map a busy RX descriptor\n",
898 		    sc->vge_dev.dv_xname);
899 		goto out;
900 	}
901 	r->vge_buflen = htole16(VGE_BUFLEN(rxmap->dm_segs[0].ds_len) | VGE_RXDESC_I);
902 	r->vge_addrlo = htole32(VGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
903 	r->vge_addrhi = htole16(VGE_ADDR_HI(rxmap->dm_segs[0].ds_addr) & 0xFFFF);
904 	r->vge_sts = htole32(0);
905 	r->vge_ctl = htole32(0);
906 
907 	/*
908 	 * Note: the manual fails to document the fact that for
909 	 * proper operation, the driver needs to replenish the RX
910 	 * DMA ring 4 descriptors at a time (rather than one at a
911 	 * time, like most chips). We can allocate the new buffers
912 	 * but we should not set the OWN bits until we're ready
913 	 * to hand back 4 of them in one shot.
914 	 */
915 #define VGE_RXCHUNK 4
916 	sc->vge_rx_consumed++;
917 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
918 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
919 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
920 			    htole32(VGE_RDSTS_OWN);
921 		sc->vge_rx_consumed = 0;
922 	}
923 
924 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
925 
926 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
927 	    rxmap->dm_mapsize, BUS_DMASYNC_PREREAD);
928 
929 	return (0);
930 out:
931 	DPRINTF(("vge_newbuf: out of memory\n"));
932 	if (m_new != NULL)
933 		m_freem(m_new);
934 	return (ENOMEM);
935 }
936 
937 int
938 vge_tx_list_init(struct vge_softc *sc)
939 {
940 	bzero(sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
941 	bzero(&sc->vge_ldata.vge_tx_mbuf,
942 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
943 
944 	bus_dmamap_sync(sc->sc_dmat,
945 	    sc->vge_ldata.vge_tx_list_map, 0,
946 	    sc->vge_ldata.vge_tx_list_map->dm_mapsize,
947 	    BUS_DMASYNC_PREWRITE);
948 	sc->vge_ldata.vge_tx_prodidx = 0;
949 	sc->vge_ldata.vge_tx_considx = 0;
950 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
951 
952 	return (0);
953 }
954 
955 /* Init RX descriptors and allocate mbufs with vge_newbuf()
956  * A ring is used, and last descriptor points to first. */
957 int
958 vge_rx_list_init(struct vge_softc *sc)
959 {
960 	int			i;
961 
962 	bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
963 	bzero(&sc->vge_ldata.vge_rx_mbuf,
964 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
965 
966 	sc->vge_rx_consumed = 0;
967 
968 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
969 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
970 			return (ENOBUFS);
971 	}
972 
973 	/* Flush the RX descriptors */
974 
975 	bus_dmamap_sync(sc->sc_dmat,
976 	    sc->vge_ldata.vge_rx_list_map,
977 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
978 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
979 
980 	sc->vge_ldata.vge_rx_prodidx = 0;
981 	sc->vge_rx_consumed = 0;
982 	sc->vge_head = sc->vge_tail = NULL;
983 
984 	return (0);
985 }
986 
987 /*
988  * RX handler. We support the reception of jumbo frames that have
989  * been fragmented across multiple 2K mbuf cluster buffers.
990  */
991 void
992 vge_rxeof(struct vge_softc *sc)
993 {
994 	struct mbuf		*m;
995 	struct ifnet		*ifp;
996 	int			i, total_len;
997 	int			lim = 0;
998 	struct vge_rx_desc	*cur_rx;
999 	u_int32_t		rxstat, rxctl;
1000 
1001 	ifp = &sc->arpcom.ac_if;
1002 	i = sc->vge_ldata.vge_rx_prodidx;
1003 
1004 	/* Invalidate the descriptor memory */
1005 
1006 	bus_dmamap_sync(sc->sc_dmat,
1007 	    sc->vge_ldata.vge_rx_list_map,
1008 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1009 	    BUS_DMASYNC_POSTREAD);
1010 
1011 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1012 		struct mbuf *m0 = NULL;
1013 
1014 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1015 		m = sc->vge_ldata.vge_rx_mbuf[i];
1016 		total_len = VGE_RXBYTES(cur_rx);
1017 		rxstat = letoh32(cur_rx->vge_sts);
1018 		rxctl = letoh32(cur_rx->vge_ctl);
1019 
1020 		/* Invalidate the RX mbuf and unload its map */
1021 
1022 		bus_dmamap_sync(sc->sc_dmat,
1023 		    sc->vge_ldata.vge_rx_dmamap[i],
1024 		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1025 		    BUS_DMASYNC_POSTWRITE);
1026 		bus_dmamap_unload(sc->sc_dmat,
1027 		    sc->vge_ldata.vge_rx_dmamap[i]);
1028 
1029 		/*
1030 		 * If the 'start of frame' bit is set, this indicates
1031 		 * either the first fragment in a multi-fragment receive,
1032 		 * or an intermediate fragment. Either way, we want to
1033 		 * accumulate the buffers.
