xref: /openbsd-src/sys/dev/pci/if_nge.c (revision 2b0358df1d88d06ef4139321dd05bd5e05d91eaf)
1 /*	$OpenBSD: if_nge.c,v 1.67 2008/11/28 02:44:18 brad Exp $	*/
2 /*
3  * Copyright (c) 2001 Wind River Systems
4  * Copyright (c) 1997, 1998, 1999, 2000, 2001
5  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: if_nge.c,v 1.35 2002/08/08 18:33:28 ambrisko Exp $
35  */
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include "bpfilter.h"
92 #include "vlan.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/sockio.h>
97 #include <sys/mbuf.h>
98 #include <sys/malloc.h>
99 #include <sys/kernel.h>
100 #include <sys/device.h>
101 #include <sys/socket.h>
102 
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/if_ether.h>
113 #endif
114 
115 #if NVLAN > 0
116 #include <net/if_types.h>
117 #include <net/if_vlan_var.h>
118 #endif
119 
120 #if NBPFILTER > 0
121 #include <net/bpf.h>
122 #endif
123 
124 #include <uvm/uvm_extern.h>              /* for vtophys */
125 #define	VTOPHYS(v)	vtophys((vaddr_t)(v))
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130 
131 #include <dev/mii/mii.h>
132 #include <dev/mii/miivar.h>
133 
134 #define NGE_USEIOSPACE
135 
136 #include <dev/pci/if_ngereg.h>
137 
138 int nge_probe(struct device *, void *, void *);
139 void nge_attach(struct device *, struct device *, void *);
140 
141 int nge_alloc_jumbo_mem(struct nge_softc *);
142 void *nge_jalloc(struct nge_softc *);
143 void nge_jfree(caddr_t, u_int, void *);
144 
145 int nge_newbuf(struct nge_softc *, struct nge_desc *,
146 			     struct mbuf *);
147 int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
148 void nge_rxeof(struct nge_softc *);
149 void nge_txeof(struct nge_softc *);
150 int nge_intr(void *);
151 void nge_tick(void *);
152 void nge_start(struct ifnet *);
153 int nge_ioctl(struct ifnet *, u_long, caddr_t);
154 void nge_init(void *);
155 void nge_stop(struct nge_softc *);
156 void nge_watchdog(struct ifnet *);
157 void nge_shutdown(void *);
158 int nge_ifmedia_mii_upd(struct ifnet *);
159 void nge_ifmedia_mii_sts(struct ifnet *, struct ifmediareq *);
160 int nge_ifmedia_tbi_upd(struct ifnet *);
161 void nge_ifmedia_tbi_sts(struct ifnet *, struct ifmediareq *);
162 
163 void nge_delay(struct nge_softc *);
164 void nge_eeprom_idle(struct nge_softc *);
165 void nge_eeprom_putbyte(struct nge_softc *, int);
166 void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
167 void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
168 
169 void nge_mii_sync(struct nge_softc *);
170 void nge_mii_send(struct nge_softc *, u_int32_t, int);
171 int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
172 int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
173 
174 int nge_miibus_readreg(struct device *, int, int);
175 void nge_miibus_writereg(struct device *, int, int, int);
176 void nge_miibus_statchg(struct device *);
177 
178 void nge_setmulti(struct nge_softc *);
179 void nge_reset(struct nge_softc *);
180 int nge_list_rx_init(struct nge_softc *);
181 int nge_list_tx_init(struct nge_softc *);
182 
183 #ifdef NGE_USEIOSPACE
184 #define NGE_RES			SYS_RES_IOPORT
185 #define NGE_RID			NGE_PCI_LOIO
186 #else
187 #define NGE_RES			SYS_RES_MEMORY
188 #define NGE_RID			NGE_PCI_LOMEM
189 #endif
190 
191 #ifdef NGE_DEBUG
192 #define DPRINTF(x)	if (ngedebug) printf x
193 #define DPRINTFN(n,x)	if (ngedebug >= (n)) printf x
194 int	ngedebug = 0;
195 #else
196 #define DPRINTF(x)
197 #define DPRINTFN(n,x)
198 #endif
199 
200 #define NGE_SETBIT(sc, reg, x)				\
201 	CSR_WRITE_4(sc, reg,				\
202 		CSR_READ_4(sc, reg) | (x))
203 
204 #define NGE_CLRBIT(sc, reg, x)				\
205 	CSR_WRITE_4(sc, reg,				\
206 		CSR_READ_4(sc, reg) & ~(x))
207 
208 #define SIO_SET(x)					\
209 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
210 
211 #define SIO_CLR(x)					\
212 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
213 
214 void
215 nge_delay(sc)
216 	struct nge_softc	*sc;
217 {
218 	int			idx;
219 
220 	for (idx = (300 / 33) + 1; idx > 0; idx--)
221 		CSR_READ_4(sc, NGE_CSR);
222 }
223 
224 void
225 nge_eeprom_idle(sc)
226 	struct nge_softc	*sc;
227 {
228 	int		i;
229 
230 	SIO_SET(NGE_MEAR_EE_CSEL);
231 	nge_delay(sc);
232 	SIO_SET(NGE_MEAR_EE_CLK);
233 	nge_delay(sc);
234 
235 	for (i = 0; i < 25; i++) {
236 		SIO_CLR(NGE_MEAR_EE_CLK);
237 		nge_delay(sc);
238 		SIO_SET(NGE_MEAR_EE_CLK);
239 		nge_delay(sc);
240 	}
241 
242 	SIO_CLR(NGE_MEAR_EE_CLK);
243 	nge_delay(sc);
244 	SIO_CLR(NGE_MEAR_EE_CSEL);
245 	nge_delay(sc);
246 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
247 }
248 
249 /*
250  * Send a read command and address to the EEPROM, check for ACK.
251  */
252 void
253 nge_eeprom_putbyte(sc, addr)
254 	struct nge_softc	*sc;
255 	int			addr;
256 {
257 	int			d, i;
258 
259 	d = addr | NGE_EECMD_READ;
260 
261 	/*
262 	 * Feed in each bit and strobe the clock.
263 	 */
264 	for (i = 0x400; i; i >>= 1) {
265 		if (d & i) {
266 			SIO_SET(NGE_MEAR_EE_DIN);
267 		} else {
268 			SIO_CLR(NGE_MEAR_EE_DIN);
269 		}
270 		nge_delay(sc);
271 		SIO_SET(NGE_MEAR_EE_CLK);
272 		nge_delay(sc);
273 		SIO_CLR(NGE_MEAR_EE_CLK);
274 		nge_delay(sc);
275 	}
276 }
277 
278 /*
279  * Read a word of data stored in the EEPROM at address 'addr.'
280  */
281 void
282 nge_eeprom_getword(sc, addr, dest)
283 	struct nge_softc	*sc;
284 	int			addr;
285 	u_int16_t		*dest;
286 {
287 	int			i;
288 	u_int16_t		word = 0;
289 
290 	/* Force EEPROM to idle state. */
291 	nge_eeprom_idle(sc);
292 
293 	/* Enter EEPROM access mode. */
294 	nge_delay(sc);
295 	SIO_CLR(NGE_MEAR_EE_CLK);
296 	nge_delay(sc);
297 	SIO_SET(NGE_MEAR_EE_CSEL);
298 	nge_delay(sc);
299 
300 	/*
301 	 * Send address of word we want to read.
302 	 */
303 	nge_eeprom_putbyte(sc, addr);
304 
305 	/*
306 	 * Start reading bits from EEPROM.
307 	 */
308 	for (i = 0x8000; i; i >>= 1) {
309 		SIO_SET(NGE_MEAR_EE_CLK);
310 		nge_delay(sc);
311 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
312 			word |= i;
313 		nge_delay(sc);
314 		SIO_CLR(NGE_MEAR_EE_CLK);
315 		nge_delay(sc);
316 	}
317 
318 	/* Turn off EEPROM access mode. */
319 	nge_eeprom_idle(sc);
320 
321 	*dest = word;
322 }
323 
324 /*
325  * Read a sequence of words from the EEPROM.
326  */
327 void
328 nge_read_eeprom(sc, dest, off, cnt, swap)
329 	struct nge_softc	*sc;
330 	caddr_t			dest;
331 	int			off;
332 	int			cnt;
333 	int			swap;
334 {
335 	int			i;
336 	u_int16_t		word = 0, *ptr;
337 
338 	for (i = 0; i < cnt; i++) {
339 		nge_eeprom_getword(sc, off + i, &word);
340 		ptr = (u_int16_t *)(dest + (i * 2));
341 		if (swap)
342 			*ptr = ntohs(word);
343 		else
344 			*ptr = word;
345 	}
346 }
347 
348 /*
349  * Sync the PHYs by setting data bit and strobing the clock 32 times.
350  */
351 void
352 nge_mii_sync(sc)
353 	struct nge_softc		*sc;
354 {
355 	int			i;
356 
357 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
358 
359 	for (i = 0; i < 32; i++) {
360 		SIO_SET(NGE_MEAR_MII_CLK);
361 		DELAY(1);
362 		SIO_CLR(NGE_MEAR_MII_CLK);
363 		DELAY(1);
364 	}
365 }
366 
367 /*
368  * Clock a series of bits through the MII.
