xref: /openbsd-src/sys/dev/pci/if_msk.c (revision 4c1e55dc91edd6e69ccc60ce855900fbc12cf34f)
1 /*	$OpenBSD: if_msk.c,v 1.94 2012/03/28 12:02:49 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
35  */
36 
37 /*
38  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
39  *
40  * Permission to use, copy, modify, and distribute this software for any
41  * purpose with or without fee is hereby granted, provided that the above
42  * copyright notice and this permission notice appear in all copies.
43  *
44  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
45  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
46  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
47  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
48  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
49  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
50  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
51  */
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 
72 /*
73  * The SysKonnect gigabit ethernet adapters consist of two main
74  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
75  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
76  * components and a PHY while the GEnesis controller provides a PCI
77  * interface with DMA support. Each card may have between 512K and
78  * 2MB of SRAM on board depending on the configuration.
79  *
80  * The SysKonnect GEnesis controller can have either one or two XMAC
81  * chips connected to it, allowing single or dual port NIC configurations.
82  * SysKonnect has the distinction of being the only vendor on the market
83  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
84  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
85  * XMAC registers. This driver takes advantage of these features to allow
86  * both XMACs to operate as independent interfaces.
87  */
88 
89 #include "bpfilter.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/timeout.h>
99 #include <sys/device.h>
100 #include <sys/queue.h>
101 
102 #include <net/if.h>
103 #include <net/if_dl.h>
104 #include <net/if_types.h>
105 
106 #ifdef INET
107 #include <netinet/in.h>
108 #include <netinet/in_systm.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip.h>
111 #include <netinet/udp.h>
112 #include <netinet/tcp.h>
113 #include <netinet/if_ether.h>
114 #endif
115 
116 #include <net/if_media.h>
117 #include <net/if_vlan_var.h>
118 
119 #if NBPFILTER > 0
120 #include <net/bpf.h>
121 #endif
122 
123 #include <dev/mii/mii.h>
124 #include <dev/mii/miivar.h>
125 #include <dev/mii/brgphyreg.h>
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130 
131 #include <dev/pci/if_skreg.h>
132 #include <dev/pci/if_mskvar.h>
133 
134 int mskc_probe(struct device *, void *, void *);
135 void mskc_attach(struct device *, struct device *self, void *aux);
136 int mskc_detach(struct device *, int);
137 int mskc_activate(struct device *, int);
138 void mskc_reset(struct sk_softc *);
139 int msk_probe(struct device *, void *, void *);
140 void msk_attach(struct device *, struct device *self, void *aux);
141 int msk_detach(struct device *, int);
142 int msk_activate(struct device *, int);
143 void msk_reset(struct sk_if_softc *);
144 int mskcprint(void *, const char *);
145 int msk_intr(void *);
146 void msk_intr_yukon(struct sk_if_softc *);
147 static __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
148 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
149 void msk_txeof(struct sk_if_softc *);
150 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
151 void msk_start(struct ifnet *);
152 int msk_ioctl(struct ifnet *, u_long, caddr_t);
153 void msk_init(void *);
154 void msk_init_yukon(struct sk_if_softc *);
155 void msk_stop(struct sk_if_softc *, int);
156 void msk_watchdog(struct ifnet *);
157 int msk_ifmedia_upd(struct ifnet *);
158 void msk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
159 int msk_newbuf(struct sk_if_softc *);
160 int msk_init_rx_ring(struct sk_if_softc *);
161 int msk_init_tx_ring(struct sk_if_softc *);
162 void msk_fill_rx_ring(struct sk_if_softc *);
163 
164 int msk_miibus_readreg(struct device *, int, int);
165 void msk_miibus_writereg(struct device *, int, int, int);
166 void msk_miibus_statchg(struct device *);
167 
168 void msk_setmulti(struct sk_if_softc *);
169 void msk_setpromisc(struct sk_if_softc *);
170 void msk_tick(void *);
171 
172 #ifdef MSK_DEBUG
173 #define DPRINTF(x)	if (mskdebug) printf x
174 #define DPRINTFN(n,x)	if (mskdebug >= (n)) printf x
175 int	mskdebug = 0;
176 
177 void msk_dump_txdesc(struct msk_tx_desc *, int);
178 void msk_dump_mbuf(struct mbuf *);
179 void msk_dump_bytes(const char *, int);
180 #else
181 #define DPRINTF(x)
182 #define DPRINTFN(n,x)
183 #endif
184 
185 /* supported device vendors */
186 const struct pci_matchid mskc_devices[] = {
187 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
188 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550T_B1 },
189 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
190 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
191 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8021CU },
192 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8021X },
193 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8022CU },
194 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8022X },
195 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
196 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
197 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
198 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
199 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040 },
200 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040T },
201 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8042 },
202 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8048 },
203 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
204 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
