xref: /openbsd-src/sys/dev/pci/if_vge.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: if_vge.c,v 1.43 2008/11/28 02:44:18 brad Exp $	*/
2 /*	$FreeBSD: if_vge.c,v 1.3 2004/09/11 22:13:25 wpaul Exp $	*/
3 /*
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37  *
38  * Written by Bill Paul <wpaul@windriver.com>
39  * Senior Networking Software Engineer
40  * Wind River Systems
41  *
42  * Ported to OpenBSD by Peter Valchev <pvalchev@openbsd.org>
43  */
44 
45 /*
46  * The VIA Networking VT6122 is a 32bit, 33/66MHz PCI device that
47  * combines a tri-speed ethernet MAC and PHY, with the following
48  * features:
49  *
50  *	o Jumbo frame support up to 16K
51  *	o Transmit and receive flow control
52  *	o IPv4 checksum offload
53  *	o VLAN tag insertion and stripping
54  *	o TCP large send
55  *	o 64-bit multicast hash table filter
56  *	o 64 entry CAM filter
57  *	o 16K RX FIFO and 48K TX FIFO memory
58  *	o Interrupt moderation
59  *
60  * The VT6122 supports up to four transmit DMA queues. The descriptors
61  * in the transmit ring can address up to 7 data fragments; frames which
62  * span more than 7 data buffers must be coalesced, but in general the
63  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
64  * long. The receive descriptors address only a single buffer.
65  *
66  * There are two peculiar design issues with the VT6122. One is that
67  * receive data buffers must be aligned on a 32-bit boundary. This is
68  * not a problem where the VT6122 is used as a LOM device in x86-based
69  * systems, but on architectures that generate unaligned access traps, we
70  * have to do some copying.
71  *
72  * The other issue has to do with the way 64-bit addresses are handled.
73  * The DMA descriptors only allow you to specify 48 bits of addressing
74  * information. The remaining 16 bits are specified using one of the
75  * I/O registers. If you only have a 32-bit system, then this isn't
76  * an issue, but if you have a 64-bit system and more than 4GB of
77  * memory, you must have to make sure your network data buffers reside
78  * in the same 48-bit 'segment.'
79  *
80  * Special thanks to Ryan Fu at VIA Networking for providing documentation
81  * and sample NICs for testing.
82  */
83 
84 #include "bpfilter.h"
85 #include "vlan.h"
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/timeout.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #include <netinet/if_ether.h>
108 #endif
109 
110 #if NVLAN > 0
111 #include <net/if_types.h>
112 #include <net/if_vlan_var.h>
113 #endif
114 
115 #if NBPFILTER > 0
116 #include <net/bpf.h>
117 #endif
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125 
126 #include <dev/pci/if_vgereg.h>
127 #include <dev/pci/if_vgevar.h>
128 
129 int vge_probe		(struct device *, void *, void *);
130 void vge_attach		(struct device *, struct device *, void *);
131 
132 int vge_encap		(struct vge_softc *, struct mbuf *, int);
133 
134 int vge_allocmem		(struct vge_softc *);
135 int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
136 int vge_rx_list_init	(struct vge_softc *);
137 int vge_tx_list_init	(struct vge_softc *);
138 void vge_rxeof		(struct vge_softc *);
139 void vge_txeof		(struct vge_softc *);
140 int vge_intr		(void *);
141 void vge_tick		(void *);
142 void vge_start		(struct ifnet *);
143 int vge_ioctl		(struct ifnet *, u_long, caddr_t);
144 int vge_init		(struct ifnet *);
145 void vge_stop		(struct vge_softc *);
146 void vge_watchdog	(struct ifnet *);
147 int vge_ifmedia_upd	(struct ifnet *);
148 void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149 
150 #ifdef VGE_EEPROM
151 void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
152 #endif
153 void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
154 
155 void vge_miipoll_start	(struct vge_softc *);
156 void vge_miipoll_stop	(struct vge_softc *);
157 int vge_miibus_readreg	(struct device *, int, int);
158 void vge_miibus_writereg (struct device *, int, int, int);
159 void vge_miibus_statchg	(struct device *);
160 
161 void vge_cam_clear	(struct vge_softc *);
162 int vge_cam_set		(struct vge_softc *, uint8_t *);
163 void vge_setmulti	(struct vge_softc *);
164 void vge_reset		(struct vge_softc *);
165 
166 struct cfattach vge_ca = {
167 	sizeof(struct vge_softc), vge_probe, vge_attach
168 };
169 
170 struct cfdriver vge_cd = {
171 	0, "vge", DV_IFNET
172 };
173 
174 #define VGE_PCI_LOIO             0x10
175 #define VGE_PCI_LOMEM            0x14
176 
177 int vge_debug = 0;
178 #define DPRINTF(x)	if (vge_debug) printf x
179 #define DPRINTFN(n, x)	if (vge_debug >= (n)) printf x
180 
181 const struct pci_matchid vge_devices[] = {
182 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612x },
183 };
184 
185 #ifdef VGE_EEPROM
186 /*
187  * Read a word of data stored in the EEPROM at address 'addr.'
188  */
189 void
190 vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest)
191 {
192 	int			i;
193 	u_int16_t		word = 0;
194 
195 	/*
196 	 * Enter EEPROM embedded programming mode. In order to
197 	 * access the EEPROM at all, we first have to set the
198 	 * EELOAD bit in the CHIPCFG2 register.
199 	 */
200 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
201 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
202 
203 	/* Select the address of the word we want to read */
204 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
205 
206 	/* Issue read command */
207 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
208 
209 	/* Wait for the done bit to be set. */
210 	for (i = 0; i < VGE_TIMEOUT; i++) {
211 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
212 			break;
213 	}
214 
215 	if (i == VGE_TIMEOUT) {
216 		printf("%s: EEPROM read timed out\n", sc->vge_dev.dv_xname);
217 		*dest = 0;
218 		return;
219 	}
220 
221 	/* Read the result */
222 	word = CSR_READ_2(sc, VGE_EERDDAT);
223 
224 	/* Turn off EEPROM access mode. */
225 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
226 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
227 
228 	*dest = word;
229 }
230 #endif
231 
232 /*
233  * Read a sequence of words from the EEPROM.