369  */
370 void
371 nge_mii_send(sc, bits, cnt)
372 	struct nge_softc		*sc;
373 	u_int32_t		bits;
374 	int			cnt;
375 {
376 	int			i;
377 
378 	SIO_CLR(NGE_MEAR_MII_CLK);
379 
380 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
381                 if (bits & i) {
382 			SIO_SET(NGE_MEAR_MII_DATA);
383                 } else {
384 			SIO_CLR(NGE_MEAR_MII_DATA);
385                 }
386 		DELAY(1);
387 		SIO_CLR(NGE_MEAR_MII_CLK);
388 		DELAY(1);
389 		SIO_SET(NGE_MEAR_MII_CLK);
390 	}
391 }
392 
393 /*
394  * Read an PHY register through the MII.
395  */
396 int
397 nge_mii_readreg(sc, frame)
398 	struct nge_softc		*sc;
399 	struct nge_mii_frame	*frame;
400 {
401 	int			i, ack, s;
402 
403 	s = splnet();
404 
405 	/*
406 	 * Set up frame for RX.
407 	 */
408 	frame->mii_stdelim = NGE_MII_STARTDELIM;
409 	frame->mii_opcode = NGE_MII_READOP;
410 	frame->mii_turnaround = 0;
411 	frame->mii_data = 0;
412 
413 	CSR_WRITE_4(sc, NGE_MEAR, 0);
414 
415 	/*
416 	 * Turn on data xmit.
417 	 */
418 	SIO_SET(NGE_MEAR_MII_DIR);
419 
420 	nge_mii_sync(sc);
421 
422 	/*
423 	 * Send command/address info.
424 	 */
425 	nge_mii_send(sc, frame->mii_stdelim, 2);
426 	nge_mii_send(sc, frame->mii_opcode, 2);
427 	nge_mii_send(sc, frame->mii_phyaddr, 5);
428 	nge_mii_send(sc, frame->mii_regaddr, 5);
429 
430 	/* Idle bit */
431 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
432 	DELAY(1);
433 	SIO_SET(NGE_MEAR_MII_CLK);
434 	DELAY(1);
435 
436 	/* Turn off xmit. */
437 	SIO_CLR(NGE_MEAR_MII_DIR);
438 	/* Check for ack */
439 	SIO_CLR(NGE_MEAR_MII_CLK);
440 	DELAY(1);
441 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
442 	SIO_SET(NGE_MEAR_MII_CLK);
443 	DELAY(1);
444 
445 	/*
446 	 * Now try reading data bits. If the ack failed, we still
447 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
448 	 */
449 	if (ack) {
450 		for(i = 0; i < 16; i++) {
451 			SIO_CLR(NGE_MEAR_MII_CLK);
452 			DELAY(1);
453 			SIO_SET(NGE_MEAR_MII_CLK);
454 			DELAY(1);
455 		}
456 		goto fail;
457 	}
458 
459 	for (i = 0x8000; i; i >>= 1) {
460 		SIO_CLR(NGE_MEAR_MII_CLK);
461 		DELAY(1);
462 		if (!ack) {
463 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
464 				frame->mii_data |= i;
465 			DELAY(1);
466 		}
467 		SIO_SET(NGE_MEAR_MII_CLK);
468 		DELAY(1);
469 	}
470 
471 fail:
472 
473 	SIO_CLR(NGE_MEAR_MII_CLK);
474 	DELAY(1);
475 	SIO_SET(NGE_MEAR_MII_CLK);
476 	DELAY(1);
477 
478 	splx(s);
479 
480 	if (ack)
481 		return(1);
482 	return(0);
483 }
484 
485 /*
486  * Write to a PHY register through the MII.
487  */
488 int
489 nge_mii_writereg(sc, frame)
490 	struct nge_softc		*sc;
491 	struct nge_mii_frame	*frame;
492 {
493 	int			s;
494 
495 	s = splnet();
496 	/*
497 	 * Set up frame for TX.
498 	 */
499 
500 	frame->mii_stdelim = NGE_MII_STARTDELIM;
501 	frame->mii_opcode = NGE_MII_WRITEOP;
502 	frame->mii_turnaround = NGE_MII_TURNAROUND;
503 
504 	/*
505 	 * Turn on data output.
506 	 */
507 	SIO_SET(NGE_MEAR_MII_DIR);
508 
509 	nge_mii_sync(sc);
510 
511 	nge_mii_send(sc, frame->mii_stdelim, 2);
512 	nge_mii_send(sc, frame->mii_opcode, 2);
513 	nge_mii_send(sc, frame->mii_phyaddr, 5);
514 	nge_mii_send(sc, frame->mii_regaddr, 5);
515 	nge_mii_send(sc, frame->mii_turnaround, 2);
516 	nge_mii_send(sc, frame->mii_data, 16);
517 
518 	/* Idle bit. */
519 	SIO_SET(NGE_MEAR_MII_CLK);
520 	DELAY(1);
521 	SIO_CLR(NGE_MEAR_MII_CLK);
522 	DELAY(1);
523 
524 	/*
525 	 * Turn off xmit.
526 	 */
527 	SIO_CLR(NGE_MEAR_MII_DIR);
528 
529 	splx(s);
530 
531 	return(0);
532 }
533 
534 int
535 nge_miibus_readreg(dev, phy, reg)
536 	struct device		*dev;
537 	int			phy, reg;
538 {
539 	struct nge_softc	*sc = (struct nge_softc *)dev;
540 	struct nge_mii_frame	frame;
541 
542 	DPRINTFN(9, ("%s: nge_miibus_readreg\n", sc->sc_dv.dv_xname));
543 
544 	bzero((char *)&frame, sizeof(frame));
545 
546 	frame.mii_phyaddr = phy;
547 	frame.mii_regaddr = reg;
548 	nge_mii_readreg(sc, &frame);
549 
550 	return(frame.mii_data);
551 }
552 
553 void
554 nge_miibus_writereg(dev, phy, reg, data)
555 	struct device		*dev;
556 	int			phy, reg, data;
557 {
558 	struct nge_softc	*sc = (struct nge_softc *)dev;
559 	struct nge_mii_frame	frame;
560 
561 
562 	DPRINTFN(9, ("%s: nge_miibus_writereg\n", sc->sc_dv.dv_xname));
563 
564 	bzero((char *)&frame, sizeof(frame));
565 
566 	frame.mii_phyaddr = phy;
567 	frame.mii_regaddr = reg;
568 	frame.mii_data = data;
569 	nge_mii_writereg(sc, &frame);
570 }
571 
572 void
573 nge_miibus_statchg(dev)
574 	struct device		*dev;
575 {
576 	struct nge_softc	*sc = (struct nge_softc *)dev;
577 	struct mii_data		*mii = &sc->nge_mii;
578 	u_int32_t		txcfg, rxcfg;
579 
580 	txcfg = CSR_READ_4(sc, NGE_TX_CFG);
581 	rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
582 
583 	DPRINTFN(4, ("%s: nge_miibus_statchg txcfg=%#x, rxcfg=%#x\n",
584 		     sc->sc_dv.dv_xname, txcfg, rxcfg));
585 
586 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
587 		txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
588 		rxcfg |= (NGE_RXCFG_RX_FDX);
589 	} else {
590 		txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
591 		rxcfg &= ~(NGE_RXCFG_RX_FDX);
592 	}
593 
594 	txcfg |= NGE_TXCFG_AUTOPAD;
595 
596 	CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
597 	CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
598 
599 	/* If we have a 1000Mbps link, set the mode_1000 bit. */
600 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
601 		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
602 	else
603 		NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
604 }
605 
606 void
607 nge_setmulti(sc)
608 	struct nge_softc	*sc;
609 {
610 	struct arpcom		*ac = &sc->arpcom;
611 	struct ifnet		*ifp = &ac->ac_if;
612 	struct ether_multi      *enm;
613 	struct ether_multistep  step;
614 	u_int32_t		h = 0, i, filtsave;
615 	int			bit, index;
616 
617 allmulti:
618 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
619 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
620 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
621 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
622 		return;
623 	}
624 
625 	/*
626 	 * We have to explicitly enable the multicast hash table
627 	 * on the NatSemi chip if we want to use it, which we do.
628 	 * We also have to tell it that we don't want to use the
629 	 * hash table for matching unicast addresses.
630 	 */
631 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
632 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
633 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
634 
635 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
636 
637 	/* first, zot all the existing hash bits */
638 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
639 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
640 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
641 	}
642 
643 	/*
644 	 * From the 11 bits returned by the crc routine, the top 7
645 	 * bits represent the 16-bit word in the mcast hash table
646 	 * that needs to be updated, and the lower 4 bits represent
647 	 * which bit within that byte needs to be set.
648 	 */
649 	ETHER_FIRST_MULTI(step, ac, enm);
650 	while (enm != NULL) {
651 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
652 			ifp->if_flags |= IFF_ALLMULTI;
653 			goto allmulti;
654 		}
655 		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 21) &
656 		    0x00000FFF;
657 		index = (h >> 4) & 0x7F;
658 		bit = h & 0xF;
659 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
660 		    NGE_FILTADDR_MCAST_LO + (index * 2));
661 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
662 		ETHER_NEXT_MULTI(step, enm);
663 	}
664 
665 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
666 }
667 
668 void
669 nge_reset(sc)
670 	struct nge_softc	*sc;
671 {
672 	int			i;
673 
674 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
675 
676 	for (i = 0; i < NGE_TIMEOUT; i++) {
677 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
678 			break;
679 	}
680 
681 	if (i == NGE_TIMEOUT)
682 		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
683 
684 	/* Wait a little while for the chip to get its brains in order. */
685 	DELAY(1000);
686 
687 	/*
688 	 * If this is a NetSemi chip, make sure to clear
689 	 * PME mode.