1034 		 */
1035 		if (rxstat & VGE_RXPKT_SOF) {
1036 			DPRINTF(("vge_rxeof: SOF\n"));
1037 			m->m_len = MCLBYTES;
1038 			if (sc->vge_head == NULL)
1039 				sc->vge_head = sc->vge_tail = m;
1040 			else {
1041 				m->m_flags &= ~M_PKTHDR;
1042 				sc->vge_tail->m_next = m;
1043 				sc->vge_tail = m;
1044 			}
1045 			vge_newbuf(sc, i, NULL);
1046 			VGE_RX_DESC_INC(i);
1047 			continue;
1048 		}
1049 
1050 		/*
1051 		 * Bad/error frames will have the RXOK bit cleared.
1052 		 * However, there's one error case we want to allow:
1053 		 * if a VLAN tagged frame arrives and the chip can't
1054 		 * match it against the CAM filter, it considers this
1055 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1056 		 * We don't want to drop the frame though: our VLAN
1057 		 * filtering is done in software.
1058 		 */
1059 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1060 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1061 			ifp->if_ierrors++;
1062 			/*
1063 			 * If this is part of a multi-fragment packet,
1064 			 * discard all the pieces.
1065 			 */
1066 			if (sc->vge_head != NULL) {
1067 				m_freem(sc->vge_head);
1068 				sc->vge_head = sc->vge_tail = NULL;
1069 			}
1070 			vge_newbuf(sc, i, m);
1071 			VGE_RX_DESC_INC(i);
1072 			continue;
1073 		}
1074 
1075 		/*
1076 		 * If allocating a replacement mbuf fails,
1077 		 * reload the current one.
1078 		 */
1079 
1080 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1081 			if (sc->vge_head != NULL) {
1082 				m_freem(sc->vge_head);
1083 				sc->vge_head = sc->vge_tail = NULL;
1084 			}
1085 
1086 			m0 = m_devget(mtod(m, char *),
1087 			    total_len - ETHER_CRC_LEN, ETHER_ALIGN, ifp, NULL);
1088 			vge_newbuf(sc, i, m);
1089 			if (m0 == NULL) {
1090 				ifp->if_ierrors++;
1091 				continue;
1092 			}
1093 			m = m0;
1094 
1095 			VGE_RX_DESC_INC(i);
1096 			continue;
1097 		}
1098 
1099 		VGE_RX_DESC_INC(i);
1100 
1101 		if (sc->vge_head != NULL) {
1102 			m->m_len = total_len % MCLBYTES;
1103 			/*
1104 			 * Special case: if there's 4 bytes or less
1105 			 * in this buffer, the mbuf can be discarded:
1106 			 * the last 4 bytes is the CRC, which we don't
1107 			 * care about anyway.
