xref: /openbsd-src/sys/dev/pci/if_pcn.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: if_pcn.c,v 1.24 2011/04/03 15:36:02 jasper Exp $	*/
2 /*	$NetBSD: if_pcn.c,v 1.26 2005/05/07 09:15:44 is Exp $	*/
3 
4 /*
5  * Copyright (c) 2001 Wasabi Systems, Inc.
6  * All rights reserved.
7  *
8  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed for the NetBSD Project by
21  *	Wasabi Systems, Inc.
22  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23  *    or promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the AMD PCnet-PCI series of Ethernet
41  * chips:
42  *
43  *	* Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
44  *	  Local Bus
45  *
46  *	* Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
47  *	  for PCI Local Bus
48  *
49  *	* Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
50  *	  Ethernet Controller for PCI Local Bus
51  *
52  *	* Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
53  *	  with OnNow Support
54  *
55  *	* Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
56  *	  Ethernet Controller with Integrated PHY
57  *
58  * This also supports the virtual PCnet-PCI Ethernet interface found
59  * in VMware.
60  *
61  * TODO:
62  *
63  *	* Split this into bus-specific and bus-independent portions.
64  *	  The core could also be used for the ILACC (Am79900) 32-bit
65  *	  Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
66  */
67 
68 #include "bpfilter.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/timeout.h>
73 #include <sys/mbuf.h>
74 #include <sys/malloc.h>
75 #include <sys/kernel.h>
76 #include <sys/socket.h>
77 #include <sys/ioctl.h>
78 #include <sys/errno.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 
85 #ifdef INET
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip.h>
90 #include <netinet/if_ether.h>
91 #endif
92 
93 #include <net/if_media.h>
94 
95 #if NBPFILTER > 0
96 #include <net/bpf.h>
97 #endif
98 
99 #include <machine/bus.h>
100 #include <machine/intr.h>
101 #include <machine/endian.h>
102 
103 #include <dev/mii/mii.h>
104 #include <dev/mii/miivar.h>
105 
106 #include <dev/ic/am79900reg.h>
107 #include <dev/ic/lancereg.h>
108 
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112 
113 /*
114  * Register definitions for the AMD PCnet-PCI series of Ethernet
115  * chips.
116  *
117  * These are only the registers that we access directly from PCI
118  * space.  Everything else (accessed via the RAP + RDP/BDP) is
119  * defined in <dev/ic/lancereg.h>.
120  */
121 
122 /*
123  * PCI configuration space.
124  */
125 
126 #define	PCN_PCI_CBIO	(PCI_MAPREG_START + 0x00)
127 #define	PCN_PCI_CBMEM	(PCI_MAPREG_START + 0x04)
128 
129 /*
130  * I/O map in Word I/O mode.
131  */
132 
133 #define	PCN16_APROM	0x00
134 #define	PCN16_RDP	0x10
135 #define	PCN16_RAP	0x12
136 #define	PCN16_RESET	0x14
137 #define	PCN16_BDP	0x16
138 
139 /*
140  * I/O map in DWord I/O mode.
141  */
142 
143 #define	PCN32_APROM	0x00
144 #define	PCN32_RDP	0x10
145 #define	PCN32_RAP	0x14
146 #define	PCN32_RESET	0x18
147 #define	PCN32_BDP	0x1c
148 
149 /*
150  * Transmit descriptor list size.  This is arbitrary, but allocate
151  * enough descriptors for 128 pending transmissions, and 4 segments
152  * per packet.  This MUST work out to a power of 2.
153  *
154  * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
155  *
156  * So we play a little trick here.  We give each packet up to 16
157  * DMA segments, but only allocate the max of 512 descriptors.  The
158  * transmit logic can deal with this, we just are hoping to sneak by.
159  */
160 #define	PCN_NTXSEGS		16
161 
162 #define	PCN_TXQUEUELEN		128
163 #define	PCN_TXQUEUELEN_MASK	(PCN_TXQUEUELEN - 1)
164 #define	PCN_NTXDESC		512
165 #define	PCN_NTXDESC_MASK	(PCN_NTXDESC - 1)
166 #define	PCN_NEXTTX(x)		(((x) + 1) & PCN_NTXDESC_MASK)
167 #define	PCN_NEXTTXS(x)		(((x) + 1) & PCN_TXQUEUELEN_MASK)
168 
169 /* Tx interrupt every N + 1 packets. */
170 #define	PCN_TXINTR_MASK		7
171 
172 /*
173  * Receive descriptor list size.  We have one Rx buffer per incoming
174  * packet, so this logic is a little simpler.
175  */
176 #define	PCN_NRXDESC		128
177 #define	PCN_NRXDESC_MASK	(PCN_NRXDESC - 1)
178 #define	PCN_NEXTRX(x)		(((x) + 1) & PCN_NRXDESC_MASK)
179 
180 /*
181  * Control structures are DMA'd to the PCnet chip.  We allocate them in
182  * a single clump that maps to a single DMA segment to make several things
183  * easier.
184  */
185 struct pcn_control_data {
186 	/* The transmit descriptors. */
187 	struct letmd pcd_txdescs[PCN_NTXDESC];
188 
189 	/* The receive descriptors. */
190 	struct lermd pcd_rxdescs[PCN_NRXDESC];
191 
192 	/* The init block. */
193 	struct leinit pcd_initblock;
194 };
195 
196 #define	PCN_CDOFF(x)	offsetof(struct pcn_control_data, x)
197 #define	PCN_CDTXOFF(x)	PCN_CDOFF(pcd_txdescs[(x)])
198 #define	PCN_CDRXOFF(x)	PCN_CDOFF(pcd_rxdescs[(x)])
199 #define	PCN_CDINITOFF	PCN_CDOFF(pcd_initblock)
200 
201 /*
202  * Software state for transmit jobs.
203  */
204 struct pcn_txsoft {
205 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
206 	bus_dmamap_t txs_dmamap;	/* our DMA map */
207 	int txs_firstdesc;		/* first descriptor in packet */
208 	int txs_lastdesc;		/* last descriptor in packet */
209 };
210 
211 /*
212  * Software state for receive jobs.
213  */
214 struct pcn_rxsoft {
215 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
216 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
217 };
218 
219 /*
220  * Description of Rx FIFO watermarks for various revisions.
221  */
222 static const char * const pcn_79c970_rcvfw[] = {
223 	"16 bytes",
224 	"64 bytes",
225 	"128 bytes",
226 	NULL,
227 };
228 
229 static const char * const pcn_79c971_rcvfw[] = {
230 	"16 bytes",
231 	"64 bytes",
232 	"112 bytes",
233 	NULL,
234 };
235 
236 /*
237  * Description of Tx start points for various revisions.
238  */
239 static const char * const pcn_79c970_xmtsp[] = {
240 	"8 bytes",
241 	"64 bytes",
242 	"128 bytes",
243 	"248 bytes",
244 };
245 
246 static const char * const pcn_79c971_xmtsp[] = {
247 	"20 bytes",
248 	"64 bytes",
249 	"128 bytes",
250 	"248 bytes",
251 };
252 
253 static const char * const pcn_79c971_xmtsp_sram[] = {
254 	"44 bytes",
255 	"64 bytes",
256 	"128 bytes",
257 	"store-and-forward",
258 };
259 
260 /*
261  * Description of Tx FIFO watermarks for various revisions.
262  */
263 static const char * const pcn_79c970_xmtfw[] = {
264 	"16 bytes",
265 	"64 bytes",
266 	"128 bytes",
267 	NULL,
268 };
269 
270 static const char * const pcn_79c971_xmtfw[] = {
271 	"16 bytes",
272 	"64 bytes",
273 	"108 bytes",
274 	NULL,
275 };
276 
277 /*
278  * Software state per device.
