xref: /openbsd-src/sys/dev/pci/if_vge.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*	$OpenBSD: if_vge.c,v 1.57 2013/08/21 05:21:44 dlg Exp $	*/
2 /*	$FreeBSD: if_vge.c,v 1.3 2004/09/11 22:13:25 wpaul Exp $	*/
3 /*
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37  *
38  * Written by Bill Paul <wpaul@windriver.com>
39  * Senior Networking Software Engineer
40  * Wind River Systems
41  *
42  * Ported to OpenBSD by Peter Valchev <pvalchev@openbsd.org>
43  */
44 
45 /*
46  * The VIA Networking VT6122 is a 32bit, 33/66MHz PCI device that
47  * combines a tri-speed ethernet MAC and PHY, with the following
48  * features:
49  *
50  *	o Jumbo frame support up to 16K
51  *	o Transmit and receive flow control
52  *	o IPv4 checksum offload
53  *	o VLAN tag insertion and stripping
54  *	o TCP large send
55  *	o 64-bit multicast hash table filter
56  *	o 64 entry CAM filter
57  *	o 16K RX FIFO and 48K TX FIFO memory
58  *	o Interrupt moderation
59  *
60  * The VT6122 supports up to four transmit DMA queues. The descriptors
61  * in the transmit ring can address up to 7 data fragments; frames which
62  * span more than 7 data buffers must be coalesced, but in general the
63  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
64  * long. The receive descriptors address only a single buffer.
65  *
66  * There are two peculiar design issues with the VT6122. One is that
67  * receive data buffers must be aligned on a 32-bit boundary. This is
68  * not a problem where the VT6122 is used as a LOM device in x86-based
69  * systems, but on architectures that generate unaligned access traps, we
70  * have to do some copying.
71  *
72  * The other issue has to do with the way 64-bit addresses are handled.
73  * The DMA descriptors only allow you to specify 48 bits of addressing
74  * information. The remaining 16 bits are specified using one of the
75  * I/O registers. If you only have a 32-bit system, then this isn't
76  * an issue, but if you have a 64-bit system and more than 4GB of
77  * memory, you must have to make sure your network data buffers reside
78  * in the same 48-bit 'segment.'
79  *
80  * Special thanks to Ryan Fu at VIA Networking for providing documentation
81  * and sample NICs for testing.
82  */
83 
84 #include "bpfilter.h"
85 #include "vlan.h"
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/timeout.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/ip.h>
106 #include <netinet/if_ether.h>
107 #endif
108 
109 #if NVLAN > 0
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 #endif
113 
114 #if NBPFILTER > 0
115 #include <net/bpf.h>
116 #endif
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124 
125 #include <dev/pci/if_vgereg.h>
126 #include <dev/pci/if_vgevar.h>
127 
128 int vge_probe		(struct device *, void *, void *);
129 void vge_attach		(struct device *, struct device *, void *);
130 int vge_detach		(struct device *, int);
131 
132 int vge_encap		(struct vge_softc *, struct mbuf *, int);
133 
134 int vge_allocmem		(struct vge_softc *);
135 void vge_freemem	(struct vge_softc *);
136 int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
137 int vge_rx_list_init	(struct vge_softc *);
138 int vge_tx_list_init	(struct vge_softc *);
139 void vge_rxeof		(struct vge_softc *);
140 void vge_txeof		(struct vge_softc *);
141 int vge_intr		(void *);
142 void vge_tick		(void *);
143 void vge_start		(struct ifnet *);
144 int vge_ioctl		(struct ifnet *, u_long, caddr_t);
145 int vge_init		(struct ifnet *);
146 void vge_stop		(struct vge_softc *);
147 void vge_watchdog	(struct ifnet *);
148 int vge_ifmedia_upd	(struct ifnet *);
149 void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
150 
151 #ifdef VGE_EEPROM
152 void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
153 #endif
154 void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
155 
156 void vge_miipoll_start	(struct vge_softc *);
157 void vge_miipoll_stop	(struct vge_softc *);
158 int vge_miibus_readreg	(struct device *, int, int);
159 void vge_miibus_writereg (struct device *, int, int, int);
160 void vge_miibus_statchg	(struct device *);
161 
162 void vge_cam_clear	(struct vge_softc *);
163 int vge_cam_set		(struct vge_softc *, uint8_t *);
164 void vge_iff		(struct vge_softc *);
165 void vge_reset		(struct vge_softc *);
166 
167 struct cfattach vge_ca = {
168 	sizeof(struct vge_softc), vge_probe, vge_attach, vge_detach
169 };
170 
171 struct cfdriver vge_cd = {
172 	NULL, "vge", DV_IFNET
173 };
174 
175 #define VGE_PCI_LOIO             0x10
176 #define VGE_PCI_LOMEM            0x14
177 
178 int vge_debug = 0;
179 #define DPRINTF(x)	if (vge_debug) printf x
180 #define DPRINTFN(n, x)	if (vge_debug >= (n)) printf x
181 
182 const struct pci_matchid vge_devices[] = {
183 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612x },
184 };
185 
186 #ifdef VGE_EEPROM
187 /*
188  * Read a word of data stored in the EEPROM at address 'addr.'
189  */
190 void
191 vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest)
192 {
193 	int			i;
194 	u_int16_t		word = 0;
195 
196 	/*
197 	 * Enter EEPROM embedded programming mode. In order to
198 	 * access the EEPROM at all, we first have to set the
199 	 * EELOAD bit in the CHIPCFG2 register.
200 	 */
201 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
202 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
203 
204 	/* Select the address of the word we want to read */
205 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
206 
207 	/* Issue read command */
208 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
209 
210 	/* Wait for the done bit to be set. */
211 	for (i = 0; i < VGE_TIMEOUT; i++) {
212 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
213 			break;
214 	}
215 
216 	if (i == VGE_TIMEOUT) {
217 		printf("%s: EEPROM read timed out\n", sc->vge_dev.dv_xname);
218 		*dest = 0;
219 		return;
220 	}
221 
222 	/* Read the result */
223 	word = CSR_READ_2(sc, VGE_EERDDAT);
224 
225 	/* Turn off EEPROM access mode. */
226 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
227 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
228 
229 	*dest = word;
230 }
231 #endif
232 
233 /*
234  * Read a sequence of words from the EEPROM.