234  */
235 void
236 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt,
237     int swap)
238 {
239 	int			i;
240 #ifdef VGE_EEPROM
241 	u_int16_t		word = 0, *ptr;
242 
243 	for (i = 0; i < cnt; i++) {
244 		vge_eeprom_getword(sc, off + i, &word);
245 		ptr = (u_int16_t *)(dest + (i * 2));
246 		if (swap)
247 			*ptr = ntohs(word);
248 		else
249 			*ptr = word;
250 	}
251 #else
252 	for (i = 0; i < ETHER_ADDR_LEN; i++)
253 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
254 #endif
255 }
256 
257 void
258 vge_miipoll_stop(struct vge_softc *sc)
259 {
260 	int			i;
261 
262 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
263 
264 	for (i = 0; i < VGE_TIMEOUT; i++) {
265 		DELAY(1);
266 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
267 			break;
268 	}
269 
270 	if (i == VGE_TIMEOUT)
271 		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
272 }
273 
274 void
275 vge_miipoll_start(struct vge_softc *sc)
276 {
277 	int			i;
278 
279 	/* First, make sure we're idle. */
280 
281 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
282 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
283 
284 	for (i = 0; i < VGE_TIMEOUT; i++) {
285 		DELAY(1);
286 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
287 			break;
288 	}
289 
290 	if (i == VGE_TIMEOUT) {
291 		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
292 		return;
293 	}
294 
295 	/* Now enable auto poll mode. */
296 
297 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
298 
299 	/* And make sure it started. */
300 
301 	for (i = 0; i < VGE_TIMEOUT; i++) {
302 		DELAY(1);
303 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
304 			break;
305 	}
306 
307 	if (i == VGE_TIMEOUT)
308 		printf("%s: failed to start MII autopoll\n", sc->vge_dev.dv_xname);
309 }
310 
311 int
312 vge_miibus_readreg(struct device *dev, int phy, int reg)
313 {
314 	struct vge_softc	*sc = (struct vge_softc *)dev;
315 	int			i, s;
316 	u_int16_t		rval = 0;
317 
318 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
319 		return(0);
320 
321 	s = splnet();
322 
323 	vge_miipoll_stop(sc);
324 
325 	/* Specify the register we want to read. */
326 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
327 
328 	/* Issue read command. */
329 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
330 
331 	/* Wait for the read command bit to self-clear. */
332 	for (i = 0; i < VGE_TIMEOUT; i++) {
333 		DELAY(1);
334 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
335 			break;
336 	}
337 
338 	if (i == VGE_TIMEOUT)
339 		printf("%s: MII read timed out\n", sc->vge_dev.dv_xname);
340 	else
341 		rval = CSR_READ_2(sc, VGE_MIIDATA);
342 
343 	vge_miipoll_start(sc);
344 	splx(s);
345 
346 	return (rval);
347 }
348 
349 void
350 vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
351 {
352 	struct vge_softc	*sc = (struct vge_softc *)dev;
353 	int			i, s;
354 
355 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
356 		return;
357 
358 	s = splnet();
359 	vge_miipoll_stop(sc);
360 
361 	/* Specify the register we want to write. */
362 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
363 
364 	/* Specify the data we want to write. */
365 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
366 
367 	/* Issue write command. */
368 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
369 
370 	/* Wait for the write command bit to self-clear. */
371 	for (i = 0; i < VGE_TIMEOUT; i++) {
372 		DELAY(1);
373 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
374 			break;
375 	}
376 
377 	if (i == VGE_TIMEOUT) {
378 		printf("%s: MII write timed out\n", sc->vge_dev.dv_xname);
379 	}
380 
381 	vge_miipoll_start(sc);
382 	splx(s);
383 }
384 
385 void
386 vge_cam_clear(struct vge_softc *sc)
387 {
388 	int			i;
389 
390 	/*
391 	 * Turn off all the mask bits. This tells the chip
392 	 * that none of the entries in the CAM filter are valid.
393 	 * desired entries will be enabled as we fill the filter in.
394 	 */
395 
396 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
397 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
398 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
399 	for (i = 0; i < 8; i++)
400 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
401 
402 	/* Clear the VLAN filter too. */
403 
404 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
405 	for (i = 0; i < 8; i++)
406 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
407 
408 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
409 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
410 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
411 
412 	sc->vge_camidx = 0;
413 }
414 
415 int
416 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
417 {
418 	int			i, error = 0;
419 
420 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
421 		return(ENOSPC);
422 
423 	/* Select the CAM data page. */
424 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
425 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
426 
427 	/* Set the filter entry we want to update and enable writing. */
428 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
429 
430 	/* Write the address to the CAM registers */
431 	for (i = 0; i < ETHER_ADDR_LEN; i++)
432 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
433 
434 	/* Issue a write command. */
435 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
436 
437 	/* Wake for it to clear. */
438 	for (i = 0; i < VGE_TIMEOUT; i++) {
439 		DELAY(1);
440 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
441 			break;
442 	}
443 
444 	if (i == VGE_TIMEOUT) {
445 		printf("%s: setting CAM filter failed\n", sc->vge_dev.dv_xname);
446 		error = EIO;
447 		goto fail;
448 	}
449 
450 	/* Select the CAM mask page. */
451 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
452 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
453 
454 	/* Set the mask bit that enables this filter. */
455 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
456 	    1<<(sc->vge_camidx & 7));
457 
458 	sc->vge_camidx++;
459 
460 fail:
461 	/* Turn off access to CAM. */
462 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
463 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
464 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
465 
466 	return (error);
467 }
468 
469 /*
470  * Program the multicast filter. We use the 64-entry CAM filter
471  * for perfect filtering. If there's more than 64 multicast addresses,
472  * we use the hash filter instead.
473  */
474 void
475 vge_setmulti(struct vge_softc *sc)
476 {
477 	struct arpcom		*ac = &sc->arpcom;
478 	struct ifnet		*ifp = &ac->ac_if;
479 	struct ether_multi	*enm;
480 	struct ether_multistep	step;
481 	int			error;
482 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
483 
484 	/* First, zot all the multicast entries. */
485 	vge_cam_clear(sc);
486 	CSR_WRITE_4(sc, VGE_MAR0, 0);
487 	CSR_WRITE_4(sc, VGE_MAR1, 0);
488 	ifp->if_flags &= ~IFF_ALLMULTI;
489 
490 	/*
491 	 * If the user wants allmulti or promisc mode, enable reception
492 	 * of all multicast frames.
493 	 */
494 	if (ifp->if_flags & IFF_PROMISC) {
495 allmulti:
496 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
497 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
498 		ifp->if_flags |= IFF_ALLMULTI;
499 		return;
500 	}
501 
502 	/* Now program new ones */
503 	ETHER_FIRST_MULTI(step, ac, enm);
504 	while (enm != NULL) {
505 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN))
506 			goto allmulti;
507 
508 		error = vge_cam_set(sc, enm->enm_addrlo);
509 		if (error)
510 			break;
511 
512 		ETHER_NEXT_MULTI(step, enm);
513 	}
514 
515 	/* If there were too many addresses, use the hash filter. */
516 	if (error) {
517 		vge_cam_clear(sc);
518 
519 		ETHER_FIRST_MULTI(step, ac, enm);
520 		while (enm != NULL) {
521 			h = ether_crc32_be(enm->enm_addrlo,
522 			    ETHER_ADDR_LEN) >> 26;
523 			hashes[h >> 5] |= 1 << (h & 0x1f);
524 
525 			ETHER_NEXT_MULTI(step, enm);
526 		}
527 
528 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
529 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
530 	}
531 }
532 
533 void
534 vge_reset(struct vge_softc *sc)
535 {
536 	int			i;
537 
538 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
539 
540 	for (i = 0; i < VGE_TIMEOUT; i++) {
541 		DELAY(5);
542 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
543 			break;
544 	}
545 
546 	if (i == VGE_TIMEOUT) {
547 		printf("%s: soft reset timed out", sc->vge_dev.dv_xname);
548 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
549 		DELAY(2000);
550 	}
551 
552 	DELAY(5000);
553 
554 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
555 
556 	for (i = 0; i < VGE_TIMEOUT; i++) {
557 		DELAY(5);
558 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
559 			break;
560 	}
561 
562 	if (i == VGE_TIMEOUT) {
563 		printf("%s: EEPROM reload timed out\n", sc->vge_dev.dv_xname);
564 		return;
565 	}
566 
567 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
568 }
569 
570 /*
571  * Probe for a VIA gigabit chip. Check the PCI vendor and device
572  * IDs against our list and return a device name if we find a match.