279  */
280 struct pcn_softc {
281 	struct device sc_dev;		/* generic device information */
282 	bus_space_tag_t sc_st;		/* bus space tag */
283 	bus_space_handle_t sc_sh;	/* bus space handle */
284 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
285 	struct arpcom sc_arpcom;	/* Ethernet common data */
286 
287 	/* Points to our media routines, etc. */
288 	const struct pcn_variant *sc_variant;
289 
290 	void *sc_ih;			/* interrupt cookie */
291 
292 	struct mii_data sc_mii;		/* MII/media information */
293 
294 	struct timeout sc_tick_timeout;	/* tick timeout */
295 
296 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
297 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
298 
299 	/* Software state for transmit and receive descriptors. */
300 	struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
301 	struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
302 
303 	/* Control data structures */
304 	struct pcn_control_data *sc_control_data;
305 #define	sc_txdescs	sc_control_data->pcd_txdescs
306 #define	sc_rxdescs	sc_control_data->pcd_rxdescs
307 #define	sc_initblock	sc_control_data->pcd_initblock
308 
309 	const char * const *sc_rcvfw_desc;	/* Rx FIFO watermark info */
310 	int sc_rcvfw;
311 
312 	const char * const *sc_xmtsp_desc;	/* Tx start point info */
313 	int sc_xmtsp;
314 
315 	const char * const *sc_xmtfw_desc;	/* Tx FIFO watermark info */
316 	int sc_xmtfw;
317 
318 	int sc_flags;			/* misc. flags; see below */
319 	int sc_swstyle;			/* the software style in use */
320 
321 	int sc_txfree;			/* number of free Tx descriptors */
322 	int sc_txnext;			/* next ready Tx descriptor */
323 
324 	int sc_txsfree;			/* number of free Tx jobs */
325 	int sc_txsnext;			/* next free Tx job */
326 	int sc_txsdirty;		/* dirty Tx jobs */
327 
328 	int sc_rxptr;			/* next ready Rx descriptor/job */
329 
330 	uint32_t sc_csr5;		/* prototype CSR5 register */
331 	uint32_t sc_mode;		/* prototype MODE register */
332 };
333 
334 /* sc_flags */
335 #define	PCN_F_HAS_MII		0x0001	/* has MII */
336 
337 #define	PCN_CDTXADDR(sc, x)	((sc)->sc_cddma + PCN_CDTXOFF((x)))
338 #define	PCN_CDRXADDR(sc, x)	((sc)->sc_cddma + PCN_CDRXOFF((x)))
339 #define	PCN_CDINITADDR(sc)	((sc)->sc_cddma + PCN_CDINITOFF)
340 
341 #define	PCN_CDTXSYNC(sc, x, n, ops)					\
342 do {									\
343 	int __x, __n;							\
344 									\
345 	__x = (x);							\
346 	__n = (n);							\
347 									\
348 	/* If it will wrap around, sync to the end of the ring. */	\
349 	if ((__x + __n) > PCN_NTXDESC) {				\
350 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
351 		    PCN_CDTXOFF(__x), sizeof(struct letmd) *		\
352 		    (PCN_NTXDESC - __x), (ops));			\
353 		__n -= (PCN_NTXDESC - __x);				\
354 		__x = 0;						\
355 	}								\
356 									\
357 	/* Now sync whatever is left. */				\
358 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
359 	    PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops));	\
360 } while (/*CONSTCOND*/0)
361 
362 #define	PCN_CDRXSYNC(sc, x, ops)					\
363 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
364 	    PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
365 
366 #define	PCN_CDINITSYNC(sc, ops)						\
367 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
368 	    PCN_CDINITOFF, sizeof(struct leinit), (ops))
369 
370 #define	PCN_INIT_RXDESC(sc, x)						\
371 do {									\
372 	struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
373 	struct lermd *__rmd = &(sc)->sc_rxdescs[(x)];			\
374 	struct mbuf *__m = __rxs->rxs_mbuf;				\
375 									\
376 	/*								\
377 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
378 	 * so that the payload after the Ethernet header is aligned	\
379 	 * to a 4-byte boundary.					\
380 	 */								\
381 	__m->m_data = __m->m_ext.ext_buf + 2;				\
382 									\
383 	if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {		\
384 		__rmd->rmd2 =						\
385 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
386 		__rmd->rmd0 = 0;					\
387 	} else {							\
388 		__rmd->rmd2 = 0;					\
389 		__rmd->rmd0 =						\
390 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
391 	}								\
392 	__rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| 			\
393 	    (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK));			\
394 	PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
395 } while(/*CONSTCOND*/0)
396 
397 void	pcn_start(struct ifnet *);
398 void	pcn_watchdog(struct ifnet *);
399 int	pcn_ioctl(struct ifnet *, u_long, caddr_t);
400 int	pcn_init(struct ifnet *);
401 void	pcn_stop(struct ifnet *, int);
402 
403 void	pcn_reset(struct pcn_softc *);
404 void	pcn_rxdrain(struct pcn_softc *);
405 int	pcn_add_rxbuf(struct pcn_softc *, int);
406 void	pcn_tick(void *);
407 
408 void	pcn_spnd(struct pcn_softc *);
409 
410 void	pcn_set_filter(struct pcn_softc *);
411 
412 int	pcn_intr(void *);
413 void	pcn_txintr(struct pcn_softc *);
414 int	pcn_rxintr(struct pcn_softc *);
415 
416 int	pcn_mii_readreg(struct device *, int, int);
417 void	pcn_mii_writereg(struct device *, int, int, int);
418 void	pcn_mii_statchg(struct device *);
419 
420 void	pcn_79c970_mediainit(struct pcn_softc *);
421 int	pcn_79c970_mediachange(struct ifnet *);
422 void	pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
423 
424 void	pcn_79c971_mediainit(struct pcn_softc *);
425 int	pcn_79c971_mediachange(struct ifnet *);
426 void	pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
427 
428 /*
429  * Description of a PCnet-PCI variant.  Used to select media access
430  * method, mostly, and to print a nice description of the chip.
431  */
432 static const struct pcn_variant {
433 	const char *pcv_desc;
434 	void (*pcv_mediainit)(struct pcn_softc *);
435 	uint16_t pcv_chipid;
436 } pcn_variants[] = {
437 	{ "Am79c970",
438 	  pcn_79c970_mediainit,
439 	  PARTID_Am79c970 },
440 
441 	{ "Am79c970A",
442 	  pcn_79c970_mediainit,
443 	  PARTID_Am79c970A },
444 
445 	{ "Am79c971",
446 	  pcn_79c971_mediainit,
447 	  PARTID_Am79c971 },
448 
449 	{ "Am79c972",
450 	  pcn_79c971_mediainit,
451 	  PARTID_Am79c972 },
452 
453 	{ "Am79c973",
454 	  pcn_79c971_mediainit,
455 	  PARTID_Am79c973 },
456 
457 	{ "Am79c975",
458 	  pcn_79c971_mediainit,
459 	  PARTID_Am79c975 },
460 
461 	{ "Am79c976",
462 	  pcn_79c971_mediainit,
463 	  PARTID_Am79c976 },
464 
465 	{ "Am79c978",
466 	  pcn_79c971_mediainit,
467 	  PARTID_Am79c978 },
468 
469 	{ "Unknown",
470 	  pcn_79c971_mediainit,
471 	  0 },
472 };
473 
474 int	pcn_copy_small = 0;
475 
476 int	pcn_match(struct device *, void *, void *);
477 void	pcn_attach(struct device *, struct device *, void *);
478 
479 struct cfattach pcn_ca = {
480 	sizeof(struct pcn_softc), pcn_match, pcn_attach,
481 };
482 
483 const struct pci_matchid pcn_devices[] = {
484 	{ PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PCNET_PCI },
485 	{ PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PCHOME_PCI }
486 };
487 
488 struct cfdriver pcn_cd = {
489 	NULL, "pcn", DV_IFNET
490 };
491 
492 /*
493  * Routines to read and write the PCnet-PCI CSR/BCR space.
494  */
495 
496 static __inline uint32_t
497 pcn_csr_read(struct pcn_softc *sc, int reg)
498 {
499 
500 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
501 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
502 }
503 
504 static __inline void
505 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
506 {
507 
508 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
509 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
510 }
511 
512 static __inline uint32_t
513 pcn_bcr_read(struct pcn_softc *sc, int reg)
514 {
515 
516 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
517 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
518 }
519 
520 static __inline void
521 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
522 {
523 
524 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
525 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
526 }
527 
528 static const struct pcn_variant *
529 pcn_lookup_variant(uint16_t chipid)
530 {
531 	const struct pcn_variant *pcv;
532 
533 	for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
534 		if (chipid == pcv->pcv_chipid)
535 			return (pcv);
536 	}
537 
538 	/*
539 	 * This covers unknown chips, which we simply treat like
540 	 * a generic PCnet-FAST.