235  */
236 void
237 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt,
238     int swap)
239 {
240 	int			i;
241 #ifdef VGE_EEPROM
242 	u_int16_t		word = 0, *ptr;
243 
244 	for (i = 0; i < cnt; i++) {
245 		vge_eeprom_getword(sc, off + i, &word);
246 		ptr = (u_int16_t *)(dest + (i * 2));
247 		if (swap)
248 			*ptr = ntohs(word);
249 		else
250 			*ptr = word;
251 	}
252 #else
253 	for (i = 0; i < ETHER_ADDR_LEN; i++)
254 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
255 #endif
256 }
257 
258 void
259 vge_miipoll_stop(struct vge_softc *sc)
260 {
261 	int			i;
262 
263 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
264 
265 	for (i = 0; i < VGE_TIMEOUT; i++) {
266 		DELAY(1);
267 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
268 			break;
269 	}
270 
271 	if (i == VGE_TIMEOUT)
272 		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
273 }
274 
275 void
276 vge_miipoll_start(struct vge_softc *sc)
277 {
278 	int			i;
279 
280 	/* First, make sure we're idle. */
281 
282 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
283 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
284 
285 	for (i = 0; i < VGE_TIMEOUT; i++) {
286 		DELAY(1);
287 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
288 			break;
289 	}
290 
291 	if (i == VGE_TIMEOUT) {
292 		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
293 		return;
294 	}
295 
296 	/* Now enable auto poll mode. */
297 
298 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
299 
300 	/* And make sure it started. */
301 
302 	for (i = 0; i < VGE_TIMEOUT; i++) {
303 		DELAY(1);
304 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
305 			break;
306 	}
307 
308 	if (i == VGE_TIMEOUT)
309 		printf("%s: failed to start MII autopoll\n", sc->vge_dev.dv_xname);
310 }
311 
312 int
313 vge_miibus_readreg(struct device *dev, int phy, int reg)
314 {
315 	struct vge_softc	*sc = (struct vge_softc *)dev;
316 	int			i, s;
317 	u_int16_t		rval = 0;
318 
319 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
320 		return(0);
321 
322 	s = splnet();
323 
324 	vge_miipoll_stop(sc);
325 
326 	/* Specify the register we want to read. */
327 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
328 
329 	/* Issue read command. */
330 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
331 
332 	/* Wait for the read command bit to self-clear. */
333 	for (i = 0; i < VGE_TIMEOUT; i++) {
334 		DELAY(1);
335 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
336 			break;
337 	}
338 
339 	if (i == VGE_TIMEOUT)
340 		printf("%s: MII read timed out\n", sc->vge_dev.dv_xname);
341 	else
342 		rval = CSR_READ_2(sc, VGE_MIIDATA);
343 
344 	vge_miipoll_start(sc);
345 	splx(s);
346 
347 	return (rval);
348 }
349 
350 void
351 vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
352 {
353 	struct vge_softc	*sc = (struct vge_softc *)dev;
354 	int			i, s;
355 
356 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
357 		return;
358 
359 	s = splnet();
360 	vge_miipoll_stop(sc);
361 
362 	/* Specify the register we want to write. */
363 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
364 
365 	/* Specify the data we want to write. */
366 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
367 
368 	/* Issue write command. */
369 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
370 
371 	/* Wait for the write command bit to self-clear. */
372 	for (i = 0; i < VGE_TIMEOUT; i++) {
373 		DELAY(1);
374 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
375 			break;
376 	}
377 
378 	if (i == VGE_TIMEOUT) {
379 		printf("%s: MII write timed out\n", sc->vge_dev.dv_xname);
380 	}
381 
382 	vge_miipoll_start(sc);
383 	splx(s);
384 }
385 
386 void
387 vge_cam_clear(struct vge_softc *sc)
388 {
389 	int			i;
390 
391 	/*
392 	 * Turn off all the mask bits. This tells the chip
393 	 * that none of the entries in the CAM filter are valid.
394 	 * desired entries will be enabled as we fill the filter in.
395 	 */
396 
397 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
398 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
399 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
400 	for (i = 0; i < 8; i++)
401 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
402 
403 	/* Clear the VLAN filter too. */
404 
405 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
406 	for (i = 0; i < 8; i++)
407 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
408 
409 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
410 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
411 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
412 
413 	sc->vge_camidx = 0;
414 }
415 
416 int
417 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
418 {
419 	int			i, error = 0;
420 
421 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
422 		return(ENOSPC);
423 
424 	/* Select the CAM data page. */
425 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
426 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
427 
428 	/* Set the filter entry we want to update and enable writing. */
429 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
430 
431 	/* Write the address to the CAM registers */
432 	for (i = 0; i < ETHER_ADDR_LEN; i++)
433 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
434 
435 	/* Issue a write command. */
436 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
437 
438 	/* Wake for it to clear. */
439 	for (i = 0; i < VGE_TIMEOUT; i++) {
440 		DELAY(1);
441 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
442 			break;
443 	}
444 
445 	if (i == VGE_TIMEOUT) {
446 		printf("%s: setting CAM filter failed\n", sc->vge_dev.dv_xname);
447 		error = EIO;
448 		goto fail;
449 	}
450 
451 	/* Select the CAM mask page. */
452 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
453 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
454 
455 	/* Set the mask bit that enables this filter. */
456 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
457 	    1<<(sc->vge_camidx & 7));
458 
459 	sc->vge_camidx++;
460 
461 fail:
462 	/* Turn off access to CAM. */
463 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
464 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
465 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
466 
467 	return (error);
468 }
469 
470 /*
471  * We use the 64-entry CAM filter for perfect filtering.
472  * If there's more than 64 multicast addresses, we use the
473  * hash filter instead.
474  */
475 void
476 vge_iff(struct vge_softc *sc)
477 {
478 	struct arpcom		*ac = &sc->arpcom;
479 	struct ifnet		*ifp = &ac->ac_if;
480 	struct ether_multi	*enm;
481 	struct ether_multistep	step;
482 	u_int32_t		h = 0, hashes[2];
483 	u_int8_t		rxctl;
484 	int			error;
485 
486 	vge_cam_clear(sc);
487 	rxctl = CSR_READ_1(sc, VGE_RXCTL);
488 	rxctl &= ~(VGE_RXCTL_RX_BCAST | VGE_RXCTL_RX_MCAST |
489 	    VGE_RXCTL_RX_PROMISC | VGE_RXCTL_RX_UCAST);
490 	bzero(hashes, sizeof(hashes));
491 	ifp->if_flags &= ~IFF_ALLMULTI;
492 
493 	/*
494 	 * Always accept broadcast frames.
495 	 * Always accept frames destined to our station address.
496 	 */
497 	rxctl |= VGE_RXCTL_RX_BCAST | VGE_RXCTL_RX_UCAST;
498 
499 	if ((ifp->if_flags & IFF_PROMISC) == 0)
500 		rxctl |= VGE_RXCTL_RX_MCAST;
501 
502 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
503 		ifp->if_flags |= IFF_ALLMULTI;
504 		if (ifp->if_flags & IFF_PROMISC)
505 			rxctl |= VGE_RXCTL_RX_PROMISC;
506 		hashes[0] = hashes[1] = 0xFFFFFFFF;
507 	} else if (ac->ac_multicnt > VGE_CAM_MAXADDRS) {
508 		ETHER_FIRST_MULTI(step, ac, enm);
509 		while (enm != NULL) {
510 			h = ether_crc32_be(enm->enm_addrlo,
511 			    ETHER_ADDR_LEN) >> 26;
512 
513 			hashes[h >> 5] |= 1 << (h & 0x1f);
514 
515 			ETHER_NEXT_MULTI(step, enm);
516 		}
517 	} else {
518 		ETHER_FIRST_MULTI(step, ac, enm);
519 		while (enm != NULL) {
520 			error = vge_cam_set(sc, enm->enm_addrlo);
521 			if (error)
522 				break;
523 
524 			ETHER_NEXT_MULTI(step, enm);
525 		}
526 	}
527 
528 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
529 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
530 	CSR_WRITE_1(sc, VGE_RXCTL, rxctl);
531 }
532 
533 void
534 vge_reset(struct vge_softc *sc)
535 {
536 	int			i;
537 
538 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
539 
540 	for (i = 0; i < VGE_TIMEOUT; i++) {
541 		DELAY(5);
542 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
543 			break;
544 	}
545 
546 	if (i == VGE_TIMEOUT) {
547 		printf("%s: soft reset timed out", sc->vge_dev.dv_xname);
548 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
549 		DELAY(2000);
550 	}
551 
552 	DELAY(5000);
553 
554 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
555 
556 	for (i = 0; i < VGE_TIMEOUT; i++) {
557 		DELAY(5);
558 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
559 			break;
560 	}
561 
562 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
563 }
564 
565 /*
566  * Probe for a VIA gigabit chip. Check the PCI vendor and device
567  * IDs against our list and return a device name if we find a match.
