xref: /openbsd-src/sys/dev/pci/if_tl.c (revision f2da64fbbbf1b03f09f390ab01267c93dfd77c4c)
1 /*	$OpenBSD: if_tl.c,v 1.69 2016/04/13 10:34:32 mpi Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/pci/if_tl.c,v 1.64 2001/02/06 10:11:48 phk Exp $
35  */
36 
37 /*
38  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
39  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
40  * the National Semiconductor DP83840A physical interface and the
41  * Microchip Technology 24Cxx series serial EEPROM.
42  *
43  * Written using the following four documents:
44  *
45  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
46  * National Semiconductor DP83840A data sheet (www.national.com)
47  * Microchip Technology 24C02C data sheet (www.microchip.com)
48  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
49  *
50  * Written by Bill Paul <wpaul@ctr.columbia.edu>
51  * Electrical Engineering Department
52  * Columbia University, New York City
53  */
54 
55 /*
56  * Some notes about the ThunderLAN:
57  *
58  * The ThunderLAN controller is a single chip containing PCI controller
59  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
60  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
61  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
62  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
63  * to act as a complete ethernet interface.
64  *
65  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
66  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
67  * in full or half duplex. Some of the Compaq Deskpro machines use a
68  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
69  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
70  * concert with the ThunderLAN's internal PHY to provide full 10/100
71  * support. This is cheaper than using a standalone external PHY for both
72  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
73  * A serial EEPROM is also attached to the ThunderLAN chip to provide
74  * power-up default register settings and for storing the adapter's
75  * station address. Although not supported by this driver, the ThunderLAN
76  * chip can also be connected to token ring PHYs.
77  *
78  * The ThunderLAN has a set of registers which can be used to issue
79  * commands, acknowledge interrupts, and to manipulate other internal
80  * registers on its DIO bus. The primary registers can be accessed
81  * using either programmed I/O (inb/outb) or via PCI memory mapping,
82  * depending on how the card is configured during the PCI probing
83  * phase. It is even possible to have both PIO and memory mapped
84  * access turned on at the same time.
85  *
86  * Frame reception and transmission with the ThunderLAN chip is done
87  * using frame 'lists.' A list structure looks more or less like this:
88  *
89  * struct tl_frag {
90  *	u_int32_t		fragment_address;
91  *	u_int32_t		fragment_size;
92  * };
93  * struct tl_list {
94  *	u_int32_t		forward_pointer;
95  *	u_int16_t		cstat;
96  *	u_int16_t		frame_size;
97  *	struct tl_frag		fragments[10];
98  * };
99  *
100  * The forward pointer in the list header can be either a 0 or the address
101  * of another list, which allows several lists to be linked together. Each
102  * list contains up to 10 fragment descriptors. This means the chip allows
103  * ethernet frames to be broken up into up to 10 chunks for transfer to
104  * and from the SRAM. Note that the forward pointer and fragment buffer
105  * addresses are physical memory addresses, not virtual. Note also that
106  * a single ethernet frame can not span lists: if the host wants to
107  * transmit a frame and the frame data is split up over more than 10
108  * buffers, the frame has to collapsed before it can be transmitted.
109  *
110  * To receive frames, the driver sets up a number of lists and populates
111  * the fragment descriptors, then it sends an RX GO command to the chip.
112  * When a frame is received, the chip will DMA it into the memory regions
113  * specified by the fragment descriptors and then trigger an RX 'end of
114  * frame interrupt' when done. The driver may choose to use only one
115  * fragment per list; this may result is slighltly less efficient use
116  * of memory in exchange for improving performance.
117  *
118  * To transmit frames, the driver again sets up lists and fragment
119  * descriptors, only this time the buffers contain frame data that
120  * is to be DMA'ed into the chip instead of out of it. Once the chip
121  * has transferred the data into its on-board SRAM, it will trigger a
122  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
123  * interrupt when it reaches the end of the list.
124  */
125 
126 /*
127  * Some notes about this driver:
128  *
129  * The ThunderLAN chip provides a couple of different ways to organize
130  * reception, transmission and interrupt handling. The simplest approach
131  * is to use one list each for transmission and reception. In this mode,
132  * the ThunderLAN will generate two interrupts for every received frame
133  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
134  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
135  * performance to have to handle so many interrupts.
136  *
137  * Initially I wanted to create a circular list of receive buffers so
138  * that the ThunderLAN chip would think there was an infinitely long
139  * receive channel and never deliver an RXEOC interrupt. However this
140  * doesn't work correctly under heavy load: while the manual says the
141  * chip will trigger an RXEOF interrupt each time a frame is copied into
142  * memory, you can't count on the chip waiting around for you to acknowledge
143  * the interrupt before it starts trying to DMA the next frame. The result
144  * is that the chip might traverse the entire circular list and then wrap
145  * around before you have a chance to do anything about it. Consequently,
146  * the receive list is terminated (with a 0 in the forward pointer in the
147  * last element). Each time an RXEOF interrupt arrives, the used list
148  * is shifted to the end of the list. This gives the appearance of an
149  * infinitely large RX chain so long as the driver doesn't fall behind
150  * the chip and allow all of the lists to be filled up.
151  *
152  * If all the lists are filled, the adapter will deliver an RX 'end of
153  * channel' interrupt when it hits the 0 forward pointer at the end of
154  * the chain. The RXEOC handler then cleans out the RX chain and resets
155  * the list head pointer in the ch_parm register and restarts the receiver.
156  *
157  * For frame transmission, it is possible to program the ThunderLAN's
158  * transmit interrupt threshold so that the chip can acknowledge multiple
159  * lists with only a single TX EOF interrupt. This allows the driver to
160  * queue several frames in one shot, and only have to handle a total
161  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
162  * are transmitted. Frame transmission is done directly out of the
163  * mbufs passed to the tl_start() routine via the interface send queue.
164  * The driver simply sets up the fragment descriptors in the transmit
165  * lists to point to the mbuf data regions and sends a TX GO command.
166  *
167  * Note that since the RX and TX lists themselves are always used
168  * only by the driver, the are malloc()ed once at driver initialization
169  * time and never free()ed.
170  *
171  * Also, in order to remain as platform independent as possible, this
172  * driver uses memory mapped register access to manipulate the card
173  * as opposed to programmed I/O. This avoids the use of the inb/outb
174  * (and related) instructions which are specific to the i386 platform.
175  *
176  * Using these techniques, this driver achieves very high performance
177  * by minimizing the amount of interrupts generated during large
178  * transfers and by completely avoiding buffer copies. Frame transfer
179  * to and from the ThunderLAN chip is performed entirely by the chip
180  * itself thereby reducing the load on the host CPU.
181  */
182 
183 #include "bpfilter.h"
184 
185 #include <sys/param.h>
186 #include <sys/systm.h>
187 #include <sys/sockio.h>
188 #include <sys/mbuf.h>
189 #include <sys/malloc.h>
190 #include <sys/kernel.h>
191 #include <sys/socket.h>
192 #include <sys/device.h>
193 #include <sys/timeout.h>
194 
195 #include <net/if.h>
196 
197 #include <netinet/in.h>
198 #include <netinet/if_ether.h>
199 
200 #include <net/if_media.h>
201 
202 #if NBPFILTER > 0
203 #include <net/bpf.h>
204 #endif
205 
206 #include <uvm/uvm_extern.h>              /* for vtophys */
207 #define	VTOPHYS(v)	vtophys((vaddr_t)(v))
208 
209 #include <dev/mii/mii.h>
210 #include <dev/mii/miivar.h>
211 
212 #include <dev/pci/pcireg.h>
213 #include <dev/pci/pcivar.h>
214 #include <dev/pci/pcidevs.h>
215 
216 /*
217  * Default to using PIO register access mode to pacify certain
218  * laptop docking stations with built-in ThunderLAN chips that
219  * don't seem to handle memory mapped mode properly.
