xref: /openbsd-src/sys/dev/pci/if_nge.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*	$OpenBSD: if_nge.c,v 1.78 2013/11/26 09:50:33 mpi Exp $	*/
2 /*
3  * Copyright (c) 2001 Wind River Systems
4  * Copyright (c) 1997, 1998, 1999, 2000, 2001
5  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: if_nge.c,v 1.35 2002/08/08 18:33:28 ambrisko Exp $
35  */
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include "bpfilter.h"
92 #include "vlan.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/sockio.h>
97 #include <sys/mbuf.h>
98 #include <sys/malloc.h>
99 #include <sys/kernel.h>
100 #include <sys/device.h>
101 #include <sys/socket.h>
102 
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/ip.h>
111 #include <netinet/if_ether.h>
112 #endif
113 
114 #if NVLAN > 0
115 #include <net/if_types.h>
116 #include <net/if_vlan_var.h>
117 #endif
118 
119 #if NBPFILTER > 0
120 #include <net/bpf.h>
121 #endif
122 
123 #include <uvm/uvm_extern.h>              /* for vtophys */
124 #define	VTOPHYS(v)	vtophys((vaddr_t)(v))
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 #include <dev/pci/pcidevs.h>
129 
130 #include <dev/mii/mii.h>
131 #include <dev/mii/miivar.h>
132 
133 #define NGE_USEIOSPACE
134 
135 #include <dev/pci/if_ngereg.h>
136 
137 int nge_probe(struct device *, void *, void *);
138 void nge_attach(struct device *, struct device *, void *);
139 
140 int nge_alloc_jumbo_mem(struct nge_softc *);
141 void *nge_jalloc(struct nge_softc *);
142 void nge_jfree(caddr_t, u_int, void *);
143 
144 int nge_newbuf(struct nge_softc *, struct nge_desc *,
145 			     struct mbuf *);
146 int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
147 void nge_rxeof(struct nge_softc *);
148 void nge_txeof(struct nge_softc *);
149 int nge_intr(void *);
150 void nge_tick(void *);
151 void nge_start(struct ifnet *);
152 int nge_ioctl(struct ifnet *, u_long, caddr_t);
153 void nge_init(void *);
154 void nge_stop(struct nge_softc *);
155 void nge_watchdog(struct ifnet *);
156 int nge_ifmedia_mii_upd(struct ifnet *);
157 void nge_ifmedia_mii_sts(struct ifnet *, struct ifmediareq *);
158 int nge_ifmedia_tbi_upd(struct ifnet *);
159 void nge_ifmedia_tbi_sts(struct ifnet *, struct ifmediareq *);
160 
161 void nge_delay(struct nge_softc *);
162 void nge_eeprom_idle(struct nge_softc *);
163 void nge_eeprom_putbyte(struct nge_softc *, int);
164 void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
165 void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
166 
167 void nge_mii_sync(struct nge_softc *);
168 void nge_mii_send(struct nge_softc *, u_int32_t, int);
169 int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
170 int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
171 
172 int nge_miibus_readreg(struct device *, int, int);
173 void nge_miibus_writereg(struct device *, int, int, int);
174 void nge_miibus_statchg(struct device *);
175 
176 void nge_setmulti(struct nge_softc *);
177 void nge_reset(struct nge_softc *);
178 int nge_list_rx_init(struct nge_softc *);
179 int nge_list_tx_init(struct nge_softc *);
180 
181 #ifdef NGE_USEIOSPACE
182 #define NGE_RES			SYS_RES_IOPORT
183 #define NGE_RID			NGE_PCI_LOIO
184 #else
185 #define NGE_RES			SYS_RES_MEMORY
186 #define NGE_RID			NGE_PCI_LOMEM
187 #endif
188 
189 #ifdef NGE_DEBUG
190 #define DPRINTF(x)	if (ngedebug) printf x
191 #define DPRINTFN(n,x)	if (ngedebug >= (n)) printf x
192 int	ngedebug = 0;
193 #else
194 #define DPRINTF(x)
195 #define DPRINTFN(n,x)
196 #endif
197 
198 #define NGE_SETBIT(sc, reg, x)				\
199 	CSR_WRITE_4(sc, reg,				\
200 		CSR_READ_4(sc, reg) | (x))
201 
202 #define NGE_CLRBIT(sc, reg, x)				\
203 	CSR_WRITE_4(sc, reg,				\
204 		CSR_READ_4(sc, reg) & ~(x))
205 
206 #define SIO_SET(x)					\
207 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
208 
209 #define SIO_CLR(x)					\
210 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
211 
212 void
213 nge_delay(struct nge_softc *sc)
214 {
215 	int			idx;
216 
217 	for (idx = (300 / 33) + 1; idx > 0; idx--)
218 		CSR_READ_4(sc, NGE_CSR);
219 }
220 
221 void
222 nge_eeprom_idle(struct nge_softc *sc)
223 {
224 	int		i;
225 
226 	SIO_SET(NGE_MEAR_EE_CSEL);
227 	nge_delay(sc);
228 	SIO_SET(NGE_MEAR_EE_CLK);
229 	nge_delay(sc);
230 
231 	for (i = 0; i < 25; i++) {
232 		SIO_CLR(NGE_MEAR_EE_CLK);
233 		nge_delay(sc);
234 		SIO_SET(NGE_MEAR_EE_CLK);
235 		nge_delay(sc);
236 	}
237 
238 	SIO_CLR(NGE_MEAR_EE_CLK);
239 	nge_delay(sc);
240 	SIO_CLR(NGE_MEAR_EE_CSEL);
241 	nge_delay(sc);
242 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
243 }
244 
245 /*
246  * Send a read command and address to the EEPROM, check for ACK.
247  */
248 void
249 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
250 {
251 	int			d, i;
252 
253 	d = addr | NGE_EECMD_READ;
254 
255 	/*
256 	 * Feed in each bit and strobe the clock.
257 	 */
258 	for (i = 0x400; i; i >>= 1) {
259 		if (d & i) {
260 			SIO_SET(NGE_MEAR_EE_DIN);
261 		} else {
262 			SIO_CLR(NGE_MEAR_EE_DIN);
263 		}
264 		nge_delay(sc);
265 		SIO_SET(NGE_MEAR_EE_CLK);
266 		nge_delay(sc);
267 		SIO_CLR(NGE_MEAR_EE_CLK);
268 		nge_delay(sc);
269 	}
270 }
271 
272 /*
273  * Read a word of data stored in the EEPROM at address 'addr.'
274  */
275 void
276 nge_eeprom_getword(struct nge_softc *sc, int addr, u_int16_t *dest)
277 {
278 	int			i;
279 	u_int16_t		word = 0;
280 
281 	/* Force EEPROM to idle state. */
282 	nge_eeprom_idle(sc);
283 
284 	/* Enter EEPROM access mode. */
285 	nge_delay(sc);
286 	SIO_CLR(NGE_MEAR_EE_CLK);
287 	nge_delay(sc);
288 	SIO_SET(NGE_MEAR_EE_CSEL);
289 	nge_delay(sc);
290 
291 	/*
292 	 * Send address of word we want to read.
293 	 */
294 	nge_eeprom_putbyte(sc, addr);
295 
296 	/*
297 	 * Start reading bits from EEPROM.
298 	 */
299 	for (i = 0x8000; i; i >>= 1) {
300 		SIO_SET(NGE_MEAR_EE_CLK);
301 		nge_delay(sc);
302 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
303 			word |= i;
304 		nge_delay(sc);
305 		SIO_CLR(NGE_MEAR_EE_CLK);
306 		nge_delay(sc);
307 	}
308 
309 	/* Turn off EEPROM access mode. */
310 	nge_eeprom_idle(sc);
311 
312 	*dest = word;
313 }
314 
315 /*
316  * Read a sequence of words from the EEPROM.
317  */
318 void
319 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt, int swap)
320 {
321 	int			i;
322 	u_int16_t		word = 0, *ptr;
323 
324 	for (i = 0; i < cnt; i++) {
325 		nge_eeprom_getword(sc, off + i, &word);
326 		ptr = (u_int16_t *)(dest + (i * 2));
327 		if (swap)
328 			*ptr = ntohs(word);
329 		else
330 			*ptr = word;
331 	}
332 }
333 
334 /*
335  * Sync the PHYs by setting data bit and strobing the clock 32 times.
336  */
337 void
338 nge_mii_sync(struct nge_softc *sc)
339 {
340 	int			i;
341 
342 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
343 
344 	for (i = 0; i < 32; i++) {
345 		SIO_SET(NGE_MEAR_MII_CLK);
346 		DELAY(1);
347 		SIO_CLR(NGE_MEAR_MII_CLK);
348 		DELAY(1);
349 	}
350 }
351 
352 /*
353  * Clock a series of bits through the MII.