541 	 */
542 	return (pcv);
543 }
544 
545 int
546 pcn_match(struct device *parent, void *match, void *aux)
547 {
548 	struct pci_attach_args *pa = aux;
549 
550 	/*
551 	 * IBM makes a PCI variant of this card which shows up as a
552 	 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
553 	 * this card is truly a pcn card, so we have a special case match for
554 	 * it.
555 	 */
556 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
557 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
558 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
559 		return(1);
560 
561 	return (pci_matchbyid((struct pci_attach_args *)aux, pcn_devices,
562 	    nitems(pcn_devices)));
563 }
564 
565 void
566 pcn_attach(struct device *parent, struct device *self, void *aux)
567 {
568 	struct pcn_softc *sc = (struct pcn_softc *) self;
569 	struct pci_attach_args *pa = aux;
570 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
571 	pci_chipset_tag_t pc = pa->pa_pc;
572 	pci_intr_handle_t ih;
573 	const char *intrstr = NULL;
574 	bus_space_tag_t iot, memt;
575 	bus_space_handle_t ioh, memh;
576 	bus_dma_segment_t seg;
577 	int ioh_valid, memh_valid;
578 	int i, rseg, error;
579 	uint32_t chipid, reg;
580 	uint8_t enaddr[ETHER_ADDR_LEN];
581 	int state;
582 
583 	timeout_set(&sc->sc_tick_timeout, pcn_tick, sc);
584 
585 	/*
586 	 * Map the device.
587 	 */
588 	ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
589 	    &iot, &ioh, NULL, NULL, 0) == 0);
590 	memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
591 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
592 	    &memt, &memh, NULL, NULL, 0) == 0);
593 
594 	if (memh_valid) {
595 		sc->sc_st = memt;
596 		sc->sc_sh = memh;
597 	} else if (ioh_valid) {
598 		sc->sc_st = iot;
599 		sc->sc_sh = ioh;
600 	} else {
601 		printf(": unable to map device registers\n");
602 		return;
603 	}
604 
605 	sc->sc_dmat = pa->pa_dmat;
606 
607 	/* Get it out of power save mode, if needed. */
608 	state = pci_set_powerstate(pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
609 	if (state == PCI_PMCSR_STATE_D3) {
610 		/*
611 		 * The card has lost all configuration data in
612 		 * this state, so punt.
613 		 */
614 		printf(": unable to wake up from power state D3, "
615 		    "reboot required.\n");
616 		return;
617 	}
618 
619 	/*
620 	 * Reset the chip to a known state.  This also puts the
621 	 * chip into 32-bit mode.
622 	 */
623 	pcn_reset(sc);
624 
625 #if !defined(PCN_NO_PROM)
626 
627 	/*
628 	 * Read the Ethernet address from the EEPROM.
629 	 */
630 	for (i = 0; i < ETHER_ADDR_LEN; i++)
631 		enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
632 		    PCN32_APROM + i);
633 #else
634 	/*
635 	 * The PROM is not used; instead we assume that the MAC address
636 	 * has been programmed into the device's physical address
637 	 * registers by the boot firmware
638 	 */
639 
640         for (i=0; i < 3; i++) {
641 		uint32_t val;
642 		val = pcn_csr_read(sc, LE_CSR12 + i);
643 		enaddr[2*i] = val & 0x0ff;
644 		enaddr[2*i+1] = (val >> 8) & 0x0ff;
645 	}
646 #endif
647 
648 	/*
649 	 * Now that the device is mapped, attempt to figure out what
650 	 * kind of chip we have.  Note that IDL has all 32 bits of
651 	 * the chip ID when we're in 32-bit mode.
652 	 */
653 	chipid = pcn_csr_read(sc, LE_CSR88);
654 	sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
655 
656 	/*
657 	 * Map and establish our interrupt.
658 	 */
659 	if (pci_intr_map(pa, &ih)) {
660 		printf(": unable to map interrupt\n");
661 		return;
662 	}
663 	intrstr = pci_intr_string(pc, ih);
664 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc,
665 	    self->dv_xname);
666 	if (sc->sc_ih == NULL) {
667 		printf(": unable to establish interrupt");
668 		if (intrstr != NULL)
669 			printf(" at %s", intrstr);
670 		printf("\n");
671 		return;
672 	}
673 
674 	/*
675 	 * Allocate the control data structures, and create and load the
676 	 * DMA map for it.
677 	 */
678 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
679 	     sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
680 	     0)) != 0) {
681 		printf(": unable to allocate control data, error = %d\n",
682 		    error);
683 		return;
684 	}
685 
686 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
687 	     sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
688 	     BUS_DMA_COHERENT)) != 0) {
689 		printf(": unable to map control data, error = %d\n",
690 		    error);
691 		goto fail_1;
692 	}
693 
694 	if ((error = bus_dmamap_create(sc->sc_dmat,
695 	     sizeof(struct pcn_control_data), 1,
696 	     sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
697 		printf(": unable to create control data DMA map, "
698 		    "error = %d\n", error);
699 		goto fail_2;
700 	}
701 
702 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
703 	     sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
704 	     0)) != 0) {
705 		printf(": unable to load control data DMA map, error = %d\n",
706 		    error);
707 		goto fail_3;
708 	}
709 
710 	/* Create the transmit buffer DMA maps. */
711 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
712 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
713 		     PCN_NTXSEGS, MCLBYTES, 0, 0,
714 		     &sc->sc_txsoft[i].txs_dmamap)) != 0) {
715 			printf(": unable to create tx DMA map %d, "
716 			    "error = %d\n", i, error);
717 			goto fail_4;
718 		}
719 	}
720 
721 	/* Create the receive buffer DMA maps. */
722 	for (i = 0; i < PCN_NRXDESC; i++) {
723 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
724 		     MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
725 			printf(": unable to create rx DMA map %d, "
726 			    "error = %d\n", i, error);
727 			goto fail_5;
728 		}
729 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
730 	}
731 
732 	printf(", %s, rev %d: %s, address %s\n", sc->sc_variant->pcv_desc,
733 	    CHIPID_VER(chipid), intrstr, ether_sprintf(enaddr));
734 
735 	/* Initialize our media structures. */
736 	(*sc->sc_variant->pcv_mediainit)(sc);
737 
738 	/*
739 	 * Initialize FIFO watermark info.
740 	 */
741 	switch (sc->sc_variant->pcv_chipid) {
742 	case PARTID_Am79c970:
743 	case PARTID_Am79c970A:
744 		sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
745 		sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
746 		sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
747 		break;
748 
749 	default:
750 		sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
751 		/*
752 		 * Read BCR25 to determine how much SRAM is
753 		 * on the board.  If > 0, then we the chip
754 		 * uses different Start Point thresholds.
755 		 *
756 		 * Note BCR25 and BCR26 are loaded from the
757 		 * EEPROM on RST, and unaffected by S_RESET,
758 		 * so we don't really have to worry about
759 		 * them except for this.
760 		 */
761 		reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
762 		if (reg != 0)
763 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
764 		else
765 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
766 		sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
767 		break;
768 	}
769 
770 	/*
771 	 * Set up defaults -- see the tables above for what these
772 	 * values mean.
773 	 *
774 	 * XXX How should we tune RCVFW and XMTFW?
775 	 */
776 	sc->sc_rcvfw = 1;	/* minimum for full-duplex */
777 	sc->sc_xmtsp = 1;
778 	sc->sc_xmtfw = 0;
779 
780 	ifp = &sc->sc_arpcom.ac_if;
781 	bcopy(enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
782 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
783 	ifp->if_softc = sc;
784 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
785 	ifp->if_ioctl = pcn_ioctl;
786 	ifp->if_start = pcn_start;
787 	ifp->if_watchdog = pcn_watchdog;
788 	IFQ_SET_MAXLEN(&ifp->if_snd, PCN_NTXDESC -1);
789 	IFQ_SET_READY(&ifp->if_snd);
790 
791 	/* Attach the interface. */
792 	if_attach(ifp);
793 	ether_ifattach(ifp);
794 	return;
795 
796 	/*
797 	 * Free any resources we've allocated during the failed attach
798 	 * attempt.  Do this in reverse order and fall through.
799 	 */
800  fail_5:
801 	for (i = 0; i < PCN_NRXDESC; i++) {
802 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
803 			bus_dmamap_destroy(sc->sc_dmat,
804 			    sc->sc_rxsoft[i].rxs_dmamap);
805 	}
806  fail_4:
807 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
808 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
809 			bus_dmamap_destroy(sc->sc_dmat,
810 			    sc->sc_txsoft[i].txs_dmamap);
811 	}
812 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
813  fail_3:
814 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
815  fail_2:
816 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
817 	    sizeof(struct pcn_control_data));
818  fail_1:
819 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
820 }
821 
822 /*
823  * pcn_start:		[ifnet interface function]
824  *
825  *	Start packet transmission on the interface.