690 	 */
691 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
692 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
693 }
694 
695 /*
696  * Probe for an NatSemi chip. Check the PCI vendor and device
697  * IDs against our list and return a device name if we find a match.
698  */
699 int
700 nge_probe(parent, match, aux)
701 	struct device *parent;
702 	void *match;
703 	void *aux;
704 {
705 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
706 
707 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
708 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_DP83820)
709 		return (1);
710 
711 	return (0);
712 }
713 
714 /*
715  * Attach the interface. Allocate softc structures, do ifmedia
716  * setup and ethernet/BPF attach.
717  */
718 void
719 nge_attach(parent, self, aux)
720 	struct device *parent, *self;
721 	void *aux;
722 {
723 	struct nge_softc	*sc = (struct nge_softc *)self;
724 	struct pci_attach_args	*pa = aux;
725 	pci_chipset_tag_t	pc = pa->pa_pc;
726 	pci_intr_handle_t	ih;
727 	const char		*intrstr = NULL;
728 	bus_size_t		size;
729 	bus_dma_segment_t	seg;
730 	bus_dmamap_t		dmamap;
731 	int			rseg;
732 	u_char			eaddr[ETHER_ADDR_LEN];
733 	pcireg_t		command;
734 #ifndef NGE_USEIOSPACE
735 	pcireg_t		memtype;
736 #endif
737 	struct ifnet		*ifp;
738 	caddr_t			kva;
739 
740 	/*
741 	 * Handle power management nonsense.
742 	 */
743 	DPRINTFN(5, ("%s: preparing for conf read\n", sc->sc_dv.dv_xname));
744 	command = pci_conf_read(pc, pa->pa_tag, NGE_PCI_CAPID) & 0x000000FF;
745 	if (command == 0x01) {
746 		command = pci_conf_read(pc, pa->pa_tag, NGE_PCI_PWRMGMTCTRL);
747 		if (command & NGE_PSTATE_MASK) {
748 			pcireg_t	iobase, membase, irq;
749 
750 			/* Save important PCI config data. */
751 			iobase = pci_conf_read(pc, pa->pa_tag, NGE_PCI_LOIO);
752 			membase = pci_conf_read(pc, pa->pa_tag, NGE_PCI_LOMEM);
753 			irq = pci_conf_read(pc, pa->pa_tag, NGE_PCI_INTLINE);
754 
755 			/* Reset the power state. */
756 			printf("%s: chip is in D%d power mode "
757 			       "-- setting to D0\n", sc->sc_dv.dv_xname,
758 			       command & NGE_PSTATE_MASK);
759 			command &= 0xFFFFFFFC;
760 			pci_conf_write(pc, pa->pa_tag,
761 				       NGE_PCI_PWRMGMTCTRL, command);
762 
763 			/* Restore PCI config data. */
764 			pci_conf_write(pc, pa->pa_tag, NGE_PCI_LOIO, iobase);
765 			pci_conf_write(pc, pa->pa_tag, NGE_PCI_LOMEM, membase);
766 			pci_conf_write(pc, pa->pa_tag, NGE_PCI_INTLINE, irq);
767 		}
768 	}
769 
770 	/*
771 	 * Map control/status registers.
772 	 */
773 	DPRINTFN(5, ("%s: map control/status regs\n", sc->sc_dv.dv_xname));
774 
775 #ifdef NGE_USEIOSPACE
776 	DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname));
777 	if (pci_mapreg_map(pa, NGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
778 	    &sc->nge_btag, &sc->nge_bhandle, NULL, &size, 0)) {
779 		printf(": can't map i/o space\n");
780 		return;
781 	}
782 #else
783 	DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname));
784 	memtype = pci_mapreg_type(pc, pa->pa_tag, NGE_PCI_LOMEM);
785 	if (pci_mapreg_map(pa, NGE_PCI_LOMEM, memtype, 0, &sc->nge_btag,
786 	    &sc->nge_bhandle, NULL, &size, 0)) {
787 		printf(": can't map mem space\n");
788 		return;
789 	}
790 #endif
791 
792 	/* Disable all interrupts */
793 	CSR_WRITE_4(sc, NGE_IER, 0);
794 
795 	DPRINTFN(5, ("%s: pci_intr_map\n", sc->sc_dv.dv_xname));
796 	if (pci_intr_map(pa, &ih)) {
797 		printf(": couldn't map interrupt\n");
798 		goto fail_1;
799 	}
800 
801 	DPRINTFN(5, ("%s: pci_intr_string\n", sc->sc_dv.dv_xname));
802 	intrstr = pci_intr_string(pc, ih);
803 	DPRINTFN(5, ("%s: pci_intr_establish\n", sc->sc_dv.dv_xname));
804 	sc->nge_intrhand = pci_intr_establish(pc, ih, IPL_NET, nge_intr, sc,
805 					      sc->sc_dv.dv_xname);
806 	if (sc->nge_intrhand == NULL) {
807 		printf(": couldn't establish interrupt");
808 		if (intrstr != NULL)
809 			printf(" at %s", intrstr);
810 		printf("\n");
811 		goto fail_1;
812 	}
813 	printf(": %s", intrstr);
814 
815 	/* Reset the adapter. */
816 	DPRINTFN(5, ("%s: nge_reset\n", sc->sc_dv.dv_xname));
817 	nge_reset(sc);
818 
819 	/*
820 	 * Get station address from the EEPROM.
821 	 */
822 	DPRINTFN(5, ("%s: nge_read_eeprom\n", sc->sc_dv.dv_xname));
823 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
824 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
825 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
826 
827 	/*
828 	 * A NatSemi chip was detected. Inform the world.
829 	 */
830 	printf(", address %s\n", ether_sprintf(eaddr));
831 
832 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
833 
834 	sc->sc_dmatag = pa->pa_dmat;
835 	DPRINTFN(5, ("%s: bus_dmamem_alloc\n", sc->sc_dv.dv_xname));
836 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct nge_list_data),
837 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
838 		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
839 		goto fail_2;
840 	}
841 	DPRINTFN(5, ("%s: bus_dmamem_map\n", sc->sc_dv.dv_xname));
842 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
843 			   sizeof(struct nge_list_data), &kva,
844 			   BUS_DMA_NOWAIT)) {
845 		printf("%s: can't map dma buffers (%d bytes)\n",
846 		       sc->sc_dv.dv_xname, sizeof(struct nge_list_data));
847 		goto fail_3;
848 	}
849 	DPRINTFN(5, ("%s: bus_dmamem_create\n", sc->sc_dv.dv_xname));
850 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct nge_list_data), 1,
851 			      sizeof(struct nge_list_data), 0,
852 			      BUS_DMA_NOWAIT, &dmamap)) {
853 		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
854 		goto fail_4;
855 	}
856 	DPRINTFN(5, ("%s: bus_dmamem_load\n", sc->sc_dv.dv_xname));
857 	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
858 			    sizeof(struct nge_list_data), NULL,
859 			    BUS_DMA_NOWAIT)) {
860 		goto fail_5;
861 	}
862 
863 	DPRINTFN(5, ("%s: bzero\n", sc->sc_dv.dv_xname));
864 	sc->nge_ldata = (struct nge_list_data *)kva;
865 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
866 
867 	/* Try to allocate memory for jumbo buffers. */
868 	DPRINTFN(5, ("%s: nge_alloc_jumbo_mem\n", sc->sc_dv.dv_xname));
869 	if (nge_alloc_jumbo_mem(sc)) {
870 		printf("%s: jumbo buffer allocation failed\n",
871 		       sc->sc_dv.dv_xname);
872 		goto fail_5;
873 	}
874 
875 	ifp = &sc->arpcom.ac_if;
876 	ifp->if_softc = sc;
877 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
878 	ifp->if_ioctl = nge_ioctl;
879 	ifp->if_start = nge_start;
880 	ifp->if_watchdog = nge_watchdog;
881 	ifp->if_baudrate = 1000000000;
882 	ifp->if_hardmtu = NGE_JUMBO_MTU;
883 	IFQ_SET_MAXLEN(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
884 	IFQ_SET_READY(&ifp->if_snd);
885 	DPRINTFN(5, ("%s: bcopy\n", sc->sc_dv.dv_xname));
886 	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
887 
888 	ifp->if_capabilities = IFCAP_VLAN_MTU;
889 
890 #if NVLAN > 0
891 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
892 #endif
893 
894 	/*
895 	 * Do MII setup.