220  */
221 #define TL_USEIOSPACE
222 
223 #include <dev/pci/if_tlreg.h>
224 #include <dev/mii/tlphyvar.h>
225 
226 const struct tl_products tl_prods[] = {
227 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_N100TX, TLPHY_MEDIA_NO_10_T },
228 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_N10T, TLPHY_MEDIA_10_5 },
229 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_IntNF3P, TLPHY_MEDIA_10_2 },
230 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_IntPL100TX, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T },
231 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_DPNet100TX, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T },
232 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_DP4000, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T },
233 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_NF3P_BNC, TLPHY_MEDIA_10_2 },
234 	{ PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_NF3P, TLPHY_MEDIA_10_5 },
235 	{ PCI_VENDOR_TI, PCI_PRODUCT_TI_TLAN, 0 },
236 	{ 0, 0, 0 }
237 };
238 
239 int tl_probe(struct device *, void *, void *);
240 void tl_attach(struct device *, struct device *, void *);
241 void tl_wait_up(void *);
242 int tl_intvec_rxeoc(void *, u_int32_t);
243 int tl_intvec_txeoc(void *, u_int32_t);
244 int tl_intvec_txeof(void *, u_int32_t);
245 int tl_intvec_rxeof(void *, u_int32_t);
246 int tl_intvec_adchk(void *, u_int32_t);
247 int tl_intvec_netsts(void *, u_int32_t);
248 
249 int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *);
250 void tl_stats_update(void *);
251 int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *);
252 
253 int tl_intr(void *);
254 void tl_start(struct ifnet *);
255 int tl_ioctl(struct ifnet *, u_long, caddr_t);
256 void tl_init(void *);
257 void tl_stop(struct tl_softc *);
258 void tl_watchdog(struct ifnet *);
259 int tl_ifmedia_upd(struct ifnet *);
260 void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
261 
262 u_int8_t tl_eeprom_putbyte(struct tl_softc *, int);
263 u_int8_t tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *);
264 int tl_read_eeprom(struct tl_softc *, caddr_t, int, int);
265 
266 void tl_mii_sync(struct tl_softc *);
267 void tl_mii_send(struct tl_softc *, u_int32_t, int);
268 int tl_mii_readreg(struct tl_softc *, struct tl_mii_frame *);
269 int tl_mii_writereg(struct tl_softc *, struct tl_mii_frame *);
270 int tl_miibus_readreg(struct device *, int, int);
271 void tl_miibus_writereg(struct device *, int, int, int);
272 void tl_miibus_statchg(struct device *);
273 
274 void tl_setmode(struct tl_softc *, uint64_t);
275 int tl_calchash(caddr_t);
276 void tl_iff(struct tl_softc *);
277 void tl_setfilt(struct tl_softc *, caddr_t, int);
278 void tl_softreset(struct tl_softc *, int);
279 void tl_hardreset(struct device *);
280 int tl_list_rx_init(struct tl_softc *);
281 int tl_list_tx_init(struct tl_softc *);
282 
283 u_int8_t tl_dio_read8(struct tl_softc *, int);
284 u_int16_t tl_dio_read16(struct tl_softc *, int);
285 u_int32_t tl_dio_read32(struct tl_softc *, int);
286 void tl_dio_write8(struct tl_softc *, int, int);
287 void tl_dio_write16(struct tl_softc *, int, int);
288 void tl_dio_write32(struct tl_softc *, int, int);
289 void tl_dio_setbit(struct tl_softc *, int, int);
290 void tl_dio_clrbit(struct tl_softc *, int, int);
291 void tl_dio_setbit16(struct tl_softc *, int, int);
292 void tl_dio_clrbit16(struct tl_softc *, int, int);
293 
294 u_int8_t
295 tl_dio_read8(struct tl_softc *sc, int reg)
296 {
297 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
298 	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
299 }
300 
301 u_int16_t
302 tl_dio_read16(struct tl_softc *sc, int reg)
303 {
304 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
305 	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
306 }
307 
308 u_int32_t
309 tl_dio_read32(struct tl_softc *sc, int reg)
310 {
311 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
312 	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
313 }
314 
315 void
316 tl_dio_write8(struct tl_softc *sc, int reg, int val)
317 {
318 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
319 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
320 }
321 
322 void
323 tl_dio_write16(struct tl_softc *sc, int reg, int val)
324 {
325 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
326 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
327 }
328 
329 void
330 tl_dio_write32(struct tl_softc *sc, int reg, int val)
331 {
332 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
333 	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
334 }
335 
336 void
337 tl_dio_setbit(struct tl_softc *sc, int reg, int bit)
338 {
339 	u_int8_t			f;
340 
341 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
342 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
343 	f |= bit;
344 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
345 }
346 
347 void
348 tl_dio_clrbit(struct tl_softc *sc, int reg, int bit)
349 {
350 	u_int8_t			f;
351 
352 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
353 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
354 	f &= ~bit;
355 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
356 }
357 
358 void
359 tl_dio_setbit16(struct tl_softc *sc, int reg, int bit)
360 {
361 	u_int16_t			f;
362 
363 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
364 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
365 	f |= bit;
366 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
367 }
368 
369 void
370 tl_dio_clrbit16(struct tl_softc *sc, int reg, int bit)
371 {
372 	u_int16_t			f;
373 
374 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
375 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
376 	f &= ~bit;
377 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
378 }
379 
380 /*
381  * Send an instruction or address to the EEPROM, check for ACK.
382  */
383 u_int8_t
384 tl_eeprom_putbyte(struct tl_softc *sc, int byte)
385 {
386 	int			i, ack = 0;
387 
388 	/*
389 	 * Make sure we're in TX mode.
390 	 */
391 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
392 
393 	/*
394 	 * Feed in each bit and strobe the clock.
395 	 */
396 	for (i = 0x80; i; i >>= 1) {
397 		if (byte & i)
398 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
399 		else
400 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
401 		DELAY(1);
402 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
403 		DELAY(1);
404 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
405 	}
406 
407 	/*
408 	 * Turn off TX mode.
409 	 */
410 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
411 
412 	/*
413 	 * Check for ack.
414 	 */
415 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
416 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
417 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
418 
419 	return(ack);
420 }
421 
422 /*
423  * Read a byte of data stored in the EEPROM at address 'addr.'
424  */
425 u_int8_t
426 tl_eeprom_getbyte(struct tl_softc *sc, int addr, u_int8_t *dest)
427 {
428 	int			i;
429 	u_int8_t		byte = 0;
430 
431 	tl_dio_write8(sc, TL_NETSIO, 0);
432 
433 	EEPROM_START;
434 
435 	/*
436 	 * Send write control code to EEPROM.
437 	 */
438 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
439 		printf("%s: failed to send write command, status: %x\n",
440 			sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO));
441 		return(1);
442 	}
443 
444 	/*
445 	 * Send address of byte we want to read.
446 	 */
447 	if (tl_eeprom_putbyte(sc, addr)) {
448 		printf("%s: failed to send address, status: %x\n",
449 			sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO));
450 		return(1);
451 	}
452 
453 	EEPROM_STOP;
454 	EEPROM_START;
455 	/*
456 	 * Send read control code to EEPROM.
457 	 */
458 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
459 		printf("%s: failed to send write command, status: %x\n",
460 			sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO));
461 		return(1);
462 	}
463 
464 	/*
465 	 * Start reading bits from EEPROM.
466 	 */
467 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
468 	for (i = 0x80; i; i >>= 1) {
469 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
470 		DELAY(1);
471 		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
472 			byte |= i;
473 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
474 		DELAY(1);
475 	}
476 
477 	EEPROM_STOP;
478 
479 	/*
480 	 * No ACK generated for read, so just return byte.
481 	 */
482 
483 	*dest = byte;
484 
485 	return(0);
486 }
487 
488 /*
489  * Read a sequence of bytes from the EEPROM.