826  */
827 void
828 pcn_start(struct ifnet *ifp)
829 {
830 	struct pcn_softc *sc = ifp->if_softc;
831 	struct mbuf *m0, *m;
832 	struct pcn_txsoft *txs;
833 	bus_dmamap_t dmamap;
834 	int error, nexttx, lasttx = -1, ofree, seg;
835 
836 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
837 		return;
838 
839 	/*
840 	 * Remember the previous number of free descriptors and
841 	 * the first descriptor we'll use.
842 	 */
843 	ofree = sc->sc_txfree;
844 
845 	/*
846 	 * Loop through the send queue, setting up transmit descriptors
847 	 * until we drain the queue, or use up all available transmit
848 	 * descriptors.
849 	 */
850 	for (;;) {
851 		/* Grab a packet off the queue. */
852 		IFQ_POLL(&ifp->if_snd, m0);
853 		if (m0 == NULL)
854 			break;
855 		m = NULL;
856 
857 		/* Get a work queue entry. */
858 		if (sc->sc_txsfree == 0)
859 			break;
860 
861 		txs = &sc->sc_txsoft[sc->sc_txsnext];
862 		dmamap = txs->txs_dmamap;
863 
864 		/*
865 		 * Load the DMA map.  If this fails, the packet either
866 		 * didn't fit in the alloted number of segments, or we
867 		 * were short on resources.  In this case, we'll copy
868 		 * and try again.
869 		 */
870 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
871 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
872 			MGETHDR(m, M_DONTWAIT, MT_DATA);
873 			if (m == NULL)
874 				break;
875 			if (m0->m_pkthdr.len > MHLEN) {
876 				MCLGET(m, M_DONTWAIT);
877 				if ((m->m_flags & M_EXT) == 0) {
878 					m_freem(m);
879 					break;
880 				}
881 			}
882 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
883 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
884 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
885 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
886 			if (error)
887 				break;
888 		}
889 
890 		/*
891 		 * Ensure we have enough descriptors free to describe
892 		 * the packet.  Note, we always reserve one descriptor
893 		 * at the end of the ring as a termination point, to
894 		 * prevent wrap-around.
895 		 */
896 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
897 			/*
898 			 * Not enough free descriptors to transmit this
899 			 * packet.  We haven't committed anything yet,
900 			 * so just unload the DMA map, put the packet
901 			 * back on the queue, and punt.  Notify the upper
902 			 * layer that there are not more slots left.
903 			 *
904 			 * XXX We could allocate an mbuf and copy, but
905 			 * XXX is it worth it?
906 			 */
907 			ifp->if_flags |= IFF_OACTIVE;
908 			bus_dmamap_unload(sc->sc_dmat, dmamap);
909 			if (m != NULL)
910 				m_freem(m);
911 			break;
912 		}
913 
914 		IFQ_DEQUEUE(&ifp->if_snd, m0);
915 		if (m != NULL) {
916 			m_freem(m0);
917 			m0 = m;
918 		}
919 
920 		/*
921 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
922 		 */
923 
924 		/* Sync the DMA map. */
925 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
926 		    BUS_DMASYNC_PREWRITE);
927 
928 		/*
929 		 * Initialize the transmit descriptors.
930 		 */
931 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
932 			for (nexttx = sc->sc_txnext, seg = 0;
933 			     seg < dmamap->dm_nsegs;
934 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
935 				/*
936 				 * If this is the first descriptor we're
937 				 * enqueueing, don't set the OWN bit just
938 				 * yet.  That could cause a race condition.
939 				 * We'll do it below.
940 				 */
941 				sc->sc_txdescs[nexttx].tmd0 = 0;
942 				sc->sc_txdescs[nexttx].tmd2 =
943 				    htole32(dmamap->dm_segs[seg].ds_addr);
944 				sc->sc_txdescs[nexttx].tmd1 =
945 				    htole32(LE_T1_ONES |
946 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
947 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
948 				     LE_T1_BCNT_MASK));
949 				lasttx = nexttx;
950 			}
951 		} else {
952 			for (nexttx = sc->sc_txnext, seg = 0;
953 			     seg < dmamap->dm_nsegs;
954 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
955 				/*
956 				 * If this is the first descriptor we're
957 				 * enqueueing, don't set the OWN bit just
958 				 * yet.  That could cause a race condition.
959 				 * We'll do it below.
960 				 */
961 				sc->sc_txdescs[nexttx].tmd0 =
962 				    htole32(dmamap->dm_segs[seg].ds_addr);
963 				sc->sc_txdescs[nexttx].tmd2 = 0;
964 				sc->sc_txdescs[nexttx].tmd1 =
965 				    htole32(LE_T1_ONES |
966 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
967 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
968 				     LE_T1_BCNT_MASK));
969 				lasttx = nexttx;
970 			}
971 		}
972 
973 		KASSERT(lasttx != -1);
974 		/* Interrupt on the packet, if appropriate. */
975 		if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
976 			sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
977 
978 		/* Set `start of packet' and `end of packet' appropriately. */
979 		sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
980 		sc->sc_txdescs[sc->sc_txnext].tmd1 |=
981 		    htole32(LE_T1_OWN|LE_T1_STP);
982 
983 		/* Sync the descriptors we're using. */
984 		PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
985 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
986 
987 		/* Kick the transmitter. */
988 		pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
989 
990 		/*
991 		 * Store a pointer to the packet so we can free it later,
992 		 * and remember what txdirty will be once the packet is
993 		 * done.
994 		 */
995 		txs->txs_mbuf = m0;
996 		txs->txs_firstdesc = sc->sc_txnext;
997 		txs->txs_lastdesc = lasttx;
998 
999 		/* Advance the tx pointer. */
1000 		sc->sc_txfree -= dmamap->dm_nsegs;
1001 		sc->sc_txnext = nexttx;
1002 
1003 		sc->sc_txsfree--;
1004 		sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1005 
1006 #if NBPFILTER > 0
1007 		/* Pass the packet to any BPF listeners. */
1008 		if (ifp->if_bpf)
1009 			bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1010 #endif /* NBPFILTER > 0 */
1011 	}
1012 
1013 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1014 		/* No more slots left; notify upper layer. */
1015 		ifp->if_flags |= IFF_OACTIVE;
1016 	}
1017 
1018 	if (sc->sc_txfree != ofree) {
1019 		/* Set a watchdog timer in case the chip flakes out. */
1020 		ifp->if_timer = 5;
1021 	}
1022 }
1023 
1024 /*
1025  * pcn_watchdog:	[ifnet interface function]
1026  *
1027  *	Watchdog timer handler.
1028  */
1029 void
1030 pcn_watchdog(struct ifnet *ifp)
1031 {
1032 	struct pcn_softc *sc = ifp->if_softc;
1033 
1034 	/*
1035 	 * Since we're not interrupting every packet, sweep
1036 	 * up before we report an error.
1037 	 */
1038 	pcn_txintr(sc);
1039 
1040 	if (sc->sc_txfree != PCN_NTXDESC) {
1041 		printf("%s: device timeout (txfree %d txsfree %d)\n",
1042 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1043 		ifp->if_oerrors++;
1044 
1045 		/* Reset the interface. */
1046 		(void) pcn_init(ifp);
1047 	}
1048 
1049 	/* Try to get more packets going. */
1050 	pcn_start(ifp);
1051 }
1052 
1053 /*
1054  * pcn_ioctl:		[ifnet interface function]
1055  *
1056  *	Handle control requests from the operator.
1057  */
1058 int
1059 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1060 {
1061 	struct pcn_softc *sc = ifp->if_softc;
1062 	struct ifaddr *ifa = (struct ifaddr *) data;
1063 	struct ifreq *ifr = (struct ifreq *) data;
1064 	int s, error = 0;
1065 
1066 	s = splnet();
1067 
1068 	switch (cmd) {
1069 	case SIOCSIFADDR:
1070 		ifp->if_flags |= IFF_UP;
1071 
1072 		switch (ifa->ifa_addr->sa_family) {
1073 #ifdef INET
1074 		case AF_INET:
1075 			pcn_init(ifp);
1076 			arp_ifinit(&sc->sc_arpcom, ifa);
1077 			break;
1078 #endif
1079 		default:
1080 			pcn_init(ifp);
1081 			break;
1082 		}
1083 		break;
1084 
1085 	case SIOCSIFFLAGS:
1086 		/*
1087 		 * If interface is marked up and not running, then start it.