896 	 */
897 	DPRINTFN(5, ("%s: mii setup\n", sc->sc_dv.dv_xname));
898 	if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
899 		DPRINTFN(5, ("%s: TBI mode\n", sc->sc_dv.dv_xname));
900 		sc->nge_tbi = 1;
901 
902 		ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_tbi_upd,
903 			     nge_ifmedia_tbi_sts);
904 
905 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_NONE, 0, NULL),
906 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
907 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
908 			    0, NULL);
909 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
910 
911 		ifmedia_set(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO);
912 
913 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
914 			    | NGE_GPIO_GP4_OUT
915 			    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
916 			    | NGE_GPIO_GP3_OUTENB | NGE_GPIO_GP4_OUTENB
917 			    | NGE_GPIO_GP5_OUTENB);
918 
919 		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
920 	} else {
921 		sc->nge_mii.mii_ifp = ifp;
922 		sc->nge_mii.mii_readreg = nge_miibus_readreg;
923 		sc->nge_mii.mii_writereg = nge_miibus_writereg;
924 		sc->nge_mii.mii_statchg = nge_miibus_statchg;
925 
926 		ifmedia_init(&sc->nge_mii.mii_media, 0, nge_ifmedia_mii_upd,
927 			     nge_ifmedia_mii_sts);
928 		mii_attach(&sc->sc_dv, &sc->nge_mii, 0xffffffff, MII_PHY_ANY,
929 			   MII_OFFSET_ANY, 0);
930 
931 		if (LIST_FIRST(&sc->nge_mii.mii_phys) == NULL) {
932 
933 			printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
934 			ifmedia_add(&sc->nge_mii.mii_media,
935 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
936 			ifmedia_set(&sc->nge_mii.mii_media,
937 				    IFM_ETHER|IFM_MANUAL);
938 		}
939 		else
940 			ifmedia_set(&sc->nge_mii.mii_media,
941 				    IFM_ETHER|IFM_AUTO);
942 	}
943 
944 	/*
945 	 * Call MI attach routine.
946 	 */
947 	DPRINTFN(5, ("%s: if_attach\n", sc->sc_dv.dv_xname));
948 	if_attach(ifp);
949 	DPRINTFN(5, ("%s: ether_ifattach\n", sc->sc_dv.dv_xname));
950 	ether_ifattach(ifp);
951 	DPRINTFN(5, ("%s: timeout_set\n", sc->sc_dv.dv_xname));
952 	timeout_set(&sc->nge_timeout, nge_tick, sc);
953 	timeout_add_sec(&sc->nge_timeout, 1);
954 	return;
955 
956 fail_5:
957 	bus_dmamap_destroy(sc->sc_dmatag, dmamap);
958 
959 fail_4:
960 	bus_dmamem_unmap(sc->sc_dmatag, kva,
961 	    sizeof(struct nge_list_data));
962 
963 fail_3:
964 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
965 
966 fail_2:
967 	pci_intr_disestablish(pc, sc->nge_intrhand);
968 
969 fail_1:
970 	bus_space_unmap(sc->nge_btag, sc->nge_bhandle, size);
971 }
972 
973 /*
974  * Initialize the transmit descriptors.
975  */
976 int
977 nge_list_tx_init(sc)
978 	struct nge_softc	*sc;
979 {
980 	struct nge_list_data	*ld;
981 	struct nge_ring_data	*cd;
982 	int			i;
983 
984 	cd = &sc->nge_cdata;
985 	ld = sc->nge_ldata;
986 
987 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
988 		if (i == (NGE_TX_LIST_CNT - 1)) {
989 			ld->nge_tx_list[i].nge_nextdesc =
990 			    &ld->nge_tx_list[0];
991 			ld->nge_tx_list[i].nge_next =
992 			    VTOPHYS(&ld->nge_tx_list[0]);
993 		} else {
994 			ld->nge_tx_list[i].nge_nextdesc =
995 			    &ld->nge_tx_list[i + 1];
996 			ld->nge_tx_list[i].nge_next =
997 			    VTOPHYS(&ld->nge_tx_list[i + 1]);
998 		}
999 		ld->nge_tx_list[i].nge_mbuf = NULL;
1000 		ld->nge_tx_list[i].nge_ptr = 0;
1001 		ld->nge_tx_list[i].nge_ctl = 0;
1002 	}
1003 
1004 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1005 
1006 	return(0);
1007 }
1008 
1009 
1010 /*
1011  * Initialize the RX descriptors and allocate mbufs for them. Note that
1012  * we arrange the descriptors in a closed ring, so that the last descriptor
1013  * points back to the first.
1014  */
1015 int
1016 nge_list_rx_init(sc)
1017 	struct nge_softc	*sc;
1018 {
1019 	struct nge_list_data	*ld;
1020 	struct nge_ring_data	*cd;
1021 	int			i;
1022 
1023 	ld = sc->nge_ldata;
1024 	cd = &sc->nge_cdata;
1025 
1026 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1027 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1028 			return(ENOBUFS);
1029 		if (i == (NGE_RX_LIST_CNT - 1)) {
1030 			ld->nge_rx_list[i].nge_nextdesc =
1031 			    &ld->nge_rx_list[0];
1032 			ld->nge_rx_list[i].nge_next =
1033 			    VTOPHYS(&ld->nge_rx_list[0]);
1034 		} else {
1035 			ld->nge_rx_list[i].nge_nextdesc =
1036 			    &ld->nge_rx_list[i + 1];
1037 			ld->nge_rx_list[i].nge_next =
1038 			    VTOPHYS(&ld->nge_rx_list[i + 1]);
1039 		}
1040 	}
1041 
1042 	cd->nge_rx_prod = 0;
1043 
1044 	return(0);
1045 }
1046 
1047 /*
1048  * Initialize an RX descriptor and attach an MBUF cluster.
1049  */
1050 int
1051 nge_newbuf(sc, c, m)
1052 	struct nge_softc	*sc;
1053 	struct nge_desc		*c;
1054 	struct mbuf		*m;
1055 {
1056 	struct mbuf		*m_new = NULL;
1057 
1058 	if (m == NULL) {
1059 		caddr_t buf = NULL;
1060 
1061 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1062 		if (m_new == NULL)
1063 			return (ENOBUFS);
1064 
1065 		/* Allocate the jumbo buffer */
1066 		buf = nge_jalloc(sc);
1067 		if (buf == NULL) {
1068 			m_freem(m_new);
1069 			return (ENOBUFS);
1070 		}
1071 
1072 		/* Attach the buffer to the mbuf */
1073 		m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES;
1074 		MEXTADD(m_new, buf, NGE_MCLBYTES, 0, nge_jfree, sc);
1075 	} else {
1076 		/*
1077 		 * We're re-using a previously allocated mbuf;
1078 		 * be sure to re-init pointers and lengths to
1079 		 * default values.
1080 		 */
1081 		m_new = m;
1082 		m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES;
1083 		m_new->m_data = m_new->m_ext.ext_buf;
1084 	}
1085 
1086 	m_adj(m_new, sizeof(u_int64_t));
1087 
1088 	c->nge_mbuf = m_new;
1089 	c->nge_ptr = VTOPHYS(mtod(m_new, caddr_t));
1090 	DPRINTFN(7,("%s: c->nge_ptr=%#x\n", sc->sc_dv.dv_xname,
1091 		    c->nge_ptr));
1092 	c->nge_ctl = m_new->m_len;
1093 	c->nge_extsts = 0;
1094 
1095 	return(0);
1096 }
1097 
1098 int
1099 nge_alloc_jumbo_mem(sc)
1100 	struct nge_softc	*sc;
1101 {
1102 	caddr_t			ptr, kva;
1103 	bus_dma_segment_t	seg;
1104 	bus_dmamap_t		dmamap;
1105 	int			i, rseg, state, error;
1106 	struct nge_jpool_entry	*entry;
1107 
1108 	state = error = 0;
1109 
1110 	if (bus_dmamem_alloc(sc->sc_dmatag, NGE_JMEM, PAGE_SIZE, 0,
1111 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1112 		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
1113 		return (ENOBUFS);
1114 	}
1115 
1116 	state = 1;
1117 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, NGE_JMEM, &kva,
1118 			   BUS_DMA_NOWAIT)) {
1119 		printf("%s: can't map dma buffers (%d bytes)\n",
1120 		       sc->sc_dv.dv_xname, NGE_JMEM);
1121 		error = ENOBUFS;
1122 		goto out;
1123 	}
1124 
1125 	state = 2;
1126 	if (bus_dmamap_create(sc->sc_dmatag, NGE_JMEM, 1,
1127 			      NGE_JMEM, 0, BUS_DMA_NOWAIT, &dmamap)) {
1128 		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
1129 		error = ENOBUFS;
1130 		goto out;
1131 	}
1132 
1133 	state = 3;
1134 	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, NGE_JMEM,
1135 			    NULL, BUS_DMA_NOWAIT)) {
1136 		printf("%s: can't load dma map\n", sc->sc_dv.dv_xname);
1137 		error = ENOBUFS;
1138 		goto out;
1139         }
1140 
1141 	state = 4;
1142 	sc->nge_cdata.nge_jumbo_buf = (caddr_t)kva;
1143 	DPRINTFN(1,("%s: nge_jumbo_buf=%#x, NGE_MCLBYTES=%#x\n",
1144 		    sc->sc_dv.dv_xname , sc->nge_cdata.nge_jumbo_buf,
1145 		    NGE_MCLBYTES));
1146 
1147 	LIST_INIT(&sc->nge_jfree_listhead);
1148 	LIST_INIT(&sc->nge_jinuse_listhead);
1149 
1150 	/*
1151 	 * Now divide it up into 9K pieces and save the addresses
1152 	 * in an array. Note that we play an evil trick here by using
1153 	 * the first few bytes in the buffer to hold the address
1154 	 * of the softc structure for this interface. This is because
1155 	 * nge_jfree() needs it, but it is called by the mbuf management
1156 	 * code which will not pass it to us explicitly.