568  */
569 int
570 vge_probe(struct device *dev, void *match, void *aux)
571 {
572 	return (pci_matchbyid((struct pci_attach_args *)aux, vge_devices,
573 	    nitems(vge_devices)));
574 }
575 
576 /*
577  * Allocate memory for RX/TX rings
578  */
579 int
580 vge_allocmem(struct vge_softc *sc)
581 {
582 	int			nseg, rseg;
583 	int			i, error;
584 
585 	nseg = 32;
586 
587 	/* Allocate DMA'able memory for the TX ring */
588 
589 	error = bus_dmamap_create(sc->sc_dmat, VGE_TX_LIST_SZ, 1,
590 	    VGE_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
591 	    &sc->vge_ldata.vge_tx_list_map);
592 	if (error)
593 		return (ENOMEM);
594 	error = bus_dmamem_alloc(sc->sc_dmat, VGE_TX_LIST_SZ,
595 	    ETHER_ALIGN, 0,
596 	    &sc->vge_ldata.vge_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
597 	if (error) {
598 		printf("%s: can't alloc TX list\n", sc->vge_dev.dv_xname);
599 		return (ENOMEM);
600 	}
601 
602 	/* Load the map for the TX ring. */
603 	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg,
604 	     1, VGE_TX_LIST_SZ,
605 	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
606 	memset(sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
607 	if (error) {
608 		printf("%s: can't map TX dma buffers\n",
609 		    sc->vge_dev.dv_xname);
610 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
611 		return (ENOMEM);
612 	}
613 
614 	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map,
615 	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
616 	if (error) {
617 		printf("%s: can't load TX dma map\n", sc->vge_dev.dv_xname);
618 		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
619 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
620 		    VGE_TX_LIST_SZ);
621 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
622 		return (ENOMEM);
623 	}
624 
625 	/* Create DMA maps for TX buffers */
626 
627 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
628 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
629 		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
630 		    &sc->vge_ldata.vge_tx_dmamap[i]);
631 		if (error) {
632 			printf("%s: can't create DMA map for TX\n",
633 			    sc->vge_dev.dv_xname);
634 			return (ENOMEM);
635 		}
636 	}
637 
638 	/* Allocate DMA'able memory for the RX ring */
639 
640 	error = bus_dmamap_create(sc->sc_dmat, VGE_RX_LIST_SZ, 1,
641 	    VGE_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
642 	    &sc->vge_ldata.vge_rx_list_map);
643 	if (error)
644 		return (ENOMEM);
645 	error = bus_dmamem_alloc(sc->sc_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
646 	    0, &sc->vge_ldata.vge_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
647 	if (error) {
648 		printf("%s: can't alloc RX list\n", sc->vge_dev.dv_xname);
649 		return (ENOMEM);
650 	}
651 
652 	/* Load the map for the RX ring. */
653 
654 	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg,
655 	     1, VGE_RX_LIST_SZ,
656 	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
657 	memset(sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
658 	if (error) {
659 		printf("%s: can't map RX dma buffers\n",
660 		    sc->vge_dev.dv_xname);
661 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
662 		return (ENOMEM);
663 	}
664 	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map,
665 	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
666 	if (error) {
667 		printf("%s: can't load RX dma map\n", sc->vge_dev.dv_xname);
668 		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
669 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
670 		    VGE_RX_LIST_SZ);
671 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
672 		return (ENOMEM);
673 	}
674 
675 	/* Create DMA maps for RX buffers */
676 
677 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
678 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
679 		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
680 		    &sc->vge_ldata.vge_rx_dmamap[i]);
681 		if (error) {
682 			printf("%s: can't create DMA map for RX\n",
683 			    sc->vge_dev.dv_xname);
684 			return (ENOMEM);
685 		}
686 	}
687 
688 	return (0);
689 }
690 
691 void
692 vge_freemem(struct vge_softc *sc)
693 {
694 	int i;
695 
696 	for (i = 0; i < VGE_RX_DESC_CNT; i++)
697 		bus_dmamap_destroy(sc->sc_dmat,
698 		    sc->vge_ldata.vge_rx_dmamap[i]);
699 
700 	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
701 	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
702 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
703 	    VGE_RX_LIST_SZ);
704 	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, 1);
705 
706 	for (i = 0; i < VGE_TX_DESC_CNT; i++)
707 		bus_dmamap_destroy(sc->sc_dmat,
708 		    sc->vge_ldata.vge_tx_dmamap[i]);
709 
710 	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
711 	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
712 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
713 	    VGE_TX_LIST_SZ);
714 	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, 1);
715 }
716 
717 /*
718  * Attach the interface. Allocate softc structures, do ifmedia
719  * setup and ethernet/BPF attach.
720  */
721 void
722 vge_attach(struct device *parent, struct device *self, void *aux)
723 {
724 	u_char			eaddr[ETHER_ADDR_LEN];
725 	struct vge_softc	*sc = (struct vge_softc *)self;
726 	struct pci_attach_args	*pa = aux;
727 	pci_chipset_tag_t	pc = pa->pa_pc;
728 	pci_intr_handle_t	ih;
729 	const char		*intrstr = NULL;
730 	struct ifnet		*ifp;
731 	int			error = 0;
732 
733 	/*
734 	 * Map control/status registers.
735 	 */
736 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
737 	    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
738 		if (pci_mapreg_map(pa, VGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
739 		    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
740 			printf(": can't map mem or i/o space\n");
741 			return;
742 		}
743 	}
744 
745 	/* Allocate interrupt */
746 	if (pci_intr_map(pa, &ih)) {
747 		printf(": couldn't map interrupt\n");
748 		return;
749 	}
750 	intrstr = pci_intr_string(pc, ih);
751 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc,
752 	    sc->vge_dev.dv_xname);
753 	if (sc->vge_intrhand == NULL) {
754 		printf(": couldn't establish interrupt");
755 		if (intrstr != NULL)
756 			printf(" at %s", intrstr);
757 		return;
758 	}
759 	printf(": %s", intrstr);
760 
761 	sc->sc_dmat = pa->pa_dmat;
762 	sc->sc_pc = pa->pa_pc;
763 
764 	/* Reset the adapter. */
765 	vge_reset(sc);
766 
767 	/*
768 	 * Get station address from the EEPROM.