1088 		 * If it is marked down and running, stop it.
1089 		 * XXX If it's up then re-initialize it. This is so flags
1090 		 * such as IFF_PROMISC are handled.
1091 		 */
1092 		if (ifp->if_flags & IFF_UP)
1093 			pcn_init(ifp);
1094 		else if (ifp->if_flags & IFF_RUNNING)
1095 			pcn_stop(ifp, 1);
1096 		break;
1097 
1098 	case SIOCSIFMEDIA:
1099 	case SIOCGIFMEDIA:
1100 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1101 		break;
1102 
1103 	default:
1104 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1105 	}
1106 
1107 	if (error == ENETRESET) {
1108 		if (ifp->if_flags & IFF_RUNNING)
1109 			error = pcn_init(ifp);
1110 		else
1111 			error = 0;
1112 	}
1113 
1114 	/* Try to get more packets going. */
1115 	pcn_start(ifp);
1116 
1117 	splx(s);
1118 	return (error);
1119 }
1120 
1121 /*
1122  * pcn_intr:
1123  *
1124  *	Interrupt service routine.
1125  */
1126 int
1127 pcn_intr(void *arg)
1128 {
1129 	struct pcn_softc *sc = arg;
1130 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1131 	uint32_t csr0;
1132 	int wantinit, handled = 0;
1133 
1134 	for (wantinit = 0; wantinit == 0;) {
1135 		csr0 = pcn_csr_read(sc, LE_CSR0);
1136 		if ((csr0 & LE_C0_INTR) == 0)
1137 			break;
1138 
1139 		/* ACK the bits and re-enable interrupts. */
1140 		pcn_csr_write(sc, LE_CSR0, csr0 &
1141 		    (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1142 		     LE_C0_TINT|LE_C0_IDON));
1143 
1144 		handled = 1;
1145 
1146 		if (csr0 & LE_C0_RINT)
1147 			wantinit = pcn_rxintr(sc);
1148 
1149 		if (csr0 & LE_C0_TINT)
1150 			pcn_txintr(sc);
1151 
1152 		if (csr0 & LE_C0_ERR) {
1153 			if (csr0 & LE_C0_BABL)
1154 				ifp->if_oerrors++;
1155 			if (csr0 & LE_C0_MISS)
1156 				ifp->if_ierrors++;
1157 			if (csr0 & LE_C0_MERR) {
1158 				printf("%s: memory error\n",
1159 				    sc->sc_dev.dv_xname);
1160 				wantinit = 1;
1161 				break;
1162 			}
1163 		}
1164 
1165 		if ((csr0 & LE_C0_RXON) == 0) {
1166 			printf("%s: receiver disabled\n",
1167 			    sc->sc_dev.dv_xname);
1168 			ifp->if_ierrors++;
1169 			wantinit = 1;
1170 		}
1171 
1172 		if ((csr0 & LE_C0_TXON) == 0) {
1173 			printf("%s: transmitter disabled\n",
1174 			    sc->sc_dev.dv_xname);
1175 			ifp->if_oerrors++;
1176 			wantinit = 1;
1177 		}
1178 	}
1179 
1180 	if (handled) {
1181 		if (wantinit)
1182 			pcn_init(ifp);
1183 
1184 		/* Try to get more packets going. */
1185 		pcn_start(ifp);
1186 	}
1187 
1188 	return (handled);
1189 }
1190 
1191 /*
1192  * pcn_spnd:
1193  *
1194  *	Suspend the chip.
1195  */
1196 void
1197 pcn_spnd(struct pcn_softc *sc)
1198 {
1199 	int i;
1200 
1201 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1202 
1203 	for (i = 0; i < 10000; i++) {
1204 		if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1205 			return;
1206 		delay(5);
1207 	}
1208 
1209 	printf("%s: WARNING: chip failed to enter suspended state\n",
1210 	    sc->sc_dev.dv_xname);
1211 }
1212 
1213 /*
1214  * pcn_txintr:
1215  *
1216  *	Helper; handle transmit interrupts.
1217  */
1218 void
1219 pcn_txintr(struct pcn_softc *sc)
1220 {
1221 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1222 	struct pcn_txsoft *txs;
1223 	uint32_t tmd1, tmd2, tmd;
1224 	int i, j;
1225 
1226 	ifp->if_flags &= ~IFF_OACTIVE;
1227 
1228 	/*
1229 	 * Go through our Tx list and free mbufs for those
1230 	 * frames which have been transmitted.
1231 	 */
1232 	for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1233 	     i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1234 		txs = &sc->sc_txsoft[i];
1235 
1236 		PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1237 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1238 
1239 		tmd1 = letoh32(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1240 		if (tmd1 & LE_T1_OWN)
1241 			break;
1242 
1243 		/*
1244 		 * Slightly annoying -- we have to loop through the
1245 		 * descriptors we've used looking for ERR, since it
1246 		 * can appear on any descriptor in the chain.
1247 		 */
1248 		for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1249 			tmd = letoh32(sc->sc_txdescs[j].tmd1);
1250 			if (tmd & LE_T1_ERR) {
1251 				ifp->if_oerrors++;
1252 				if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1253 					tmd2 = letoh32(sc->sc_txdescs[j].tmd0);
1254 				else
1255 					tmd2 = letoh32(sc->sc_txdescs[j].tmd2);
1256 				if (tmd2 & LE_T2_UFLO) {
1257 					if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1258 						sc->sc_xmtsp++;
1259 						printf("%s: transmit "
1260 						    "underrun; new threshold: "
1261 						    "%s\n",
1262 						    sc->sc_dev.dv_xname,
1263 						    sc->sc_xmtsp_desc[
1264 						    sc->sc_xmtsp]);
1265 						pcn_spnd(sc);
1266 						pcn_csr_write(sc, LE_CSR80,
1267 						    LE_C80_RCVFW(sc->sc_rcvfw) |
1268 						    LE_C80_XMTSP(sc->sc_xmtsp) |
1269 						    LE_C80_XMTFW(sc->sc_xmtfw));
1270 						pcn_csr_write(sc, LE_CSR5,
1271 						    sc->sc_csr5);
1272 					} else {
1273 						printf("%s: transmit "
1274 						    "underrun\n",
1275 						    sc->sc_dev.dv_xname);
1276 					}
1277 				} else if (tmd2 & LE_T2_BUFF) {
1278 					printf("%s: transmit buffer error\n",
1279 					    sc->sc_dev.dv_xname);
1280 				}
1281 				if (tmd2 & LE_T2_LCOL)
1282 					ifp->if_collisions++;
1283 				if (tmd2 & LE_T2_RTRY)
1284 					ifp->if_collisions += 16;
1285 				goto next_packet;
1286 			}
1287 			if (j == txs->txs_lastdesc)
1288 				break;
1289 		}
1290 		if (tmd1 & LE_T1_ONE)
1291 			ifp->if_collisions++;
1292 		else if (tmd & LE_T1_MORE) {
1293 			/* Real number is unknown. */
1294 			ifp->if_collisions += 2;
1295 		}
1296 		ifp->if_opackets++;
1297  next_packet:
1298 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1299 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1300 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1301 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1302 		m_freem(txs->txs_mbuf);
1303 		txs->txs_mbuf = NULL;
1304 	}
1305 
1306 	/* Update the dirty transmit buffer pointer. */
1307 	sc->sc_txsdirty = i;
1308 
1309 	/*
1310 	 * If there are no more pending transmissions, cancel the watchdog
1311 	 * timer.
1312 	 */
1313 	if (sc->sc_txsfree == PCN_TXQUEUELEN)
1314 		ifp->if_timer = 0;
1315 }
1316 
1317 /*
1318  * pcn_rxintr:
1319  *
1320  *	Helper; handle receive interrupts.