1157 	 */
1158 	ptr = sc->nge_cdata.nge_jumbo_buf;
1159 	for (i = 0; i < NGE_JSLOTS; i++) {
1160 		sc->nge_cdata.nge_jslots[i].nge_buf = ptr;
1161 		sc->nge_cdata.nge_jslots[i].nge_inuse = 0;
1162 		ptr += NGE_MCLBYTES;
1163 		entry = malloc(sizeof(struct nge_jpool_entry),
1164 			       M_DEVBUF, M_NOWAIT);
1165 		if (entry == NULL) {
1166 			sc->nge_cdata.nge_jumbo_buf = NULL;
1167 			printf("%s: no memory for jumbo buffer queue!\n",
1168 			       sc->sc_dv.dv_xname);
1169 			error = ENOBUFS;
1170 			goto out;
1171 		}
1172 		entry->slot = i;
1173 		LIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry,
1174 				 jpool_entries);
1175 	}
1176 out:
1177 	if (error != 0) {
1178 		switch (state) {
1179 		case 4:
1180 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1181 		case 3:
1182 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1183 		case 2:
1184 			bus_dmamem_unmap(sc->sc_dmatag, kva, NGE_JMEM);
1185 		case 1:
1186 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1187 			break;
1188 		default:
1189 			break;
1190 		}
1191 	}
1192 
1193 	return (error);
1194 }
1195 
1196 /*
1197  * Allocate a jumbo buffer.
1198  */
1199 void *
1200 nge_jalloc(sc)
1201 	struct nge_softc	*sc;
1202 {
1203 	struct nge_jpool_entry   *entry;
1204 
1205 	entry = LIST_FIRST(&sc->nge_jfree_listhead);
1206 
1207 	if (entry == NULL)
1208 		return (NULL);
1209 
1210 	LIST_REMOVE(entry, jpool_entries);
1211 	LIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1212 	sc->nge_cdata.nge_jslots[entry->slot].nge_inuse = 1;
1213 	return(sc->nge_cdata.nge_jslots[entry->slot].nge_buf);
1214 }
1215 
1216 /*
1217  * Release a jumbo buffer.
1218  */
1219 void
1220 nge_jfree(buf, size, arg)
1221 	caddr_t		buf;
1222 	u_int		size;
1223 	void		*arg;
1224 {
1225 	struct nge_softc	*sc;
1226 	int		        i;
1227 	struct nge_jpool_entry *entry;
1228 
1229 	/* Extract the softc struct pointer. */
1230 	sc = (struct nge_softc *)arg;
1231 
1232 	if (sc == NULL)
1233 		panic("nge_jfree: can't find softc pointer!");
1234 
1235 	/* calculate the slot this buffer belongs to */
1236 
1237 	i = ((vaddr_t)buf - (vaddr_t)sc->nge_cdata.nge_jumbo_buf)
1238 	  / NGE_MCLBYTES;
1239 
1240 	if ((i < 0) || (i >= NGE_JSLOTS))
1241 		panic("nge_jfree: asked to free buffer that we don't manage!");
1242 	else if (sc->nge_cdata.nge_jslots[i].nge_inuse == 0)
1243 		panic("nge_jfree: buffer already free!");
1244 	else {
1245 		sc->nge_cdata.nge_jslots[i].nge_inuse--;
1246 		if(sc->nge_cdata.nge_jslots[i].nge_inuse == 0) {
1247 			entry = LIST_FIRST(&sc->nge_jinuse_listhead);
1248 			if (entry == NULL)
1249 				panic("nge_jfree: buffer not in use!");
1250 			entry->slot = i;
1251 			LIST_REMOVE(entry, jpool_entries);
1252 			LIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1253 					 entry, jpool_entries);
1254 		}
1255 	}
1256 }
1257 
1258 /*
1259  * A frame has been uploaded: pass the resulting mbuf chain up to
1260  * the higher level protocols.
1261  */
1262 void
1263 nge_rxeof(sc)
1264 	struct nge_softc	*sc;
1265 {
1266         struct mbuf		*m;
1267         struct ifnet		*ifp;
1268 	struct nge_desc		*cur_rx;
1269 	int			i, total_len = 0;
1270 	u_int32_t		rxstat;
1271 
1272 	ifp = &sc->arpcom.ac_if;
1273 	i = sc->nge_cdata.nge_rx_prod;
1274 
1275 	while (NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1276 		struct mbuf		*m0 = NULL;
1277 		u_int32_t		extsts;
1278 
1279 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1280 		rxstat = cur_rx->nge_rxstat;
1281 		extsts = cur_rx->nge_extsts;
1282 		m = cur_rx->nge_mbuf;
1283 		cur_rx->nge_mbuf = NULL;
1284 		total_len = NGE_RXBYTES(cur_rx);
1285 		NGE_INC(i, NGE_RX_LIST_CNT);
1286 
1287 		/*
1288 		 * If an error occurs, update stats, clear the
1289 		 * status word and leave the mbuf cluster in place:
1290 		 * it should simply get re-used next time this descriptor
1291 		 * comes up in the ring.
1292 		 */
1293 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1294 #if NVLAN > 0
1295 			if ((rxstat & NGE_RXSTAT_RUNT) &&
1296 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN -
1297 			    ETHER_VLAN_ENCAP_LEN)) {
1298 				/*
1299 				 * Workaround a hardware bug. Accept runt
1300 				 * frames if its length is larger than or
1301 				 * equal to 56.
1302 				 */
1303 			} else {
1304 #endif
1305 				ifp->if_ierrors++;
1306 				nge_newbuf(sc, cur_rx, m);
1307 				continue;
1308 #if NVLAN > 0
1309 			}
1310 #endif
1311 		}
1312 
1313 		/*
1314 		 * Ok. NatSemi really screwed up here. This is the
1315 		 * only gigE chip I know of with alignment constraints
1316 		 * on receive buffers. RX buffers must be 64-bit aligned.
1317 		 */
1318 #ifndef __STRICT_ALIGNMENT
1319 		/*
1320 		 * By popular demand, ignore the alignment problems
1321 		 * on the Intel x86 platform. The performance hit
1322 		 * incurred due to unaligned accesses is much smaller
1323 		 * than the hit produced by forcing buffer copies all
1324 		 * the time, especially with jumbo frames. We still
1325 		 * need to fix up the alignment everywhere else though.
1326 		 */
1327 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1328 #endif
1329 			m0 = m_devget(mtod(m, char *), total_len,
1330 			    ETHER_ALIGN, ifp, NULL);
1331 			nge_newbuf(sc, cur_rx, m);
1332 			if (m0 == NULL) {
1333 				ifp->if_ierrors++;
1334 				continue;
1335 			}
1336 			m_adj(m0, ETHER_ALIGN);
1337 			m = m0;
1338 #ifndef __STRICT_ALIGNMENT
1339 		} else {
1340 			m->m_pkthdr.rcvif = ifp;
1341 			m->m_pkthdr.len = m->m_len = total_len;
1342 		}
1343 #endif
1344 
1345 		ifp->if_ipackets++;
1346 
1347 #if NVLAN > 0
1348 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1349 			m->m_pkthdr.ether_vtag =
1350 			    ntohs(extsts & NGE_RXEXTSTS_VTCI);
1351 			m->m_flags |= M_VLANTAG;
1352 		}
1353 #endif
1354 
1355 #if NBPFILTER > 0
1356 		/*
1357 		 * Handle BPF listeners. Let the BPF user see the packet.
1358 		 */
1359 		if (ifp->if_bpf)
1360 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1361 #endif
1362 
1363 		/* Do IP checksum checking. */
1364 		if (extsts & NGE_RXEXTSTS_IPPKT) {
1365 			if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1366 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1367 			if ((extsts & NGE_RXEXTSTS_TCPPKT) &&
1368 			    (!(extsts & NGE_RXEXTSTS_TCPCSUMERR)))
1369 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
1370 			else if ((extsts & NGE_RXEXTSTS_UDPPKT) &&
1371 				 (!(extsts & NGE_RXEXTSTS_UDPCSUMERR)))
1372 				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
1373 		}
1374 
1375 		ether_input_mbuf(ifp, m);
1376 	}
1377 
1378 	sc->nge_cdata.nge_rx_prod = i;
1379 }
1380 
1381 /*
1382  * A frame was downloaded to the chip. It's safe for us to clean up
1383  * the list buffers.
1384  */
1385 
1386 void
1387 nge_txeof(sc)
1388 	struct nge_softc	*sc;
1389 {
1390 	struct nge_desc		*cur_tx;
1391 	struct ifnet		*ifp;
1392 	u_int32_t		idx;
1393 
1394 	ifp = &sc->arpcom.ac_if;
1395 
1396 	/*
1397 	 * Go through our tx list and free mbufs for those
1398 	 * frames that have been transmitted.