490  */
491 int
492 tl_read_eeprom(struct tl_softc *sc, caddr_t dest, int off, int cnt)
493 {
494 	int			err = 0, i;
495 	u_int8_t		byte = 0;
496 
497 	for (i = 0; i < cnt; i++) {
498 		err = tl_eeprom_getbyte(sc, off + i, &byte);
499 		if (err)
500 			break;
501 		*(dest + i) = byte;
502 	}
503 
504 	return(err ? 1 : 0);
505 }
506 
507 void
508 tl_mii_sync(struct tl_softc *sc)
509 {
510 	int			i;
511 
512 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
513 
514 	for (i = 0; i < 32; i++) {
515 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
516 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
517 	}
518 }
519 
520 void
521 tl_mii_send(struct tl_softc *sc, u_int32_t bits, int cnt)
522 {
523 	int			i;
524 
525 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
526 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
527 		if (bits & i)
528 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
529 		else
530 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
531 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
532 	}
533 }
534 
535 int
536 tl_mii_readreg(struct tl_softc *sc, struct tl_mii_frame *frame)
537 {
538 	int			i, ack, s;
539 	int			minten = 0;
540 
541 	s = splnet();
542 
543 	tl_mii_sync(sc);
544 
545 	/*
546 	 * Set up frame for RX.
547 	 */
548 	frame->mii_stdelim = TL_MII_STARTDELIM;
549 	frame->mii_opcode = TL_MII_READOP;
550 	frame->mii_turnaround = 0;
551 	frame->mii_data = 0;
552 
553 	/*
554 	 * Turn off MII interrupt by forcing MINTEN low.
555 	 */
556 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
557 	if (minten)
558 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
559 
560 	/*
561  	 * Turn on data xmit.
562 	 */
563 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
564 
565 	/*
566 	 * Send command/address info.
567 	 */
568 	tl_mii_send(sc, frame->mii_stdelim, 2);
569 	tl_mii_send(sc, frame->mii_opcode, 2);
570 	tl_mii_send(sc, frame->mii_phyaddr, 5);
571 	tl_mii_send(sc, frame->mii_regaddr, 5);
572 
573 	/*
574 	 * Turn off xmit.
575 	 */
576 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
577 
578 	/* Idle bit */
579 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
580 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
581 
582 	/* Check for ack */
583 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
584 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
585 
586 	/* Complete the cycle */
587 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
588 
589 	/*
590 	 * Now try reading data bits. If the ack failed, we still
591 	 * need to clock through 16 cycles to keep the PHYs in sync.
592 	 */
593 	if (ack) {
594 		for(i = 0; i < 16; i++) {
595 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
596 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
597 		}
598 		goto fail;
599 	}
600 
601 	for (i = 0x8000; i; i >>= 1) {
602 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
603 		if (!ack) {
604 			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
605 				frame->mii_data |= i;
606 		}
607 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
608 	}
609 
610 fail:
611 
612 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
613 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
614 
615 	/* Reenable interrupts */
616 	if (minten)
617 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
618 
619 	splx(s);
620 
621 	if (ack)
622 		return(1);
623 	return(0);
624 }
625 
626 int
627 tl_mii_writereg(struct tl_softc *sc, struct tl_mii_frame *frame)
628 {
629 	int			s;
630 	int			minten;
631 
632 	tl_mii_sync(sc);
633 
634 	s = splnet();
635 	/*
636 	 * Set up frame for TX.
637 	 */
638 
639 	frame->mii_stdelim = TL_MII_STARTDELIM;
640 	frame->mii_opcode = TL_MII_WRITEOP;
641 	frame->mii_turnaround = TL_MII_TURNAROUND;
642 
643 	/*
644 	 * Turn off MII interrupt by forcing MINTEN low.
645 	 */
646 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
647 	if (minten)
648 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
649 
650 	/*
651  	 * Turn on data output.
652 	 */
653 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
654 
655 	tl_mii_send(sc, frame->mii_stdelim, 2);
656 	tl_mii_send(sc, frame->mii_opcode, 2);
657 	tl_mii_send(sc, frame->mii_phyaddr, 5);
658 	tl_mii_send(sc, frame->mii_regaddr, 5);
659 	tl_mii_send(sc, frame->mii_turnaround, 2);
660 	tl_mii_send(sc, frame->mii_data, 16);
661 
662 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
663 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
664 
665 	/*
666 	 * Turn off xmit.
667 	 */
668 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
669 
670 	/* Reenable interrupts */
671 	if (minten)
672 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
673 
674 	splx(s);
675 
676 	return(0);
677 }
678 
679 int
680 tl_miibus_readreg(struct device *dev, int phy, int reg)
681 {
682 	struct tl_softc *sc = (struct tl_softc *)dev;
683 	struct tl_mii_frame	frame;
684 
685 	bzero(&frame, sizeof(frame));
686 
687 	frame.mii_phyaddr = phy;
688 	frame.mii_regaddr = reg;
689 	tl_mii_readreg(sc, &frame);
690 
691 	return(frame.mii_data);
692 }
693 
694 void
695 tl_miibus_writereg(struct device *dev, int phy, int reg, int data)
696 {
697 	struct tl_softc *sc = (struct tl_softc *)dev;
698 	struct tl_mii_frame	frame;
699 
700 	bzero(&frame, sizeof(frame));
701 
702 	frame.mii_phyaddr = phy;
703 	frame.mii_regaddr = reg;
704 	frame.mii_data = data;
705 
706 	tl_mii_writereg(sc, &frame);
707 }
708 
709 void
710 tl_miibus_statchg(struct device *dev)
711 {
712 	struct tl_softc *sc = (struct tl_softc *)dev;
713 
714 	if ((sc->sc_mii.mii_media_active & IFM_GMASK) == IFM_FDX)
715 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
716 	else
717 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
718 }
719 
720 /*
721  * Set modes for bitrate devices.
722  */
723 void
724 tl_setmode(struct tl_softc *sc, uint64_t media)
725 {
726 	if (IFM_SUBTYPE(media) == IFM_10_5)
727 		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
728 	if (IFM_SUBTYPE(media) == IFM_10_T) {
729 		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
730 		if ((media & IFM_GMASK) == IFM_FDX) {
731 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
732 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
733 		} else {
734 			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
735 			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
736 		}
737 	}
738 }
739 
740 /*
741  * Calculate the hash of a MAC address for programming the multicast hash
742  * table.  This hash is simply the address split into 6-bit chunks
743  * XOR'd, e.g.
744  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
745  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
746  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
747  * the folded 24-bit value is split into 6-bit portions and XOR'd.
748  */
749 int
750 tl_calchash(caddr_t addr)
751 {
752 	int			t;
753 
754 	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
755 		(addr[2] ^ addr[5]);
756 	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
757 }
758 
759 /*
760  * The ThunderLAN has a perfect MAC address filter in addition to
761  * the multicast hash filter. The perfect filter can be programmed
762  * with up to four MAC addresses. The first one is always used to
763  * hold the station address, which leaves us free to use the other
764  * three for multicast addresses.
765  */
766 void
767 tl_setfilt(struct tl_softc *sc, caddr_t addr, int slot)
768 {
769 	int			i;
770 	u_int16_t		regaddr;
771 
772 	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
773 
774 	for (i = 0; i < ETHER_ADDR_LEN; i++)
775 		tl_dio_write8(sc, regaddr + i, *(addr + i));
776 }
777 
778 /*
779  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
780  * linked list. This is fine, except addresses are added from the head
781  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
782  * group to always be in the perfect filter, but as more groups are added,
783  * the 224.0.0.1 entry (which is always added first) gets pushed down
784  * the list and ends up at the tail. So after 3 or 4 multicast groups
785  * are added, the all-hosts entry gets pushed out of the perfect filter
786  * and into the hash table.
787  *
788  * Because the multicast list is a doubly-linked list as opposed to a
789  * circular queue, we don't have the ability to just grab the tail of
790  * the list and traverse it backwards. Instead, we have to traverse
791  * the list once to find the tail, then traverse it again backwards to
792  * update the multicast filter.