1321  */
1322 int
1323 pcn_rxintr(struct pcn_softc *sc)
1324 {
1325 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1326 	struct pcn_rxsoft *rxs;
1327 	struct mbuf *m;
1328 	uint32_t rmd1;
1329 	int i, len;
1330 
1331 	for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1332 		rxs = &sc->sc_rxsoft[i];
1333 
1334 		PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1335 
1336 		rmd1 = letoh32(sc->sc_rxdescs[i].rmd1);
1337 
1338 		if (rmd1 & LE_R1_OWN)
1339 			break;
1340 
1341 		/*
1342 		 * Check for errors and make sure the packet fit into
1343 		 * a single buffer.  We have structured this block of
1344 		 * code the way it is in order to compress it into
1345 		 * one test in the common case (no error).
1346 		 */
1347 		if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1348 		    (LE_R1_STP|LE_R1_ENP))) {
1349 			/* Make sure the packet is in a single buffer. */
1350 			if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1351 			    (LE_R1_STP|LE_R1_ENP)) {
1352 				printf("%s: packet spilled into next buffer\n",
1353 				    sc->sc_dev.dv_xname);
1354 				return (1);	/* pcn_intr() will re-init */
1355 			}
1356 
1357 			/*
1358 			 * If the packet had an error, simple recycle the
1359 			 * buffer.
1360 			 */
1361 			if (rmd1 & LE_R1_ERR) {
1362 				ifp->if_ierrors++;
1363 				/*
1364 				 * If we got an overflow error, chances
1365 				 * are there will be a CRC error.  In
1366 				 * this case, just print the overflow
1367 				 * error, and skip the others.
1368 				 */
1369 				if (rmd1 & LE_R1_OFLO)
1370 					printf("%s: overflow error\n",
1371 					    sc->sc_dev.dv_xname);
1372 				else {
1373 #define	PRINTIT(x, str)							\
1374 					if (rmd1 & (x))			\
1375 						printf("%s: %s\n",	\
1376 						    sc->sc_dev.dv_xname, str);
1377 					PRINTIT(LE_R1_FRAM, "framing error");
1378 					PRINTIT(LE_R1_CRC, "CRC error");
1379 					PRINTIT(LE_R1_BUFF, "buffer error");
1380 				}
1381 #undef PRINTIT
1382 				PCN_INIT_RXDESC(sc, i);
1383 				continue;
1384 			}
1385 		}
1386 
1387 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1388 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1389 
1390 		/*
1391 		 * No errors; receive the packet.
1392 		 */
1393 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1394 			len = letoh32(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1395 		else
1396 			len = letoh32(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1397 
1398 		/*
1399 		 * The LANCE family includes the CRC with every packet;
1400 		 * trim it off here.
1401 		 */
1402 		len -= ETHER_CRC_LEN;
1403 
1404 		/*
1405 		 * If the packet is small enough to fit in a
1406 		 * single header mbuf, allocate one and copy
1407 		 * the data into it.  This greatly reduces
1408 		 * memory consumption when we receive lots
1409 		 * of small packets.
1410 		 *
1411 		 * Otherwise, we add a new buffer to the receive
1412 		 * chain.  If this fails, we drop the packet and
1413 		 * recycle the old buffer.
1414 		 */
1415 		if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1416 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1417 			if (m == NULL)
1418 				goto dropit;
1419 			m->m_data += 2;
1420 			memcpy(mtod(m, caddr_t),
1421 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1422 			PCN_INIT_RXDESC(sc, i);
1423 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1424 			    rxs->rxs_dmamap->dm_mapsize,
1425 			    BUS_DMASYNC_PREREAD);
1426 		} else {
1427 			m = rxs->rxs_mbuf;
1428 			if (pcn_add_rxbuf(sc, i) != 0) {
1429  dropit:
1430 				ifp->if_ierrors++;
1431 				PCN_INIT_RXDESC(sc, i);
1432 				bus_dmamap_sync(sc->sc_dmat,
1433 				    rxs->rxs_dmamap, 0,
1434 				    rxs->rxs_dmamap->dm_mapsize,
1435 				    BUS_DMASYNC_PREREAD);
1436 				continue;
1437 			}
1438 		}
1439 
1440 		m->m_pkthdr.rcvif = ifp;
1441 		m->m_pkthdr.len = m->m_len = len;
1442 
1443 #if NBPFILTER > 0
1444 		/* Pass this up to any BPF listeners. */
1445 		if (ifp->if_bpf)
1446 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
1447 #endif /* NBPFILTER > 0 */
1448 
1449 		/* Pass it on. */
1450 		ether_input_mbuf(ifp, m);
1451 		ifp->if_ipackets++;
1452 	}
1453 
1454 	/* Update the receive pointer. */
1455 	sc->sc_rxptr = i;
1456 	return (0);
1457 }
1458 
1459 /*
1460  * pcn_tick:
1461  *
1462  *	One second timer, used to tick the MII.
1463  */
1464 void
1465 pcn_tick(void *arg)
1466 {
1467 	struct pcn_softc *sc = arg;
1468 	int s;
1469 
1470 	s = splnet();
1471 	mii_tick(&sc->sc_mii);
1472 	splx(s);
1473 
1474 	timeout_add_sec(&sc->sc_tick_timeout, 1);
1475 }
1476 
1477 /*
1478  * pcn_reset:
1479  *
1480  *	Perform a soft reset on the PCnet-PCI.
1481  */
1482 void
1483 pcn_reset(struct pcn_softc *sc)
1484 {
1485 
1486 	/*
1487 	 * The PCnet-PCI chip is reset by reading from the
1488 	 * RESET register.  Note that while the NE2100 LANCE
1489 	 * boards require a write after the read, the PCnet-PCI
1490 	 * chips do not require this.
1491 	 *
1492 	 * Since we don't know if we're in 16-bit or 32-bit
1493 	 * mode right now, issue both (it's safe) in the
1494 	 * hopes that one will succeed.
1495 	 */
1496 	(void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1497 	(void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1498 
1499 	/* Wait 1ms for it to finish. */
1500 	delay(1000);
1501 
1502 	/*
1503 	 * Select 32-bit I/O mode by issuing a 32-bit write to the
1504 	 * RDP.  Since the RAP is 0 after a reset, writing a 0
1505 	 * to RDP is safe (since it simply clears CSR0).
1506 	 */
1507 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1508 }
1509 
1510 /*
1511  * pcn_init:		[ifnet interface function]
1512  *
1513  *	Initialize the interface.  Must be called at splnet().
1514  */
1515 int
1516 pcn_init(struct ifnet *ifp)
1517 {
1518 	struct pcn_softc *sc = ifp->if_softc;
1519 	struct pcn_rxsoft *rxs;
1520 	uint8_t *enaddr = LLADDR(ifp->if_sadl);
1521 	int i, error = 0;
1522 	uint32_t reg;
1523 
1524 	/* Cancel any pending I/O. */
1525 	pcn_stop(ifp, 0);
1526 
1527 	/* Reset the chip to a known state. */
1528 	pcn_reset(sc);
1529 
1530 	/*
1531 	 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1532 	 * else.
1533 	 *
1534 	 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1535 	 * because the structure layout is compatible with ILACC,
1536 	 * but the burst mode is only available in SSTYLE 3, and
1537 	 * burst mode should provide some performance enhancement.
1538 	 */
1539 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1540 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1541 	else
1542 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1543 	pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1544 
1545 	/* Initialize the transmit descriptor ring. */
1546 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1547 	PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1548 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1549 	sc->sc_txfree = PCN_NTXDESC;
1550 	sc->sc_txnext = 0;
1551 
1552 	/* Initialize the transmit job descriptors. */
1553 	for (i = 0; i < PCN_TXQUEUELEN; i++)
1554 		sc->sc_txsoft[i].txs_mbuf = NULL;
1555 	sc->sc_txsfree = PCN_TXQUEUELEN;
1556 	sc->sc_txsnext = 0;
1557 	sc->sc_txsdirty = 0;
1558 
1559 	/*
1560 	 * Initialize the receive descriptor and receive job
1561 	 * descriptor rings.
1562 	 */
1563 	for (i = 0; i < PCN_NRXDESC; i++) {
1564 		rxs = &sc->sc_rxsoft[i];
1565 		if (rxs->rxs_mbuf == NULL) {
1566 			if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1567 				printf("%s: unable to allocate or map rx "
1568 				    "buffer %d, error = %d\n",
1569 				    sc->sc_dev.dv_xname, i, error);
1570 				/*
1571 				 * XXX Should attempt to run with fewer receive
1572 				 * XXX buffers instead of just failing.