354  */
355 void
356 nge_mii_send(struct nge_softc *sc, u_int32_t bits, int cnt)
357 {
358 	int			i;
359 
360 	SIO_CLR(NGE_MEAR_MII_CLK);
361 
362 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
363                 if (bits & i) {
364 			SIO_SET(NGE_MEAR_MII_DATA);
365                 } else {
366 			SIO_CLR(NGE_MEAR_MII_DATA);
367                 }
368 		DELAY(1);
369 		SIO_CLR(NGE_MEAR_MII_CLK);
370 		DELAY(1);
371 		SIO_SET(NGE_MEAR_MII_CLK);
372 	}
373 }
374 
375 /*
376  * Read an PHY register through the MII.
377  */
378 int
379 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
380 {
381 	int			i, ack, s;
382 
383 	s = splnet();
384 
385 	/*
386 	 * Set up frame for RX.
387 	 */
388 	frame->mii_stdelim = NGE_MII_STARTDELIM;
389 	frame->mii_opcode = NGE_MII_READOP;
390 	frame->mii_turnaround = 0;
391 	frame->mii_data = 0;
392 
393 	CSR_WRITE_4(sc, NGE_MEAR, 0);
394 
395 	/*
396 	 * Turn on data xmit.
397 	 */
398 	SIO_SET(NGE_MEAR_MII_DIR);
399 
400 	nge_mii_sync(sc);
401 
402 	/*
403 	 * Send command/address info.
404 	 */
405 	nge_mii_send(sc, frame->mii_stdelim, 2);
406 	nge_mii_send(sc, frame->mii_opcode, 2);
407 	nge_mii_send(sc, frame->mii_phyaddr, 5);
408 	nge_mii_send(sc, frame->mii_regaddr, 5);
409 
410 	/* Idle bit */
411 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
412 	DELAY(1);
413 	SIO_SET(NGE_MEAR_MII_CLK);
414 	DELAY(1);
415 
416 	/* Turn off xmit. */
417 	SIO_CLR(NGE_MEAR_MII_DIR);
418 	/* Check for ack */
419 	SIO_CLR(NGE_MEAR_MII_CLK);
420 	DELAY(1);
421 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
422 	SIO_SET(NGE_MEAR_MII_CLK);
423 	DELAY(1);
424 
425 	/*
426 	 * Now try reading data bits. If the ack failed, we still
427 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
428 	 */
429 	if (ack) {
430 		for(i = 0; i < 16; i++) {
431 			SIO_CLR(NGE_MEAR_MII_CLK);
432 			DELAY(1);
433 			SIO_SET(NGE_MEAR_MII_CLK);
434 			DELAY(1);
435 		}
436 		goto fail;
437 	}
438 
439 	for (i = 0x8000; i; i >>= 1) {
440 		SIO_CLR(NGE_MEAR_MII_CLK);
441 		DELAY(1);
442 		if (!ack) {
443 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
444 				frame->mii_data |= i;
445 			DELAY(1);
446 		}
447 		SIO_SET(NGE_MEAR_MII_CLK);
448 		DELAY(1);
449 	}
450 
451 fail:
452 
453 	SIO_CLR(NGE_MEAR_MII_CLK);
454 	DELAY(1);
455 	SIO_SET(NGE_MEAR_MII_CLK);
456 	DELAY(1);
457 
458 	splx(s);
459 
460 	if (ack)
461 		return(1);
462 	return(0);
463 }
464 
465 /*
466  * Write to a PHY register through the MII.
467  */
468 int
469 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
470 {
471 	int			s;
472 
473 	s = splnet();
474 	/*
475 	 * Set up frame for TX.
476 	 */
477 
478 	frame->mii_stdelim = NGE_MII_STARTDELIM;
479 	frame->mii_opcode = NGE_MII_WRITEOP;
480 	frame->mii_turnaround = NGE_MII_TURNAROUND;
481 
482 	/*
483 	 * Turn on data output.
484 	 */
485 	SIO_SET(NGE_MEAR_MII_DIR);
486 
487 	nge_mii_sync(sc);
488 
489 	nge_mii_send(sc, frame->mii_stdelim, 2);
490 	nge_mii_send(sc, frame->mii_opcode, 2);
491 	nge_mii_send(sc, frame->mii_phyaddr, 5);
492 	nge_mii_send(sc, frame->mii_regaddr, 5);
493 	nge_mii_send(sc, frame->mii_turnaround, 2);
494 	nge_mii_send(sc, frame->mii_data, 16);
495 
496 	/* Idle bit. */
497 	SIO_SET(NGE_MEAR_MII_CLK);
498 	DELAY(1);
499 	SIO_CLR(NGE_MEAR_MII_CLK);
500 	DELAY(1);
501 
502 	/*
503 	 * Turn off xmit.
504 	 */
505 	SIO_CLR(NGE_MEAR_MII_DIR);
506 
507 	splx(s);
508 
509 	return(0);
510 }
511 
512 int
513 nge_miibus_readreg(struct device *dev, int phy, int reg)
514 {
515 	struct nge_softc	*sc = (struct nge_softc *)dev;
516 	struct nge_mii_frame	frame;
517 
518 	DPRINTFN(9, ("%s: nge_miibus_readreg\n", sc->sc_dv.dv_xname));
519 
520 	bzero(&frame, sizeof(frame));
521 
522 	frame.mii_phyaddr = phy;
523 	frame.mii_regaddr = reg;
524 	nge_mii_readreg(sc, &frame);
525 
526 	return(frame.mii_data);
527 }
528 
529 void
530 nge_miibus_writereg(struct device *dev, int phy, int reg, int data)
531 {
532 	struct nge_softc	*sc = (struct nge_softc *)dev;
533 	struct nge_mii_frame	frame;
534 
535 
536 	DPRINTFN(9, ("%s: nge_miibus_writereg\n", sc->sc_dv.dv_xname));
537 
538 	bzero(&frame, sizeof(frame));
539 
540 	frame.mii_phyaddr = phy;
541 	frame.mii_regaddr = reg;
542 	frame.mii_data = data;
543 	nge_mii_writereg(sc, &frame);
544 }
545 
546 void
547 nge_miibus_statchg(struct device *dev)
548 {
549 	struct nge_softc	*sc = (struct nge_softc *)dev;
550 	struct mii_data		*mii = &sc->nge_mii;
551 	u_int32_t		txcfg, rxcfg;
552 
553 	txcfg = CSR_READ_4(sc, NGE_TX_CFG);
554 	rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
555 
556 	DPRINTFN(4, ("%s: nge_miibus_statchg txcfg=%#x, rxcfg=%#x\n",
557 		     sc->sc_dv.dv_xname, txcfg, rxcfg));
558 
559 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
560 		txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
561 		rxcfg |= (NGE_RXCFG_RX_FDX);
562 	} else {
563 		txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
564 		rxcfg &= ~(NGE_RXCFG_RX_FDX);
565 	}
566 
567 	txcfg |= NGE_TXCFG_AUTOPAD;
568 
569 	CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
570 	CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
571 
572 	/* If we have a 1000Mbps link, set the mode_1000 bit. */
573 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
574 		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
575 	else
576 		NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
577 }
578 
579 void
580 nge_setmulti(struct nge_softc *sc)
581 {
582 	struct arpcom		*ac = &sc->arpcom;
583 	struct ifnet		*ifp = &ac->ac_if;
584 	struct ether_multi      *enm;
585 	struct ether_multistep  step;
586 	u_int32_t		h = 0, i, filtsave;
587 	int			bit, index;
588 
589 	if (ac->ac_multirangecnt > 0)
590 		ifp->if_flags |= IFF_ALLMULTI;
591 
592 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
593 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
594 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
595 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
596 		return;
597 	}
598 
599 	/*
600 	 * We have to explicitly enable the multicast hash table
601 	 * on the NatSemi chip if we want to use it, which we do.
602 	 * We also have to tell it that we don't want to use the
603 	 * hash table for matching unicast addresses.
604 	 */
605 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
606 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
607 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
608 
609 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
610 
611 	/* first, zot all the existing hash bits */
612 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
613 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
614 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
615 	}
616 
617 	/*
618 	 * From the 11 bits returned by the crc routine, the top 7
619 	 * bits represent the 16-bit word in the mcast hash table
620 	 * that needs to be updated, and the lower 4 bits represent
621 	 * which bit within that byte needs to be set.