573  */
574 int
575 vge_probe(struct device *dev, void *match, void *aux)
576 {
577 	return (pci_matchbyid((struct pci_attach_args *)aux, vge_devices,
578 	    sizeof(vge_devices)/sizeof(vge_devices[0])));
579 }
580 
581 /*
582  * Allocate memory for RX/TX rings
583  */
584 int
585 vge_allocmem(struct vge_softc *sc)
586 {
587 	int			nseg, rseg;
588 	int			i, error;
589 
590 	nseg = 32;
591 
592 	/* Allocate DMA'able memory for the TX ring */
593 
594 	error = bus_dmamap_create(sc->sc_dmat, VGE_TX_LIST_SZ, 1,
595 	    VGE_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
596 	    &sc->vge_ldata.vge_tx_list_map);
597 	if (error)
598 		return (ENOMEM);
599 	error = bus_dmamem_alloc(sc->sc_dmat, VGE_TX_LIST_SZ,
600 	    ETHER_ALIGN, 0,
601 	    &sc->vge_ldata.vge_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
602 	if (error) {
603 		printf("%s: can't alloc TX list\n", sc->vge_dev.dv_xname);
604 		return (ENOMEM);
605 	}
606 
607 	/* Load the map for the TX ring. */
608 	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg,
609 	     1, VGE_TX_LIST_SZ,
610 	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
611 	memset(sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
612 	if (error) {
613 		printf("%s: can't map TX dma buffers\n",
614 		    sc->vge_dev.dv_xname);
615 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
616 		return (ENOMEM);
617 	}
618 
619 	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map,
620 	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
621 	if (error) {
622 		printf("%s: can't load TX dma map\n", sc->vge_dev.dv_xname);
623 		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
624 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
625 		    VGE_TX_LIST_SZ);
626 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
627 		return (ENOMEM);
628 	}
629 
630 	/* Create DMA maps for TX buffers */
631 
632 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
633 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
634 		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
635 		    &sc->vge_ldata.vge_tx_dmamap[i]);
636 		if (error) {
637 			printf("%s: can't create DMA map for TX\n",
638 			    sc->vge_dev.dv_xname);
639 			return (ENOMEM);
640 		}
641 	}
642 
643 	/* Allocate DMA'able memory for the RX ring */
644 
645 	error = bus_dmamap_create(sc->sc_dmat, VGE_RX_LIST_SZ, 1,
646 	    VGE_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
647 	    &sc->vge_ldata.vge_rx_list_map);
648 	if (error)
649 		return (ENOMEM);
650 	error = bus_dmamem_alloc(sc->sc_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
651 	    0, &sc->vge_ldata.vge_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
652 	if (error) {
653 		printf("%s: can't alloc RX list\n", sc->vge_dev.dv_xname);
654 		return (ENOMEM);
655 	}
656 
657 	/* Load the map for the RX ring. */
658 
659 	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg,
660 	     1, VGE_RX_LIST_SZ,
661 	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
662 	memset(sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
663 	if (error) {
664 		printf("%s: can't map RX dma buffers\n",
665 		    sc->vge_dev.dv_xname);
666 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
667 		return (ENOMEM);
668 	}
669 	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map,
670 	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
671 	if (error) {
672 		printf("%s: can't load RX dma map\n", sc->vge_dev.dv_xname);
673 		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
674 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
675 		    VGE_RX_LIST_SZ);
676 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
677 		return (ENOMEM);
678 	}
679 
680 	/* Create DMA maps for RX buffers */
681 
682 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
683 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
684 		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
685 		    &sc->vge_ldata.vge_rx_dmamap[i]);
686 		if (error) {
687 			printf("%s: can't create DMA map for RX\n",
688 			    sc->vge_dev.dv_xname);
689 			return (ENOMEM);
690 		}
691 	}
692 
693 	return (0);
694 }
695 
696 /*
697  * Attach the interface. Allocate softc structures, do ifmedia
698  * setup and ethernet/BPF attach.
699  */
700 void
701 vge_attach(struct device *parent, struct device *self, void *aux)
702 {
703 	u_char			eaddr[ETHER_ADDR_LEN];
704 	u_int16_t		as[3];
705 	struct vge_softc	*sc = (struct vge_softc *)self;
706 	struct pci_attach_args	*pa = aux;
707 	pci_chipset_tag_t	pc = pa->pa_pc;
708 	pci_intr_handle_t	ih;
709 	const char		*intrstr = NULL;
710 	struct ifnet		*ifp;
711 	int			error = 0, i;
712 	bus_size_t		iosize;
713 
714 	/*
715 	 * Map control/status registers.
716 	 */
717 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
718 	    &sc->vge_btag, &sc->vge_bhandle, NULL, &iosize, 0)) {
719 		if (pci_mapreg_map(pa, VGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
720 		    &sc->vge_btag, &sc->vge_bhandle, NULL, &iosize, 0)) {
721 			printf(": can't map mem or i/o space\n");
722 			return;
723 		}
724 	}
725 
726 	/* Allocate interrupt */
727 	if (pci_intr_map(pa, &ih)) {
728 		printf(": couldn't map interrupt\n");
729 		return;
730 	}
731 	intrstr = pci_intr_string(pc, ih);
732 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc,
733 	    sc->vge_dev.dv_xname);
734 	if (sc->vge_intrhand == NULL) {
735 		printf(": couldn't establish interrupt");
736 		if (intrstr != NULL)
737 			printf(" at %s", intrstr);
738 		return;
739 	}
740 	printf(": %s", intrstr);
741 
742 	sc->sc_dmat = pa->pa_dmat;
743 
744 	/* Reset the adapter. */
745 	vge_reset(sc);
746 
747 	/*
748 	 * Get station address from the EEPROM.