1573 				 */
1574 				pcn_rxdrain(sc);
1575 				goto out;
1576 			}
1577 		} else
1578 			PCN_INIT_RXDESC(sc, i);
1579 	}
1580 	sc->sc_rxptr = 0;
1581 
1582 	/* Initialize MODE for the initialization block. */
1583 	sc->sc_mode = 0;
1584 	if (ifp->if_flags & IFF_PROMISC)
1585 		sc->sc_mode |= LE_C15_PROM;
1586 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
1587 		sc->sc_mode |= LE_C15_DRCVBC;
1588 
1589 	/*
1590 	 * If we have MII, simply select MII in the MODE register,
1591 	 * and clear ASEL.  Otherwise, let ASEL stand (for now),
1592 	 * and leave PORTSEL alone (it is ignored with ASEL is set).
1593 	 */
1594 	if (sc->sc_flags & PCN_F_HAS_MII) {
1595 		pcn_bcr_write(sc, LE_BCR2,
1596 		    pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1597 		sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1598 
1599 		/*
1600 		 * Disable MII auto-negotiation.  We handle that in
1601 		 * our own MII layer.
1602 		 */
1603 		pcn_bcr_write(sc, LE_BCR32,
1604 		    pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1605 	}
1606 
1607 	/*
1608 	 * Set the Tx and Rx descriptor ring addresses in the init
1609 	 * block, the TLEN and RLEN other fields of the init block
1610 	 * MODE register.
1611 	 */
1612 	sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1613 	sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1614 	sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1615 	    ((ffs(PCN_NTXDESC) - 1) << 28) |
1616 	    ((ffs(PCN_NRXDESC) - 1) << 20));
1617 
1618 	/* Set the station address in the init block. */
1619 	sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1620 	    (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1621 	sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1622 	    (enaddr[5] << 8));
1623 
1624 	/* Set the multicast filter in the init block. */
1625 	pcn_set_filter(sc);
1626 
1627 	/* Initialize CSR3. */
1628 	pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1629 
1630 	/* Initialize CSR4. */
1631 	pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1632 	    LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1633 
1634 	/* Initialize CSR5. */
1635 	sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1636 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1637 
1638 	/*
1639 	 * If we have an Am79c971 or greater, initialize CSR7.
1640 	 *
1641 	 * XXX Might be nice to use the MII auto-poll interrupt someday.
1642 	 */
1643 	switch (sc->sc_variant->pcv_chipid) {
1644 	case PARTID_Am79c970:
1645 	case PARTID_Am79c970A:
1646 		/* Not available on these chips. */
1647 		break;
1648 
1649 	default:
1650 		pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1651 		break;
1652 	}
1653 
1654 	/*
1655 	 * On the Am79c970A and greater, initialize BCR18 to
1656 	 * enable burst mode.
1657 	 *
1658 	 * Also enable the "no underflow" option on the Am79c971 and
1659 	 * higher, which prevents the chip from generating transmit
1660 	 * underflows, yet sill provides decent performance.  Note if
1661 	 * chip is not connected to external SRAM, then we still have
1662 	 * to handle underflow errors (the NOUFLO bit is ignored in
1663 	 * that case).
1664 	 */
1665 	reg = pcn_bcr_read(sc, LE_BCR18);
1666 	switch (sc->sc_variant->pcv_chipid) {
1667 	case PARTID_Am79c970:
1668 		break;
1669 
1670 	case PARTID_Am79c970A:
1671 		reg |= LE_B18_BREADE|LE_B18_BWRITE;
1672 		break;
1673 
1674 	default:
1675 		reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1676 		break;
1677 	}
1678 	pcn_bcr_write(sc, LE_BCR18, reg);
1679 
1680 	/*
1681 	 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1682 	 */
1683 	pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1684 	    LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1685 
1686 	/*
1687 	 * Send the init block to the chip, and wait for it
1688 	 * to be processed.
1689 	 */
1690 	PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1691 	pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1692 	pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1693 	pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1694 	delay(100);
1695 	for (i = 0; i < 10000; i++) {
1696 		if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1697 			break;
1698 		delay(10);
1699 	}
1700 	PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1701 	if (i == 10000) {
1702 		printf("%s: timeout processing init block\n",
1703 		    sc->sc_dev.dv_xname);
1704 		error = EIO;
1705 		goto out;
1706 	}
1707 
1708 	/* Set the media. */
1709 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1710 
1711 	/* Enable interrupts and external activity (and ACK IDON). */
1712 	pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1713 
1714 	if (sc->sc_flags & PCN_F_HAS_MII) {
1715 		/* Start the one second MII clock. */
1716 		timeout_add_sec(&sc->sc_tick_timeout, 1);
1717 	}
1718 
1719 	/* ...all done! */
1720 	ifp->if_flags |= IFF_RUNNING;
1721 	ifp->if_flags &= ~IFF_OACTIVE;
1722 
1723  out:
1724 	if (error)
1725 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1726 	return (error);
1727 }
1728 
1729 /*
1730  * pcn_rxdrain:
1731  *
1732  *	Drain the receive queue.
1733  */
1734 void
1735 pcn_rxdrain(struct pcn_softc *sc)
1736 {
1737 	struct pcn_rxsoft *rxs;
1738 	int i;
1739 
1740 	for (i = 0; i < PCN_NRXDESC; i++) {
1741 		rxs = &sc->sc_rxsoft[i];
1742 		if (rxs->rxs_mbuf != NULL) {
1743 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1744 			m_freem(rxs->rxs_mbuf);
1745 			rxs->rxs_mbuf = NULL;
1746 		}
1747 	}
1748 }
1749 
1750 /*
1751  * pcn_stop:		[ifnet interface function]
1752  *
1753  *	Stop transmission on the interface.
1754  */
1755 void
1756 pcn_stop(struct ifnet *ifp, int disable)
1757 {
1758 	struct pcn_softc *sc = ifp->if_softc;
1759 	struct pcn_txsoft *txs;
1760 	int i;
1761 
1762 	if (sc->sc_flags & PCN_F_HAS_MII) {
1763 		/* Stop the one second clock. */
1764 		timeout_del(&sc->sc_tick_timeout);
1765 
1766 		/* Down the MII. */
1767 		mii_down(&sc->sc_mii);
1768 	}
1769 
1770 	/* Mark the interface as down and cancel the watchdog timer. */
1771 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1772 	ifp->if_timer = 0;
1773 
1774 	/* Stop the chip. */
1775 	pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1776 
1777 	/* Release any queued transmit buffers. */
1778 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
1779 		txs = &sc->sc_txsoft[i];
1780 		if (txs->txs_mbuf != NULL) {
1781 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1782 			m_freem(txs->txs_mbuf);
1783 			txs->txs_mbuf = NULL;
1784 		}
1785 	}
1786 
1787 	if (disable)
1788 		pcn_rxdrain(sc);
1789 }
1790 
1791 /*
1792  * pcn_add_rxbuf:
1793  *
1794  *	Add a receive buffer to the indicated descriptor.
1795  */
1796 int
1797 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1798 {
1799 	struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1800 	struct mbuf *m;
1801 	int error;
1802 
1803 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1804 	if (m == NULL)
1805 		return (ENOBUFS);
1806 
1807 	MCLGET(m, M_DONTWAIT);
1808 	if ((m->m_flags & M_EXT) == 0) {
1809 		m_freem(m);
1810 		return (ENOBUFS);
1811 	}
1812 
1813 	if (rxs->rxs_mbuf != NULL)
1814 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1815 
1816 	rxs->rxs_mbuf = m;
1817 
1818 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1819 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1820 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1821 	if (error) {
1822 		printf("%s: can't load rx DMA map %d, error = %d\n",
1823 		    sc->sc_dev.dv_xname, idx, error);
1824 		panic("pcn_add_rxbuf");
1825 	}
1826 
1827 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1828 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1829 
1830 	PCN_INIT_RXDESC(sc, idx);
1831 
1832 	return (0);
1833 }
1834 
1835 /*
1836  * pcn_set_filter:
1837  *
1838  *	Set up the receive filter.
1839  */
1840 void
1841 pcn_set_filter(struct pcn_softc *sc)
1842 {
1843 	struct arpcom *ac = &sc->sc_arpcom;
1844 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1845 	struct ether_multi *enm;
1846 	struct ether_multistep step;
1847 	uint32_t crc;
1848 
1849 	/*
1850 	 * Set up the multicast address filter by passing all multicast
1851 	 * addresses through a CRC generator, and then using the high
1852 	 * order 6 bits as an index into the 64-bit logical address
1853 	 * filter.  The high order bits select the word, while the rest
1854 	 * of the bits select the bit within the word.