622 	 */
623 	ETHER_FIRST_MULTI(step, ac, enm);
624 	while (enm != NULL) {
625 		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 21) &
626 		    0x00000FFF;
627 		index = (h >> 4) & 0x7F;
628 		bit = h & 0xF;
629 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
630 		    NGE_FILTADDR_MCAST_LO + (index * 2));
631 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
632 		ETHER_NEXT_MULTI(step, enm);
633 	}
634 
635 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
636 }
637 
638 void
639 nge_reset(struct nge_softc *sc)
640 {
641 	int			i;
642 
643 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
644 
645 	for (i = 0; i < NGE_TIMEOUT; i++) {
646 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
647 			break;
648 	}
649 
650 	if (i == NGE_TIMEOUT)
651 		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
652 
653 	/* Wait a little while for the chip to get its brains in order. */
654 	DELAY(1000);
655 
656 	/*
657 	 * If this is a NetSemi chip, make sure to clear
658 	 * PME mode.
659 	 */
660 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
661 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
662 }
663 
664 /*
665  * Probe for an NatSemi chip. Check the PCI vendor and device
666  * IDs against our list and return a device name if we find a match.
667  */
668 int
669 nge_probe(struct device *parent, void *match, void *aux)
670 {
671 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
672 
673 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
674 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_DP83820)
675 		return (1);
676 
677 	return (0);
678 }
679 
680 /*
681  * Attach the interface. Allocate softc structures, do ifmedia
682  * setup and ethernet/BPF attach.
683  */
684 void
685 nge_attach(struct device *parent, struct device *self, void *aux)
686 {
687 	struct nge_softc	*sc = (struct nge_softc *)self;
688 	struct pci_attach_args	*pa = aux;
689 	pci_chipset_tag_t	pc = pa->pa_pc;
690 	pci_intr_handle_t	ih;
691 	const char		*intrstr = NULL;
692 	bus_size_t		size;
693 	bus_dma_segment_t	seg;
694 	bus_dmamap_t		dmamap;
695 	int			rseg;
696 	u_char			eaddr[ETHER_ADDR_LEN];
697 #ifndef NGE_USEIOSPACE
698 	pcireg_t		memtype;
699 #endif
700 	struct ifnet		*ifp;
701 	caddr_t			kva;
702 
703 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
704 
705 	/*
706 	 * Map control/status registers.
707 	 */
708 	DPRINTFN(5, ("%s: map control/status regs\n", sc->sc_dv.dv_xname));
709 
710 #ifdef NGE_USEIOSPACE
711 	DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname));
712 	if (pci_mapreg_map(pa, NGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
713 	    &sc->nge_btag, &sc->nge_bhandle, NULL, &size, 0)) {
714 		printf(": can't map i/o space\n");
715 		return;
716 	}
717 #else
718 	DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname));
719 	memtype = pci_mapreg_type(pc, pa->pa_tag, NGE_PCI_LOMEM);
720 	if (pci_mapreg_map(pa, NGE_PCI_LOMEM, memtype, 0, &sc->nge_btag,
721 	    &sc->nge_bhandle, NULL, &size, 0)) {
722 		printf(": can't map mem space\n");
723 		return;
724 	}
725 #endif
726 
727 	/* Disable all interrupts */
728 	CSR_WRITE_4(sc, NGE_IER, 0);
729 
730 	DPRINTFN(5, ("%s: pci_intr_map\n", sc->sc_dv.dv_xname));
731 	if (pci_intr_map(pa, &ih)) {
732 		printf(": couldn't map interrupt\n");
733 		goto fail_1;
734 	}
735 
736 	DPRINTFN(5, ("%s: pci_intr_string\n", sc->sc_dv.dv_xname));
737 	intrstr = pci_intr_string(pc, ih);
738 	DPRINTFN(5, ("%s: pci_intr_establish\n", sc->sc_dv.dv_xname));
739 	sc->nge_intrhand = pci_intr_establish(pc, ih, IPL_NET, nge_intr, sc,
740 					      sc->sc_dv.dv_xname);
741 	if (sc->nge_intrhand == NULL) {
742 		printf(": couldn't establish interrupt");
743 		if (intrstr != NULL)
744 			printf(" at %s", intrstr);
745 		printf("\n");
746 		goto fail_1;
747 	}
748 	printf(": %s", intrstr);
749 
750 	/* Reset the adapter. */
751 	DPRINTFN(5, ("%s: nge_reset\n", sc->sc_dv.dv_xname));
752 	nge_reset(sc);
753 
754 	/*
755 	 * Get station address from the EEPROM.
756 	 */
757 	DPRINTFN(5, ("%s: nge_read_eeprom\n", sc->sc_dv.dv_xname));
758 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
759 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
760 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
761 
762 	/*
763 	 * A NatSemi chip was detected. Inform the world.
764 	 */
765 	printf(", address %s\n", ether_sprintf(eaddr));
766 
767 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
768 
769 	sc->sc_dmatag = pa->pa_dmat;
770 	DPRINTFN(5, ("%s: bus_dmamem_alloc\n", sc->sc_dv.dv_xname));
771 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct nge_list_data),
772 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT |
773 			     BUS_DMA_ZERO)) {
774 		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
775 		goto fail_2;
776 	}
777 	DPRINTFN(5, ("%s: bus_dmamem_map\n", sc->sc_dv.dv_xname));
778 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
779 			   sizeof(struct nge_list_data), &kva,
780 			   BUS_DMA_NOWAIT)) {
781 		printf("%s: can't map dma buffers (%zd bytes)\n",
782 		       sc->sc_dv.dv_xname, sizeof(struct nge_list_data));
783 		goto fail_3;
784 	}
785 	DPRINTFN(5, ("%s: bus_dmamem_create\n", sc->sc_dv.dv_xname));
786 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct nge_list_data), 1,
787 			      sizeof(struct nge_list_data), 0,
788 			      BUS_DMA_NOWAIT, &dmamap)) {
789 		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
790 		goto fail_4;
791 	}
792 	DPRINTFN(5, ("%s: bus_dmamem_load\n", sc->sc_dv.dv_xname));
793 	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
794 			    sizeof(struct nge_list_data), NULL,
795 			    BUS_DMA_NOWAIT)) {
796 		goto fail_5;
797 	}
798 
799 	DPRINTFN(5, ("%s: bzero\n", sc->sc_dv.dv_xname));
800 	sc->nge_ldata = (struct nge_list_data *)kva;
801 
802 	/* Try to allocate memory for jumbo buffers. */
803 	DPRINTFN(5, ("%s: nge_alloc_jumbo_mem\n", sc->sc_dv.dv_xname));
804 	if (nge_alloc_jumbo_mem(sc)) {
805 		printf("%s: jumbo buffer allocation failed\n",
806 		       sc->sc_dv.dv_xname);
807 		goto fail_5;
808 	}
809 
810 	ifp = &sc->arpcom.ac_if;
811 	ifp->if_softc = sc;
812 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
813 	ifp->if_ioctl = nge_ioctl;
814 	ifp->if_start = nge_start;
815 	ifp->if_watchdog = nge_watchdog;
816 	ifp->if_hardmtu = NGE_JUMBO_MTU;
817 	IFQ_SET_MAXLEN(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
818 	IFQ_SET_READY(&ifp->if_snd);
819 	DPRINTFN(5, ("%s: bcopy\n", sc->sc_dv.dv_xname));
820 	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
821 
822 	ifp->if_capabilities = IFCAP_VLAN_MTU;
823 
824 #if NVLAN > 0
825 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
826 #endif
827 
828 	/*
829 	 * Do MII setup.
830 	 */
831 	DPRINTFN(5, ("%s: mii setup\n", sc->sc_dv.dv_xname));
832 	if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
833 		DPRINTFN(5, ("%s: TBI mode\n", sc->sc_dv.dv_xname));
834 		sc->nge_tbi = 1;
835 
836 		ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_tbi_upd,
837 			     nge_ifmedia_tbi_sts);
838 
839 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_NONE, 0, NULL),
840 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
841 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
842 			    0, NULL);
843 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
844 
845 		ifmedia_set(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO);
846 
847 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
848 			    | NGE_GPIO_GP4_OUT
849 			    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
850 			    | NGE_GPIO_GP3_OUTENB | NGE_GPIO_GP4_OUTENB
851 			    | NGE_GPIO_GP5_OUTENB);
852 
853 		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
854 	} else {
855 		sc->nge_mii.mii_ifp = ifp;
856 		sc->nge_mii.mii_readreg = nge_miibus_readreg;
857 		sc->nge_mii.mii_writereg = nge_miibus_writereg;
858 		sc->nge_mii.mii_statchg = nge_miibus_statchg;
859 
860 		ifmedia_init(&sc->nge_mii.mii_media, 0, nge_ifmedia_mii_upd,
861 			     nge_ifmedia_mii_sts);
862 		mii_attach(&sc->sc_dv, &sc->nge_mii, 0xffffffff, MII_PHY_ANY,
863 			   MII_OFFSET_ANY, 0);
864 
865 		if (LIST_FIRST(&sc->nge_mii.mii_phys) == NULL) {
866 
867 			printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
868 			ifmedia_add(&sc->nge_mii.mii_media,
869 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
870 			ifmedia_set(&sc->nge_mii.mii_media,
871 				    IFM_ETHER|IFM_MANUAL);
872 		}
873 		else
874 			ifmedia_set(&sc->nge_mii.mii_media,
875 				    IFM_ETHER|IFM_AUTO);
876 	}
877 
878 	/*
879 	 * Call MI attach routine.