1108 			 */
1109 			if (m->m_len <= ETHER_CRC_LEN) {
1110 				sc->vge_tail->m_len -=
1111 				    (ETHER_CRC_LEN - m->m_len);
1112 				m_freem(m);
1113 			} else {
1114 				m->m_len -= ETHER_CRC_LEN;
1115 				m->m_flags &= ~M_PKTHDR;
1116 				sc->vge_tail->m_next = m;
1117 			}
1118 			m = sc->vge_head;
1119 			sc->vge_head = sc->vge_tail = NULL;
1120 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1121 		} else
1122 			m->m_pkthdr.len = m->m_len =
1123 			    (total_len - ETHER_CRC_LEN);
1124 
1125 #ifdef __STRICT_ALIGNMENT
1126 		bcopy(m->m_data, m->m_data + ETHER_ALIGN, total_len);
1127 		m->m_data += ETHER_ALIGN;
1128 #endif
1129 		ifp->if_ipackets++;
1130 		m->m_pkthdr.rcvif = ifp;
1131 
1132 		/* Do RX checksumming */
1133 
1134 		/* Check IP header checksum */
1135 		if ((rxctl & VGE_RDCTL_IPPKT) &&
1136 		    (rxctl & VGE_RDCTL_IPCSUMOK))
1137 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1138 
1139 		/* Check TCP/UDP checksum */
1140 		if ((rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT)) &&
1141 		    (rxctl & VGE_RDCTL_PROTOCSUMOK))
1142 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1143 
1144 #if NVLAN > 0
1145 		if (rxstat & VGE_RDSTS_VTAG) {
1146 			m->m_pkthdr.ether_vtag = swap16(rxctl & VGE_RDCTL_VLANID);
1147 			m->m_flags |= M_VLANTAG;
1148 		}
1149 #endif
1150 
1151 #if NBPFILTER > 0
1152 		if (ifp->if_bpf)
1153 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1154 #endif
1155 		ether_input_mbuf(ifp, m);
1156 
1157 		lim++;
1158 		if (lim == VGE_RX_DESC_CNT)
1159 			break;
1160 	}
1161 
1162 	/* Flush the RX DMA ring */
1163 	bus_dmamap_sync(sc->sc_dmat,
1164 	    sc->vge_ldata.vge_rx_list_map,
1165 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1166 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1167 
1168 	sc->vge_ldata.vge_rx_prodidx = i;
1169 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1170 }
1171 
1172 void
1173 vge_txeof(struct vge_softc *sc)
1174 {
1175 	struct ifnet		*ifp;
1176 	u_int32_t		txstat;
1177 	int			idx;
1178 
1179 	ifp = &sc->arpcom.ac_if;
1180 	idx = sc->vge_ldata.vge_tx_considx;
1181 
1182 	/* Invalidate the TX descriptor list */
1183 
1184 	bus_dmamap_sync(sc->sc_dmat,
1185 	    sc->vge_ldata.vge_tx_list_map,
1186 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1187 	    BUS_DMASYNC_POSTREAD);
1188 
1189 	/* Transmitted frames can be now free'd from the TX list */
1190 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1191 		txstat = letoh32(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1192 		if (txstat & VGE_TDSTS_OWN)
1193 			break;
1194 
1195 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1196 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1197 		bus_dmamap_unload(sc->sc_dmat,
1198 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1199 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1200 			ifp->if_collisions++;
1201 		if (txstat & VGE_TDSTS_TXERR)
1202 			ifp->if_oerrors++;
1203 		else
1204 			ifp->if_opackets++;
1205 
1206 		sc->vge_ldata.vge_tx_free++;
1207 		VGE_TX_DESC_INC(idx);
1208 	}
1209 
1210 	/* No changes made to the TX ring, so no flush needed */
1211 
1212 	if (idx != sc->vge_ldata.vge_tx_considx) {
1213 		sc->vge_ldata.vge_tx_considx = idx;
1214 		ifp->if_flags &= ~IFF_OACTIVE;
1215 		ifp->if_timer = 0;
1216 	}
1217 
1218 	/*
1219 	 * If not all descriptors have been released reaped yet,
1220 	 * reload the timer so that we will eventually get another
1221 	 * interrupt that will cause us to re-enter this routine.
1222 	 * This is done in case the transmitter has gone idle.