205 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
206 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
207 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055_2 },
208 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
209 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8057 },
210 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8058 },
211 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8059 },
212 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8061CU },
213 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8061X },
214 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8062CU },
215 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8062X },
216 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8070 },
217 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8071 },
218 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8072 },
219 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8075 },
220 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
221 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
222 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
223 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
224 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
225 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK9Exx },
226 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK9Sxx }
227 };
228 
229 static inline u_int32_t
230 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
231 {
232 	return CSR_READ_4(sc, reg);
233 }
234 
235 static inline u_int16_t
236 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
237 {
238 	return CSR_READ_2(sc, reg);
239 }
240 
241 static inline u_int8_t
242 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
243 {
244 	return CSR_READ_1(sc, reg);
245 }
246 
247 static inline void
248 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
249 {
250 	CSR_WRITE_4(sc, reg, x);
251 }
252 
253 static inline void
254 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
255 {
256 	CSR_WRITE_2(sc, reg, x);
257 }
258 
259 static inline void
260 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
261 {
262 	CSR_WRITE_1(sc, reg, x);
263 }
264 
265 int
266 msk_miibus_readreg(struct device *dev, int phy, int reg)
267 {
268 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
269 	u_int16_t val;
270 	int i;
271 
272         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
273 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
274 
275 	for (i = 0; i < SK_TIMEOUT; i++) {
276 		DELAY(1);
277 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
278 		if (val & YU_SMICR_READ_VALID)
279 			break;
280 	}
281 
282 	if (i == SK_TIMEOUT) {
283 		printf("%s: phy failed to come ready\n",
284 		       sc_if->sk_dev.dv_xname);
285 		return (0);
286 	}
287 
288  	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
289 		     SK_TIMEOUT));
290 
291         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
292 
293 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
294 		     phy, reg, val));
295 
296 	return (val);
297 }
298 
299 void
300 msk_miibus_writereg(struct device *dev, int phy, int reg, int val)
301 {
302 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
303 	int i;
304 
305 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
306 		     phy, reg, val));
307 
308 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
309 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
310 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
311 
312 	for (i = 0; i < SK_TIMEOUT; i++) {
313 		DELAY(1);
314 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
315 			break;
316 	}
317 
318 	if (i == SK_TIMEOUT)
319 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
320 }
321 
322 void
323 msk_miibus_statchg(struct device *dev)
324 {
325 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
326 	struct mii_data *mii = &sc_if->sk_mii;
327 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
328 	int gpcr;
329 
330 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
331 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
332 
333 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
334 	    sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
335 		/* Set speed. */
336 		gpcr |= YU_GPCR_SPEED_DIS;
337 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
338 		case IFM_1000_SX:
339 		case IFM_1000_LX:
340 		case IFM_1000_CX:
341 		case IFM_1000_T:
342 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
343 			break;
344 		case IFM_100_TX:
345 			gpcr |= YU_GPCR_SPEED;
346 			break;
347 		}
348 
349 		/* Set duplex. */
350 		gpcr |= YU_GPCR_DPLX_DIS;
351 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
352 			gpcr |= YU_GPCR_DUPLEX;
353 
354 		/* Disable flow control. */
355 		gpcr |= YU_GPCR_FCTL_DIS;
356 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
357 	}
358 
359 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
360 
361 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
362 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
363 }
364 
365 void
366 msk_setmulti(struct sk_if_softc *sc_if)
367 {
368 	struct ifnet *ifp= &sc_if->arpcom.ac_if;
369 	u_int32_t hashes[2] = { 0, 0 };
370 	int h;
371 	struct arpcom *ac = &sc_if->arpcom;
372 	struct ether_multi *enm;
373 	struct ether_multistep step;
374 
375 	/* First, zot all the existing filters. */
376 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
377 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
378 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
379 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
380 
381 
382 	/* Now program new ones. */
383 allmulti:
384 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
385 		hashes[0] = 0xFFFFFFFF;
386 		hashes[1] = 0xFFFFFFFF;
387 	} else {
388 		/* First find the tail of the list. */
389 		ETHER_FIRST_MULTI(step, ac, enm);
390 		while (enm != NULL) {
391 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