749 	 */
750 	vge_read_eeprom(sc, (caddr_t)as, VGE_EE_EADDR, 3, 0);
751 	for (i = 0; i < 3; i++) {
752 		eaddr[(i * 2) + 0] = as[i] & 0xff;
753 		eaddr[(i * 2) + 1] = as[i] >> 8;
754 	}
755 
756 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
757 
758 	printf(", address %s\n",
759 	    ether_sprintf(sc->arpcom.ac_enaddr));
760 
761 	error = vge_allocmem(sc);
762 
763 	if (error)
764 		return;
765 
766 	ifp = &sc->arpcom.ac_if;
767 	ifp->if_softc = sc;
768 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
769 	ifp->if_ioctl = vge_ioctl;
770 	ifp->if_start = vge_start;
771 	ifp->if_watchdog = vge_watchdog;
772 	ifp->if_init = vge_init;
773 	ifp->if_baudrate = 1000000000;
774 #ifdef VGE_JUMBO
775 	ifp->if_hardmtu = VGE_JUMBO_MTU;
776 #endif
777 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
778 	IFQ_SET_READY(&ifp->if_snd);
779 
780 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
781 				IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
782 
783 #if NVLAN > 0
784 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
785 #endif
786 
787 	/* Set interface name */
788 	strlcpy(ifp->if_xname, sc->vge_dev.dv_xname, IFNAMSIZ);
789 
790 	/* Do MII setup */
791 	sc->sc_mii.mii_ifp = ifp;
792 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
793 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
794 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
795 	ifmedia_init(&sc->sc_mii.mii_media, 0,
796 	    vge_ifmedia_upd, vge_ifmedia_sts);
797 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
798 	    MII_OFFSET_ANY, 0);
799 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
800 		printf("%s: no PHY found!\n", sc->vge_dev.dv_xname);
801 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL,
802 		    0, NULL);
803 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
804 	} else
805 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
806 
807 	timeout_set(&sc->timer_handle, vge_tick, sc);
808 
809 	/*
810 	 * Call MI attach routine.
811 	 */
812 	if_attach(ifp);
813 	ether_ifattach(ifp);
814 }
815 
816 int
817 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
818 {
819 	struct mbuf		*m_new = NULL;
820 	struct vge_rx_desc	*r;
821 	bus_dmamap_t		rxmap = sc->vge_ldata.vge_rx_dmamap[idx];
822 	int			i;
823 
824 	if (m == NULL) {
825 		/* Allocate a new mbuf */
826 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
827 		if (m_new == NULL)
828 			return (ENOBUFS);
829 
830 		/* Allocate a cluster */
831 		MCLGET(m_new, M_DONTWAIT);
832 		if (!(m_new->m_flags & M_EXT)) {
833 			m_freem(m_new);
834 			return (ENOBUFS);
835 		}
836 
837 		m = m_new;
838 	} else
839 		m->m_data = m->m_ext.ext_buf;
840 
841 	m->m_len = m->m_pkthdr.len = MCLBYTES;
842 	/* Fix-up alignment so payload is doubleword-aligned */
843 	/* XXX m_adj(m, ETHER_ALIGN); */
844 
845 	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
846 		return (ENOBUFS);
847 
848 	if (rxmap->dm_nsegs > 1)
849 		goto out;
850 
851 	/* Map the segments into RX descriptors */
852 	r = &sc->vge_ldata.vge_rx_list[idx];
853 
854 	if (letoh32(r->vge_sts) & VGE_RDSTS_OWN) {
855 		printf("%s: tried to map a busy RX descriptor\n",
856 		    sc->vge_dev.dv_xname);
857 		goto out;
858 	}
859 	r->vge_buflen = htole16(VGE_BUFLEN(rxmap->dm_segs[0].ds_len) | VGE_RXDESC_I);
860 	r->vge_addrlo = htole32(VGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
861 	r->vge_addrhi = htole16(VGE_ADDR_HI(rxmap->dm_segs[0].ds_addr) & 0xFFFF);
862 	r->vge_sts = htole32(0);
863 	r->vge_ctl = htole32(0);
864 
865 	/*
866 	 * Note: the manual fails to document the fact that for
867 	 * proper operation, the driver needs to replenish the RX
868 	 * DMA ring 4 descriptors at a time (rather than one at a
869 	 * time, like most chips). We can allocate the new buffers
870 	 * but we should not set the OWN bits until we're ready
871 	 * to hand back 4 of them in one shot.
872 	 */
873 #define VGE_RXCHUNK 4
874 	sc->vge_rx_consumed++;
875 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
876 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
877 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
878 			    htole32(VGE_RDSTS_OWN);
879 		sc->vge_rx_consumed = 0;
880 	}
881 
882 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
883 
884 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
885 	    rxmap->dm_mapsize, BUS_DMASYNC_PREREAD);
886 
887 	return (0);
888 out:
889 	DPRINTF(("vge_newbuf: out of memory\n"));
890 	if (m_new != NULL)
891 		m_freem(m_new);
892 	return (ENOMEM);
893 }
894 
895 int
896 vge_tx_list_init(struct vge_softc *sc)
897 {
898 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
899 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
900 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
901 
902 	bus_dmamap_sync(sc->sc_dmat,
903 	    sc->vge_ldata.vge_tx_list_map, 0,
904 	    sc->vge_ldata.vge_tx_list_map->dm_mapsize,
905 	    BUS_DMASYNC_PREWRITE);
906 	sc->vge_ldata.vge_tx_prodidx = 0;
907 	sc->vge_ldata.vge_tx_considx = 0;
908 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
909 
910 	return (0);
911 }
912 
913 /* Init RX descriptors and allocate mbufs with vge_newbuf()
914  * A ring is used, and last descriptor points to first. */
915 int
916 vge_rx_list_init(struct vge_softc *sc)
917 {
918 	int			i;
919 
920 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
921 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
922 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
923 
924 	sc->vge_rx_consumed = 0;
925 
926 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
927 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
928 			return (ENOBUFS);
929 	}
930 
931 	/* Flush the RX descriptors */
932 
933 	bus_dmamap_sync(sc->sc_dmat,
934 	    sc->vge_ldata.vge_rx_list_map,
935 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
936 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
937 
938 	sc->vge_ldata.vge_rx_prodidx = 0;
939 	sc->vge_rx_consumed = 0;
940 	sc->vge_head = sc->vge_tail = NULL;
941 
942 	return (0);
943 }
944 
945 /*
946  * RX handler. We support the reception of jumbo frames that have
947  * been fragmented across multiple 2K mbuf cluster buffers.
948  */
949 void
950 vge_rxeof(struct vge_softc *sc)
951 {
952 	struct mbuf		*m;
953 	struct ifnet		*ifp;
954 	int			i, total_len;
955 	int			lim = 0;
956 	struct vge_rx_desc	*cur_rx;
957 	u_int32_t		rxstat, rxctl;
958 
959 	ifp = &sc->arpcom.ac_if;
960 	i = sc->vge_ldata.vge_rx_prodidx;
961 
962 	/* Invalidate the descriptor memory */
963 
964 	bus_dmamap_sync(sc->sc_dmat,
965 	    sc->vge_ldata.vge_rx_list_map,
966 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
967 	    BUS_DMASYNC_POSTREAD);
968 
969 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
970 		struct mbuf *m0 = NULL;
971 
972 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
973 		m = sc->vge_ldata.vge_rx_mbuf[i];
974 		total_len = VGE_RXBYTES(cur_rx);
975 		rxstat = letoh32(cur_rx->vge_sts);
976 		rxctl = letoh32(cur_rx->vge_ctl);
977 
978 		/* Invalidate the RX mbuf and unload its map */
979 
980 		bus_dmamap_sync(sc->sc_dmat,
981 		    sc->vge_ldata.vge_rx_dmamap[i],
982 		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
983 		    BUS_DMASYNC_POSTWRITE);
984 		bus_dmamap_unload(sc->sc_dmat,
985 		    sc->vge_ldata.vge_rx_dmamap[i]);
986 
987 		/*
988 		 * If the 'start of frame' bit is set, this indicates
989 		 * either the first fragment in a multi-fragment receive,
990 		 * or an intermediate fragment. Either way, we want to
991 		 * accumulate the buffers.