1223 	 */
1224 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1225 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1226 }
1227 
1228 void
1229 vge_tick(void *xsc)
1230 {
1231 	struct vge_softc	*sc = xsc;
1232 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1233 	struct mii_data		*mii = &sc->sc_mii;
1234 	int s;
1235 
1236 	s = splnet();
1237 
1238 	mii_tick(mii);
1239 
1240 	if (sc->vge_link) {
1241 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1242 			sc->vge_link = 0;
1243 			ifp->if_link_state = LINK_STATE_DOWN;
1244 			if_link_state_change(ifp);
1245 		}
1246 	} else {
1247 		if (mii->mii_media_status & IFM_ACTIVE &&
1248 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1249 			sc->vge_link = 1;
1250 			if (mii->mii_media_status & IFM_FDX)
1251 				ifp->if_link_state = LINK_STATE_FULL_DUPLEX;
1252 			else
1253 				ifp->if_link_state = LINK_STATE_HALF_DUPLEX;
1254 			if_link_state_change(ifp);
1255 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1256 				vge_start(ifp);
1257 		}
1258 	}
1259 	timeout_add_sec(&sc->timer_handle, 1);
1260 	splx(s);
1261 }
1262 
1263 int
1264 vge_intr(void *arg)
1265 {
1266 	struct vge_softc	*sc = arg;
1267 	struct ifnet		*ifp;
1268 	u_int32_t		status;
1269 	int			claimed = 0;
1270 
1271 	ifp = &sc->arpcom.ac_if;
1272 
1273 	if (!(ifp->if_flags & IFF_UP))
1274 		return 0;
1275 
1276 	/* Disable interrupts */
1277 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1278 
1279 	for (;;) {
1280 		status = CSR_READ_4(sc, VGE_ISR);
1281 		DPRINTFN(3, ("vge_intr: status=%#x\n", status));
1282 
1283 		/* If the card has gone away the read returns 0xffffffff. */
1284 		if (status == 0xFFFFFFFF)
1285 			break;
1286 
1287 		if (status) {
1288 			CSR_WRITE_4(sc, VGE_ISR, status);
1289 		}
1290 
1291 		if ((status & VGE_INTRS) == 0)
1292 			break;
1293 
1294 		claimed = 1;
1295 
1296 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1297 			vge_rxeof(sc);
1298 
1299 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1300 			DPRINTFN(2, ("vge_intr: RX error, recovering\n"));
1301 			vge_rxeof(sc);
1302 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1303 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1304 		}
1305 
1306 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1307 			vge_txeof(sc);
1308 
1309 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1310 			DPRINTFN(2, ("DMA_STALL\n"));
1311 			vge_init(ifp);
1312 		}
1313 
1314 		if (status & VGE_ISR_LINKSTS) {
1315 			timeout_del(&sc->timer_handle);
1316 			vge_tick(sc);
1317 		}
1318 	}
1319 
1320 	/* Re-enable interrupts */
1321 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1322 
1323 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1324 		vge_start(ifp);
1325 
1326 	return (claimed);
1327 }
1328 
1329 /*
1330  * Encapsulate an mbuf chain into the TX ring by combining it w/
1331  * the descriptors.
1332  */
1333 int
1334 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1335 {
1336 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1337 	bus_dmamap_t		txmap;
1338 	struct vge_tx_desc	*d = NULL;
1339 	struct vge_tx_frag	*f;
1340 	struct mbuf		*mnew = NULL;
1341 	int			error, frag;
1342 	u_int32_t		vge_flags;
1343 
1344 	vge_flags = 0;
1345 
1346 	if (m_head->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1347 		vge_flags |= VGE_TDCTL_IPCSUM;
1348 	if (m_head->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1349 		vge_flags |= VGE_TDCTL_TCPCSUM;
1350 	if (m_head->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1351 		vge_flags |= VGE_TDCTL_UDPCSUM;
1352 
1353 	txmap = sc->vge_ldata.vge_tx_dmamap[idx];
1354 repack:
1355 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap,
1356 	    m_head, BUS_DMA_NOWAIT);
1357 	if (error) {
1358 		printf("%s: can't map mbuf (error %d)\n",
1359 		    sc->vge_dev.dv_xname, error);
1360 		return (ENOBUFS);
1361 	}
1362 
1363 	d = &sc->vge_ldata.vge_tx_list[idx];
1364 	/* If owned by chip, fail */
1365 	if (letoh32(d->vge_sts) & VGE_TDSTS_OWN)
1366 		return (ENOBUFS);
1367 
1368 	for (frag = 0; frag < txmap->dm_nsegs; frag++) {
1369 		/* Check if we have used all 7 fragments. */
1370 		if (frag == VGE_TX_FRAGS)
1371 			break;
1372 		f = &d->vge_frag[frag];
1373 		f->vge_buflen = htole16(VGE_BUFLEN(txmap->dm_segs[frag].ds_len));
1374 		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[frag].ds_addr));
1375 		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[frag].ds_addr) & 0xFFFF);
1376 	}
1377 
1378 	/*
1379 	 * We used up all 7 fragments!  Now what we have to do is
1380 	 * copy the data into a mbuf cluster and map that.