1855 	 */
1856 
1857 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC)
1858 		goto allmulti;
1859 
1860 	sc->sc_initblock.init_ladrf[0] =
1861 	    sc->sc_initblock.init_ladrf[1] =
1862 	    sc->sc_initblock.init_ladrf[2] =
1863 	    sc->sc_initblock.init_ladrf[3] = 0;
1864 
1865 	ETHER_FIRST_MULTI(step, ac, enm);
1866 	while (enm != NULL) {
1867 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1868 			/*
1869 			 * We must listen to a range of multicast addresses.
1870 			 * For now, just accept all multicasts, rather than
1871 			 * trying to set only those filter bits needed to match
1872 			 * the range.  (At this time, the only use of address
1873 			 * ranges is for IP multicast routing, for which the
1874 			 * range is big enough to require all bits set.)
1875 			 */
1876 			goto allmulti;
1877 		}
1878 
1879 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1880 
1881 		/* Just want the 6 most significant bits. */
1882 		crc >>= 26;
1883 
1884 		/* Set the corresponding bit in the filter. */
1885 		sc->sc_initblock.init_ladrf[crc >> 4] |=
1886 		    htole16(1 << (crc & 0xf));
1887 
1888 		ETHER_NEXT_MULTI(step, enm);
1889 	}
1890 
1891 	ifp->if_flags &= ~IFF_ALLMULTI;
1892 	return;
1893 
1894  allmulti:
1895 	ifp->if_flags |= IFF_ALLMULTI;
1896 	sc->sc_initblock.init_ladrf[0] =
1897 	    sc->sc_initblock.init_ladrf[1] =
1898 	    sc->sc_initblock.init_ladrf[2] =
1899 	    sc->sc_initblock.init_ladrf[3] = 0xffff;
1900 }
1901 
1902 /*
1903  * pcn_79c970_mediainit:
1904  *
1905  *	Initialize media for the Am79c970.
1906  */
1907 void
1908 pcn_79c970_mediainit(struct pcn_softc *sc)
1909 {
1910 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
1911 	    pcn_79c970_mediastatus);
1912 
1913 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5,
1914 	    PORTSEL_AUI, NULL);
1915 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1916 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5|IFM_FDX,
1917 		    PORTSEL_AUI, NULL);
1918 
1919 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T,
1920 	    PORTSEL_10T, NULL);
1921 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1922 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T|IFM_FDX,
1923 		    PORTSEL_10T, NULL);
1924 
1925 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO,
1926 	    0, NULL);
1927 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1928 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO|IFM_FDX,
1929 		    0, NULL);
1930 
1931 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1932 }
1933 
1934 /*
1935  * pcn_79c970_mediastatus:	[ifmedia interface function]
1936  *
1937  *	Get the current interface media status (Am79c970 version).
1938  */
1939 void
1940 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1941 {
1942 	struct pcn_softc *sc = ifp->if_softc;
1943 
1944 	/*
1945 	 * The currently selected media is always the active media.
1946 	 * Note: We have no way to determine what media the AUTO
1947 	 * process picked.
1948 	 */
1949 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
1950 }
1951 
1952 /*
1953  * pcn_79c970_mediachange:	[ifmedia interface function]
1954  *
1955  *	Set hardware to newly-selected media (Am79c970 version).
1956  */
1957 int
1958 pcn_79c970_mediachange(struct ifnet *ifp)
1959 {
1960 	struct pcn_softc *sc = ifp->if_softc;
1961 	uint32_t reg;
1962 
1963 	if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
1964 		/*
1965 		 * CSR15:PORTSEL doesn't matter.  Just set BCR2:ASEL.
1966 		 */
1967 		reg = pcn_bcr_read(sc, LE_BCR2);
1968 		reg |= LE_B2_ASEL;
1969 		pcn_bcr_write(sc, LE_BCR2, reg);
1970 	} else {
1971 		/*
1972 		 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
1973 		 */
1974 		reg = pcn_bcr_read(sc, LE_BCR2);
1975 		reg &= ~LE_B2_ASEL;
1976 		pcn_bcr_write(sc, LE_BCR2, reg);
1977 
1978 		reg = pcn_csr_read(sc, LE_CSR15);
1979 		reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
1980 		    LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
1981 		pcn_csr_write(sc, LE_CSR15, reg);
1982 	}
1983 
1984 	if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
1985 		reg = LE_B9_FDEN;
1986 		if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
1987 			reg |= LE_B9_AUIFD;
1988 		pcn_bcr_write(sc, LE_BCR9, reg);
1989 	} else
1990 		pcn_bcr_write(sc, LE_BCR9, 0);
1991 
1992 	return (0);
1993 }
1994 
1995 /*
1996  * pcn_79c971_mediainit:
1997  *
1998  *	Initialize media for the Am79c971.
1999  */
2000 void
2001 pcn_79c971_mediainit(struct pcn_softc *sc)
2002 {
2003 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2004 
2005 	/* We have MII. */
2006 	sc->sc_flags |= PCN_F_HAS_MII;
2007 
2008 	/*
2009 	 * The built-in 10BASE-T interface is mapped to the MII
2010 	 * on the PCNet-FAST.  Unfortunately, there's no EEPROM
2011 	 * word that tells us which PHY to use.
2012 	 * This driver used to ignore all but the first PHY to
2013 	 * answer, but this code was removed to support multiple
2014 	 * external PHYs. As the default instance will be the first
2015 	 * one to answer, no harm is done by letting the possibly
2016 	 * non-connected internal PHY show up.
2017 	 */
2018 
2019 	/* Initialize our media structures and probe the MII. */
2020 	sc->sc_mii.mii_ifp = ifp;
2021 	sc->sc_mii.mii_readreg = pcn_mii_readreg;
2022 	sc->sc_mii.mii_writereg = pcn_mii_writereg;
2023 	sc->sc_mii.mii_statchg = pcn_mii_statchg;
2024 	ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2025 	    pcn_79c971_mediastatus);
2026 
2027 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2028 	    MII_OFFSET_ANY, 0);
2029 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2030 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2031 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2032 	} else
2033 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2034 }
2035 
2036 /*
2037  * pcn_79c971_mediastatus:	[ifmedia interface function]
2038  *
2039  *	Get the current interface media status (Am79c971 version).
2040  */
2041 void
2042 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2043 {
2044 	struct pcn_softc *sc = ifp->if_softc;
2045 
2046 	mii_pollstat(&sc->sc_mii);
2047 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2048 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2049 }
2050 
2051 /*
2052  * pcn_79c971_mediachange:	[ifmedia interface function]
2053  *
2054  *	Set hardware to newly-selected media (Am79c971 version).
2055  */
2056 int
2057 pcn_79c971_mediachange(struct ifnet *ifp)
2058 {
2059 	struct pcn_softc *sc = ifp->if_softc;
2060 
2061 	if (ifp->if_flags & IFF_UP)
2062 		mii_mediachg(&sc->sc_mii);
2063 	return (0);
2064 }
2065 
2066 /*
2067  * pcn_mii_readreg:	[mii interface function]
2068  *
2069  *	Read a PHY register on the MII.
2070  */
2071 int
2072 pcn_mii_readreg(struct device *self, int phy, int reg)
2073 {
2074 	struct pcn_softc *sc = (void *) self;
2075 	uint32_t rv;
2076 
2077 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2078 	rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2079 	if (rv == 0xffff)
2080 		return (0);
2081 
2082 	return (rv);
2083 }
2084 
2085 /*
2086  * pcn_mii_writereg:	[mii interface function]
2087  *
2088  *	Write a PHY register on the MII.
2089  */
2090 void
2091 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2092 {
2093 	struct pcn_softc *sc = (void *) self;
2094 
2095 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2096 	pcn_bcr_write(sc, LE_BCR34, val);
2097 }
2098 
2099 /*
2100  * pcn_mii_statchg:	[mii interface function]
2101  *
2102  *	Callback from MII layer when media changes.
2103  */
2104 void
2105 pcn_mii_statchg(struct device *self)
2106 {
2107 	struct pcn_softc *sc = (void *) self;
2108 
2109 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2110 		pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2111 	else
2112 		pcn_bcr_write(sc, LE_BCR9, 0);
2113 }
2114