793  */
794 void
795 tl_iff(struct tl_softc *sc)
796 {
797 	struct ifnet		*ifp = &sc->arpcom.ac_if;
798 	struct arpcom		*ac = &sc->arpcom;
799 	struct ether_multistep step;
800 	struct ether_multi *enm;
801 	u_int32_t		hashes[2];
802 	int			h = 0;
803 
804 	tl_dio_clrbit(sc, TL_NETCMD, (TL_CMD_CAF | TL_CMD_NOBRX));
805 	bzero(hashes, sizeof(hashes));
806 	ifp->if_flags &= ~IFF_ALLMULTI;
807 
808 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
809 		ifp->if_flags |= IFF_ALLMULTI;
810 		if (ifp->if_flags & IFF_PROMISC)
811 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
812 		else
813 			hashes[0] = hashes[1] = 0xffffffff;
814 	} else {
815 		ETHER_FIRST_MULTI(step, ac, enm);
816 		while (enm != NULL) {
817 			h = tl_calchash(enm->enm_addrlo);
818 
819 			if (h < 32)
820 				hashes[0] |= (1 << h);
821 			else
822 				hashes[1] |= (1 << (h - 32));
823 
824 			ETHER_NEXT_MULTI(step, enm);
825 		}
826 	}
827 
828 	tl_dio_write32(sc, TL_HASH1, hashes[0]);
829 	tl_dio_write32(sc, TL_HASH2, hashes[1]);
830 }
831 
832 /*
833  * This routine is recommended by the ThunderLAN manual to insure that
834  * the internal PHY is powered up correctly. It also recommends a one
835  * second pause at the end to 'wait for the clocks to start' but in my
836  * experience this isn't necessary.
837  */
838 void
839 tl_hardreset(struct device *dev)
840 {
841 	struct tl_softc		*sc = (struct tl_softc *)dev;
842 	int			i;
843 	u_int16_t		flags;
844 
845 	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
846 
847 	for (i =0 ; i < MII_NPHY; i++)
848 		tl_miibus_writereg(dev, i, MII_BMCR, flags);
849 
850 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
851 	tl_mii_sync(sc);
852 	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
853 
854 	DELAY(5000);
855 }
856 
857 void
858 tl_softreset(struct tl_softc *sc, int internal)
859 {
860         u_int32_t               cmd, dummy, i;
861 
862         /* Assert the adapter reset bit. */
863 	CMD_SET(sc, TL_CMD_ADRST);
864         /* Turn off interrupts */
865 	CMD_SET(sc, TL_CMD_INTSOFF);
866 
867 	/* First, clear the stats registers. */
868 	for (i = 0; i < 5; i++)
869 		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
870 
871         /* Clear Areg and Hash registers */
872 	for (i = 0; i < 8; i++)
873 		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
874 
875         /*
876 	 * Set up Netconfig register. Enable one channel and
877 	 * one fragment mode.
878 	 */
879 	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
880 	if (internal && !sc->tl_bitrate) {
881 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
882 	} else {
883 		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
884 	}
885 
886 	/* Handle cards with bitrate devices. */
887 	if (sc->tl_bitrate)
888 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
889 
890 	/*
891 	 * Load adapter irq pacing timer and tx threshold.
892 	 * We make the transmit threshold 1 initially but we may
893 	 * change that later.
894 	 */
895 	cmd = CSR_READ_4(sc, TL_HOSTCMD);
896 	cmd |= TL_CMD_NES;
897 	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
898 	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
899 	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
900 
901         /* Unreset the MII */
902 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
903 
904 	/* Take the adapter out of reset */
905 	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
906 
907 	/* Wait for things to settle down a little. */
908 	DELAY(500);
909 }
910 
911 /*
912  * Initialize the transmit lists.
913  */
914 int
915 tl_list_tx_init(struct tl_softc *sc)
916 {
917 	struct tl_chain_data	*cd;
918 	struct tl_list_data	*ld;
919 	int			i;
920 
921 	cd = &sc->tl_cdata;
922 	ld = sc->tl_ldata;
923 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
924 		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
925 		if (i == (TL_TX_LIST_CNT - 1))
926 			cd->tl_tx_chain[i].tl_next = NULL;
927 		else
928 			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
929 	}
930 
931 	cd->tl_tx_free = &cd->tl_tx_chain[0];
932 	cd->tl_tx_tail = cd->tl_tx_head = NULL;
933 	sc->tl_txeoc = 1;
934 
935 	return(0);
936 }
937 
938 /*
939  * Initialize the RX lists and allocate mbufs for them.
940  */
941 int
942 tl_list_rx_init(struct tl_softc *sc)
943 {
944 	struct tl_chain_data	*cd;
945 	struct tl_list_data	*ld;
946 	int			i;
947 
948 	cd = &sc->tl_cdata;
949 	ld = sc->tl_ldata;
950 
951 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
952 		cd->tl_rx_chain[i].tl_ptr =
953 			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
954 		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
955 			return(ENOBUFS);
956 		if (i == (TL_RX_LIST_CNT - 1)) {
957 			cd->tl_rx_chain[i].tl_next = NULL;
958 			ld->tl_rx_list[i].tlist_fptr = 0;
959 		} else {
960 			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
961 			ld->tl_rx_list[i].tlist_fptr =
962 					VTOPHYS(&ld->tl_rx_list[i + 1]);
963 		}
964 	}
965 
966 	cd->tl_rx_head = &cd->tl_rx_chain[0];
967 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
968 
969 	return(0);
970 }
971 
972 int
973 tl_newbuf(struct tl_softc *sc, struct tl_chain_onefrag *c)
974 {
975 	struct mbuf		*m_new = NULL;
976 
977 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
978 	if (m_new == NULL) {
979 		return(ENOBUFS);
980 	}
981 
982 	MCLGET(m_new, M_DONTWAIT);
983 	if (!(m_new->m_flags & M_EXT)) {
984 		m_freem(m_new);
985 		return(ENOBUFS);
986 	}
987 
988 #ifdef __alpha__
989 	m_new->m_data += 2;
990 #endif
991 
992 	c->tl_mbuf = m_new;
993 	c->tl_next = NULL;
994 	c->tl_ptr->tlist_frsize = MCLBYTES;
995 	c->tl_ptr->tlist_fptr = 0;
996 	c->tl_ptr->tl_frag.tlist_dadr = VTOPHYS(mtod(m_new, caddr_t));
997 	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
998 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
999 
1000 	return(0);
1001 }
1002 /*
1003  * Interrupt handler for RX 'end of frame' condition (EOF). This
1004  * tells us that a full ethernet frame has been captured and we need
1005  * to handle it.
1006  *
1007  * Reception is done using 'lists' which consist of a header and a
1008  * series of 10 data count/data address pairs that point to buffers.
1009  * Initially you're supposed to create a list, populate it with pointers
1010  * to buffers, then load the physical address of the list into the
1011  * ch_parm register. The adapter is then supposed to DMA the received
1012  * frame into the buffers for you.
1013  *
1014  * To make things as fast as possible, we have the chip DMA directly
1015  * into mbufs. This saves us from having to do a buffer copy: we can
1016  * just hand the mbufs directly to the network stack. Once the frame
1017  * has been sent on its way, the 'list' structure is assigned a new
1018  * buffer and moved to the end of the RX chain. As long we we stay
1019  * ahead of the chip, it will always think it has an endless receive
1020  * channel.
1021  *
1022  * If we happen to fall behind and the chip manages to fill up all of
1023  * the buffers, it will generate an end of channel interrupt and wait
1024  * for us to empty the chain and restart the receiver.
1025  */
1026 int
1027 tl_intvec_rxeof(void *xsc, u_int32_t type)
1028 {
1029 	struct tl_softc		*sc;
1030 	int			r = 0, total_len = 0;
1031 	struct ether_header	*eh;
1032 	struct mbuf		*m;
1033 	struct mbuf_list	ml = MBUF_LIST_INITIALIZER();
1034 	struct ifnet		*ifp;
1035 	struct tl_chain_onefrag	*cur_rx;
1036 
1037 	sc = xsc;
1038 	ifp = &sc->arpcom.ac_if;
1039 
1040 	while(sc->tl_cdata.tl_rx_head != NULL) {
1041 		cur_rx = sc->tl_cdata.tl_rx_head;
1042 		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1043 			break;
1044 		r++;
1045 		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1046 		m = cur_rx->tl_mbuf;
1047 		total_len = cur_rx->tl_ptr->tlist_frsize;
1048 
1049 		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1050 			ifp->if_ierrors++;
1051 			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1052 			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1053 			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1054 			continue;
1055 		}
1056 
1057 		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1058 						VTOPHYS(cur_rx->tl_ptr);
1059 		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1060 		sc->tl_cdata.tl_rx_tail = cur_rx;
1061 
1062 		eh = mtod(m, struct ether_header *);
1063 
1064 		/*
1065 		 * Note: when the ThunderLAN chip is in 'capture all
1066 		 * frames' mode, it will receive its own transmissions.