880 	 */
881 	DPRINTFN(5, ("%s: if_attach\n", sc->sc_dv.dv_xname));
882 	if_attach(ifp);
883 	DPRINTFN(5, ("%s: ether_ifattach\n", sc->sc_dv.dv_xname));
884 	ether_ifattach(ifp);
885 	DPRINTFN(5, ("%s: timeout_set\n", sc->sc_dv.dv_xname));
886 	timeout_set(&sc->nge_timeout, nge_tick, sc);
887 	timeout_add_sec(&sc->nge_timeout, 1);
888 	return;
889 
890 fail_5:
891 	bus_dmamap_destroy(sc->sc_dmatag, dmamap);
892 
893 fail_4:
894 	bus_dmamem_unmap(sc->sc_dmatag, kva,
895 	    sizeof(struct nge_list_data));
896 
897 fail_3:
898 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
899 
900 fail_2:
901 	pci_intr_disestablish(pc, sc->nge_intrhand);
902 
903 fail_1:
904 	bus_space_unmap(sc->nge_btag, sc->nge_bhandle, size);
905 }
906 
907 /*
908  * Initialize the transmit descriptors.
909  */
910 int
911 nge_list_tx_init(struct nge_softc *sc)
912 {
913 	struct nge_list_data	*ld;
914 	struct nge_ring_data	*cd;
915 	int			i;
916 
917 	cd = &sc->nge_cdata;
918 	ld = sc->nge_ldata;
919 
920 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
921 		if (i == (NGE_TX_LIST_CNT - 1)) {
922 			ld->nge_tx_list[i].nge_nextdesc =
923 			    &ld->nge_tx_list[0];
924 			ld->nge_tx_list[i].nge_next =
925 			    VTOPHYS(&ld->nge_tx_list[0]);
926 		} else {
927 			ld->nge_tx_list[i].nge_nextdesc =
928 			    &ld->nge_tx_list[i + 1];
929 			ld->nge_tx_list[i].nge_next =
930 			    VTOPHYS(&ld->nge_tx_list[i + 1]);
931 		}
932 		ld->nge_tx_list[i].nge_mbuf = NULL;
933 		ld->nge_tx_list[i].nge_ptr = 0;
934 		ld->nge_tx_list[i].nge_ctl = 0;
935 	}
936 
937 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
938 
939 	return(0);
940 }
941 
942 
943 /*
944  * Initialize the RX descriptors and allocate mbufs for them. Note that
945  * we arrange the descriptors in a closed ring, so that the last descriptor
946  * points back to the first.
947  */
948 int
949 nge_list_rx_init(struct nge_softc *sc)
950 {
951 	struct nge_list_data	*ld;
952 	struct nge_ring_data	*cd;
953 	int			i;
954 
955 	ld = sc->nge_ldata;
956 	cd = &sc->nge_cdata;
957 
958 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
959 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
960 			return(ENOBUFS);
961 		if (i == (NGE_RX_LIST_CNT - 1)) {
962 			ld->nge_rx_list[i].nge_nextdesc =
963 			    &ld->nge_rx_list[0];
964 			ld->nge_rx_list[i].nge_next =
965 			    VTOPHYS(&ld->nge_rx_list[0]);
966 		} else {
967 			ld->nge_rx_list[i].nge_nextdesc =
968 			    &ld->nge_rx_list[i + 1];
969 			ld->nge_rx_list[i].nge_next =
970 			    VTOPHYS(&ld->nge_rx_list[i + 1]);
971 		}
972 	}
973 
974 	cd->nge_rx_prod = 0;
975 
976 	return(0);
977 }
978 
979 /*
980  * Initialize an RX descriptor and attach an MBUF cluster.
981  */
982 int
983 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
984 {
985 	struct mbuf		*m_new = NULL;
986 
987 	if (m == NULL) {
988 		caddr_t buf = NULL;
989 
990 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
991 		if (m_new == NULL)
992 			return (ENOBUFS);
993 
994 		/* Allocate the jumbo buffer */
995 		buf = nge_jalloc(sc);
996 		if (buf == NULL) {
997 			m_freem(m_new);
998 			return (ENOBUFS);
999 		}
1000 
1001 		/* Attach the buffer to the mbuf */
1002 		m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES;
1003 		MEXTADD(m_new, buf, NGE_MCLBYTES, 0, nge_jfree, sc);
1004 	} else {
1005 		/*
1006 		 * We're re-using a previously allocated mbuf;
1007 		 * be sure to re-init pointers and lengths to
1008 		 * default values.
1009 		 */
1010 		m_new = m;
1011 		m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES;
1012 		m_new->m_data = m_new->m_ext.ext_buf;
1013 	}
1014 
1015 	m_adj(m_new, sizeof(u_int64_t));
1016 
1017 	c->nge_mbuf = m_new;
1018 	c->nge_ptr = VTOPHYS(mtod(m_new, caddr_t));
1019 	DPRINTFN(7,("%s: c->nge_ptr=%#x\n", sc->sc_dv.dv_xname,
1020 		    c->nge_ptr));
1021 	c->nge_ctl = m_new->m_len;
1022 	c->nge_extsts = 0;
1023 
1024 	return(0);
1025 }
1026 
1027 int
1028 nge_alloc_jumbo_mem(struct nge_softc *sc)
1029 {
1030 	caddr_t			ptr, kva;
1031 	bus_dma_segment_t	seg;
1032 	bus_dmamap_t		dmamap;
1033 	int			i, rseg, state, error;
1034 	struct nge_jpool_entry	*entry;
1035 
1036 	state = error = 0;
1037 
1038 	if (bus_dmamem_alloc(sc->sc_dmatag, NGE_JMEM, PAGE_SIZE, 0,
1039 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1040 		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
1041 		return (ENOBUFS);
1042 	}
1043 
1044 	state = 1;
1045 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, NGE_JMEM, &kva,
1046 			   BUS_DMA_NOWAIT)) {
1047 		printf("%s: can't map dma buffers (%zd bytes)\n",
1048 		       sc->sc_dv.dv_xname, NGE_JMEM);
1049 		error = ENOBUFS;
1050 		goto out;
1051 	}
1052 
1053 	state = 2;
1054 	if (bus_dmamap_create(sc->sc_dmatag, NGE_JMEM, 1,
1055 			      NGE_JMEM, 0, BUS_DMA_NOWAIT, &dmamap)) {
1056 		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
1057 		error = ENOBUFS;
1058 		goto out;
1059 	}
1060 
1061 	state = 3;
1062 	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, NGE_JMEM,
1063 			    NULL, BUS_DMA_NOWAIT)) {
1064 		printf("%s: can't load dma map\n", sc->sc_dv.dv_xname);
1065 		error = ENOBUFS;
1066 		goto out;
1067         }
1068 
1069 	state = 4;
1070 	sc->nge_cdata.nge_jumbo_buf = (caddr_t)kva;
1071 	DPRINTFN(1,("%s: nge_jumbo_buf=%#x, NGE_MCLBYTES=%#x\n",
1072 		    sc->sc_dv.dv_xname , sc->nge_cdata.nge_jumbo_buf,
1073 		    NGE_MCLBYTES));
1074 
1075 	LIST_INIT(&sc->nge_jfree_listhead);
1076 	LIST_INIT(&sc->nge_jinuse_listhead);
1077 
1078 	/*
1079 	 * Now divide it up into 9K pieces and save the addresses
1080 	 * in an array. Note that we play an evil trick here by using
1081 	 * the first few bytes in the buffer to hold the address
1082 	 * of the softc structure for this interface. This is because
1083 	 * nge_jfree() needs it, but it is called by the mbuf management
1084 	 * code which will not pass it to us explicitly.