992 		 */
993 		if (rxstat & VGE_RXPKT_SOF) {
994 			DPRINTF(("vge_rxeof: SOF\n"));
995 			m->m_len = MCLBYTES;
996 			if (sc->vge_head == NULL)
997 				sc->vge_head = sc->vge_tail = m;
998 			else {
999 				m->m_flags &= ~M_PKTHDR;
1000 				sc->vge_tail->m_next = m;
1001 				sc->vge_tail = m;
1002 			}
1003 			vge_newbuf(sc, i, NULL);
1004 			VGE_RX_DESC_INC(i);
1005 			continue;
1006 		}
1007 
1008 		/*
1009 		 * Bad/error frames will have the RXOK bit cleared.
1010 		 * However, there's one error case we want to allow:
1011 		 * if a VLAN tagged frame arrives and the chip can't
1012 		 * match it against the CAM filter, it considers this
1013 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1014 		 * We don't want to drop the frame though: our VLAN
1015 		 * filtering is done in software.
1016 		 */
1017 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1018 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1019 			ifp->if_ierrors++;
1020 			/*
1021 			 * If this is part of a multi-fragment packet,
1022 			 * discard all the pieces.
1023 			 */
1024 			if (sc->vge_head != NULL) {
1025 				m_freem(sc->vge_head);
1026 				sc->vge_head = sc->vge_tail = NULL;
1027 			}
1028 			vge_newbuf(sc, i, m);
1029 			VGE_RX_DESC_INC(i);
1030 			continue;
1031 		}
1032 
1033 		/*
1034 		 * If allocating a replacement mbuf fails,
1035 		 * reload the current one.
1036 		 */
1037 
1038 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1039 			if (sc->vge_head != NULL) {
1040 				m_freem(sc->vge_head);
1041 				sc->vge_head = sc->vge_tail = NULL;
1042 			}
1043 
1044 			m0 = m_devget(mtod(m, char *),
1045 			    total_len - ETHER_CRC_LEN, ETHER_ALIGN, ifp, NULL);
1046 			vge_newbuf(sc, i, m);
1047 			if (m0 == NULL) {
1048 				ifp->if_ierrors++;
1049 				continue;
1050 			}
1051 			m = m0;
1052 
1053 			VGE_RX_DESC_INC(i);
1054 			continue;
1055 		}
1056 
1057 		VGE_RX_DESC_INC(i);
1058 
1059 		if (sc->vge_head != NULL) {
1060 			m->m_len = total_len % MCLBYTES;
1061 			/*
1062 			 * Special case: if there's 4 bytes or less
1063 			 * in this buffer, the mbuf can be discarded:
1064 			 * the last 4 bytes is the CRC, which we don't
1065 			 * care about anyway.
1066 			 */
1067 			if (m->m_len <= ETHER_CRC_LEN) {
1068 				sc->vge_tail->m_len -=
1069 				    (ETHER_CRC_LEN - m->m_len);
1070 				m_freem(m);
1071 			} else {
1072 				m->m_len -= ETHER_CRC_LEN;
1073 				m->m_flags &= ~M_PKTHDR;
1074 				sc->vge_tail->m_next = m;
1075 			}
1076 			m = sc->vge_head;
1077 			sc->vge_head = sc->vge_tail = NULL;
1078 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1079 		} else
1080 			m->m_pkthdr.len = m->m_len =
1081 			    (total_len - ETHER_CRC_LEN);
1082 
1083 #ifdef __STRICT_ALIGNMENT
1084 		bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1085 		    total_len);
1086 		m->m_data += ETHER_ALIGN;
1087 #endif
1088 		ifp->if_ipackets++;
1089 		m->m_pkthdr.rcvif = ifp;
1090 
1091 		/* Do RX checksumming */
1092 
1093 		/* Check IP header checksum */
1094 		if ((rxctl & VGE_RDCTL_IPPKT) &&
1095 		    (rxctl & VGE_RDCTL_IPCSUMOK))
1096 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1097 
1098 		/* Check TCP/UDP checksum */
1099 		if ((rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT)) &&
1100 		    (rxctl & VGE_RDCTL_PROTOCSUMOK))
1101 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1102 
1103 #if NVLAN > 0
1104 		if (rxstat & VGE_RDSTS_VTAG) {
1105 			m->m_pkthdr.ether_vtag = swap16(rxctl & VGE_RDCTL_VLANID);
1106 			m->m_flags |= M_VLANTAG;
1107 		}
1108 #endif
1109 
1110 #if NBPFILTER > 0
1111 		if (ifp->if_bpf)
1112 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1113 #endif
1114 		ether_input_mbuf(ifp, m);
1115 
1116 		lim++;
1117 		if (lim == VGE_RX_DESC_CNT)
1118 			break;
1119 	}
1120 
1121 	/* Flush the RX DMA ring */
1122 	bus_dmamap_sync(sc->sc_dmat,
1123 	    sc->vge_ldata.vge_rx_list_map,
1124 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1125 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1126 
1127 	sc->vge_ldata.vge_rx_prodidx = i;
1128 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1129 }
1130 
1131 void
1132 vge_txeof(struct vge_softc *sc)
1133 {
1134 	struct ifnet		*ifp;
1135 	u_int32_t		txstat;
1136 	int			idx;
1137 
1138 	ifp = &sc->arpcom.ac_if;
1139 	idx = sc->vge_ldata.vge_tx_considx;
1140 
1141 	/* Invalidate the TX descriptor list */
1142 
1143 	bus_dmamap_sync(sc->sc_dmat,
1144 	    sc->vge_ldata.vge_tx_list_map,
1145 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1146 	    BUS_DMASYNC_POSTREAD);
1147 
1148 	/* Transmitted frames can be now free'd from the TX list */
1149 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1150 		txstat = letoh32(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1151 		if (txstat & VGE_TDSTS_OWN)
1152 			break;
1153 
1154 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1155 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1156 		bus_dmamap_unload(sc->sc_dmat,
1157 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1158 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1159 			ifp->if_collisions++;
1160 		if (txstat & VGE_TDSTS_TXERR)
1161 			ifp->if_oerrors++;
1162 		else
1163 			ifp->if_opackets++;
1164 
1165 		sc->vge_ldata.vge_tx_free++;
1166 		VGE_TX_DESC_INC(idx);
1167 	}
1168 
1169 	/* No changes made to the TX ring, so no flush needed */
1170 
1171 	if (idx != sc->vge_ldata.vge_tx_considx) {
1172 		sc->vge_ldata.vge_tx_considx = idx;
1173 		ifp->if_flags &= ~IFF_OACTIVE;
1174 		ifp->if_timer = 0;
1175 	}
1176 
1177 	/*
1178 	 * If not all descriptors have been released reaped yet,
1179 	 * reload the timer so that we will eventually get another
1180 	 * interrupt that will cause us to re-enter this routine.