1067 		 * We drop don't need to process our own transmissions,
1068 		 * so we drop them here and continue.
1069 		 */
1070 		/*if (ifp->if_flags & IFF_PROMISC && */
1071 		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1072 		 					ETHER_ADDR_LEN)) {
1073 				m_freem(m);
1074 				continue;
1075 		}
1076 
1077 		m->m_pkthdr.len = m->m_len = total_len;
1078 		ml_enqueue(&ml, m);
1079 	}
1080 
1081 	if_input(ifp, &ml);
1082 
1083 	return(r);
1084 }
1085 
1086 /*
1087  * The RX-EOC condition hits when the ch_parm address hasn't been
1088  * initialized or the adapter reached a list with a forward pointer
1089  * of 0 (which indicates the end of the chain). In our case, this means
1090  * the card has hit the end of the receive buffer chain and we need to
1091  * empty out the buffers and shift the pointer back to the beginning again.
1092  */
1093 int
1094 tl_intvec_rxeoc(void *xsc, u_int32_t type)
1095 {
1096 	struct tl_softc		*sc;
1097 	int			r;
1098 	struct tl_chain_data	*cd;
1099 
1100 	sc = xsc;
1101 	cd = &sc->tl_cdata;
1102 
1103 	/* Flush out the receive queue and ack RXEOF interrupts. */
1104 	r = tl_intvec_rxeof(xsc, type);
1105 	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1106 	r = 1;
1107 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1108 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1109 	CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(sc->tl_cdata.tl_rx_head->tl_ptr));
1110 	r |= (TL_CMD_GO|TL_CMD_RT);
1111 	return(r);
1112 }
1113 
1114 int
1115 tl_intvec_txeof(void *xsc, u_int32_t type)
1116 {
1117 	struct tl_softc		*sc;
1118 	int			r = 0;
1119 	struct tl_chain		*cur_tx;
1120 
1121 	sc = xsc;
1122 
1123 	/*
1124 	 * Go through our tx list and free mbufs for those
1125 	 * frames that have been sent.
1126 	 */
1127 	while (sc->tl_cdata.tl_tx_head != NULL) {
1128 		cur_tx = sc->tl_cdata.tl_tx_head;
1129 		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1130 			break;
1131 		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1132 
1133 		r++;
1134 		m_freem(cur_tx->tl_mbuf);
1135 		cur_tx->tl_mbuf = NULL;
1136 
1137 		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1138 		sc->tl_cdata.tl_tx_free = cur_tx;
1139 		if (!cur_tx->tl_ptr->tlist_fptr)
1140 			break;
1141 	}
1142 
1143 	return(r);
1144 }
1145 
1146 /*
1147  * The transmit end of channel interrupt. The adapter triggers this
1148  * interrupt to tell us it hit the end of the current transmit list.
1149  *
1150  * A note about this: it's possible for a condition to arise where
1151  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1152  * You have to avoid this since the chip expects things to go in a
1153  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1154  * When the TXEOF handler is called, it will free all of the transmitted
1155  * frames and reset the tx_head pointer to NULL. However, a TXEOC
1156  * interrupt should be received and acknowledged before any more frames
1157  * are queued for transmission. If tl_statrt() is called after TXEOF
1158  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1159  * it could attempt to issue a transmit command prematurely.
1160  *
1161  * To guard against this, tl_start() will only issue transmit commands
1162  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1163  * can set this flag once tl_start() has cleared it.
1164  */
1165 int
1166 tl_intvec_txeoc(void *xsc, u_int32_t type)
1167 {
1168 	struct tl_softc		*sc;
1169 	struct ifnet		*ifp;
1170 	u_int32_t		cmd;
1171 
1172 	sc = xsc;
1173 	ifp = &sc->arpcom.ac_if;
1174 
1175 	/* Clear the timeout timer. */
1176 	ifp->if_timer = 0;
1177 
1178 	if (sc->tl_cdata.tl_tx_head == NULL) {
1179 		ifq_clr_oactive(&ifp->if_snd);
1180 		sc->tl_cdata.tl_tx_tail = NULL;
1181 		sc->tl_txeoc = 1;
1182 	} else {
1183 		sc->tl_txeoc = 0;
1184 		/* First we have to ack the EOC interrupt. */
1185 		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1186 		/* Then load the address of the next TX list. */
1187 		CSR_WRITE_4(sc, TL_CH_PARM,
1188 		    VTOPHYS(sc->tl_cdata.tl_tx_head->tl_ptr));
1189 		/* Restart TX channel. */
1190 		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1191 		cmd &= ~TL_CMD_RT;
1192 		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1193 		CMD_PUT(sc, cmd);
1194 		return(0);
1195 	}
1196 
1197 	return(1);
1198 }
1199 
1200 int
1201 tl_intvec_adchk(void *xsc, u_int32_t type)
1202 {
1203 	struct tl_softc		*sc;
1204 
1205 	sc = xsc;
1206 
1207 	if (type)
1208 		printf("%s: adapter check: %x\n", sc->sc_dev.dv_xname,
1209 			(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1210 
1211 	tl_softreset(sc, 1);
1212 	tl_stop(sc);
1213 	tl_init(sc);
1214 	CMD_SET(sc, TL_CMD_INTSON);
1215 
1216 	return(0);
1217 }
1218 
1219 int
1220 tl_intvec_netsts(void *xsc, u_int32_t type)
1221 {
1222 	struct tl_softc		*sc;
1223 	u_int16_t		netsts;
1224 
1225 	sc = xsc;
1226 
1227 	netsts = tl_dio_read16(sc, TL_NETSTS);
1228 	tl_dio_write16(sc, TL_NETSTS, netsts);
1229 
1230 	printf("%s: network status: %x\n", sc->sc_dev.dv_xname, netsts);
1231 
1232 	return(1);
1233 }
1234 
1235 int
1236 tl_intr(void *xsc)
1237 {
1238 	struct tl_softc		*sc;
1239 	struct ifnet		*ifp;
1240 	int			r = 0;
1241 	u_int32_t		type = 0;
1242 	u_int16_t		ints = 0;
1243 	u_int8_t		ivec = 0;
1244 
1245 	sc = xsc;
1246 
1247 	/* Disable interrupts */
1248 	ints = CSR_READ_2(sc, TL_HOST_INT);
1249 	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1250 	type = (ints << 16) & 0xFFFF0000;
1251 	ivec = (ints & TL_VEC_MASK) >> 5;
1252 	ints = (ints & TL_INT_MASK) >> 2;
1253 
1254 	ifp = &sc->arpcom.ac_if;
1255 
1256 	switch(ints) {
1257 	case (TL_INTR_INVALID):
1258 		/* Re-enable interrupts but don't ack this one. */
1259 		CMD_PUT(sc, type);
1260 		r = 0;
1261 		break;
1262 	case (TL_INTR_TXEOF):
1263 		r = tl_intvec_txeof((void *)sc, type);
1264 		break;
1265 	case (TL_INTR_TXEOC):
1266 		r = tl_intvec_txeoc((void *)sc, type);
1267 		break;
1268 	case (TL_INTR_STATOFLOW):
1269 		tl_stats_update(sc);
1270 		r = 1;
1271 		break;
1272 	case (TL_INTR_RXEOF):
1273 		r = tl_intvec_rxeof((void *)sc, type);
1274 		break;
1275 	case (TL_INTR_DUMMY):
1276 		printf("%s: got a dummy interrupt\n", sc->sc_dev.dv_xname);
1277 		r = 1;
1278 		break;
1279 	case (TL_INTR_ADCHK):
1280 		if (ivec)
1281 			r = tl_intvec_adchk((void *)sc, type);
1282 		else
1283 			r = tl_intvec_netsts((void *)sc, type);
1284 		break;
1285 	case (TL_INTR_RXEOC):
1286 		r = tl_intvec_rxeoc((void *)sc, type);
1287 		break;
1288 	default:
1289 		printf("%s: bogus interrupt type\n", sc->sc_dev.dv_xname);
1290 		break;
1291 	}
1292 
1293 	/* Re-enable interrupts */
1294 	if (r) {
1295 		CMD_PUT(sc, TL_CMD_ACK | r | type);
1296 	}
1297 
1298 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1299 		tl_start(ifp);
1300 
1301 	return r;
1302 }
1303 
1304 void
1305 tl_stats_update(void *xsc)
1306 {
1307 	struct tl_softc		*sc;
1308 	struct ifnet		*ifp;
1309 	struct tl_stats		tl_stats;
1310 	u_int32_t		*p;
1311 	int			s;
1312 
1313 	s = splnet();
1314 
1315 	bzero(&tl_stats, sizeof(struct tl_stats));
1316 
1317 	sc = xsc;
1318 	ifp = &sc->arpcom.ac_if;
1319 
1320 	p = (u_int32_t *)&tl_stats;
1321 
1322 	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1323 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1324 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1325 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1326 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1327 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1328 
1329 	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1330 	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1331 				tl_stats.tl_tx_multi_collision;
1332 	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1333 			    tl_rx_overrun(tl_stats);
1334 	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1335 
1336 	if (tl_tx_underrun(tl_stats)) {
1337 		u_int8_t	tx_thresh;
1338 		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1339 		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1340 			tx_thresh >>= 4;
1341 			tx_thresh++;
1342 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1343 			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1344 		}
1345 	}
1346 
1347 	timeout_add_sec(&sc->tl_stats_tmo, 1);
1348 
1349 	if (!sc->tl_bitrate)
1350 		mii_tick(&sc->sc_mii);
1351 
1352 	splx(s);
1353 }
1354 
1355 /*
1356  * Encapsulate an mbuf chain in a list by coupling the mbuf data
1357  * pointers to the fragment pointers.