1399 	 */
1400 	idx = sc->nge_cdata.nge_tx_cons;
1401 	while (idx != sc->nge_cdata.nge_tx_prod) {
1402 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1403 
1404 		if (NGE_OWNDESC(cur_tx))
1405 			break;
1406 
1407 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1408 			sc->nge_cdata.nge_tx_cnt--;
1409 			NGE_INC(idx, NGE_TX_LIST_CNT);
1410 			continue;
1411 		}
1412 
1413 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1414 			ifp->if_oerrors++;
1415 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1416 				ifp->if_collisions++;
1417 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1418 				ifp->if_collisions++;
1419 		}
1420 
1421 		ifp->if_collisions +=
1422 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1423 
1424 		ifp->if_opackets++;
1425 		if (cur_tx->nge_mbuf != NULL) {
1426 			m_freem(cur_tx->nge_mbuf);
1427 			cur_tx->nge_mbuf = NULL;
1428 			ifp->if_flags &= ~IFF_OACTIVE;
1429 		}
1430 
1431 		sc->nge_cdata.nge_tx_cnt--;
1432 		NGE_INC(idx, NGE_TX_LIST_CNT);
1433 	}
1434 
1435 	sc->nge_cdata.nge_tx_cons = idx;
1436 
1437 	if (idx == sc->nge_cdata.nge_tx_prod)
1438 		ifp->if_timer = 0;
1439 }
1440 
1441 void
1442 nge_tick(xsc)
1443 	void			*xsc;
1444 {
1445 	struct nge_softc	*sc = xsc;
1446 	struct mii_data		*mii = &sc->nge_mii;
1447 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1448 	int			s;
1449 
1450 	s = splnet();
1451 
1452 	DPRINTFN(10, ("%s: nge_tick: link=%d\n", sc->sc_dv.dv_xname,
1453 		      sc->nge_link));
1454 
1455 	timeout_add_sec(&sc->nge_timeout, 1);
1456 	if (sc->nge_link) {
1457 		splx(s);
1458 		return;
1459 	}
1460 
1461 	if (sc->nge_tbi) {
1462 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1463 		    == IFM_AUTO) {
1464 			u_int32_t bmsr, anlpar, txcfg, rxcfg;
1465 
1466 			bmsr = CSR_READ_4(sc, NGE_TBI_BMSR);
1467 			DPRINTFN(2, ("%s: nge_tick: bmsr=%#x\n",
1468 				     sc->sc_dv.dv_xname, bmsr));
1469 
1470 			if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) {
1471 				CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1472 
1473 				splx(s);
1474 				return;
1475 			}
1476 
1477 			anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR);
1478 			txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1479 			rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1480 
1481 			DPRINTFN(2, ("%s: nge_tick: anlpar=%#x, txcfg=%#x, "
1482 				     "rxcfg=%#x\n", sc->sc_dv.dv_xname, anlpar,
1483 				     txcfg, rxcfg));
1484 
1485 			if (anlpar == 0 || anlpar & NGE_TBIANAR_FDX) {
1486 				txcfg |= (NGE_TXCFG_IGN_HBEAT|
1487 					  NGE_TXCFG_IGN_CARR);
1488 				rxcfg |= NGE_RXCFG_RX_FDX;
1489 			} else {
1490 				txcfg &= ~(NGE_TXCFG_IGN_HBEAT|
1491 					   NGE_TXCFG_IGN_CARR);
1492 				rxcfg &= ~(NGE_RXCFG_RX_FDX);
1493 			}
1494 			txcfg |= NGE_TXCFG_AUTOPAD;
1495 			CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1496 			CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1497 		}
1498 
1499 		DPRINTF(("%s: gigabit link up\n", sc->sc_dv.dv_xname));
1500 		sc->nge_link++;
1501 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1502 			nge_start(ifp);
1503 	} else {
1504 		mii_tick(mii);
1505 		if (mii->mii_media_status & IFM_ACTIVE &&
1506 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1507 			sc->nge_link++;
1508 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1509 				DPRINTF(("%s: gigabit link up\n",
1510 					 sc->sc_dv.dv_xname));
1511 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1512 				nge_start(ifp);
1513 		}
1514 
1515 	}
1516 
1517 	splx(s);
1518 }
1519 
1520 int
1521 nge_intr(arg)
1522 	void			*arg;
1523 {
1524 	struct nge_softc	*sc;
1525 	struct ifnet		*ifp;
1526 	u_int32_t		status;
1527 	int			claimed = 0;
1528 
1529 	sc = arg;
1530 	ifp = &sc->arpcom.ac_if;
1531 
1532 	/* Suppress unwanted interrupts */
1533 	if (!(ifp->if_flags & IFF_UP)) {
1534 		nge_stop(sc);
1535 		return (0);
1536 	}
1537 
1538 	/* Disable interrupts. */
1539 	CSR_WRITE_4(sc, NGE_IER, 0);
1540 
1541 	/* Data LED on for TBI mode */
1542 	if(sc->nge_tbi)
1543 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1544 			     | NGE_GPIO_GP3_OUT);
1545 
1546 	for (;;) {
1547 		/* Reading the ISR register clears all interrupts. */
1548 		status = CSR_READ_4(sc, NGE_ISR);
1549 
1550 		if ((status & NGE_INTRS) == 0)
1551 			break;
1552 
1553 		claimed = 1;
1554 
1555 		if ((status & NGE_ISR_TX_DESC_OK) ||
1556 		    (status & NGE_ISR_TX_ERR) ||
1557 		    (status & NGE_ISR_TX_OK) ||
1558 		    (status & NGE_ISR_TX_IDLE))
1559 			nge_txeof(sc);
1560 
1561 		if ((status & NGE_ISR_RX_DESC_OK) ||
1562 		    (status & NGE_ISR_RX_ERR) ||
1563 		    (status & NGE_ISR_RX_OFLOW) ||
1564 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1565 		    (status & NGE_ISR_RX_IDLE) ||
1566 		    (status & NGE_ISR_RX_OK))
1567 			nge_rxeof(sc);
1568 
1569 		if ((status & NGE_ISR_RX_IDLE))
1570 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1571 
1572 		if (status & NGE_ISR_SYSERR) {
1573 			nge_reset(sc);
1574 			ifp->if_flags &= ~IFF_RUNNING;
1575 			nge_init(sc);
1576 		}
1577 
1578 #if 0
1579 		/*
1580 		 * XXX: nge_tick() is not ready to be called this way
1581 		 * it screws up the aneg timeout because mii_tick() is
1582 		 * only to be called once per second.
1583 		 */
1584 		if (status & NGE_IMR_PHY_INTR) {
1585 			sc->nge_link = 0;
1586 			nge_tick(sc);
1587 		}
1588 #endif
1589 	}
1590 
1591 	/* Re-enable interrupts. */
1592 	CSR_WRITE_4(sc, NGE_IER, 1);
1593 
1594 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1595 		nge_start(ifp);
1596 
1597 	/* Data LED off for TBI mode */
1598 	if(sc->nge_tbi)
1599 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1600 			    & ~NGE_GPIO_GP3_OUT);
1601 
1602 	return claimed;
1603 }
1604 
1605 /*
1606  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1607  * pointers to the fragment pointers.
1608  */
1609 int
1610 nge_encap(sc, m_head, txidx)
1611 	struct nge_softc	*sc;
1612 	struct mbuf		*m_head;
1613 	u_int32_t		*txidx;
1614 {
1615 	struct nge_desc		*f = NULL;
1616 	struct mbuf		*m;
1617 	int			frag, cur, cnt = 0;
1618 
1619 	/*
1620 	 * Start packing the mbufs in this chain into
1621 	 * the fragment pointers. Stop when we run out
1622 	 * of fragments or hit the end of the mbuf chain.
1623 	 */
1624 	m = m_head;
1625 	cur = frag = *txidx;
1626 
1627 	for (m = m_head; m != NULL; m = m->m_next) {
1628 		if (m->m_len != 0) {
1629 			if ((NGE_TX_LIST_CNT -
1630 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1631 				return(ENOBUFS);
1632 			f = &sc->nge_ldata->nge_tx_list[frag];
1633 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1634 			f->nge_ptr = VTOPHYS(mtod(m, vaddr_t));
1635 			DPRINTFN(7,("%s: f->nge_ptr=%#x\n",
1636 				    sc->sc_dv.dv_xname, f->nge_ptr));
1637 			if (cnt != 0)
1638 				f->nge_ctl |= NGE_CMDSTS_OWN;
1639 			cur = frag;
1640 			NGE_INC(frag, NGE_TX_LIST_CNT);
1641 			cnt++;
1642 		}
1643 	}
1644 
1645 	if (m != NULL)
1646 		return(ENOBUFS);
1647 
1648 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1649 
1650 #if NVLAN > 0
1651 	if (m_head->m_flags & M_VLANTAG) {
1652 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1653 		    (NGE_TXEXTSTS_VLANPKT|htons(m_head->m_pkthdr.ether_vtag));
1654 	}
1655 #endif
1656 
1657 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1658 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1659 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1660 	sc->nge_cdata.nge_tx_cnt += cnt;
1661 	*txidx = frag;
1662 
1663 	return(0);
1664 }
1665 
1666 /*
1667  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1668  * to the mbuf data regions directly in the transmit lists. We also save a
1669  * copy of the pointers since the transmit list fragment pointers are
1670  * physical addresses.