769 	 */
770 	vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 1);
771 
772 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
773 
774 	printf(", address %s\n",
775 	    ether_sprintf(sc->arpcom.ac_enaddr));
776 
777 	error = vge_allocmem(sc);
778 
779 	if (error)
780 		return;
781 
782 	ifp = &sc->arpcom.ac_if;
783 	ifp->if_softc = sc;
784 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
785 	ifp->if_ioctl = vge_ioctl;
786 	ifp->if_start = vge_start;
787 	ifp->if_watchdog = vge_watchdog;
788 #ifdef VGE_JUMBO
789 	ifp->if_hardmtu = VGE_JUMBO_MTU;
790 #endif
791 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
792 	IFQ_SET_READY(&ifp->if_snd);
793 
794 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
795 				IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
796 
797 #if NVLAN > 0
798 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
799 #endif
800 
801 	/* Set interface name */
802 	strlcpy(ifp->if_xname, sc->vge_dev.dv_xname, IFNAMSIZ);
803 
804 	/* Do MII setup */
805 	sc->sc_mii.mii_ifp = ifp;
806 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
807 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
808 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
809 	ifmedia_init(&sc->sc_mii.mii_media, 0,
810 	    vge_ifmedia_upd, vge_ifmedia_sts);
811 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
812 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
813 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
814 		printf("%s: no PHY found!\n", sc->vge_dev.dv_xname);
815 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL,
816 		    0, NULL);
817 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
818 	} else
819 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
820 
821 	timeout_set(&sc->timer_handle, vge_tick, sc);
822 
823 	/*
824 	 * Call MI attach routine.
825 	 */
826 	if_attach(ifp);
827 	ether_ifattach(ifp);
828 }
829 
830 int
831 vge_detach(struct device *self, int flags)
832 {
833 	struct vge_softc *sc = (void *)self;
834 	struct ifnet *ifp = &sc->arpcom.ac_if;
835 
836 	pci_intr_disestablish(sc->sc_pc, sc->vge_intrhand);
837 
838 	vge_stop(sc);
839 
840 	/* Detach all PHYs */
841 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
842 
843 	/* Delete any remaining media. */
844 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
845 
846 	ether_ifdetach(ifp);
847 	if_detach(ifp);
848 
849 	vge_freemem(sc);
850 
851 	bus_space_unmap(sc->vge_btag, sc->vge_bhandle, sc->vge_bsize);
852 	return (0);
853 }
854 
855 int
856 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
857 {
858 	struct mbuf		*m_new = NULL;
859 	struct vge_rx_desc	*r;
860 	bus_dmamap_t		rxmap = sc->vge_ldata.vge_rx_dmamap[idx];
861 	int			i;
862 
863 	if (m == NULL) {
864 		/* Allocate a new mbuf */
865 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
866 		if (m_new == NULL)
867 			return (ENOBUFS);
868 
869 		/* Allocate a cluster */
870 		MCLGET(m_new, M_DONTWAIT);
871 		if (!(m_new->m_flags & M_EXT)) {
872 			m_freem(m_new);
873 			return (ENOBUFS);
874 		}
875 
876 		m = m_new;
877 	} else
878 		m->m_data = m->m_ext.ext_buf;
879 
880 	m->m_len = m->m_pkthdr.len = MCLBYTES;
881 	/* Fix-up alignment so payload is doubleword-aligned */
882 	/* XXX m_adj(m, ETHER_ALIGN); */
883 
884 	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
885 		return (ENOBUFS);
886 
887 	if (rxmap->dm_nsegs > 1)
888 		goto out;
889 
890 	/* Map the segments into RX descriptors */
891 	r = &sc->vge_ldata.vge_rx_list[idx];
892 
893 	if (letoh32(r->vge_sts) & VGE_RDSTS_OWN) {
894 		printf("%s: tried to map a busy RX descriptor\n",
895 		    sc->vge_dev.dv_xname);
896 		goto out;
897 	}
898 	r->vge_buflen = htole16(VGE_BUFLEN(rxmap->dm_segs[0].ds_len) | VGE_RXDESC_I);
899 	r->vge_addrlo = htole32(VGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
900 	r->vge_addrhi = htole16(VGE_ADDR_HI(rxmap->dm_segs[0].ds_addr) & 0xFFFF);
901 	r->vge_sts = htole32(0);
902 	r->vge_ctl = htole32(0);
903 
904 	/*
905 	 * Note: the manual fails to document the fact that for
906 	 * proper operation, the driver needs to replenish the RX
907 	 * DMA ring 4 descriptors at a time (rather than one at a
908 	 * time, like most chips). We can allocate the new buffers
909 	 * but we should not set the OWN bits until we're ready
910 	 * to hand back 4 of them in one shot.
911 	 */
912 #define VGE_RXCHUNK 4
913 	sc->vge_rx_consumed++;
914 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
915 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
916 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
917 			    htole32(VGE_RDSTS_OWN);
918 		sc->vge_rx_consumed = 0;
919 	}
920 
921 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
922 
923 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
924 	    rxmap->dm_mapsize, BUS_DMASYNC_PREREAD);
925 
926 	return (0);
927 out:
928 	DPRINTF(("vge_newbuf: out of memory\n"));
929 	if (m_new != NULL)
930 		m_freem(m_new);
931 	return (ENOMEM);
932 }
933 
934 int
935 vge_tx_list_init(struct vge_softc *sc)
936 {
937 	bzero(sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
938 	bzero(&sc->vge_ldata.vge_tx_mbuf,
939 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
940 
941 	bus_dmamap_sync(sc->sc_dmat,
942 	    sc->vge_ldata.vge_tx_list_map, 0,
943 	    sc->vge_ldata.vge_tx_list_map->dm_mapsize,
944 	    BUS_DMASYNC_PREWRITE);
945 	sc->vge_ldata.vge_tx_prodidx = 0;
946 	sc->vge_ldata.vge_tx_considx = 0;
947 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
948 
949 	return (0);
950 }
951 
952 /* Init RX descriptors and allocate mbufs with vge_newbuf()
953  * A ring is used, and last descriptor points to first. */
954 int
955 vge_rx_list_init(struct vge_softc *sc)
956 {
957 	int			i;
958 
959 	bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
960 	bzero(&sc->vge_ldata.vge_rx_mbuf,
961 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
962 
963 	sc->vge_rx_consumed = 0;
964 
965 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
966 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
967 			return (ENOBUFS);
968 	}
969 
970 	/* Flush the RX descriptors */
971 
972 	bus_dmamap_sync(sc->sc_dmat,
973 	    sc->vge_ldata.vge_rx_list_map,
974 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
975 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
976 
977 	sc->vge_ldata.vge_rx_prodidx = 0;
978 	sc->vge_rx_consumed = 0;
979 	sc->vge_head = sc->vge_tail = NULL;
980 
981 	return (0);
982 }
983 
984 /*
985  * RX handler. We support the reception of jumbo frames that have
986  * been fragmented across multiple 2K mbuf cluster buffers.