1358  */
1359 int
1360 tl_encap(struct tl_softc *sc, struct tl_chain *c, struct mbuf *m_head)
1361 {
1362 	int			frag = 0;
1363 	struct tl_frag		*f = NULL;
1364 	int			total_len;
1365 	struct mbuf		*m;
1366 
1367 	/*
1368  	 * Start packing the mbufs in this chain into
1369 	 * the fragment pointers. Stop when we run out
1370  	 * of fragments or hit the end of the mbuf chain.
1371 	 */
1372 	m = m_head;
1373 	total_len = 0;
1374 
1375 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1376 		if (m->m_len != 0) {
1377 			if (frag == TL_MAXFRAGS)
1378 				break;
1379 			total_len+= m->m_len;
1380 			c->tl_ptr->tl_frag[frag].tlist_dadr =
1381 				VTOPHYS(mtod(m, vaddr_t));
1382 			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1383 			frag++;
1384 		}
1385 	}
1386 
1387 	/*
1388 	 * Handle special cases.
1389 	 * Special case #1: we used up all 10 fragments, but
1390 	 * we have more mbufs left in the chain. Copy the
1391 	 * data into an mbuf cluster. Note that we don't
1392 	 * bother clearing the values in the other fragment
1393 	 * pointers/counters; it wouldn't gain us anything,
1394 	 * and would waste cycles.
1395 	 */
1396 	if (m != NULL) {
1397 		struct mbuf		*m_new = NULL;
1398 
1399 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1400 		if (m_new == NULL)
1401 			return(1);
1402 		if (m_head->m_pkthdr.len > MHLEN) {
1403 			MCLGET(m_new, M_DONTWAIT);
1404 			if (!(m_new->m_flags & M_EXT)) {
1405 				m_freem(m_new);
1406 				return(1);
1407 			}
1408 		}
1409 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1410 					mtod(m_new, caddr_t));
1411 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1412 		m_freem(m_head);
1413 		m_head = m_new;
1414 		f = &c->tl_ptr->tl_frag[0];
1415 		f->tlist_dadr = VTOPHYS(mtod(m_new, caddr_t));
1416 		f->tlist_dcnt = total_len = m_new->m_len;
1417 		frag = 1;
1418 	}
1419 
1420 	/*
1421 	 * Special case #2: the frame is smaller than the minimum
1422 	 * frame size. We have to pad it to make the chip happy.
1423 	 */
1424 	if (total_len < TL_MIN_FRAMELEN) {
1425 		f = &c->tl_ptr->tl_frag[frag];
1426 		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1427 		f->tlist_dadr = VTOPHYS(&sc->tl_ldata->tl_pad);
1428 		total_len += f->tlist_dcnt;
1429 		frag++;
1430 	}
1431 
1432 	c->tl_mbuf = m_head;
1433 	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1434 	c->tl_ptr->tlist_frsize = total_len;
1435 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1436 	c->tl_ptr->tlist_fptr = 0;
1437 
1438 	return(0);
1439 }
1440 
1441 /*
1442  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1443  * to the mbuf data regions directly in the transmit lists. We also save a
1444  * copy of the pointers since the transmit list fragment pointers are
1445  * physical addresses.
1446  */
1447 void
1448 tl_start(struct ifnet *ifp)
1449 {
1450 	struct tl_softc		*sc;
1451 	struct mbuf		*m_head = NULL;
1452 	u_int32_t		cmd;
1453 	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1454 
1455 	sc = ifp->if_softc;
1456 
1457 	/*
1458 	 * Check for an available queue slot. If there are none,
1459 	 * punt.
1460 	 */
1461 	if (sc->tl_cdata.tl_tx_free == NULL) {
1462 		ifq_set_oactive(&ifp->if_snd);
1463 		return;
1464 	}
1465 
1466 	start_tx = sc->tl_cdata.tl_tx_free;
1467 
1468 	while(sc->tl_cdata.tl_tx_free != NULL) {
1469 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1470 		if (m_head == NULL)
1471 			break;
1472 
1473 		/* Pick a chain member off the free list. */
1474 		cur_tx = sc->tl_cdata.tl_tx_free;
1475 		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1476 
1477 		cur_tx->tl_next = NULL;
1478 
1479 		/* Pack the data into the list. */
1480 		tl_encap(sc, cur_tx, m_head);
1481 
1482 		/* Chain it together */
1483 		if (prev != NULL) {
1484 			prev->tl_next = cur_tx;
1485 			prev->tl_ptr->tlist_fptr = VTOPHYS(cur_tx->tl_ptr);
1486 		}
1487 		prev = cur_tx;
1488 
1489 		/*
1490 		 * If there's a BPF listener, bounce a copy of this frame
1491 		 * to him.
1492 		 */
1493 #if NBPFILTER > 0
1494 		if (ifp->if_bpf)
1495 			bpf_mtap(ifp->if_bpf, cur_tx->tl_mbuf,
1496 			    BPF_DIRECTION_OUT);
1497 #endif
1498 	}
1499 
1500 	/*
1501 	 * If there are no packets queued, bail.
1502 	 */
1503 	if (cur_tx == NULL)
1504 		return;
1505 
1506 	/*
1507 	 * That's all we can stands, we can't stands no more.
1508 	 * If there are no other transfers pending, then issue the
1509 	 * TX GO command to the adapter to start things moving.
1510 	 * Otherwise, just leave the data in the queue and let
1511 	 * the EOF/EOC interrupt handler send.
1512 	 */
1513 	if (sc->tl_cdata.tl_tx_head == NULL) {
1514 		sc->tl_cdata.tl_tx_head = start_tx;
1515 		sc->tl_cdata.tl_tx_tail = cur_tx;
1516 
1517 		if (sc->tl_txeoc) {
1518 			sc->tl_txeoc = 0;
1519 			CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(start_tx->tl_ptr));
1520 			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1521 			cmd &= ~TL_CMD_RT;
1522 			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1523 			CMD_PUT(sc, cmd);
1524 		}
1525 	} else {
1526 		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1527 		sc->tl_cdata.tl_tx_tail = cur_tx;
1528 	}
1529 
1530 	/*
1531 	 * Set a timeout in case the chip goes out to lunch.
1532 	 */
1533 	ifp->if_timer = 10;
1534 }
1535 
1536 void
1537 tl_init(void *xsc)
1538 {
1539 	struct tl_softc		*sc = xsc;
1540 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1541         int			s;
1542 
1543 	s = splnet();
1544 
1545 	/*
1546 	 * Cancel pending I/O.