1181 	 * This is done in case the transmitter has gone idle.
1182 	 */
1183 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1184 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1185 }
1186 
1187 void
1188 vge_tick(void *xsc)
1189 {
1190 	struct vge_softc	*sc = xsc;
1191 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1192 	struct mii_data		*mii = &sc->sc_mii;
1193 	int s;
1194 
1195 	s = splnet();
1196 
1197 	mii_tick(mii);
1198 
1199 	if (sc->vge_link) {
1200 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1201 			sc->vge_link = 0;
1202 			ifp->if_link_state = LINK_STATE_DOWN;
1203 			if_link_state_change(ifp);
1204 		}
1205 	} else {
1206 		if (mii->mii_media_status & IFM_ACTIVE &&
1207 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1208 			sc->vge_link = 1;
1209 			if (mii->mii_media_status & IFM_FDX)
1210 				ifp->if_link_state = LINK_STATE_FULL_DUPLEX;
1211 			else
1212 				ifp->if_link_state = LINK_STATE_HALF_DUPLEX;
1213 			if_link_state_change(ifp);
1214 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1215 				vge_start(ifp);
1216 		}
1217 	}
1218 	timeout_add_sec(&sc->timer_handle, 1);
1219 	splx(s);
1220 }
1221 
1222 int
1223 vge_intr(void *arg)
1224 {
1225 	struct vge_softc	*sc = arg;
1226 	struct ifnet		*ifp;
1227 	u_int32_t		status;
1228 	int			claimed = 0;
1229 
1230 	ifp = &sc->arpcom.ac_if;
1231 
1232 	if (!(ifp->if_flags & IFF_UP))
1233 		return 0;
1234 
1235 	/* Disable interrupts */
1236 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1237 
1238 	for (;;) {
1239 		status = CSR_READ_4(sc, VGE_ISR);
1240 		DPRINTFN(3, ("vge_intr: status=%#x\n", status));
1241 
1242 		/* If the card has gone away the read returns 0xffffffff. */
1243 		if (status == 0xFFFFFFFF)
1244 			break;
1245 
1246 		if (status) {
1247 			CSR_WRITE_4(sc, VGE_ISR, status);
1248 		}
1249 
1250 		if ((status & VGE_INTRS) == 0)
1251 			break;
1252 
1253 		claimed = 1;
1254 
1255 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1256 			vge_rxeof(sc);
1257 
1258 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1259 			DPRINTFN(2, ("vge_intr: RX error, recovering\n"));
1260 			vge_rxeof(sc);
1261 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1262 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1263 		}
1264 
1265 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1266 			vge_txeof(sc);
1267 
1268 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1269 			DPRINTFN(2, ("DMA_STALL\n"));
1270 			vge_init(ifp);
1271 		}
1272 
1273 		if (status & VGE_ISR_LINKSTS) {
1274 			timeout_del(&sc->timer_handle);
1275 			vge_tick(sc);
1276 		}
1277 	}
1278 
1279 	/* Re-enable interrupts */
1280 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1281 
1282 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1283 		vge_start(ifp);
1284 
1285 	return (claimed);
1286 }
1287 
1288 /*
1289  * Encapsulate an mbuf chain into the TX ring by combining it w/
1290  * the descriptors.
1291  */
1292 int
1293 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1294 {
1295 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1296 	bus_dmamap_t		txmap;
1297 	struct vge_tx_desc	*d = NULL;
1298 	struct vge_tx_frag	*f;
1299 	struct mbuf		*mnew = NULL;
1300 	int			error, frag;
1301 	u_int32_t		vge_flags;
1302 
1303 	vge_flags = 0;
1304 
1305 	if (m_head->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1306 		vge_flags |= VGE_TDCTL_IPCSUM;
1307 	if (m_head->m_pkthdr.csum_flags & M_TCPV4_CSUM_OUT)
1308 		vge_flags |= VGE_TDCTL_TCPCSUM;
1309 	if (m_head->m_pkthdr.csum_flags & M_UDPV4_CSUM_OUT)
1310 		vge_flags |= VGE_TDCTL_UDPCSUM;
1311 
1312 	txmap = sc->vge_ldata.vge_tx_dmamap[idx];
1313 repack:
1314 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap,
1315 	    m_head, BUS_DMA_NOWAIT);
1316 	if (error) {
1317 		printf("%s: can't map mbuf (error %d)\n",
1318 		    sc->vge_dev.dv_xname, error);
1319 		return (ENOBUFS);
1320 	}
1321 
1322 	d = &sc->vge_ldata.vge_tx_list[idx];
1323 	/* If owned by chip, fail */
1324 	if (letoh32(d->vge_sts) & VGE_TDSTS_OWN)
1325 		return (ENOBUFS);
1326 
1327 	for (frag = 0; frag < txmap->dm_nsegs; frag++) {
1328 		/* Check if we have used all 7 fragments. */
1329 		if (frag == VGE_TX_FRAGS)
1330 			break;
1331 		f = &d->vge_frag[frag];
1332 		f->vge_buflen = htole16(VGE_BUFLEN(txmap->dm_segs[frag].ds_len));
1333 		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[frag].ds_addr));
1334 		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[frag].ds_addr) & 0xFFFF);
1335 	}
1336 
1337 	/*
1338 	 * We used up all 7 fragments!  Now what we have to do is
1339 	 * copy the data into a mbuf cluster and map that.
1340 	 */
1341 	if (frag == VGE_TX_FRAGS) {
1342 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1343 		if (mnew == NULL)
1344 			return (ENOBUFS);
1345 
1346 		if (m_head->m_pkthdr.len > MHLEN) {
1347 			MCLGET(mnew, M_DONTWAIT);
1348 			if (!(mnew->m_flags & M_EXT)) {
1349 				m_freem(mnew);
1350 				return (ENOBUFS);
1351 			}
1352 		}
1353 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1354 		    mtod(mnew, caddr_t));
1355 		mnew->m_pkthdr.len = mnew->m_len = m_head->m_pkthdr.len;
1356 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1357 		m_freem(m_head);
1358 		m_head = mnew;
1359 		goto repack;
1360 	}
1361 
1362 	/* This chip does not do auto-padding */
1363 	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1364 		f = &d->vge_frag[frag];
1365 
1366 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
1367 		    m_head->m_pkthdr.len));
1368 		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[0].ds_addr));
1369 		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[0].ds_addr) & 0xFFFF);
1370 		m_head->m_pkthdr.len = VGE_MIN_FRAMELEN;
1371 		frag++;
1372 	}
1373 	/* For some reason, we need to tell the card fragment + 1 */
1374 	frag++;
1375 
1376 	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
1377 	    BUS_DMASYNC_PREWRITE);
1378 
1379 	d->vge_sts = htole32(m_head->m_pkthdr.len << 16);
1380 	d->vge_ctl = htole32(vge_flags|(frag << 28) | VGE_TD_LS_NORM);
1381 
1382 	if (m_head->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
1383 		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
1384 
1385 #if NVLAN > 0
1386 	/* Set up hardware VLAN tagging. */
1387 	if (m_head->m_flags & M_VLANTAG) {
1388 		d->vge_ctl |= htole32(m_head->m_pkthdr.ether_vtag |
1389 		    VGE_TDCTL_VTAG);
1390 	}
1391 #endif
1392 
1393 	sc->vge_ldata.vge_tx_dmamap[idx] = txmap;
1394 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1395 	sc->vge_ldata.vge_tx_free--;
1396 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1397 
1398 	idx++;
1399 	if (mnew == NULL) {
1400 		/* if mbuf is coalesced, it is already dequeued */
1401 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1402 	}
1403 	return (0);
1404 }
1405 
1406 /*
1407  * Main transmit routine.