987  */
988 void
989 vge_rxeof(struct vge_softc *sc)
990 {
991 	struct mbuf		*m;
992 	struct ifnet		*ifp;
993 	int			i, total_len;
994 	int			lim = 0;
995 	struct vge_rx_desc	*cur_rx;
996 	u_int32_t		rxstat, rxctl;
997 
998 	ifp = &sc->arpcom.ac_if;
999 	i = sc->vge_ldata.vge_rx_prodidx;
1000 
1001 	/* Invalidate the descriptor memory */
1002 
1003 	bus_dmamap_sync(sc->sc_dmat,
1004 	    sc->vge_ldata.vge_rx_list_map,
1005 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1006 	    BUS_DMASYNC_POSTREAD);
1007 
1008 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1009 		struct mbuf *m0 = NULL;
1010 
1011 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1012 		m = sc->vge_ldata.vge_rx_mbuf[i];
1013 		total_len = VGE_RXBYTES(cur_rx);
1014 		rxstat = letoh32(cur_rx->vge_sts);
1015 		rxctl = letoh32(cur_rx->vge_ctl);
1016 
1017 		/* Invalidate the RX mbuf and unload its map */
1018 
1019 		bus_dmamap_sync(sc->sc_dmat,
1020 		    sc->vge_ldata.vge_rx_dmamap[i],
1021 		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1022 		    BUS_DMASYNC_POSTWRITE);
1023 		bus_dmamap_unload(sc->sc_dmat,
1024 		    sc->vge_ldata.vge_rx_dmamap[i]);
1025 
1026 		/*
1027 		 * If the 'start of frame' bit is set, this indicates
1028 		 * either the first fragment in a multi-fragment receive,
1029 		 * or an intermediate fragment. Either way, we want to
1030 		 * accumulate the buffers.
1031 		 */
1032 		if (rxstat & VGE_RXPKT_SOF) {
1033 			DPRINTF(("vge_rxeof: SOF\n"));
1034 			m->m_len = MCLBYTES;
1035 			if (sc->vge_head == NULL)
1036 				sc->vge_head = sc->vge_tail = m;
1037 			else {
1038 				m->m_flags &= ~M_PKTHDR;
1039 				sc->vge_tail->m_next = m;
1040 				sc->vge_tail = m;
1041 			}
1042 			vge_newbuf(sc, i, NULL);
1043 			VGE_RX_DESC_INC(i);
1044 			continue;
1045 		}
1046 
1047 		/*
1048 		 * Bad/error frames will have the RXOK bit cleared.
1049 		 * However, there's one error case we want to allow:
1050 		 * if a VLAN tagged frame arrives and the chip can't
1051 		 * match it against the CAM filter, it considers this
1052 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1053 		 * We don't want to drop the frame though: our VLAN
1054 		 * filtering is done in software.
1055 		 */
1056 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1057 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1058 			ifp->if_ierrors++;
1059 			/*
1060 			 * If this is part of a multi-fragment packet,
1061 			 * discard all the pieces.
1062 			 */
1063 			if (sc->vge_head != NULL) {
1064 				m_freem(sc->vge_head);
1065 				sc->vge_head = sc->vge_tail = NULL;
1066 			}
1067 			vge_newbuf(sc, i, m);
1068 			VGE_RX_DESC_INC(i);
1069 			continue;
1070 		}
1071 
1072 		/*
1073 		 * If allocating a replacement mbuf fails,
1074 		 * reload the current one.
1075 		 */
1076 
1077 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1078 			if (sc->vge_head != NULL) {
1079 				m_freem(sc->vge_head);
1080 				sc->vge_head = sc->vge_tail = NULL;
1081 			}
1082 
1083 			m0 = m_devget(mtod(m, char *),
1084 			    total_len - ETHER_CRC_LEN, ETHER_ALIGN, ifp);
1085 			vge_newbuf(sc, i, m);
1086 			if (m0 == NULL) {
1087 				ifp->if_ierrors++;
1088 				continue;
1089 			}
1090 			m = m0;
1091 
1092 			VGE_RX_DESC_INC(i);
1093 			continue;
1094 		}
1095 
1096 		VGE_RX_DESC_INC(i);
1097 
1098 		if (sc->vge_head != NULL) {
1099 			m->m_len = total_len % MCLBYTES;
1100 			/*
1101 			 * Special case: if there's 4 bytes or less
1102 			 * in this buffer, the mbuf can be discarded:
1103 			 * the last 4 bytes is the CRC, which we don't
1104 			 * care about anyway.
1105 			 */
1106 			if (m->m_len <= ETHER_CRC_LEN) {
1107 				sc->vge_tail->m_len -=
1108 				    (ETHER_CRC_LEN - m->m_len);
1109 				m_freem(m);
1110 			} else {
1111 				m->m_len -= ETHER_CRC_LEN;
1112 				m->m_flags &= ~M_PKTHDR;
1113 				sc->vge_tail->m_next = m;
1114 			}
1115 			m = sc->vge_head;
1116 			sc->vge_head = sc->vge_tail = NULL;
1117 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1118 		} else
1119 			m->m_pkthdr.len = m->m_len =
1120 			    (total_len - ETHER_CRC_LEN);
1121 
1122 #ifdef __STRICT_ALIGNMENT
1123 		bcopy(m->m_data, m->m_data + ETHER_ALIGN, total_len);
1124 		m->m_data += ETHER_ALIGN;
1125 #endif
1126 		ifp->if_ipackets++;
1127 		m->m_pkthdr.rcvif = ifp;
1128 
1129 		/* Do RX checksumming */
1130 
1131 		/* Check IP header checksum */
1132 		if ((rxctl & VGE_RDCTL_IPPKT) &&
1133 		    (rxctl & VGE_RDCTL_IPCSUMOK))
1134 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1135 
1136 		/* Check TCP/UDP checksum */
1137 		if ((rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT)) &&
1138 		    (rxctl & VGE_RDCTL_PROTOCSUMOK))
1139 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1140 
1141 #if NVLAN > 0
1142 		if (rxstat & VGE_RDSTS_VTAG) {
1143 			m->m_pkthdr.ether_vtag = swap16(rxctl & VGE_RDCTL_VLANID);
1144 			m->m_flags |= M_VLANTAG;
1145 		}
1146 #endif
1147 
1148 #if NBPFILTER > 0
1149 		if (ifp->if_bpf)
1150 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1151 #endif
1152 		ether_input_mbuf(ifp, m);
1153 
1154 		lim++;
1155 		if (lim == VGE_RX_DESC_CNT)
1156 			break;
1157 	}
1158 
1159 	/* Flush the RX DMA ring */
1160 	bus_dmamap_sync(sc->sc_dmat,
1161 	    sc->vge_ldata.vge_rx_list_map,
1162 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1163 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1164 
1165 	sc->vge_ldata.vge_rx_prodidx = i;
1166 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1167 }
1168 
1169 void
1170 vge_txeof(struct vge_softc *sc)
1171 {
1172 	struct ifnet		*ifp;
1173 	u_int32_t		txstat;
1174 	int			idx;
1175 
1176 	ifp = &sc->arpcom.ac_if;
1177 	idx = sc->vge_ldata.vge_tx_considx;
1178 
1179 	/* Invalidate the TX descriptor list */
1180 
1181 	bus_dmamap_sync(sc->sc_dmat,
1182 	    sc->vge_ldata.vge_tx_list_map,
1183 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1184 	    BUS_DMASYNC_POSTREAD);
1185 
1186 	/* Transmitted frames can be now free'd from the TX list */
1187 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1188 		txstat = letoh32(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1189 		if (txstat & VGE_TDSTS_OWN)
1190 			break;
1191 
1192 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1193 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1194 		bus_dmamap_unload(sc->sc_dmat,
1195 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1196 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1197 			ifp->if_collisions++;
1198 		if (txstat & VGE_TDSTS_TXERR)
1199 			ifp->if_oerrors++;
1200 		else
1201 			ifp->if_opackets++;
1202 
1203 		sc->vge_ldata.vge_tx_free++;
1204 		VGE_TX_DESC_INC(idx);
1205 	}
1206 
1207 	/* No changes made to the TX ring, so no flush needed */
1208 
1209 	if (idx != sc->vge_ldata.vge_tx_considx) {
1210 		sc->vge_ldata.vge_tx_considx = idx;
1211 		ifp->if_flags &= ~IFF_OACTIVE;
1212 		ifp->if_timer = 0;
1213 	}
1214 
1215 	/*
1216 	 * If not all descriptors have been released reaped yet,
1217 	 * reload the timer so that we will eventually get another
1218 	 * interrupt that will cause us to re-enter this routine.