1085 	 */
1086 	ptr = sc->nge_cdata.nge_jumbo_buf;
1087 	for (i = 0; i < NGE_JSLOTS; i++) {
1088 		sc->nge_cdata.nge_jslots[i].nge_buf = ptr;
1089 		sc->nge_cdata.nge_jslots[i].nge_inuse = 0;
1090 		ptr += NGE_MCLBYTES;
1091 		entry = malloc(sizeof(struct nge_jpool_entry),
1092 			       M_DEVBUF, M_NOWAIT);
1093 		if (entry == NULL) {
1094 			sc->nge_cdata.nge_jumbo_buf = NULL;
1095 			printf("%s: no memory for jumbo buffer queue!\n",
1096 			       sc->sc_dv.dv_xname);
1097 			error = ENOBUFS;
1098 			goto out;
1099 		}
1100 		entry->slot = i;
1101 		LIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry,
1102 				 jpool_entries);
1103 	}
1104 out:
1105 	if (error != 0) {
1106 		switch (state) {
1107 		case 4:
1108 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1109 		case 3:
1110 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1111 		case 2:
1112 			bus_dmamem_unmap(sc->sc_dmatag, kva, NGE_JMEM);
1113 		case 1:
1114 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1115 			break;
1116 		default:
1117 			break;
1118 		}
1119 	}
1120 
1121 	return (error);
1122 }
1123 
1124 /*
1125  * Allocate a jumbo buffer.
1126  */
1127 void *
1128 nge_jalloc(struct nge_softc *sc)
1129 {
1130 	struct nge_jpool_entry   *entry;
1131 
1132 	entry = LIST_FIRST(&sc->nge_jfree_listhead);
1133 
1134 	if (entry == NULL)
1135 		return (NULL);
1136 
1137 	LIST_REMOVE(entry, jpool_entries);
1138 	LIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1139 	sc->nge_cdata.nge_jslots[entry->slot].nge_inuse = 1;
1140 	return(sc->nge_cdata.nge_jslots[entry->slot].nge_buf);
1141 }
1142 
1143 /*
1144  * Release a jumbo buffer.
1145  */
1146 void
1147 nge_jfree(caddr_t buf, u_int size, void *arg)
1148 {
1149 	struct nge_softc	*sc;
1150 	int		        i;
1151 	struct nge_jpool_entry *entry;
1152 
1153 	/* Extract the softc struct pointer. */
1154 	sc = (struct nge_softc *)arg;
1155 
1156 	if (sc == NULL)
1157 		panic("nge_jfree: can't find softc pointer!");
1158 
1159 	/* calculate the slot this buffer belongs to */
1160 
1161 	i = ((vaddr_t)buf - (vaddr_t)sc->nge_cdata.nge_jumbo_buf)
1162 	  / NGE_MCLBYTES;
1163 
1164 	if ((i < 0) || (i >= NGE_JSLOTS))
1165 		panic("nge_jfree: asked to free buffer that we don't manage!");
1166 	else if (sc->nge_cdata.nge_jslots[i].nge_inuse == 0)
1167 		panic("nge_jfree: buffer already free!");
1168 	else {
1169 		sc->nge_cdata.nge_jslots[i].nge_inuse--;
1170 		if(sc->nge_cdata.nge_jslots[i].nge_inuse == 0) {
1171 			entry = LIST_FIRST(&sc->nge_jinuse_listhead);
1172 			if (entry == NULL)
1173 				panic("nge_jfree: buffer not in use!");
1174 			entry->slot = i;
1175 			LIST_REMOVE(entry, jpool_entries);
1176 			LIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1177 					 entry, jpool_entries);
1178 		}
1179 	}
1180 }
1181 
1182 /*
1183  * A frame has been uploaded: pass the resulting mbuf chain up to
1184  * the higher level protocols.
1185  */
1186 void
1187 nge_rxeof(struct nge_softc *sc)
1188 {
1189         struct mbuf		*m;
1190         struct ifnet		*ifp;
1191 	struct nge_desc		*cur_rx;
1192 	int			i, total_len = 0;
1193 	u_int32_t		rxstat;
1194 
1195 	ifp = &sc->arpcom.ac_if;
1196 	i = sc->nge_cdata.nge_rx_prod;
1197 
1198 	while (NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1199 		struct mbuf		*m0 = NULL;
1200 		u_int32_t		extsts;
1201 
1202 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1203 		rxstat = cur_rx->nge_rxstat;
1204 		extsts = cur_rx->nge_extsts;
1205 		m = cur_rx->nge_mbuf;
1206 		cur_rx->nge_mbuf = NULL;
1207 		total_len = NGE_RXBYTES(cur_rx);
1208 		NGE_INC(i, NGE_RX_LIST_CNT);
1209 
1210 		/*
1211 		 * If an error occurs, update stats, clear the
1212 		 * status word and leave the mbuf cluster in place:
1213 		 * it should simply get re-used next time this descriptor
1214 		 * comes up in the ring.
1215 		 */
1216 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1217 #if NVLAN > 0
1218 			if ((rxstat & NGE_RXSTAT_RUNT) &&
1219 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN -
1220 			    ETHER_VLAN_ENCAP_LEN)) {
1221 				/*
1222 				 * Workaround a hardware bug. Accept runt
1223 				 * frames if its length is larger than or
1224 				 * equal to 56.
1225 				 */
1226 			} else {
1227 #endif
1228 				ifp->if_ierrors++;
1229 				nge_newbuf(sc, cur_rx, m);
1230 				continue;
1231 #if NVLAN > 0
1232 			}
1233 #endif
1234 		}
1235 
1236 		/*
1237 		 * Ok. NatSemi really screwed up here. This is the
1238 		 * only gigE chip I know of with alignment constraints
1239 		 * on receive buffers. RX buffers must be 64-bit aligned.
1240 		 */
1241 #ifndef __STRICT_ALIGNMENT
1242 		/*
1243 		 * By popular demand, ignore the alignment problems
1244 		 * on the Intel x86 platform. The performance hit
1245 		 * incurred due to unaligned accesses is much smaller
1246 		 * than the hit produced by forcing buffer copies all
1247 		 * the time, especially with jumbo frames. We still
1248 		 * need to fix up the alignment everywhere else though.
1249 		 */
1250 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1251 #endif
1252 			m0 = m_devget(mtod(m, char *), total_len,
1253 			    ETHER_ALIGN, ifp);
1254 			nge_newbuf(sc, cur_rx, m);
1255 			if (m0 == NULL) {
1256 				ifp->if_ierrors++;
1257 				continue;
1258 			}
1259 			m_adj(m0, ETHER_ALIGN);
1260 			m = m0;
1261 #ifndef __STRICT_ALIGNMENT
1262 		} else {
1263 			m->m_pkthdr.rcvif = ifp;
1264 			m->m_pkthdr.len = m->m_len = total_len;
1265 		}
1266 #endif
1267 
1268 		ifp->if_ipackets++;
1269 
1270 #if NVLAN > 0
1271 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1272 			m->m_pkthdr.ether_vtag =
1273 			    ntohs(extsts & NGE_RXEXTSTS_VTCI);
1274 			m->m_flags |= M_VLANTAG;
1275 		}
1276 #endif
1277 
1278 #if NBPFILTER > 0
1279 		/*
1280 		 * Handle BPF listeners. Let the BPF user see the packet.
1281 		 */
1282 		if (ifp->if_bpf)
1283 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1284 #endif
1285 
1286 		/* Do IP checksum checking. */
1287 		if (extsts & NGE_RXEXTSTS_IPPKT) {
1288 			if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1289 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1290 			if ((extsts & NGE_RXEXTSTS_TCPPKT) &&
1291 			    (!(extsts & NGE_RXEXTSTS_TCPCSUMERR)))
1292 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
1293 			else if ((extsts & NGE_RXEXTSTS_UDPPKT) &&
1294 				 (!(extsts & NGE_RXEXTSTS_UDPCSUMERR)))
1295 				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
1296 		}
1297 
1298 		ether_input_mbuf(ifp, m);
1299 	}
1300 
1301 	sc->nge_cdata.nge_rx_prod = i;
1302 }
1303 
1304 /*
1305  * A frame was downloaded to the chip. It's safe for us to clean up
1306  * the list buffers.
1307  */
1308 
1309 void
1310 nge_txeof(struct nge_softc *sc)
1311 {
1312 	struct nge_desc		*cur_tx;
1313 	struct ifnet		*ifp;
1314 	u_int32_t		idx;
1315 
1316 	ifp = &sc->arpcom.ac_if;
1317 
1318 	/*
1319 	 * Go through our tx list and free mbufs for those
1320 	 * frames that have been transmitted.