1671  */
1672 
1673 void
1674 nge_start(ifp)
1675 	struct ifnet		*ifp;
1676 {
1677 	struct nge_softc	*sc;
1678 	struct mbuf		*m_head = NULL;
1679 	u_int32_t		idx;
1680 	int			pkts = 0;
1681 
1682 	sc = ifp->if_softc;
1683 
1684 	if (!sc->nge_link)
1685 		return;
1686 
1687 	idx = sc->nge_cdata.nge_tx_prod;
1688 
1689 	if (ifp->if_flags & IFF_OACTIVE)
1690 		return;
1691 
1692 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1693 		IFQ_POLL(&ifp->if_snd, m_head);
1694 		if (m_head == NULL)
1695 			break;
1696 
1697 		if (nge_encap(sc, m_head, &idx)) {
1698 			ifp->if_flags |= IFF_OACTIVE;
1699 			break;
1700 		}
1701 
1702 		/* now we are committed to transmit the packet */
1703 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1704 		pkts++;
1705 
1706 #if NBPFILTER > 0
1707 		/*
1708 		 * If there's a BPF listener, bounce a copy of this frame
1709 		 * to him.
1710 		 */
1711 		if (ifp->if_bpf)
1712 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1713 #endif
1714 	}
1715 	if (pkts == 0)
1716 		return;
1717 
1718 	/* Transmit */
1719 	sc->nge_cdata.nge_tx_prod = idx;
1720 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1721 
1722 	/*
1723 	 * Set a timeout in case the chip goes out to lunch.
1724 	 */
1725 	ifp->if_timer = 5;
1726 }
1727 
1728 void
1729 nge_init(xsc)
1730 	void			*xsc;
1731 {
1732 	struct nge_softc	*sc = xsc;
1733 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1734 	struct mii_data		*mii;
1735 	u_int32_t		txcfg, rxcfg;
1736 	int			s, media;
1737 
1738 	if (ifp->if_flags & IFF_RUNNING)
1739 		return;
1740 
1741 	s = splnet();
1742 
1743 	/*
1744 	 * Cancel pending I/O and free all RX/TX buffers.
1745 	 */
1746 	nge_stop(sc);
1747 
1748 	mii = sc->nge_tbi ? NULL: &sc->nge_mii;
1749 
1750 	/* Set MAC address */
1751 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1752 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1753 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1754 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1755 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1756 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1757 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1758 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1759 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1760 
1761 	/* Init circular RX list. */
1762 	if (nge_list_rx_init(sc) == ENOBUFS) {
1763 		printf("%s: initialization failed: no "
1764 			"memory for rx buffers\n", sc->sc_dv.dv_xname);
1765 		nge_stop(sc);
1766 		splx(s);
1767 		return;
1768 	}
1769 
1770 	/*
1771 	 * Init tx descriptors.
1772 	 */
1773 	nge_list_tx_init(sc);
1774 
1775 	/*
1776 	 * For the NatSemi chip, we have to explicitly enable the
1777 	 * reception of ARP frames, as well as turn on the 'perfect
1778 	 * match' filter where we store the station address, otherwise
1779 	 * we won't receive unicasts meant for this host.
1780 	 */
1781 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1782 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1783 
1784 	 /* If we want promiscuous mode, set the allframes bit. */
1785 	if (ifp->if_flags & IFF_PROMISC)
1786 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1787 	else
1788 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1789 
1790 	/*
1791 	 * Set the capture broadcast bit to capture broadcast frames.
1792 	 */
1793 	if (ifp->if_flags & IFF_BROADCAST)
1794 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1795 	else
1796 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1797 
1798 	/*
1799 	 * Load the multicast filter.
1800 	 */
1801 	nge_setmulti(sc);
1802 
1803 	/* Turn the receive filter on */
1804 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1805 
1806 	/*
1807 	 * Load the address of the RX and TX lists.
1808 	 */
1809 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1810 	    VTOPHYS(&sc->nge_ldata->nge_rx_list[0]));
1811 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1812 	    VTOPHYS(&sc->nge_ldata->nge_tx_list[0]));
1813 
1814 	/* Set RX configuration */
1815 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1816 
1817 	/*
1818 	 * Enable hardware checksum validation for all IPv4
1819 	 * packets, do not reject packets with bad checksums.
1820 	 */
1821 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1822 
1823 	/*
1824 	 * If VLAN support is enabled, tell the chip to detect
1825 	 * and strip VLAN tag info from received frames. The tag
1826 	 * will be provided in the extsts field in the RX descriptors.
1827 	 */
1828 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1829 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1830 		    NGE_VIPRXCTL_TAG_DETECT_ENB | NGE_VIPRXCTL_TAG_STRIP_ENB);
1831 
1832 	/* Set TX configuration */
1833 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1834 
1835 	/*
1836 	 * If VLAN support is enabled, tell the chip to insert
1837 	 * VLAN tags on a per-packet basis as dictated by the
1838 	 * code in the frame encapsulation routine.
1839 	 */
1840 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1841 		NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1842 
1843 	/* Set full/half duplex mode. */
1844 	if (sc->nge_tbi)
1845 		media = sc->nge_ifmedia.ifm_cur->ifm_media;
1846 	else
1847 		media = mii->mii_media_active;
1848 
1849 	txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1850 	rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1851 
1852 	DPRINTFN(4, ("%s: nge_init txcfg=%#x, rxcfg=%#x\n",
1853 		     sc->sc_dv.dv_xname, txcfg, rxcfg));
1854 
1855 	if ((media & IFM_GMASK) == IFM_FDX) {
1856 		txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1857 		rxcfg |= (NGE_RXCFG_RX_FDX);
1858 	} else {
1859 		txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1860 		rxcfg &= ~(NGE_RXCFG_RX_FDX);
1861 	}
1862 
1863 	txcfg |= NGE_TXCFG_AUTOPAD;
1864 
1865 	CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1866 	CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1867 
1868 	nge_tick(sc);
1869 
1870 	/*
1871 	 * Enable the delivery of PHY interrupts based on
1872 	 * link/speed/duplex status changes and enable return
1873 	 * of extended status information in the DMA descriptors,
1874 	 * required for checksum offloading.
1875 	 */
1876 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|NGE_CFG_PHYINTR_LNK|
1877 		   NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1878 
1879 	DPRINTFN(1, ("%s: nge_init: config=%#x\n", sc->sc_dv.dv_xname,
1880 		     CSR_READ_4(sc, NGE_CFG)));
1881 
1882 	/*
1883 	 * Configure interrupt holdoff (moderation). We can
1884 	 * have the chip delay interrupt delivery for a certain
1885 	 * period. Units are in 100us, and the max setting
1886 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1887 	 */
1888 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1889 
1890 	/*
1891 	 * Enable interrupts.
1892 	 */
1893 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1894 	CSR_WRITE_4(sc, NGE_IER, 1);
1895 
1896 	/* Enable receiver and transmitter. */
1897 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1898 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1899 
1900 	if (sc->nge_tbi)
1901 	    nge_ifmedia_tbi_upd(ifp);
1902 	else
1903 	    nge_ifmedia_mii_upd(ifp);
1904 
1905 	ifp->if_flags |= IFF_RUNNING;
1906 	ifp->if_flags &= ~IFF_OACTIVE;
1907 
1908 	splx(s);
1909 }
1910 
1911 /*
1912  * Set mii media options.
1913  */
1914 int
1915 nge_ifmedia_mii_upd(ifp)
1916 	struct ifnet		*ifp;
1917 {
1918 	struct nge_softc	*sc = ifp->if_softc;
1919 	struct mii_data 	*mii = &sc->nge_mii;
1920 
1921 	DPRINTFN(2, ("%s: nge_ifmedia_mii_upd\n", sc->sc_dv.dv_xname));
1922 
1923 	sc->nge_link = 0;
1924 
1925 	if (mii->mii_instance) {
1926 		struct mii_softc *miisc;
1927 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1928 			mii_phy_reset(miisc);
1929 	}
1930 	mii_mediachg(mii);
1931 
1932 	return(0);
1933 }
1934 
1935 /*
1936  * Report current mii media status.
1937  */
1938 void
1939 nge_ifmedia_mii_sts(ifp, ifmr)
1940 	struct ifnet		*ifp;
1941 	struct ifmediareq	*ifmr;
1942 {
1943 	struct nge_softc	*sc = ifp->if_softc;
1944 	struct mii_data *mii = &sc->nge_mii;
1945 
1946 	DPRINTFN(2, ("%s: nge_ifmedia_mii_sts\n", sc->sc_dv.dv_xname));
1947 
1948 	mii_pollstat(mii);
1949 	ifmr->ifm_active = mii->mii_media_active;
1950 	ifmr->ifm_status = mii->mii_media_status;
1951 }
1952 
1953 /*
1954  * Set mii media options.