1547 	 */
1548 	tl_stop(sc);
1549 
1550 	/* Initialize TX FIFO threshold */
1551 	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1552 	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1553 
1554 	/* Set PCI burst size */
1555 	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1556 
1557 	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
1558 
1559 	/* Init our MAC address */
1560 	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
1561 
1562 	/* Program promiscuous mode and multicast filters. */
1563 	tl_iff(sc);
1564 
1565 	/* Init circular RX list. */
1566 	if (tl_list_rx_init(sc) == ENOBUFS) {
1567 		printf("%s: initialization failed: no memory for rx buffers\n",
1568 			sc->sc_dev.dv_xname);
1569 		tl_stop(sc);
1570 		splx(s);
1571 		return;
1572 	}
1573 
1574 	/* Init TX pointers. */
1575 	tl_list_tx_init(sc);
1576 
1577 	/* Enable PCI interrupts. */
1578 	CMD_SET(sc, TL_CMD_INTSON);
1579 
1580 	/* Load the address of the rx list */
1581 	CMD_SET(sc, TL_CMD_RT);
1582 	CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(&sc->tl_ldata->tl_rx_list[0]));
1583 
1584 	if (!sc->tl_bitrate)
1585 		mii_mediachg(&sc->sc_mii);
1586 	else
1587 		tl_ifmedia_upd(ifp);
1588 
1589 	/* Send the RX go command */
1590 	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
1591 
1592 	splx(s);
1593 
1594 	/* Start the stats update counter */
1595 	timeout_set(&sc->tl_stats_tmo, tl_stats_update, sc);
1596 	timeout_add_sec(&sc->tl_stats_tmo, 1);
1597 	timeout_set(&sc->tl_wait_tmo, tl_wait_up, sc);
1598 	timeout_add_sec(&sc->tl_wait_tmo, 2);
1599 }
1600 
1601 /*
1602  * Set media options.
1603  */
1604 int
1605 tl_ifmedia_upd(struct ifnet *ifp)
1606 {
1607 	struct tl_softc *sc = ifp->if_softc;
1608 
1609 	if (sc->tl_bitrate)
1610 		tl_setmode(sc, sc->ifmedia.ifm_media);
1611 	else
1612 		mii_mediachg(&sc->sc_mii);
1613 
1614 	return(0);
1615 }
1616 
1617 /*
1618  * Report current media status.
1619  */
1620 void
1621 tl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1622 {
1623 	struct tl_softc		*sc;
1624 	struct mii_data		*mii;
1625 
1626 	sc = ifp->if_softc;
1627 	mii = &sc->sc_mii;
1628 
1629 	ifmr->ifm_active = IFM_ETHER;
1630 	if (sc->tl_bitrate) {
1631 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
1632 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
1633 		else
1634 			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
1635 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
1636 			ifmr->ifm_active |= IFM_HDX;
1637 		else
1638 			ifmr->ifm_active |= IFM_FDX;
1639 		return;
1640 	} else {
1641 		mii_pollstat(mii);
1642 		ifmr->ifm_active = mii->mii_media_active;
1643 		ifmr->ifm_status = mii->mii_media_status;
1644 	}
1645 }
1646 
1647 int
1648 tl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1649 {
1650 	struct tl_softc		*sc = ifp->if_softc;
1651 	struct ifreq		*ifr = (struct ifreq *) data;
1652 	int			s, error = 0;
1653 
1654 	s = splnet();
1655 
1656 	switch(command) {
1657 	case SIOCSIFADDR:
1658 		ifp->if_flags |= IFF_UP;
1659 		if (!(ifp->if_flags & IFF_RUNNING))
1660 			tl_init(sc);
1661 		break;
1662 
1663 	case SIOCSIFFLAGS:
1664 		if (ifp->if_flags & IFF_UP) {
1665 			if (ifp->if_flags & IFF_RUNNING)
1666 				error = ENETRESET;
1667 			else
1668 				tl_init(sc);
1669 		} else {
1670 			if (ifp->if_flags & IFF_RUNNING)
1671 				tl_stop(sc);
1672 		}
1673 		break;
1674 
1675 	case SIOCSIFMEDIA:
1676 	case SIOCGIFMEDIA:
1677 		if (sc->tl_bitrate)
1678 			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1679 		else
1680 			error = ifmedia_ioctl(ifp, ifr,
1681 			    &sc->sc_mii.mii_media, command);
1682 		break;
1683 
1684 	default:
1685 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1686 	}
1687 
1688 	if (error == ENETRESET) {
1689 		if (ifp->if_flags & IFF_RUNNING)
1690 			tl_iff(sc);
1691 		error = 0;
1692 	}
1693 
1694 	splx(s);
1695 	return(error);
1696 }
1697 
1698 void
1699 tl_watchdog(struct ifnet *ifp)
1700 {
1701 	struct tl_softc		*sc;
1702 
1703 	sc = ifp->if_softc;
1704 
1705 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1706 
1707 	ifp->if_oerrors++;
1708 
1709 	tl_softreset(sc, 1);
1710 	tl_init(sc);
1711 }
1712 
1713 /*
1714  * Stop the adapter and free any mbufs allocated to the
1715  * RX and TX lists.
1716  */
1717 void
1718 tl_stop(struct tl_softc *sc)
1719 {
1720 	int			i;
1721 	struct ifnet		*ifp;
1722 
1723 	ifp = &sc->arpcom.ac_if;
1724 
1725 	/* Stop the stats updater. */
1726 	timeout_del(&sc->tl_stats_tmo);
1727 	timeout_del(&sc->tl_wait_tmo);
1728 
1729 	/* Stop the transmitter */
1730 	CMD_CLR(sc, TL_CMD_RT);
1731 	CMD_SET(sc, TL_CMD_STOP);
1732 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
1733 
1734 	/* Stop the receiver */
1735 	CMD_SET(sc, TL_CMD_RT);
1736 	CMD_SET(sc, TL_CMD_STOP);
1737 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
1738 
1739 	/*
1740 	 * Disable host interrupts.
1741 	 */
1742 	CMD_SET(sc, TL_CMD_INTSOFF);
1743 
1744 	/*
1745 	 * Clear list pointer.
1746 	 */
1747 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
1748 
1749 	/*
1750 	 * Free the RX lists.
1751 	 */
1752 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1753 		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
1754 			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
1755 			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
1756 		}
1757 	}
1758 	bzero(&sc->tl_ldata->tl_rx_list, sizeof(sc->tl_ldata->tl_rx_list));
1759 
1760 	/*
1761 	 * Free the TX list buffers.
1762 	 */
1763 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1764 		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
1765 			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
1766 			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
1767 		}
1768 	}
1769 	bzero(&sc->tl_ldata->tl_tx_list, sizeof(sc->tl_ldata->tl_tx_list));
1770 
1771 	ifp->if_flags &= ~IFF_RUNNING;
1772 	ifq_clr_oactive(&ifp->if_snd);
1773 }
1774 
1775 int
1776 tl_probe(struct device *parent, void *match, void *aux)
1777 {
1778 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1779 
1780 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TI) {
1781 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TI_TLAN)
1782 			return 1;
1783 		return 0;
1784 	}
1785 
1786 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_COMPAQ) {
1787 		switch (PCI_PRODUCT(pa->pa_id)) {
1788 		case PCI_PRODUCT_COMPAQ_N100TX:
1789 		case PCI_PRODUCT_COMPAQ_N10T:
1790 		case PCI_PRODUCT_COMPAQ_IntNF3P:
1791 		case PCI_PRODUCT_COMPAQ_DPNet100TX:
1792 		case PCI_PRODUCT_COMPAQ_IntPL100TX:
1793 		case PCI_PRODUCT_COMPAQ_DP4000:
1794 		case PCI_PRODUCT_COMPAQ_N10T2:
1795 		case PCI_PRODUCT_COMPAQ_N10_TX_UTP:
1796 		case PCI_PRODUCT_COMPAQ_NF3P:
1797 		case PCI_PRODUCT_COMPAQ_NF3P_BNC:
1798 			return 1;
1799 		}
1800 		return 0;
1801 	}
1802 
1803 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) {
1804 		switch (PCI_PRODUCT(pa->pa_id)) {
1805 		case PCI_PRODUCT_OLICOM_OC2183:
1806 		case PCI_PRODUCT_OLICOM_OC2325:
1807 		case PCI_PRODUCT_OLICOM_OC2326:
1808 			return 1;
1809 		}
1810 		return 0;
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 void
1817 tl_attach(struct device *parent, struct device *self, void *aux)
1818 {
1819 	struct tl_softc *sc = (struct tl_softc *)self;
1820 	struct pci_attach_args *pa = aux;
1821 	pci_chipset_tag_t pc = pa->pa_pc;
1822 	pci_intr_handle_t ih;
1823 	const char *intrstr = NULL;
1824 	struct ifnet *ifp = &sc->arpcom.ac_if;
1825 	bus_size_t iosize;
1826 	u_int32_t command;
1827 	int i, rseg;
1828 	bus_dma_segment_t seg;
1829 	bus_dmamap_t dmamap;
1830 	caddr_t kva;
1831 
1832 	/*
1833 	 * Map control/status registers.