1321 	 */
1322 	idx = sc->nge_cdata.nge_tx_cons;
1323 	while (idx != sc->nge_cdata.nge_tx_prod) {
1324 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1325 
1326 		if (NGE_OWNDESC(cur_tx))
1327 			break;
1328 
1329 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1330 			sc->nge_cdata.nge_tx_cnt--;
1331 			NGE_INC(idx, NGE_TX_LIST_CNT);
1332 			continue;
1333 		}
1334 
1335 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1336 			ifp->if_oerrors++;
1337 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1338 				ifp->if_collisions++;
1339 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1340 				ifp->if_collisions++;
1341 		}
1342 
1343 		ifp->if_collisions +=
1344 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1345 
1346 		ifp->if_opackets++;
1347 		if (cur_tx->nge_mbuf != NULL) {
1348 			m_freem(cur_tx->nge_mbuf);
1349 			cur_tx->nge_mbuf = NULL;
1350 			ifp->if_flags &= ~IFF_OACTIVE;
1351 		}
1352 
1353 		sc->nge_cdata.nge_tx_cnt--;
1354 		NGE_INC(idx, NGE_TX_LIST_CNT);
1355 	}
1356 
1357 	sc->nge_cdata.nge_tx_cons = idx;
1358 
1359 	if (idx == sc->nge_cdata.nge_tx_prod)
1360 		ifp->if_timer = 0;
1361 }
1362 
1363 void
1364 nge_tick(void *xsc)
1365 {
1366 	struct nge_softc	*sc = xsc;
1367 	struct mii_data		*mii = &sc->nge_mii;
1368 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1369 	int			s;
1370 
1371 	s = splnet();
1372 
1373 	DPRINTFN(10, ("%s: nge_tick: link=%d\n", sc->sc_dv.dv_xname,
1374 		      sc->nge_link));
1375 
1376 	timeout_add_sec(&sc->nge_timeout, 1);
1377 	if (sc->nge_link) {
1378 		splx(s);
1379 		return;
1380 	}
1381 
1382 	if (sc->nge_tbi) {
1383 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1384 		    == IFM_AUTO) {
1385 			u_int32_t bmsr, anlpar, txcfg, rxcfg;
1386 
1387 			bmsr = CSR_READ_4(sc, NGE_TBI_BMSR);
1388 			DPRINTFN(2, ("%s: nge_tick: bmsr=%#x\n",
1389 				     sc->sc_dv.dv_xname, bmsr));
1390 
1391 			if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) {
1392 				CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1393 
1394 				splx(s);
1395 				return;
1396 			}
1397 
1398 			anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR);
1399 			txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1400 			rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1401 
1402 			DPRINTFN(2, ("%s: nge_tick: anlpar=%#x, txcfg=%#x, "
1403 				     "rxcfg=%#x\n", sc->sc_dv.dv_xname, anlpar,
1404 				     txcfg, rxcfg));
1405 
1406 			if (anlpar == 0 || anlpar & NGE_TBIANAR_FDX) {
1407 				txcfg |= (NGE_TXCFG_IGN_HBEAT|
1408 					  NGE_TXCFG_IGN_CARR);
1409 				rxcfg |= NGE_RXCFG_RX_FDX;
1410 			} else {
1411 				txcfg &= ~(NGE_TXCFG_IGN_HBEAT|
1412 					   NGE_TXCFG_IGN_CARR);
1413 				rxcfg &= ~(NGE_RXCFG_RX_FDX);
1414 			}
1415 			txcfg |= NGE_TXCFG_AUTOPAD;
1416 			CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1417 			CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1418 		}
1419 
1420 		DPRINTF(("%s: gigabit link up\n", sc->sc_dv.dv_xname));
1421 		sc->nge_link++;
1422 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1423 			nge_start(ifp);
1424 	} else {
1425 		mii_tick(mii);
1426 		if (mii->mii_media_status & IFM_ACTIVE &&
1427 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1428 			sc->nge_link++;
1429 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1430 				DPRINTF(("%s: gigabit link up\n",
1431 					 sc->sc_dv.dv_xname));
1432 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1433 				nge_start(ifp);
1434 		}
1435 
1436 	}
1437 
1438 	splx(s);
1439 }
1440 
1441 int
1442 nge_intr(void *arg)
1443 {
1444 	struct nge_softc	*sc;
1445 	struct ifnet		*ifp;
1446 	u_int32_t		status;
1447 	int			claimed = 0;
1448 
1449 	sc = arg;
1450 	ifp = &sc->arpcom.ac_if;
1451 
1452 	/* Suppress unwanted interrupts */
1453 	if (!(ifp->if_flags & IFF_UP)) {
1454 		nge_stop(sc);
1455 		return (0);
1456 	}
1457 
1458 	/* Disable interrupts. */
1459 	CSR_WRITE_4(sc, NGE_IER, 0);
1460 
1461 	/* Data LED on for TBI mode */
1462 	if(sc->nge_tbi)
1463 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1464 			     | NGE_GPIO_GP3_OUT);
1465 
1466 	for (;;) {
1467 		/* Reading the ISR register clears all interrupts. */
1468 		status = CSR_READ_4(sc, NGE_ISR);
1469 
1470 		if ((status & NGE_INTRS) == 0)
1471 			break;
1472 
1473 		claimed = 1;
1474 
1475 		if ((status & NGE_ISR_TX_DESC_OK) ||
1476 		    (status & NGE_ISR_TX_ERR) ||
1477 		    (status & NGE_ISR_TX_OK) ||
1478 		    (status & NGE_ISR_TX_IDLE))
1479 			nge_txeof(sc);
1480 
1481 		if ((status & NGE_ISR_RX_DESC_OK) ||
1482 		    (status & NGE_ISR_RX_ERR) ||
1483 		    (status & NGE_ISR_RX_OFLOW) ||
1484 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1485 		    (status & NGE_ISR_RX_IDLE) ||
1486 		    (status & NGE_ISR_RX_OK))
1487 			nge_rxeof(sc);
1488 
1489 		if ((status & NGE_ISR_RX_IDLE))
1490 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1491 
1492 		if (status & NGE_ISR_SYSERR) {
1493 			nge_reset(sc);
1494 			ifp->if_flags &= ~IFF_RUNNING;
1495 			nge_init(sc);
1496 		}
1497 
1498 #if 0
1499 		/*
1500 		 * XXX: nge_tick() is not ready to be called this way
1501 		 * it screws up the aneg timeout because mii_tick() is
1502 		 * only to be called once per second.
1503 		 */
1504 		if (status & NGE_IMR_PHY_INTR) {
1505 			sc->nge_link = 0;
1506 			nge_tick(sc);
1507 		}
1508 #endif
1509 	}
1510 
1511 	/* Re-enable interrupts. */
1512 	CSR_WRITE_4(sc, NGE_IER, 1);
1513 
1514 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1515 		nge_start(ifp);
1516 
1517 	/* Data LED off for TBI mode */
1518 	if(sc->nge_tbi)
1519 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1520 			    & ~NGE_GPIO_GP3_OUT);
1521 
1522 	return claimed;
1523 }
1524 
1525 /*
1526  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1527  * pointers to the fragment pointers.
1528  */
1529 int
1530 nge_encap(struct nge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
1531 {
1532 	struct nge_desc		*f = NULL;
1533 	struct mbuf		*m;
1534 	int			frag, cur, cnt = 0;
1535 
1536 	/*
1537 	 * Start packing the mbufs in this chain into
1538 	 * the fragment pointers. Stop when we run out
1539 	 * of fragments or hit the end of the mbuf chain.
1540 	 */
1541 	m = m_head;
1542 	cur = frag = *txidx;
1543 
1544 	for (m = m_head; m != NULL; m = m->m_next) {
1545 		if (m->m_len != 0) {
1546 			if ((NGE_TX_LIST_CNT -
1547 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1548 				return(ENOBUFS);
1549 			f = &sc->nge_ldata->nge_tx_list[frag];
1550 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1551 			f->nge_ptr = VTOPHYS(mtod(m, vaddr_t));
1552 			DPRINTFN(7,("%s: f->nge_ptr=%#x\n",
1553 				    sc->sc_dv.dv_xname, f->nge_ptr));
1554 			if (cnt != 0)
1555 				f->nge_ctl |= NGE_CMDSTS_OWN;
1556 			cur = frag;
1557 			NGE_INC(frag, NGE_TX_LIST_CNT);
1558 			cnt++;
1559 		}
1560 	}
1561 
1562 	if (m != NULL)
1563 		return(ENOBUFS);
1564 
1565 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1566 
1567 #if NVLAN > 0
1568 	if (m_head->m_flags & M_VLANTAG) {
1569 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1570 		    (NGE_TXEXTSTS_VLANPKT|htons(m_head->m_pkthdr.ether_vtag));
1571 	}
1572 #endif
1573 
1574 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1575 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1576 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1577 	sc->nge_cdata.nge_tx_cnt += cnt;
1578 	*txidx = frag;
1579 
1580 	return(0);
1581 }
1582 
1583 /*
1584  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1585  * to the mbuf data regions directly in the transmit lists. We also save a
1586  * copy of the pointers since the transmit list fragment pointers are
1587  * physical addresses.