1219 	 * This is done in case the transmitter has gone idle.
1220 	 */
1221 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1222 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1223 }
1224 
1225 void
1226 vge_tick(void *xsc)
1227 {
1228 	struct vge_softc	*sc = xsc;
1229 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1230 	struct mii_data		*mii = &sc->sc_mii;
1231 	int s;
1232 
1233 	s = splnet();
1234 
1235 	mii_tick(mii);
1236 
1237 	if (sc->vge_link) {
1238 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1239 			sc->vge_link = 0;
1240 			ifp->if_link_state = LINK_STATE_DOWN;
1241 			if_link_state_change(ifp);
1242 		}
1243 	} else {
1244 		if (mii->mii_media_status & IFM_ACTIVE &&
1245 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1246 			sc->vge_link = 1;
1247 			if (mii->mii_media_status & IFM_FDX)
1248 				ifp->if_link_state = LINK_STATE_FULL_DUPLEX;
1249 			else
1250 				ifp->if_link_state = LINK_STATE_HALF_DUPLEX;
1251 			if_link_state_change(ifp);
1252 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1253 				vge_start(ifp);
1254 		}
1255 	}
1256 	timeout_add_sec(&sc->timer_handle, 1);
1257 	splx(s);
1258 }
1259 
1260 int
1261 vge_intr(void *arg)
1262 {
1263 	struct vge_softc	*sc = arg;
1264 	struct ifnet		*ifp;
1265 	u_int32_t		status;
1266 	int			claimed = 0;
1267 
1268 	ifp = &sc->arpcom.ac_if;
1269 
1270 	if (!(ifp->if_flags & IFF_UP))
1271 		return 0;
1272 
1273 	/* Disable interrupts */
1274 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1275 
1276 	for (;;) {
1277 		status = CSR_READ_4(sc, VGE_ISR);
1278 		DPRINTFN(3, ("vge_intr: status=%#x\n", status));
1279 
1280 		/* If the card has gone away the read returns 0xffffffff. */
1281 		if (status == 0xFFFFFFFF)
1282 			break;
1283 
1284 		if (status) {
1285 			CSR_WRITE_4(sc, VGE_ISR, status);
1286 		}
1287 
1288 		if ((status & VGE_INTRS) == 0)
1289 			break;
1290 
1291 		claimed = 1;
1292 
1293 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1294 			vge_rxeof(sc);
1295 
1296 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1297 			DPRINTFN(2, ("vge_intr: RX error, recovering\n"));
1298 			vge_rxeof(sc);
1299 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1300 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1301 		}
1302 
1303 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1304 			vge_txeof(sc);
1305 
1306 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1307 			DPRINTFN(2, ("DMA_STALL\n"));
1308 			vge_init(ifp);
1309 		}
1310 
1311 		if (status & VGE_ISR_LINKSTS) {
1312 			timeout_del(&sc->timer_handle);
1313 			vge_tick(sc);
1314 		}
1315 	}
1316 
1317 	/* Re-enable interrupts */
1318 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1319 
1320 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1321 		vge_start(ifp);
1322 
1323 	return (claimed);
1324 }
1325 
1326 /*
1327  * Encapsulate an mbuf chain into the TX ring by combining it w/
1328  * the descriptors.
1329  */
1330 int
1331 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1332 {
1333 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1334 	bus_dmamap_t		txmap;
1335 	struct vge_tx_desc	*d = NULL;
1336 	struct vge_tx_frag	*f;
1337 	struct mbuf		*mnew = NULL;
1338 	int			error, frag;
1339 	u_int32_t		vge_flags;
1340 
1341 	vge_flags = 0;
1342 
1343 	if (m_head->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1344 		vge_flags |= VGE_TDCTL_IPCSUM;
1345 	if (m_head->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1346 		vge_flags |= VGE_TDCTL_TCPCSUM;
1347 	if (m_head->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1348 		vge_flags |= VGE_TDCTL_UDPCSUM;
1349 
1350 	txmap = sc->vge_ldata.vge_tx_dmamap[idx];
1351 repack:
1352 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap,
1353 	    m_head, BUS_DMA_NOWAIT);
1354 	if (error) {
1355 		printf("%s: can't map mbuf (error %d)\n",
1356 		    sc->vge_dev.dv_xname, error);
1357 		return (ENOBUFS);
1358 	}
1359 
1360 	d = &sc->vge_ldata.vge_tx_list[idx];
1361 	/* If owned by chip, fail */
1362 	if (letoh32(d->vge_sts) & VGE_TDSTS_OWN)
1363 		return (ENOBUFS);
1364 
1365 	for (frag = 0; frag < txmap->dm_nsegs; frag++) {
1366 		/* Check if we have used all 7 fragments. */
1367 		if (frag == VGE_TX_FRAGS)
1368 			break;
1369 		f = &d->vge_frag[frag];
1370 		f->vge_buflen = htole16(VGE_BUFLEN(txmap->dm_segs[frag].ds_len));
1371 		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[frag].ds_addr));
1372 		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[frag].ds_addr) & 0xFFFF);
1373 	}
1374 
1375 	/*
1376 	 * We used up all 7 fragments!  Now what we have to do is
1377 	 * copy the data into a mbuf cluster and map that.