1834 	 */
1835 
1836 #ifdef TL_USEIOSPACE
1837 	if (pci_mapreg_map(pa, TL_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1838 	    &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)) {
1839 		if (pci_mapreg_map(pa, TL_PCI_LOMEM, PCI_MAPREG_TYPE_IO, 0,
1840 		    &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)) {
1841 			printf(": can't map i/o space\n");
1842 			return;
1843 		}
1844 	}
1845 #else
1846 	if (pci_mapreg_map(pa, TL_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
1847 	    &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)){
1848 		if (pci_mapreg_map(pa, TL_PCI_LOIO, PCI_MAPREG_TYPE_MEM, 0,
1849 		    &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)){
1850 			printf(": can't map mem space\n");
1851 			return;
1852 		}
1853 	}
1854 #endif
1855 
1856 	/*
1857 	 * Manual wants the PCI latency timer jacked up to 0xff
1858 	 */
1859 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, TL_PCI_LATENCY_TIMER);
1860 	command |= 0x0000ff00;
1861 	pci_conf_write(pa->pa_pc, pa->pa_tag, TL_PCI_LATENCY_TIMER, command);
1862 
1863 	/*
1864 	 * Allocate our interrupt.
1865 	 */
1866 	if (pci_intr_map(pa, &ih)) {
1867 		printf(": couldn't map interrupt\n");
1868 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1869 		return;
1870 	}
1871 	intrstr = pci_intr_string(pc, ih);
1872 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, tl_intr, sc,
1873 	    self->dv_xname);
1874 	if (sc->sc_ih == NULL) {
1875 		printf(": could not establish interrupt");
1876 		if (intrstr != NULL)
1877 			printf(" at %s", intrstr);
1878 		printf("\n");
1879 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1880 		return;
1881 	}
1882 	printf(": %s", intrstr);
1883 
1884 	sc->sc_dmat = pa->pa_dmat;
1885 	if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct tl_list_data),
1886 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
1887 		printf("%s: can't alloc list\n", sc->sc_dev.dv_xname);
1888 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1889 		return;
1890 	}
1891 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(struct tl_list_data),
1892 	    &kva, BUS_DMA_NOWAIT)) {
1893 		printf("%s: can't map dma buffers (%zd bytes)\n",
1894 		    sc->sc_dev.dv_xname, sizeof(struct tl_list_data));
1895 		bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1896 		return;
1897 	}
1898 	if (bus_dmamap_create(sc->sc_dmat, sizeof(struct tl_list_data), 1,
1899 	    sizeof(struct tl_list_data), 0, BUS_DMA_NOWAIT, &dmamap)) {
1900 		printf("%s: can't create dma map\n", sc->sc_dev.dv_xname);
1901 		bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(struct tl_list_data));
1902 		bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1903 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1904 		return;
1905 	}
1906 	if (bus_dmamap_load(sc->sc_dmat, dmamap, kva,
1907 	    sizeof(struct tl_list_data), NULL, BUS_DMA_NOWAIT)) {
1908 		printf("%s: can't load dma map\n", sc->sc_dev.dv_xname);
1909 		bus_dmamap_destroy(sc->sc_dmat, dmamap);
1910 		bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(struct tl_list_data));
1911 		bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1912 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1913 		return;
1914 	}
1915 	sc->tl_ldata = (struct tl_list_data *)kva;
1916 
1917 	for (sc->tl_product = tl_prods; sc->tl_product->tp_vend;
1918 	     sc->tl_product++) {
1919 		if (sc->tl_product->tp_vend == PCI_VENDOR(pa->pa_id) &&
1920 		    sc->tl_product->tp_prod == PCI_PRODUCT(pa->pa_id))
1921 			break;
1922 	}
1923 
1924 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_COMPAQ ||
1925 	    PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TI)
1926 		sc->tl_eeaddr = TL_EEPROM_EADDR;
1927 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM)
1928 		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1929 
1930 	/*
1931 	 * Reset adapter.
1932 	 */
1933 	tl_softreset(sc, 1);
1934 	tl_hardreset(self);
1935 	DELAY(1000000);
1936 	tl_softreset(sc, 1);
1937 
1938 	/*
1939 	 * Get station address from the EEPROM.
1940 	 */
1941 	if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1942 	    sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1943 		printf("\n%s: failed to read station address\n",
1944 		    sc->sc_dev.dv_xname);
1945 		bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize);
1946 		return;
1947 	}
1948 
1949 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) {
1950 		for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1951 			u_int16_t *p;
1952 
1953 			p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
1954 			*p = ntohs(*p);
1955 		}
1956 	}
1957 
1958 	printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
1959 
1960 	ifp = &sc->arpcom.ac_if;
1961 	ifp->if_softc = sc;
1962 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1963 	ifp->if_ioctl = tl_ioctl;
1964 	ifp->if_start = tl_start;
1965 	ifp->if_watchdog = tl_watchdog;
1966 	IFQ_SET_MAXLEN(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1967 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1968 
1969 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1970 
1971 	/*
1972 	 * Reset adapter (again).
1973 	 */
1974 	tl_softreset(sc, 1);
1975 	tl_hardreset(self);
1976 	DELAY(1000000);
1977 	tl_softreset(sc, 1);
1978 
1979 	/*
1980 	 * Do MII setup. If no PHYs are found, then this is a
1981 	 * bitrate ThunderLAN chip that only supports 10baseT
1982 	 * and AUI/BNC.
1983 	 */
1984 	sc->sc_mii.mii_ifp = ifp;
1985 	sc->sc_mii.mii_readreg = tl_miibus_readreg;
1986 	sc->sc_mii.mii_writereg = tl_miibus_writereg;
1987 	sc->sc_mii.mii_statchg = tl_miibus_statchg;
1988 	ifmedia_init(&sc->sc_mii.mii_media, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1989 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
1990 	    0);
1991 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1992 		struct ifmedia *ifm;
1993 		sc->tl_bitrate = 1;
1994 		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1995 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1996 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1997 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1998 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1999 		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
2000 		/* Reset again, this time setting bitrate mode. */
2001 		tl_softreset(sc, 1);
2002 		ifm = &sc->ifmedia;
2003 		ifm->ifm_media = ifm->ifm_cur->ifm_media;
2004 		tl_ifmedia_upd(ifp);
2005 	} else
2006 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2007 
2008 	/*
2009 	 * Attach us everywhere.
2010 	 */
2011 	if_attach(ifp);
2012 	ether_ifattach(ifp);
2013 }
2014 
2015 void
2016 tl_wait_up(void *xsc)
2017 {
2018 	struct tl_softc *sc = xsc;
2019 	struct ifnet *ifp = &sc->arpcom.ac_if;
2020 
2021 	ifp->if_flags |= IFF_RUNNING;
2022 	ifq_clr_oactive(&ifp->if_snd);
2023 }
2024 
2025 struct cfattach tl_ca = {
2026 	sizeof(struct tl_softc), tl_probe, tl_attach
2027 };
2028 
2029 struct cfdriver tl_cd = {
2030 	NULL, "tl", DV_IFNET
2031 };
2032