1588  */
1589 
1590 void
1591 nge_start(struct ifnet *ifp)
1592 {
1593 	struct nge_softc	*sc;
1594 	struct mbuf		*m_head = NULL;
1595 	u_int32_t		idx;
1596 	int			pkts = 0;
1597 
1598 	sc = ifp->if_softc;
1599 
1600 	if (!sc->nge_link)
1601 		return;
1602 
1603 	idx = sc->nge_cdata.nge_tx_prod;
1604 
1605 	if (ifp->if_flags & IFF_OACTIVE)
1606 		return;
1607 
1608 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1609 		IFQ_POLL(&ifp->if_snd, m_head);
1610 		if (m_head == NULL)
1611 			break;
1612 
1613 		if (nge_encap(sc, m_head, &idx)) {
1614 			ifp->if_flags |= IFF_OACTIVE;
1615 			break;
1616 		}
1617 
1618 		/* now we are committed to transmit the packet */
1619 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1620 		pkts++;
1621 
1622 #if NBPFILTER > 0
1623 		/*
1624 		 * If there's a BPF listener, bounce a copy of this frame
1625 		 * to him.
1626 		 */
1627 		if (ifp->if_bpf)
1628 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1629 #endif
1630 	}
1631 	if (pkts == 0)
1632 		return;
1633 
1634 	/* Transmit */
1635 	sc->nge_cdata.nge_tx_prod = idx;
1636 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1637 
1638 	/*
1639 	 * Set a timeout in case the chip goes out to lunch.
1640 	 */
1641 	ifp->if_timer = 5;
1642 }
1643 
1644 void
1645 nge_init(void *xsc)
1646 {
1647 	struct nge_softc	*sc = xsc;
1648 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1649 	struct mii_data		*mii;
1650 	u_int32_t		txcfg, rxcfg;
1651 	int			s, media;
1652 
1653 	if (ifp->if_flags & IFF_RUNNING)
1654 		return;
1655 
1656 	s = splnet();
1657 
1658 	/*
1659 	 * Cancel pending I/O and free all RX/TX buffers.
1660 	 */
1661 	nge_stop(sc);
1662 
1663 	mii = sc->nge_tbi ? NULL: &sc->nge_mii;
1664 
1665 	/* Set MAC address */
1666 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1667 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1668 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1669 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1670 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1671 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1672 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1673 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1674 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1675 
1676 	/* Init circular RX list. */
1677 	if (nge_list_rx_init(sc) == ENOBUFS) {
1678 		printf("%s: initialization failed: no "
1679 			"memory for rx buffers\n", sc->sc_dv.dv_xname);
1680 		nge_stop(sc);
1681 		splx(s);
1682 		return;
1683 	}
1684 
1685 	/*
1686 	 * Init tx descriptors.
1687 	 */
1688 	nge_list_tx_init(sc);
1689 
1690 	/*
1691 	 * For the NatSemi chip, we have to explicitly enable the
1692 	 * reception of ARP frames, as well as turn on the 'perfect
1693 	 * match' filter where we store the station address, otherwise
1694 	 * we won't receive unicasts meant for this host.
1695 	 */
1696 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1697 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1698 
1699 	 /* If we want promiscuous mode, set the allframes bit. */
1700 	if (ifp->if_flags & IFF_PROMISC)
1701 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1702 	else
1703 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1704 
1705 	/*
1706 	 * Set the capture broadcast bit to capture broadcast frames.
1707 	 */
1708 	if (ifp->if_flags & IFF_BROADCAST)
1709 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1710 	else
1711 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1712 
1713 	/*
1714 	 * Load the multicast filter.
1715 	 */
1716 	nge_setmulti(sc);
1717 
1718 	/* Turn the receive filter on */
1719 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1720 
1721 	/*
1722 	 * Load the address of the RX and TX lists.
1723 	 */
1724 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1725 	    VTOPHYS(&sc->nge_ldata->nge_rx_list[0]));
1726 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1727 	    VTOPHYS(&sc->nge_ldata->nge_tx_list[0]));
1728 
1729 	/* Set RX configuration */
1730 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1731 
1732 	/*
1733 	 * Enable hardware checksum validation for all IPv4
1734 	 * packets, do not reject packets with bad checksums.
1735 	 */
1736 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1737 
1738 	/*
1739 	 * If VLAN support is enabled, tell the chip to detect
1740 	 * and strip VLAN tag info from received frames. The tag
1741 	 * will be provided in the extsts field in the RX descriptors.
1742 	 */
1743 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1744 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1745 		    NGE_VIPRXCTL_TAG_DETECT_ENB | NGE_VIPRXCTL_TAG_STRIP_ENB);
1746 
1747 	/* Set TX configuration */
1748 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1749 
1750 	/*
1751 	 * If VLAN support is enabled, tell the chip to insert
1752 	 * VLAN tags on a per-packet basis as dictated by the
1753 	 * code in the frame encapsulation routine.
1754 	 */
1755 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1756 		NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1757 
1758 	/* Set full/half duplex mode. */
1759 	if (sc->nge_tbi)
1760 		media = sc->nge_ifmedia.ifm_cur->ifm_media;
1761 	else
1762 		media = mii->mii_media_active;
1763 
1764 	txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1765 	rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1766 
1767 	DPRINTFN(4, ("%s: nge_init txcfg=%#x, rxcfg=%#x\n",
1768 		     sc->sc_dv.dv_xname, txcfg, rxcfg));
1769 
1770 	if ((media & IFM_GMASK) == IFM_FDX) {
1771 		txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1772 		rxcfg |= (NGE_RXCFG_RX_FDX);
1773 	} else {
1774 		txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1775 		rxcfg &= ~(NGE_RXCFG_RX_FDX);
1776 	}
1777 
1778 	txcfg |= NGE_TXCFG_AUTOPAD;
1779 
1780 	CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1781 	CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1782 
1783 	nge_tick(sc);
1784 
1785 	/*
1786 	 * Enable the delivery of PHY interrupts based on
1787 	 * link/speed/duplex status changes and enable return
1788 	 * of extended status information in the DMA descriptors,
1789 	 * required for checksum offloading.
1790 	 */
1791 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|NGE_CFG_PHYINTR_LNK|
1792 		   NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1793 
1794 	DPRINTFN(1, ("%s: nge_init: config=%#x\n", sc->sc_dv.dv_xname,
1795 		     CSR_READ_4(sc, NGE_CFG)));
1796 
1797 	/*
1798 	 * Configure interrupt holdoff (moderation). We can
1799 	 * have the chip delay interrupt delivery for a certain
1800 	 * period. Units are in 100us, and the max setting
1801 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1802 	 */
1803 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1804 
1805 	/*
1806 	 * Enable interrupts.
1807 	 */
1808 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1809 	CSR_WRITE_4(sc, NGE_IER, 1);
1810 
1811 	/* Enable receiver and transmitter. */
1812 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1813 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1814 
1815 	if (sc->nge_tbi)
1816 	    nge_ifmedia_tbi_upd(ifp);
1817 	else
1818 	    nge_ifmedia_mii_upd(ifp);
1819 
1820 	ifp->if_flags |= IFF_RUNNING;
1821 	ifp->if_flags &= ~IFF_OACTIVE;
1822 
1823 	splx(s);
1824 }
1825 
1826 /*
1827  * Set mii media options.
1828  */
1829 int
1830 nge_ifmedia_mii_upd(struct ifnet *ifp)
1831 {
1832 	struct nge_softc	*sc = ifp->if_softc;
1833 	struct mii_data 	*mii = &sc->nge_mii;
1834 
1835 	DPRINTFN(2, ("%s: nge_ifmedia_mii_upd\n", sc->sc_dv.dv_xname));
1836 
1837 	sc->nge_link = 0;
1838 
1839 	if (mii->mii_instance) {
1840 		struct mii_softc *miisc;
1841 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1842 			mii_phy_reset(miisc);
1843 	}
1844 	mii_mediachg(mii);
1845 
1846 	return(0);
1847 }
1848 
1849 /*
1850  * Report current mii media status.
1851  */
1852 void
1853 nge_ifmedia_mii_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1854 {
1855 	struct nge_softc	*sc = ifp->if_softc;
1856 	struct mii_data *mii = &sc->nge_mii;
1857 
1858 	DPRINTFN(2, ("%s: nge_ifmedia_mii_sts\n", sc->sc_dv.dv_xname));
1859 
1860 	mii_pollstat(mii);
1861 	ifmr->ifm_active = mii->mii_media_active;
1862 	ifmr->ifm_status = mii->mii_media_status;
1863 }
1864 
1865 /*
1866  * Set mii media options.