1408  */
1409 void
1410 vge_start(struct ifnet *ifp)
1411 {
1412 	struct vge_softc	*sc;
1413 	struct mbuf		*m_head = NULL;
1414 	int			idx, pidx = 0;
1415 
1416 	sc = ifp->if_softc;
1417 
1418 	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE)
1419 		return;
1420 
1421 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1422 		return;
1423 
1424 	idx = sc->vge_ldata.vge_tx_prodidx;
1425 
1426 	pidx = idx - 1;
1427 	if (pidx < 0)
1428 		pidx = VGE_TX_DESC_CNT - 1;
1429 
1430 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1431 		IFQ_POLL(&ifp->if_snd, m_head);
1432 		if (m_head == NULL)
1433 			break;
1434 
1435 		/*
1436 		 * If there's a BPF listener, bounce a copy of this frame
1437 		 * to him.
1438 		 */
1439 #if NBPFILTER > 0
1440 		if (ifp->if_bpf)
1441 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1442 #endif
1443 
1444 		if (vge_encap(sc, m_head, idx)) {
1445 			ifp->if_flags |= IFF_OACTIVE;
1446 			break;
1447 		}
1448 
1449 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1450 		    htole16(VGE_TXDESC_Q);
1451 
1452 		pidx = idx;
1453 		VGE_TX_DESC_INC(idx);
1454 	}
1455 
1456 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1457 		return;
1458 	}
1459 
1460 	/* Flush the TX descriptors */
1461 
1462 	bus_dmamap_sync(sc->sc_dmat,
1463 	    sc->vge_ldata.vge_tx_list_map,
1464 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1465 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1466 
1467 	/* Issue a transmit command. */
1468 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1469 
1470 	sc->vge_ldata.vge_tx_prodidx = idx;
1471 
1472 	/*
1473 	 * Use the countdown timer for interrupt moderation.
1474 	 * 'TX done' interrupts are disabled. Instead, we reset the
1475 	 * countdown timer, which will begin counting until it hits
1476 	 * the value in the SSTIMER register, and then trigger an
1477 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1478 	 * the timer count is reloaded. Only when the transmitter
1479 	 * is idle will the timer hit 0 and an interrupt fire.
1480 	 */
1481 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1482 
1483 	/*
1484 	 * Set a timeout in case the chip goes out to lunch.
1485 	 */
1486 	ifp->if_timer = 5;
1487 }
1488 
1489 int
1490 vge_init(struct ifnet *ifp)
1491 {
1492 	struct vge_softc	*sc = ifp->if_softc;
1493 	int			i;
1494 
1495 	/*
1496 	 * Cancel pending I/O and free all RX/TX buffers.
1497 	 */
1498 	vge_stop(sc);
1499 	vge_reset(sc);
1500 
1501 	/* Initialize RX descriptors list */
1502 	if (vge_rx_list_init(sc) == ENOBUFS) {
1503 		printf("%s: init failed: no memory for RX buffers\n",
1504 		    sc->vge_dev.dv_xname);
1505 		vge_stop(sc);
1506 		return (ENOBUFS);
1507 	}
1508 	/* Initialize TX descriptors */
1509 	if (vge_tx_list_init(sc) == ENOBUFS) {
1510 		printf("%s: init failed: no memory for TX buffers\n",
1511 		    sc->vge_dev.dv_xname);
1512 		vge_stop(sc);
1513 		return (ENOBUFS);
1514 	}
1515 
1516 	/* Set our station address */
1517 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1518 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1519 
1520 	/* Set receive FIFO threshold */
1521 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR);
1522 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
1523 
1524 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
1525 		/*
1526 		 * Allow transmission and reception of VLAN tagged
1527 		 * frames.
1528 		 */
1529 		CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_VTAGOPT);
1530 		CSR_SETBIT_1(sc, VGE_RXCFG, VGE_VTAG_OPT2);
1531 	}
1532 
1533 	/* Set DMA burst length */
1534 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1535 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1536 
1537 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1538 
1539 	/* Set collision backoff algorithm */
1540 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1541 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1542 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1543 
1544 	/* Disable LPSEL field in priority resolution */
1545 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1546 
1547 	/*
1548 	 * Load the addresses of the DMA queues into the chip.
1549 	 * Note that we only use one transmit queue.
1550 	 */
1551 
1552 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1553 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_listseg.ds_addr));
1554 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1555 
1556 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1557 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_listseg.ds_addr));
1558 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1559 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1560 
1561 	/* Enable and wake up the RX descriptor queue */
1562 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1563 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1564 
1565 	/* Enable the TX descriptor queue */
1566 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1567 
1568 	/* Set up the receive filter -- allow large frames for VLANs. */
1569 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1570 
1571 	/* If we want promiscuous mode, set the allframes bit. */
1572 	if (ifp->if_flags & IFF_PROMISC) {
1573 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1574 	}
1575 
1576 	/* Set capture broadcast bit to capture broadcast frames. */
1577 	if (ifp->if_flags & IFF_BROADCAST) {
1578 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1579 	}
1580 
1581 	/* Set multicast bit to capture multicast frames. */
1582 	if (ifp->if_flags & IFF_MULTICAST) {
1583 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1584 	}
1585 
1586 	/* Init the cam filter. */
1587 	vge_cam_clear(sc);
1588 
1589 	/* Init the multicast filter. */
1590 	vge_setmulti(sc);
1591 
1592 	/* Enable flow control */
1593 
1594 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1595 
1596 	/* Enable jumbo frame reception (if desired) */
1597 
1598 	/* Start the MAC. */
1599 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1600 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1601 	CSR_WRITE_1(sc, VGE_CRS0,
1602 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1603 
1604 	/*
1605 	 * Configure one-shot timer for microsecond
1606 	 * resulution and load it for 500 usecs.
1607 	 */
1608 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1609 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1610 
1611 	/*
1612 	 * Configure interrupt moderation for receive. Enable
1613 	 * the holdoff counter and load it, and set the RX
1614 	 * suppression count to the number of descriptors we
1615 	 * want to allow before triggering an interrupt.
1616 	 * The holdoff timer is in units of 20 usecs.