1381 	 */
1382 	if (frag == VGE_TX_FRAGS) {
1383 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1384 		if (mnew == NULL)
1385 			return (ENOBUFS);
1386 
1387 		if (m_head->m_pkthdr.len > MHLEN) {
1388 			MCLGET(mnew, M_DONTWAIT);
1389 			if (!(mnew->m_flags & M_EXT)) {
1390 				m_freem(mnew);
1391 				return (ENOBUFS);
1392 			}
1393 		}
1394 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1395 		    mtod(mnew, caddr_t));
1396 		mnew->m_pkthdr.len = mnew->m_len = m_head->m_pkthdr.len;
1397 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1398 		m_freem(m_head);
1399 		m_head = mnew;
1400 		goto repack;
1401 	}
1402 
1403 	/* This chip does not do auto-padding */
1404 	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1405 		f = &d->vge_frag[frag];
1406 
1407 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
1408 		    m_head->m_pkthdr.len));
1409 		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[0].ds_addr));
1410 		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[0].ds_addr) & 0xFFFF);
1411 		m_head->m_pkthdr.len = VGE_MIN_FRAMELEN;
1412 		frag++;
1413 	}
1414 	/* For some reason, we need to tell the card fragment + 1 */
1415 	frag++;
1416 
1417 	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
1418 	    BUS_DMASYNC_PREWRITE);
1419 
1420 	d->vge_sts = htole32(m_head->m_pkthdr.len << 16);
1421 	d->vge_ctl = htole32(vge_flags|(frag << 28) | VGE_TD_LS_NORM);
1422 
1423 	if (m_head->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
1424 		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
1425 
1426 #if NVLAN > 0
1427 	/* Set up hardware VLAN tagging. */
1428 	if (m_head->m_flags & M_VLANTAG) {
1429 		d->vge_ctl |= htole32(m_head->m_pkthdr.ether_vtag |
1430 		    VGE_TDCTL_VTAG);
1431 	}
1432 #endif
1433 
1434 	sc->vge_ldata.vge_tx_dmamap[idx] = txmap;
1435 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1436 	sc->vge_ldata.vge_tx_free--;
1437 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1438 
1439 	idx++;
1440 	if (mnew == NULL) {
1441 		/* if mbuf is coalesced, it is already dequeued */
1442 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1443 	}
1444 	return (0);
1445 }
1446 
1447 /*
1448  * Main transmit routine.
1449  */
1450 void
1451 vge_start(struct ifnet *ifp)
1452 {
1453 	struct vge_softc	*sc;
1454 	struct mbuf		*m_head = NULL;
1455 	int			idx, pidx = 0;
1456 
1457 	sc = ifp->if_softc;
1458 
1459 	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE)
1460 		return;
1461 
1462 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1463 		return;
1464 
1465 	idx = sc->vge_ldata.vge_tx_prodidx;
1466 
1467 	pidx = idx - 1;
1468 	if (pidx < 0)
1469 		pidx = VGE_TX_DESC_CNT - 1;
1470 
1471 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1472 		IFQ_POLL(&ifp->if_snd, m_head);
1473 		if (m_head == NULL)
1474 			break;
1475 
1476 		/*
1477 		 * If there's a BPF listener, bounce a copy of this frame
1478 		 * to him.