1867  */
1868 int
1869 nge_ifmedia_tbi_upd(struct ifnet *ifp)
1870 {
1871 	struct nge_softc	*sc = ifp->if_softc;
1872 
1873 	DPRINTFN(2, ("%s: nge_ifmedia_tbi_upd\n", sc->sc_dv.dv_xname));
1874 
1875 	sc->nge_link = 0;
1876 
1877 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1878 	    == IFM_AUTO) {
1879 		u_int32_t anar, bmcr;
1880 		anar = CSR_READ_4(sc, NGE_TBI_ANAR);
1881 		anar |= (NGE_TBIANAR_HDX | NGE_TBIANAR_FDX);
1882 		CSR_WRITE_4(sc, NGE_TBI_ANAR, anar);
1883 
1884 		bmcr = CSR_READ_4(sc, NGE_TBI_BMCR);
1885 		bmcr |= (NGE_TBIBMCR_ENABLE_ANEG|NGE_TBIBMCR_RESTART_ANEG);
1886 		CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr);
1887 
1888 		bmcr &= ~(NGE_TBIBMCR_RESTART_ANEG);
1889 		CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr);
1890 	} else {
1891 		u_int32_t txcfg, rxcfg;
1892 		txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1893 		rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1894 
1895 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1896 		    == IFM_FDX) {
1897 			txcfg |= NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR;
1898 			rxcfg |= NGE_RXCFG_RX_FDX;
1899 		} else {
1900 			txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1901 			rxcfg &= ~(NGE_RXCFG_RX_FDX);
1902 		}
1903 
1904 		txcfg |= NGE_TXCFG_AUTOPAD;
1905 		CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1906 		CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1907 	}
1908 
1909 	NGE_CLRBIT(sc, NGE_GPIO, NGE_GPIO_GP3_OUT);
1910 
1911 	return(0);
1912 }
1913 
1914 /*
1915  * Report current tbi media status.
1916  */
1917 void
1918 nge_ifmedia_tbi_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1919 {
1920 	struct nge_softc	*sc = ifp->if_softc;
1921 	u_int32_t		bmcr;
1922 
1923 	bmcr = CSR_READ_4(sc, NGE_TBI_BMCR);
1924 
1925 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) {
1926 		u_int32_t bmsr = CSR_READ_4(sc, NGE_TBI_BMSR);
1927 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmsr=%#x, bmcr=%#x\n",
1928 			     sc->sc_dv.dv_xname, bmsr, bmcr));
1929 
1930 		if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) {
1931 			ifmr->ifm_active = IFM_ETHER|IFM_NONE;
1932 			ifmr->ifm_status = IFM_AVALID;
1933 			return;
1934 		}
1935 	} else {
1936 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmcr=%#x\n",
1937 			     sc->sc_dv.dv_xname, bmcr));
1938 	}
1939 
1940 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
1941 	ifmr->ifm_active = IFM_ETHER|IFM_1000_SX;
1942 
1943 	if (bmcr & NGE_TBIBMCR_LOOPBACK)
1944 		ifmr->ifm_active |= IFM_LOOP;
1945 
1946 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) {
1947 		u_int32_t anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR);
1948 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts anlpar=%#x\n",
1949 			     sc->sc_dv.dv_xname, anlpar));
1950 
1951 		ifmr->ifm_active |= IFM_AUTO;
1952 		if (anlpar & NGE_TBIANLPAR_FDX) {
1953 			ifmr->ifm_active |= IFM_FDX;
1954 		} else if (anlpar & NGE_TBIANLPAR_HDX) {
1955 			ifmr->ifm_active |= IFM_HDX;
1956 		} else
1957 			ifmr->ifm_active |= IFM_FDX;
1958 
1959 	} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) == IFM_FDX)
1960 		ifmr->ifm_active |= IFM_FDX;
1961 	else
1962 		ifmr->ifm_active |= IFM_HDX;
1963 
1964 }
1965 
1966 int
1967 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1968 {
1969 	struct nge_softc	*sc = ifp->if_softc;
1970 	struct ifaddr		*ifa = (struct ifaddr *) data;
1971 	struct ifreq		*ifr = (struct ifreq *) data;
1972 	struct mii_data		*mii;
1973 	int			s, error = 0;
1974 
1975 	s = splnet();
1976 
1977 	switch(command) {
1978 	case SIOCSIFADDR:
1979 		ifp->if_flags |= IFF_UP;
1980 		switch (ifa->ifa_addr->sa_family) {
1981 #ifdef INET
1982 		case AF_INET:
1983 			nge_init(sc);
1984 			arp_ifinit(&sc->arpcom, ifa);
1985 			break;
1986 #endif /* INET */
1987 		default:
1988 			nge_init(sc);
1989 			break;
1990                 }
1991 		break;
1992 
1993 	case SIOCSIFFLAGS:
1994 		if (ifp->if_flags & IFF_UP) {
1995 			if (ifp->if_flags & IFF_RUNNING &&
1996 			    ifp->if_flags & IFF_PROMISC &&
1997 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1998 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1999 				    NGE_RXFILTCTL_ALLPHYS|
2000 				    NGE_RXFILTCTL_ALLMULTI);
2001 			} else if (ifp->if_flags & IFF_RUNNING &&
2002 			    !(ifp->if_flags & IFF_PROMISC) &&
2003 			    sc->nge_if_flags & IFF_PROMISC) {
2004 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2005 				    NGE_RXFILTCTL_ALLPHYS);
2006 				if (!(ifp->if_flags & IFF_ALLMULTI))
2007 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2008 					    NGE_RXFILTCTL_ALLMULTI);
2009 			} else {
2010 				ifp->if_flags &= ~IFF_RUNNING;
2011 				nge_init(sc);
2012 			}
2013 		} else {
2014 			if (ifp->if_flags & IFF_RUNNING)
2015 				nge_stop(sc);
2016 		}
2017 		sc->nge_if_flags = ifp->if_flags;
2018 		error = 0;
2019 		break;
2020 
2021 	case SIOCGIFMEDIA:
2022 	case SIOCSIFMEDIA:
2023 		if (sc->nge_tbi) {
2024 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2025 					      command);
2026 		} else {
2027 			mii = &sc->nge_mii;
2028 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2029 					      command);
2030 		}
2031 		break;
2032 
2033 	default:
2034 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
2035 	}
2036 
2037 	if (error == ENETRESET) {
2038 		if (ifp->if_flags & IFF_RUNNING)
2039 			nge_setmulti(sc);
2040 		error = 0;
2041 	}
2042 
2043 	splx(s);
2044 	return(error);
2045 }
2046 
2047 void
2048 nge_watchdog(struct ifnet *ifp)
2049 {
2050 	struct nge_softc	*sc;
2051 
2052 	sc = ifp->if_softc;
2053 
2054 	ifp->if_oerrors++;
2055 	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
2056 
2057 	nge_stop(sc);
2058 	nge_reset(sc);
2059 	ifp->if_flags &= ~IFF_RUNNING;
2060 	nge_init(sc);
2061 
2062 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
2063 		nge_start(ifp);
2064 }
2065 
2066 /*
2067  * Stop the adapter and free any mbufs allocated to the
2068  * RX and TX lists.
2069  */
2070 void
2071 nge_stop(struct nge_softc *sc)
2072 {
2073 	int			i;
2074 	struct ifnet		*ifp;
2075 	struct mii_data		*mii;
2076 
2077 	ifp = &sc->arpcom.ac_if;
2078 	ifp->if_timer = 0;
2079 	if (sc->nge_tbi) {
2080 		mii = NULL;
2081 	} else {
2082 		mii = &sc->nge_mii;
2083 	}
2084 
2085 	timeout_del(&sc->nge_timeout);
2086 
2087 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2088 
2089 	CSR_WRITE_4(sc, NGE_IER, 0);
2090 	CSR_WRITE_4(sc, NGE_IMR, 0);
2091 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2092 	DELAY(1000);
2093 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2094 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2095 
2096 	if (!sc->nge_tbi)
2097 		mii_down(mii);
2098 
2099 	sc->nge_link = 0;
2100 
2101 	/*
2102 	 * Free data in the RX lists.
2103 	 */
2104 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2105 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2106 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2107 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2108 		}
2109 	}
2110 	bzero(&sc->nge_ldata->nge_rx_list,
2111 		sizeof(sc->nge_ldata->nge_rx_list));
2112 
2113 	/*
2114 	 * Free the TX list buffers.
2115 	 */
2116 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2117 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2118 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2119 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2120 		}
2121 	}
2122 
2123 	bzero(&sc->nge_ldata->nge_tx_list,
2124 		sizeof(sc->nge_ldata->nge_tx_list));
2125 }
2126 
2127 struct cfattach nge_ca = {
2128 	sizeof(struct nge_softc), nge_probe, nge_attach
2129 };
2130 
2131 struct cfdriver nge_cd = {
2132 	NULL, "nge", DV_IFNET
2133 };
2134