1378 	 */
1379 	if (frag == VGE_TX_FRAGS) {
1380 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1381 		if (mnew == NULL)
1382 			return (ENOBUFS);
1383 
1384 		if (m_head->m_pkthdr.len > MHLEN) {
1385 			MCLGET(mnew, M_DONTWAIT);
1386 			if (!(mnew->m_flags & M_EXT)) {
1387 				m_freem(mnew);
1388 				return (ENOBUFS);
1389 			}
1390 		}
1391 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1392 		    mtod(mnew, caddr_t));
1393 		mnew->m_pkthdr.len = mnew->m_len = m_head->m_pkthdr.len;
1394 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1395 		m_freem(m_head);
1396 		m_head = mnew;
1397 		goto repack;
1398 	}
1399 
1400 	/* This chip does not do auto-padding */
1401 	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1402 		f = &d->vge_frag[frag];
1403 
1404 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
1405 		    m_head->m_pkthdr.len));
1406 		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[0].ds_addr));
1407 		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[0].ds_addr) & 0xFFFF);
1408 		m_head->m_pkthdr.len = VGE_MIN_FRAMELEN;
1409 		frag++;
1410 	}
1411 	/* For some reason, we need to tell the card fragment + 1 */
1412 	frag++;
1413 
1414 	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
1415 	    BUS_DMASYNC_PREWRITE);
1416 
1417 	d->vge_sts = htole32(m_head->m_pkthdr.len << 16);
1418 	d->vge_ctl = htole32(vge_flags|(frag << 28) | VGE_TD_LS_NORM);
1419 
1420 	if (m_head->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
1421 		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
1422 
1423 #if NVLAN > 0
1424 	/* Set up hardware VLAN tagging. */
1425 	if (m_head->m_flags & M_VLANTAG) {
1426 		d->vge_ctl |= htole32(m_head->m_pkthdr.ether_vtag |
1427 		    VGE_TDCTL_VTAG);
1428 	}
1429 #endif
1430 
1431 	sc->vge_ldata.vge_tx_dmamap[idx] = txmap;
1432 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1433 	sc->vge_ldata.vge_tx_free--;
1434 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1435 
1436 	idx++;
1437 	if (mnew == NULL) {
1438 		/* if mbuf is coalesced, it is already dequeued */
1439 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1440 	}
1441 	return (0);
1442 }
1443 
1444 /*
1445  * Main transmit routine.
1446  */
1447 void
1448 vge_start(struct ifnet *ifp)
1449 {
1450 	struct vge_softc	*sc;
1451 	struct mbuf		*m_head = NULL;
1452 	int			idx, pidx = 0;
1453 
1454 	sc = ifp->if_softc;
1455 
1456 	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE)
1457 		return;
1458 
1459 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1460 		return;
1461 
1462 	idx = sc->vge_ldata.vge_tx_prodidx;
1463 
1464 	pidx = idx - 1;
1465 	if (pidx < 0)
1466 		pidx = VGE_TX_DESC_CNT - 1;
1467 
1468 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1469 		IFQ_POLL(&ifp->if_snd, m_head);
1470 		if (m_head == NULL)
1471 			break;
1472 
1473 		/*
1474 		 * If there's a BPF listener, bounce a copy of this frame
1475 		 * to him.
1476 		 */
1477 #if NBPFILTER > 0
1478 		if (ifp->if_bpf)
1479 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1480 #endif
1481 
1482 		if (vge_encap(sc, m_head, idx)) {
1483 			ifp->if_flags |= IFF_OACTIVE;
1484 			break;
1485 		}
1486 
1487 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1488 		    htole16(VGE_TXDESC_Q);
1489 
1490 		pidx = idx;
1491 		VGE_TX_DESC_INC(idx);
1492 	}
1493 
1494 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1495 		return;
1496 	}
1497 
1498 	/* Flush the TX descriptors */
1499 
1500 	bus_dmamap_sync(sc->sc_dmat,
1501 	    sc->vge_ldata.vge_tx_list_map,
1502 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1503 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1504 
1505 	/* Issue a transmit command. */
1506 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1507 
1508 	sc->vge_ldata.vge_tx_prodidx = idx;
1509 
1510 	/*
1511 	 * Use the countdown timer for interrupt moderation.
1512 	 * 'TX done' interrupts are disabled. Instead, we reset the
1513 	 * countdown timer, which will begin counting until it hits
1514 	 * the value in the SSTIMER register, and then trigger an
1515 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1516 	 * the timer count is reloaded. Only when the transmitter
1517 	 * is idle will the timer hit 0 and an interrupt fire.
1518 	 */
1519 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1520 
1521 	/*
1522 	 * Set a timeout in case the chip goes out to lunch.
1523 	 */
1524 	ifp->if_timer = 5;
1525 }
1526 
1527 int
1528 vge_init(struct ifnet *ifp)
1529 {
1530 	struct vge_softc	*sc = ifp->if_softc;
1531 	int			i;
1532 
1533 	/*
1534 	 * Cancel pending I/O and free all RX/TX buffers.
1535 	 */
1536 	vge_stop(sc);
1537 	vge_reset(sc);
1538 
1539 	/* Initialize RX descriptors list */
1540 	if (vge_rx_list_init(sc) == ENOBUFS) {
1541 		printf("%s: init failed: no memory for RX buffers\n",
1542 		    sc->vge_dev.dv_xname);
1543 		vge_stop(sc);
1544 		return (ENOBUFS);
1545 	}
1546 	/* Initialize TX descriptors */
1547 	if (vge_tx_list_init(sc) == ENOBUFS) {
1548 		printf("%s: init failed: no memory for TX buffers\n",
1549 		    sc->vge_dev.dv_xname);
1550 		vge_stop(sc);
1551 		return (ENOBUFS);
1552 	}
1553 
1554 	/* Set our station address */
1555 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1556 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1557 
1558 	/* Set receive FIFO threshold */
1559 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR);
1560 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
1561 
1562 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
1563 		/*
1564 		 * Allow transmission and reception of VLAN tagged
1565 		 * frames.
1566 		 */
1567 		CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_VTAGOPT);
1568 		CSR_SETBIT_1(sc, VGE_RXCFG, VGE_VTAG_OPT2);
1569 	}
1570 
1571 	/* Set DMA burst length */
1572 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1573 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1574 
1575 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1576 
1577 	/* Set collision backoff algorithm */
1578 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1579 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1580 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1581 
1582 	/* Disable LPSEL field in priority resolution */
1583 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1584 
1585 	/*
1586 	 * Load the addresses of the DMA queues into the chip.
1587 	 * Note that we only use one transmit queue.
1588 	 */
1589 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1590 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_listseg.ds_addr));
1591 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1592 
1593 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1594 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_listseg.ds_addr));
1595 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1596 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1597 
1598 	/* Enable and wake up the RX descriptor queue */
1599 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1600 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1601 
1602 	/* Enable the TX descriptor queue */
1603 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1604 
1605 	/* Set up the receive filter -- allow large frames for VLANs. */
1606 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_GIANT);
1607 
1608 	/* Program promiscuous mode and multicast filters. */
1609 	vge_iff(sc);
1610 
1611 	/* Initialize pause timer. */
1612 	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
1613 	/*
1614 	 * Initialize flow control parameters.
1615 	 *  TX XON high threshold : 48
1616 	 *  TX pause low threshold : 24
1617 	 *  Disable half-duplex flow control
1618 	 */
1619 	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
1620 	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
1621 
1622 	/* Enable jumbo frame reception (if desired) */
1623 
1624 	/* Start the MAC. */
1625 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1626 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1627 	CSR_WRITE_1(sc, VGE_CRS0,
1628 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1629 
1630 	/*
1631 	 * Configure one-shot timer for microsecond
1632 	 * resulution and load it for 500 usecs.