1479 		 */
1480 #if NBPFILTER > 0
1481 		if (ifp->if_bpf)
1482 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1483 #endif
1484 
1485 		if (vge_encap(sc, m_head, idx)) {
1486 			ifp->if_flags |= IFF_OACTIVE;
1487 			break;
1488 		}
1489 
1490 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1491 		    htole16(VGE_TXDESC_Q);
1492 
1493 		pidx = idx;
1494 		VGE_TX_DESC_INC(idx);
1495 	}
1496 
1497 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1498 		return;
1499 	}
1500 
1501 	/* Flush the TX descriptors */
1502 
1503 	bus_dmamap_sync(sc->sc_dmat,
1504 	    sc->vge_ldata.vge_tx_list_map,
1505 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1506 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1507 
1508 	/* Issue a transmit command. */
1509 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1510 
1511 	sc->vge_ldata.vge_tx_prodidx = idx;
1512 
1513 	/*
1514 	 * Use the countdown timer for interrupt moderation.
1515 	 * 'TX done' interrupts are disabled. Instead, we reset the
1516 	 * countdown timer, which will begin counting until it hits
1517 	 * the value in the SSTIMER register, and then trigger an
1518 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1519 	 * the timer count is reloaded. Only when the transmitter
1520 	 * is idle will the timer hit 0 and an interrupt fire.
1521 	 */
1522 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1523 
1524 	/*
1525 	 * Set a timeout in case the chip goes out to lunch.
1526 	 */
1527 	ifp->if_timer = 5;
1528 }
1529 
1530 int
1531 vge_init(struct ifnet *ifp)
1532 {
1533 	struct vge_softc	*sc = ifp->if_softc;
1534 	int			i;
1535 
1536 	/*
1537 	 * Cancel pending I/O and free all RX/TX buffers.
1538 	 */
1539 	vge_stop(sc);
1540 	vge_reset(sc);
1541 
1542 	/* Initialize RX descriptors list */
1543 	if (vge_rx_list_init(sc) == ENOBUFS) {
1544 		printf("%s: init failed: no memory for RX buffers\n",
1545 		    sc->vge_dev.dv_xname);
1546 		vge_stop(sc);
1547 		return (ENOBUFS);
1548 	}
1549 	/* Initialize TX descriptors */
1550 	if (vge_tx_list_init(sc) == ENOBUFS) {
1551 		printf("%s: init failed: no memory for TX buffers\n",
1552 		    sc->vge_dev.dv_xname);
1553 		vge_stop(sc);
1554 		return (ENOBUFS);
1555 	}
1556 
1557 	/* Set our station address */
1558 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1559 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1560 
1561 	/* Set receive FIFO threshold */
1562 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR);
1563 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
1564 
1565 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
1566 		/*
1567 		 * Allow transmission and reception of VLAN tagged
1568 		 * frames.
1569 		 */
1570 		CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_VTAGOPT);
1571 		CSR_SETBIT_1(sc, VGE_RXCFG, VGE_VTAG_OPT2);
1572 	}
1573 
1574 	/* Set DMA burst length */
1575 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1576 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1577 
1578 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1579 
1580 	/* Set collision backoff algorithm */
1581 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1582 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1583 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1584 
1585 	/* Disable LPSEL field in priority resolution */
1586 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1587 
1588 	/*
1589 	 * Load the addresses of the DMA queues into the chip.
1590 	 * Note that we only use one transmit queue.
1591 	 */
1592 
1593 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1594 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_listseg.ds_addr));
1595 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1596 
1597 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1598 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_listseg.ds_addr));
1599 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1600 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1601 
1602 	/* Enable and wake up the RX descriptor queue */
1603 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1604 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1605 
1606 	/* Enable the TX descriptor queue */
1607 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1608 
1609 	/* Set up the receive filter -- allow large frames for VLANs. */
1610 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1611 
1612 	/* If we want promiscuous mode, set the allframes bit. */
1613 	if (ifp->if_flags & IFF_PROMISC) {
1614 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1615 	}
1616 
1617 	/* Set capture broadcast bit to capture broadcast frames. */
1618 	if (ifp->if_flags & IFF_BROADCAST) {
1619 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1620 	}
1621 
1622 	/* Set multicast bit to capture multicast frames. */
1623 	if (ifp->if_flags & IFF_MULTICAST) {
1624 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1625 	}
1626 
1627 	/* Init the cam filter. */
1628 	vge_cam_clear(sc);
1629 
1630 	/* Init the multicast filter. */
1631 	vge_setmulti(sc);
1632 
1633 	/* Enable flow control */
1634 
1635 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1636 
1637 	/* Enable jumbo frame reception (if desired) */
1638 
1639 	/* Start the MAC. */
1640 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1641 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1642 	CSR_WRITE_1(sc, VGE_CRS0,
1643 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1644 
1645 	/*
1646 	 * Configure one-shot timer for microsecond
1647 	 * resulution and load it for 500 usecs.