1617 	 */
1618 
1619 #ifdef notyet
1620 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1621 	/* Select the interrupt holdoff timer page. */
1622 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1623 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1624 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1625 
1626 	/* Enable use of the holdoff timer. */
1627 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1628 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1629 
1630 	/* Select the RX suppression threshold page. */
1631 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1632 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1633 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1634 
1635 	/* Restore the page select bits. */
1636 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1637 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1638 #endif
1639 
1640 	/*
1641 	 * Enable interrupts.
1642 	 */
1643 	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1644 	CSR_WRITE_4(sc, VGE_ISR, 0);
1645 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1646 
1647 	/* Restore BMCR state */
1648 	mii_mediachg(&sc->sc_mii);
1649 
1650 	ifp->if_flags |= IFF_RUNNING;
1651 	ifp->if_flags &= ~IFF_OACTIVE;
1652 
1653 	sc->vge_if_flags = 0;
1654 	sc->vge_link = 0;
1655 
1656 	if (!timeout_pending(&sc->timer_handle))
1657 		timeout_add_sec(&sc->timer_handle, 1);
1658 
1659 	return (0);
1660 }
1661 
1662 /*
1663  * Set media options.
1664  */
1665 int
1666 vge_ifmedia_upd(struct ifnet *ifp)
1667 {
1668 	struct vge_softc *sc = ifp->if_softc;
1669 
1670 	return (mii_mediachg(&sc->sc_mii));
1671 }
1672 
1673 /*
1674  * Report current media status.
1675  */
1676 void
1677 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1678 {
1679 	struct vge_softc *sc = ifp->if_softc;
1680 
1681 	mii_pollstat(&sc->sc_mii);
1682 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1683 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1684 }
1685 
1686 void
1687 vge_miibus_statchg(struct device *dev)
1688 {
1689 	struct vge_softc	*sc = (struct vge_softc *)dev;
1690 	struct mii_data		*mii;
1691 	struct ifmedia_entry	*ife;
1692 
1693 	mii = &sc->sc_mii;
1694 	ife = mii->mii_media.ifm_cur;
1695 
1696 	/*
1697 	 * If the user manually selects a media mode, we need to turn
1698 	 * on the forced MAC mode bit in the DIAGCTL register. If the
1699 	 * user happens to choose a full duplex mode, we also need to
1700 	 * set the 'force full duplex' bit. This applies only to
1701 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1702 	 * mode is disabled, and in 1000baseT mode, full duplex is
1703 	 * always implied, so we turn on the forced mode bit but leave
1704 	 * the FDX bit cleared.
1705 	 */
1706 
1707 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1708 	case IFM_AUTO:
1709 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1710 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1711 		break;
1712 	case IFM_1000_T:
1713 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1714 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1715 		break;
1716 	case IFM_100_TX:
1717 	case IFM_10_T:
1718 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1719 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1720 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1721 		} else {
1722 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1723 		}
1724 		break;
1725 	default:
1726 		printf("%s: unknown media type: %x\n",
1727 		    sc->vge_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media));
1728 		break;
1729 	}
1730 }
1731 
1732 int
1733 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1734 {
1735 	struct vge_softc	*sc = ifp->if_softc;
1736 	struct ifaddr		*ifa = (struct ifaddr *) data;
1737 	struct ifreq		*ifr = (struct ifreq *) data;
1738 	int			s, error = 0;
1739 
1740 	s = splnet();
1741 
1742 	switch (command) {
1743 	case SIOCSIFADDR:
1744 		ifp->if_flags |= IFF_UP;
1745 		switch (ifa->ifa_addr->sa_family) {
1746 #ifdef INET
1747 		case AF_INET:
1748 			vge_init(ifp);
1749 			arp_ifinit(&sc->arpcom, ifa);
1750 			break;
1751 #endif
1752 		default:
1753 			vge_init(ifp);
1754 			break;
1755 		}
1756 		break;
1757 
1758 	case SIOCSIFFLAGS:
1759 		if (ifp->if_flags & IFF_UP) {
1760 			if (ifp->if_flags & IFF_RUNNING &&
1761 			    ifp->if_flags & IFF_PROMISC &&
1762 			    !(sc->vge_if_flags & IFF_PROMISC)) {
1763 				CSR_SETBIT_1(sc, VGE_RXCTL,
1764 				    VGE_RXCTL_RX_PROMISC);
1765 				vge_setmulti(sc);
1766 			} else if (ifp->if_flags & IFF_RUNNING &&
1767 			    !(ifp->if_flags & IFF_PROMISC) &&
1768 			    sc->vge_if_flags & IFF_PROMISC) {
1769 				CSR_CLRBIT_1(sc, VGE_RXCTL,
1770 				    VGE_RXCTL_RX_PROMISC);
1771 				vge_setmulti(sc);
1772                         } else
1773 				vge_init(ifp);
1774 		} else {
1775 			if (ifp->if_flags & IFF_RUNNING)
1776 				vge_stop(sc);
1777 		}
1778 		sc->vge_if_flags = ifp->if_flags;
1779 		break;
1780 
1781 	case SIOCGIFMEDIA:
1782 	case SIOCSIFMEDIA:
1783 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1784 		break;
1785 
1786 	default:
1787 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1788 	}
1789 
1790 	if (error == ENETRESET) {
1791 		if (ifp->if_flags & IFF_RUNNING)
1792 			vge_setmulti(sc);
1793 		error = 0;
1794 	}
1795 
1796 	splx(s);
1797 	return (error);
1798 }
1799 
1800 void
1801 vge_watchdog(struct ifnet *ifp)
1802 {
1803 	struct vge_softc *sc = ifp->if_softc;
1804 	int s;
1805 
1806 	s = splnet();
1807 	printf("%s: watchdog timeout\n", sc->vge_dev.dv_xname);
1808 	ifp->if_oerrors++;
1809 
1810 	vge_txeof(sc);
1811 	vge_rxeof(sc);
1812 
1813 	vge_init(ifp);
1814 
1815 	splx(s);
1816 }
1817 
1818 /*
1819  * Stop the adapter and free any mbufs allocated to the
1820  * RX and TX lists.
1821  */
1822 void
1823 vge_stop(struct vge_softc *sc)
1824 {
1825 	int			i;
1826 	struct ifnet		*ifp;
1827 
1828 	ifp = &sc->arpcom.ac_if;
1829 	ifp->if_timer = 0;
1830 
1831 	timeout_del(&sc->timer_handle);
1832 
1833 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1834 
1835 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1836 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
1837 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1838 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
1839 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
1840 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
1841 
1842 	if (sc->vge_head != NULL) {
1843 		m_freem(sc->vge_head);
1844 		sc->vge_head = sc->vge_tail = NULL;
1845 	}
1846 
1847 	/* Free the TX list buffers. */
1848 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1849 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
1850 			bus_dmamap_unload(sc->sc_dmat,
1851 			    sc->vge_ldata.vge_tx_dmamap[i]);
1852 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
1853 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
1854 		}
1855 	}
1856 
1857 	/* Free the RX list buffers. */
1858 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1859 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
1860 			bus_dmamap_unload(sc->sc_dmat,
1861 			    sc->vge_ldata.vge_rx_dmamap[i]);
1862 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
1863 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
1864 		}
1865 	}
1866 }
1867