1633 	 */
1634 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1635 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1636 
1637 	/*
1638 	 * Configure interrupt moderation for receive. Enable
1639 	 * the holdoff counter and load it, and set the RX
1640 	 * suppression count to the number of descriptors we
1641 	 * want to allow before triggering an interrupt.
1642 	 * The holdoff timer is in units of 20 usecs.
1643 	 */
1644 
1645 #ifdef notyet
1646 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1647 	/* Select the interrupt holdoff timer page. */
1648 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1649 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1650 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1651 
1652 	/* Enable use of the holdoff timer. */
1653 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1654 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1655 
1656 	/* Select the RX suppression threshold page. */
1657 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1658 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1659 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1660 
1661 	/* Restore the page select bits. */
1662 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1663 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1664 #endif
1665 
1666 	/*
1667 	 * Enable interrupts.
1668 	 */
1669 	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1670 	CSR_WRITE_4(sc, VGE_ISR, 0);
1671 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1672 
1673 	/* Restore BMCR state */
1674 	mii_mediachg(&sc->sc_mii);
1675 
1676 	ifp->if_flags |= IFF_RUNNING;
1677 	ifp->if_flags &= ~IFF_OACTIVE;
1678 
1679 	sc->vge_link = 0;
1680 
1681 	if (!timeout_pending(&sc->timer_handle))
1682 		timeout_add_sec(&sc->timer_handle, 1);
1683 
1684 	return (0);
1685 }
1686 
1687 /*
1688  * Set media options.
1689  */
1690 int
1691 vge_ifmedia_upd(struct ifnet *ifp)
1692 {
1693 	struct vge_softc *sc = ifp->if_softc;
1694 
1695 	return (mii_mediachg(&sc->sc_mii));
1696 }
1697 
1698 /*
1699  * Report current media status.
1700  */
1701 void
1702 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1703 {
1704 	struct vge_softc *sc = ifp->if_softc;
1705 
1706 	mii_pollstat(&sc->sc_mii);
1707 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1708 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1709 }
1710 
1711 void
1712 vge_miibus_statchg(struct device *dev)
1713 {
1714 	struct vge_softc	*sc = (struct vge_softc *)dev;
1715 	struct mii_data		*mii;
1716 	struct ifmedia_entry	*ife;
1717 
1718 	mii = &sc->sc_mii;
1719 	ife = mii->mii_media.ifm_cur;
1720 
1721 	/*
1722 	 * If the user manually selects a media mode, we need to turn
1723 	 * on the forced MAC mode bit in the DIAGCTL register. If the
1724 	 * user happens to choose a full duplex mode, we also need to
1725 	 * set the 'force full duplex' bit. This applies only to
1726 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1727 	 * mode is disabled, and in 1000baseT mode, full duplex is
1728 	 * always implied, so we turn on the forced mode bit but leave
1729 	 * the FDX bit cleared.
1730 	 */
1731 
1732 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1733 	case IFM_AUTO:
1734 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1735 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1736 		break;
1737 	case IFM_1000_T:
1738 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1739 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1740 		break;
1741 	case IFM_100_TX:
1742 	case IFM_10_T:
1743 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1744 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1745 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1746 		} else {
1747 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1748 		}
1749 		break;
1750 	default:
1751 		printf("%s: unknown media type: %x\n",
1752 		    sc->vge_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media));
1753 		break;
1754 	}
1755 
1756 	/*
1757 	 * 802.3x flow control
1758 	*/
1759 	CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1760 	    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1761 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1762 		CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1763 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1764 		CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1765 }
1766 
1767 int
1768 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1769 {
1770 	struct vge_softc	*sc = ifp->if_softc;
1771 	struct ifaddr		*ifa = (struct ifaddr *) data;
1772 	struct ifreq		*ifr = (struct ifreq *) data;
1773 	int			s, error = 0;
1774 
1775 	s = splnet();
1776 
1777 	switch (command) {
1778 	case SIOCSIFADDR:
1779 		ifp->if_flags |= IFF_UP;
1780 		if (!(ifp->if_flags & IFF_RUNNING))
1781 			vge_init(ifp);
1782 #ifdef INET
1783 		if (ifa->ifa_addr->sa_family == AF_INET)
1784 			arp_ifinit(&sc->arpcom, ifa);
1785 #endif
1786 		break;
1787 
1788 	case SIOCSIFFLAGS:
1789 		if (ifp->if_flags & IFF_UP) {
1790 			if (ifp->if_flags & IFF_RUNNING)
1791 				error = ENETRESET;
1792 			else
1793 				vge_init(ifp);
1794 		} else {
1795 			if (ifp->if_flags & IFF_RUNNING)
1796 				vge_stop(sc);
1797 		}
1798 		break;
1799 
1800 	case SIOCGIFMEDIA:
1801 	case SIOCSIFMEDIA:
1802 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1803 		break;
1804 
1805 	default:
1806 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1807 	}
1808 
1809 	if (error == ENETRESET) {
1810 		if (ifp->if_flags & IFF_RUNNING)
1811 			vge_iff(sc);
1812 		error = 0;
1813 	}
1814 
1815 	splx(s);
1816 	return (error);
1817 }
1818 
1819 void
1820 vge_watchdog(struct ifnet *ifp)
1821 {
1822 	struct vge_softc *sc = ifp->if_softc;
1823 	int s;
1824 
1825 	s = splnet();
1826 	printf("%s: watchdog timeout\n", sc->vge_dev.dv_xname);
1827 	ifp->if_oerrors++;
1828 
1829 	vge_txeof(sc);
1830 	vge_rxeof(sc);
1831 
1832 	vge_init(ifp);
1833 
1834 	splx(s);
1835 }
1836 
1837 /*
1838  * Stop the adapter and free any mbufs allocated to the
1839  * RX and TX lists.
1840  */
1841 void
1842 vge_stop(struct vge_softc *sc)
1843 {
1844 	int			i;
1845 	struct ifnet		*ifp;
1846 
1847 	ifp = &sc->arpcom.ac_if;
1848 	ifp->if_timer = 0;
1849 
1850 	timeout_del(&sc->timer_handle);
1851 
1852 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1853 
1854 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1855 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
1856 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1857 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
1858 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
1859 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
1860 
1861 	if (sc->vge_head != NULL) {
1862 		m_freem(sc->vge_head);
1863 		sc->vge_head = sc->vge_tail = NULL;
1864 	}
1865 
1866 	/* Free the TX list buffers. */
1867 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1868 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
1869 			bus_dmamap_unload(sc->sc_dmat,
1870 			    sc->vge_ldata.vge_tx_dmamap[i]);
1871 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
1872 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
1873 		}
1874 	}
1875 
1876 	/* Free the RX list buffers. */
1877 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1878 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
1879 			bus_dmamap_unload(sc->sc_dmat,
1880 			    sc->vge_ldata.vge_rx_dmamap[i]);
1881 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
1882 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
1883 		}
1884 	}
1885 }
1886