1648 	 */
1649 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1650 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1651 
1652 	/*
1653 	 * Configure interrupt moderation for receive. Enable
1654 	 * the holdoff counter and load it, and set the RX
1655 	 * suppression count to the number of descriptors we
1656 	 * want to allow before triggering an interrupt.
1657 	 * The holdoff timer is in units of 20 usecs.
1658 	 */
1659 
1660 #ifdef notyet
1661 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1662 	/* Select the interrupt holdoff timer page. */
1663 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1664 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1665 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1666 
1667 	/* Enable use of the holdoff timer. */
1668 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1669 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1670 
1671 	/* Select the RX suppression threshold page. */
1672 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1673 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1674 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1675 
1676 	/* Restore the page select bits. */
1677 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1678 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1679 #endif
1680 
1681 	/*
1682 	 * Enable interrupts.
1683 	 */
1684 	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1685 	CSR_WRITE_4(sc, VGE_ISR, 0);
1686 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1687 
1688 	/* Restore BMCR state */
1689 	mii_mediachg(&sc->sc_mii);
1690 
1691 	ifp->if_flags |= IFF_RUNNING;
1692 	ifp->if_flags &= ~IFF_OACTIVE;
1693 
1694 	sc->vge_if_flags = 0;
1695 	sc->vge_link = 0;
1696 
1697 	if (!timeout_pending(&sc->timer_handle))
1698 		timeout_add_sec(&sc->timer_handle, 1);
1699 
1700 	return (0);
1701 }
1702 
1703 /*
1704  * Set media options.
1705  */
1706 int
1707 vge_ifmedia_upd(struct ifnet *ifp)
1708 {
1709 	struct vge_softc *sc = ifp->if_softc;
1710 
1711 	return (mii_mediachg(&sc->sc_mii));
1712 }
1713 
1714 /*
1715  * Report current media status.
1716  */
1717 void
1718 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1719 {
1720 	struct vge_softc *sc = ifp->if_softc;
1721 
1722 	mii_pollstat(&sc->sc_mii);
1723 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1724 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1725 }
1726 
1727 void
1728 vge_miibus_statchg(struct device *dev)
1729 {
1730 	struct vge_softc	*sc = (struct vge_softc *)dev;
1731 	struct mii_data		*mii;
1732 	struct ifmedia_entry	*ife;
1733 
1734 	mii = &sc->sc_mii;
1735 	ife = mii->mii_media.ifm_cur;
1736 
1737 	/*
1738 	 * If the user manually selects a media mode, we need to turn
1739 	 * on the forced MAC mode bit in the DIAGCTL register. If the
1740 	 * user happens to choose a full duplex mode, we also need to
1741 	 * set the 'force full duplex' bit. This applies only to
1742 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1743 	 * mode is disabled, and in 1000baseT mode, full duplex is
1744 	 * always implied, so we turn on the forced mode bit but leave
1745 	 * the FDX bit cleared.