1955  */
1956 int
1957 nge_ifmedia_tbi_upd(ifp)
1958 	struct ifnet		*ifp;
1959 {
1960 	struct nge_softc	*sc = ifp->if_softc;
1961 
1962 	DPRINTFN(2, ("%s: nge_ifmedia_tbi_upd\n", sc->sc_dv.dv_xname));
1963 
1964 	sc->nge_link = 0;
1965 
1966 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1967 	    == IFM_AUTO) {
1968 		u_int32_t anar, bmcr;
1969 		anar = CSR_READ_4(sc, NGE_TBI_ANAR);
1970 		anar |= (NGE_TBIANAR_HDX | NGE_TBIANAR_FDX);
1971 		CSR_WRITE_4(sc, NGE_TBI_ANAR, anar);
1972 
1973 		bmcr = CSR_READ_4(sc, NGE_TBI_BMCR);
1974 		bmcr |= (NGE_TBIBMCR_ENABLE_ANEG|NGE_TBIBMCR_RESTART_ANEG);
1975 		CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr);
1976 
1977 		bmcr &= ~(NGE_TBIBMCR_RESTART_ANEG);
1978 		CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr);
1979 	} else {
1980 		u_int32_t txcfg, rxcfg;
1981 		txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1982 		rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1983 
1984 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1985 		    == IFM_FDX) {
1986 			txcfg |= NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR;
1987 			rxcfg |= NGE_RXCFG_RX_FDX;
1988 		} else {
1989 			txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1990 			rxcfg &= ~(NGE_RXCFG_RX_FDX);
1991 		}
1992 
1993 		txcfg |= NGE_TXCFG_AUTOPAD;
1994 		CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1995 		CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1996 	}
1997 
1998 	NGE_CLRBIT(sc, NGE_GPIO, NGE_GPIO_GP3_OUT);
1999 
2000 	return(0);
2001 }
2002 
2003 /*
2004  * Report current tbi media status.
2005  */
2006 void
2007 nge_ifmedia_tbi_sts(ifp, ifmr)
2008 	struct ifnet		*ifp;
2009 	struct ifmediareq	*ifmr;
2010 {
2011 	struct nge_softc	*sc = ifp->if_softc;
2012 	u_int32_t		bmcr;
2013 
2014 	bmcr = CSR_READ_4(sc, NGE_TBI_BMCR);
2015 
2016 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) {
2017 		u_int32_t bmsr = CSR_READ_4(sc, NGE_TBI_BMSR);
2018 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmsr=%#x, bmcr=%#x\n",
2019 			     sc->sc_dv.dv_xname, bmsr, bmcr));
2020 
2021 		if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) {
2022 			ifmr->ifm_active = IFM_ETHER|IFM_NONE;
2023 			ifmr->ifm_status = IFM_AVALID;
2024 			return;
2025 		}
2026 	} else {
2027 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmcr=%#x\n",
2028 			     sc->sc_dv.dv_xname, bmcr));
2029 	}
2030 
2031 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2032 	ifmr->ifm_active = IFM_ETHER|IFM_1000_SX;
2033 
2034 	if (bmcr & NGE_TBIBMCR_LOOPBACK)
2035 		ifmr->ifm_active |= IFM_LOOP;
2036 
2037 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) {
2038 		u_int32_t anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR);
2039 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts anlpar=%#x\n",
2040 			     sc->sc_dv.dv_xname, anlpar));
2041 
2042 		ifmr->ifm_active |= IFM_AUTO;
2043 		if (anlpar & NGE_TBIANLPAR_FDX) {
2044 			ifmr->ifm_active |= IFM_FDX;
2045 		} else if (anlpar & NGE_TBIANLPAR_HDX) {
2046 			ifmr->ifm_active |= IFM_HDX;
2047 		} else
2048 			ifmr->ifm_active |= IFM_FDX;
2049 
2050 	} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) == IFM_FDX)
2051 		ifmr->ifm_active |= IFM_FDX;
2052 	else
2053 		ifmr->ifm_active |= IFM_HDX;
2054 
2055 }
2056 
2057 int
2058 nge_ioctl(ifp, command, data)
2059 	struct ifnet		*ifp;
2060 	u_long			command;
2061 	caddr_t			data;
2062 {
2063 	struct nge_softc	*sc = ifp->if_softc;
2064 	struct ifaddr		*ifa = (struct ifaddr *) data;
2065 	struct ifreq		*ifr = (struct ifreq *) data;
2066 	struct mii_data		*mii;
2067 	int			s, error = 0;
2068 
2069 	s = splnet();
2070 
2071 	switch(command) {
2072 	case SIOCSIFADDR:
2073 		ifp->if_flags |= IFF_UP;
2074 		switch (ifa->ifa_addr->sa_family) {
2075 #ifdef INET
2076 		case AF_INET:
2077 			nge_init(sc);
2078 			arp_ifinit(&sc->arpcom, ifa);
2079 			break;
2080 #endif /* INET */
2081 		default:
2082 			nge_init(sc);
2083 			break;
2084                 }
2085 		break;
2086 
2087 	case SIOCSIFFLAGS:
2088 		if (ifp->if_flags & IFF_UP) {
2089 			if (ifp->if_flags & IFF_RUNNING &&
2090 			    ifp->if_flags & IFF_PROMISC &&
2091 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2092 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2093 				    NGE_RXFILTCTL_ALLPHYS|
2094 				    NGE_RXFILTCTL_ALLMULTI);
2095 			} else if (ifp->if_flags & IFF_RUNNING &&
2096 			    !(ifp->if_flags & IFF_PROMISC) &&
2097 			    sc->nge_if_flags & IFF_PROMISC) {
2098 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2099 				    NGE_RXFILTCTL_ALLPHYS);
2100 				if (!(ifp->if_flags & IFF_ALLMULTI))
2101 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2102 					    NGE_RXFILTCTL_ALLMULTI);
2103 			} else {
2104 				ifp->if_flags &= ~IFF_RUNNING;
2105 				nge_init(sc);
2106 			}
2107 		} else {
2108 			if (ifp->if_flags & IFF_RUNNING)
2109 				nge_stop(sc);
2110 		}
2111 		sc->nge_if_flags = ifp->if_flags;
2112 		error = 0;
2113 		break;
2114 
2115 	case SIOCGIFMEDIA:
2116 	case SIOCSIFMEDIA:
2117 		if (sc->nge_tbi) {
2118 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2119 					      command);
2120 		} else {
2121 			mii = &sc->nge_mii;
2122 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2123 					      command);
2124 		}
2125 		break;
2126 
2127 	default:
2128 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
2129 	}
2130 
2131 	if (error == ENETRESET) {
2132 		if (ifp->if_flags & IFF_RUNNING)
2133 			nge_setmulti(sc);
2134 		error = 0;
2135 	}
2136 
2137 	splx(s);
2138 	return(error);
2139 }
2140 
2141 void
2142 nge_watchdog(ifp)
2143 	struct ifnet		*ifp;
2144 {
2145 	struct nge_softc	*sc;
2146 
2147 	sc = ifp->if_softc;
2148 
2149 	ifp->if_oerrors++;
2150 	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
2151 
2152 	nge_stop(sc);
2153 	nge_reset(sc);
2154 	ifp->if_flags &= ~IFF_RUNNING;
2155 	nge_init(sc);
2156 
2157 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
2158 		nge_start(ifp);
2159 }
2160 
2161 /*
2162  * Stop the adapter and free any mbufs allocated to the
2163  * RX and TX lists.
2164  */
2165 void
2166 nge_stop(sc)
2167 	struct nge_softc	*sc;
2168 {
2169 	int			i;
2170 	struct ifnet		*ifp;
2171 	struct mii_data		*mii;
2172 
2173 	ifp = &sc->arpcom.ac_if;
2174 	ifp->if_timer = 0;
2175 	if (sc->nge_tbi) {
2176 		mii = NULL;
2177 	} else {
2178 		mii = &sc->nge_mii;
2179 	}
2180 
2181 	timeout_del(&sc->nge_timeout);
2182 
2183 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2184 
2185 	CSR_WRITE_4(sc, NGE_IER, 0);
2186 	CSR_WRITE_4(sc, NGE_IMR, 0);
2187 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2188 	DELAY(1000);
2189 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2190 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2191 
2192 	if (!sc->nge_tbi)
2193 		mii_down(mii);
2194 
2195 	sc->nge_link = 0;
2196 
2197 	/*
2198 	 * Free data in the RX lists.
2199 	 */
2200 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2201 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2202 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2203 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2204 		}
2205 	}
2206 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2207 		sizeof(sc->nge_ldata->nge_rx_list));
2208 
2209 	/*
2210 	 * Free the TX list buffers.
2211 	 */
2212 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2213 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2214 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2215 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2216 		}
2217 	}
2218 
2219 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2220 		sizeof(sc->nge_ldata->nge_tx_list));
2221 }
2222 
2223 /*
2224  * Stop all chip I/O so that the kernel's probe routines don't
2225  * get confused by errant DMAs when rebooting.
2226  */
2227 void
2228 nge_shutdown(xsc)
2229 	void *xsc;
2230 {
2231 	struct nge_softc *sc = (struct nge_softc *)xsc;
2232 
2233 	nge_reset(sc);
2234 	nge_stop(sc);
2235 }
2236 
2237 struct cfattach nge_ca = {
2238 	sizeof(struct nge_softc), nge_probe, nge_attach
2239 };
2240 
2241 struct cfdriver nge_cd = {
2242 	0, "nge", DV_IFNET
2243 };
2244