1746 	 */
1747 
1748 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1749 	case IFM_AUTO:
1750 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1751 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1752 		break;
1753 	case IFM_1000_T:
1754 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1755 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1756 		break;
1757 	case IFM_100_TX:
1758 	case IFM_10_T:
1759 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1760 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1761 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1762 		} else {
1763 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1764 		}
1765 		break;
1766 	default:
1767 		printf("%s: unknown media type: %x\n",
1768 		    sc->vge_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media));
1769 		break;
1770 	}
1771 }
1772 
1773 int
1774 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1775 {
1776 	struct vge_softc	*sc = ifp->if_softc;
1777 	struct ifaddr		*ifa = (struct ifaddr *) data;
1778 	struct ifreq		*ifr = (struct ifreq *) data;
1779 	int			s, error = 0;
1780 
1781 	s = splnet();
1782 
1783 	switch (command) {
1784 	case SIOCSIFADDR:
1785 		ifp->if_flags |= IFF_UP;
1786 		switch (ifa->ifa_addr->sa_family) {
1787 #ifdef INET
1788 		case AF_INET:
1789 			vge_init(ifp);
1790 			arp_ifinit(&sc->arpcom, ifa);
1791 			break;
1792 #endif
1793 		default:
1794 			vge_init(ifp);
1795 			break;
1796 		}
1797 		break;
1798 
1799 	case SIOCSIFFLAGS:
1800 		if (ifp->if_flags & IFF_UP) {
1801 			if (ifp->if_flags & IFF_RUNNING &&
1802 			    ifp->if_flags & IFF_PROMISC &&
1803 			    !(sc->vge_if_flags & IFF_PROMISC)) {
1804 				CSR_SETBIT_1(sc, VGE_RXCTL,
1805 				    VGE_RXCTL_RX_PROMISC);
1806 				vge_setmulti(sc);
1807 			} else if (ifp->if_flags & IFF_RUNNING &&
1808 			    !(ifp->if_flags & IFF_PROMISC) &&
1809 			    sc->vge_if_flags & IFF_PROMISC) {
1810 				CSR_CLRBIT_1(sc, VGE_RXCTL,
1811 				    VGE_RXCTL_RX_PROMISC);
1812 				vge_setmulti(sc);
1813                         } else
1814 				vge_init(ifp);
1815 		} else {
1816 			if (ifp->if_flags & IFF_RUNNING)
1817 				vge_stop(sc);
1818 		}
1819 		sc->vge_if_flags = ifp->if_flags;
1820 		break;
1821 
1822 	case SIOCGIFMEDIA:
1823 	case SIOCSIFMEDIA:
1824 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1825 		break;
1826 
1827 	default:
1828 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1829 	}
1830 
1831 	if (error == ENETRESET) {
1832 		if (ifp->if_flags & IFF_RUNNING)
1833 			vge_setmulti(sc);
1834 		error = 0;
1835 	}
1836 
1837 	splx(s);
1838 	return (error);
1839 }
1840 
1841 void
1842 vge_watchdog(struct ifnet *ifp)
1843 {
1844 	struct vge_softc *sc = ifp->if_softc;
1845 	int s;
1846 
1847 	s = splnet();
1848 	printf("%s: watchdog timeout\n", sc->vge_dev.dv_xname);
1849 	ifp->if_oerrors++;
1850 
1851 	vge_txeof(sc);
1852 	vge_rxeof(sc);
1853 
1854 	vge_init(ifp);
1855 
1856 	splx(s);
1857 }
1858 
1859 /*
1860  * Stop the adapter and free any mbufs allocated to the
1861  * RX and TX lists.
1862  */
1863 void
1864 vge_stop(struct vge_softc *sc)
1865 {
1866 	int			i;
1867 	struct ifnet		*ifp;
1868 
1869 	ifp = &sc->arpcom.ac_if;
1870 	ifp->if_timer = 0;
1871 
1872 	timeout_del(&sc->timer_handle);
1873 
1874 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1875 
1876 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1877 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
1878 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1879 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
1880 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
1881 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
1882 
1883 	if (sc->vge_head != NULL) {
1884 		m_freem(sc->vge_head);
1885 		sc->vge_head = sc->vge_tail = NULL;
1886 	}
1887 
1888 	/* Free the TX list buffers. */
1889 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1890 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
1891 			bus_dmamap_unload(sc->sc_dmat,
1892 			    sc->vge_ldata.vge_tx_dmamap[i]);
1893 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
1894 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
1895 		}
1896 	}
1897 
1898 	/* Free the RX list buffers. */
1899 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1900 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
1901 			bus_dmamap_unload(sc->sc_dmat,
1902 			    sc->vge_ldata.vge_rx_dmamap[i]);
1903 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
1904 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
1905 		}
1906 	}
1907 }
1908