392 				 ETHER_ADDR_LEN)) {
393 				ifp->if_flags |= IFF_ALLMULTI;
394 				goto allmulti;
395 			}
396 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
397 			    ((1 << SK_HASH_BITS) - 1);
398 			if (h < 32)
399 				hashes[0] |= (1 << h);
400 			else
401 				hashes[1] |= (1 << (h - 32));
402 
403 			ETHER_NEXT_MULTI(step, enm);
404 		}
405 	}
406 
407 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
408 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
409 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
410 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
411 }
412 
413 void
414 msk_setpromisc(struct sk_if_softc *sc_if)
415 {
416 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
417 
418 	if (ifp->if_flags & IFF_PROMISC)
419 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
420 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
421 	else
422 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
423 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
424 }
425 
426 int
427 msk_init_rx_ring(struct sk_if_softc *sc_if)
428 {
429 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
430 	struct msk_ring_data	*rd = sc_if->sk_rdata;
431 	int			i, nexti;
432 
433 	bzero(rd->sk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
434 
435 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
436 		cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
437 		if (i == (MSK_RX_RING_CNT - 1))
438 			nexti = 0;
439 		else
440 			nexti = i + 1;
441 		cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
442 	}
443 
444 	sc_if->sk_cdata.sk_rx_prod = 0;
445 	sc_if->sk_cdata.sk_rx_cons = 0;
446 	sc_if->sk_cdata.sk_rx_cnt = 0;
447 
448 	msk_fill_rx_ring(sc_if);
449 	return (0);
450 }
451 
452 int
453 msk_init_tx_ring(struct sk_if_softc *sc_if)
454 {
455 	struct sk_softc		*sc = sc_if->sk_softc;
456 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
457 	struct msk_ring_data	*rd = sc_if->sk_rdata;
458 	bus_dmamap_t		dmamap;
459 	struct sk_txmap_entry	*entry;
460 	int			i, nexti;
461 
462 	bzero(sc_if->sk_rdata->sk_tx_ring,
463 	    sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
464 
465 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
466 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
467 		cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
468 		if (i == (MSK_TX_RING_CNT - 1))
469 			nexti = 0;
470 		else
471 			nexti = i + 1;
472 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
473 
474 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
475 		   SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
476 			return (ENOBUFS);
477 
478 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
479 		if (!entry) {
480 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
481 			return (ENOBUFS);
482 		}
483 		entry->dmamap = dmamap;
484 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
485 	}
486 
487 	sc_if->sk_cdata.sk_tx_prod = 0;
488 	sc_if->sk_cdata.sk_tx_cons = 0;
489 	sc_if->sk_cdata.sk_tx_cnt = 0;
490 
491 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
492 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
493 
494 	return (0);
495 }
496 
497 int
498 msk_newbuf(struct sk_if_softc *sc_if)
499 {
500 	struct sk_chain		*c;
501 	struct msk_rx_desc	*r;
502 	struct mbuf		*m;
503 	bus_dmamap_t		dmamap;
504 	int			error;
505 	int			i, head;
506 
507 	m = MCLGETI(NULL, M_DONTWAIT, &sc_if->arpcom.ac_if, sc_if->sk_pktlen);
508 	if (!m)
509 		return (ENOBUFS);
510 	m->m_len = m->m_pkthdr.len = sc_if->sk_pktlen;
511 	m_adj(m, ETHER_ALIGN);
512 
513 	dmamap = sc_if->sk_cdata.sk_rx_map[sc_if->sk_cdata.sk_rx_prod];
514 
515 	error = bus_dmamap_load_mbuf(sc_if->sk_softc->sc_dmatag, dmamap, m,
516 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
517 	if (error) {
518 		m_freem(m);
519 		return (ENOBUFS);
520 	}
521 
522 	if (dmamap->dm_nsegs > (MSK_RX_RING_CNT - sc_if->sk_cdata.sk_rx_cnt)) {
523 		bus_dmamap_unload(sc_if->sk_softc->sc_dmatag, dmamap);
524 		m_freem(m);
525 		return (ENOBUFS);
526 	}
527 
528 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
529 	    dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
530 
531 	c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
532 	head = sc_if->sk_cdata.sk_rx_prod;
533 	r = c->sk_le;
534 	c->sk_mbuf = m;
535 
536 	r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr);
537 	r->sk_len = htole16(dmamap->dm_segs[0].ds_len);
538 	r->sk_ctl = 0;
539 
540 	MSK_CDRXSYNC(sc_if, head, BUS_DMASYNC_PREWRITE);
541 
542 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
543 	sc_if->sk_cdata.sk_rx_cnt++;
544 
545 	for (i = 1; i < dmamap->dm_nsegs; i++) {
546 		c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
547 		r = c->sk_le;
548 		c->sk_mbuf = NULL;
549 
550 		r->sk_addr = htole32(dmamap->dm_segs[i].ds_addr);
551 		r->sk_len = htole16(dmamap->dm_segs[i].ds_len);
552 		r->sk_ctl = 0;
553 
554 		MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
555 		    BUS_DMASYNC_PREWRITE);
556 
557 		r->sk_opcode = SK_Y2_RXOPC_BUFFER | SK_Y2_RXOPC_OWN;
558 
559 		MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
560 		    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
561 
562 		SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
563 		sc_if->sk_cdata.sk_rx_cnt++;
564 	}
565 
566 	c = &sc_if->sk_cdata.sk_rx_chain[head];
567 	r = c->sk_le;
568 	r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
569 
570 	MSK_CDRXSYNC(sc_if, head, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
571 
572 	return (0);
573 }
574 
575 /*
576  * Set media options.
577  */
578 int
579 msk_ifmedia_upd(struct ifnet *ifp)
580 {
581 	struct sk_if_softc *sc_if = ifp->if_softc;
582 
583 	mii_mediachg(&sc_if->sk_mii);
584 	return (0);
585 }
586 
587 /*
588  * Report current media status.
589  */
590 void
591 msk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
592 {
593 	struct sk_if_softc *sc_if = ifp->if_softc;
594 
595 	mii_pollstat(&sc_if->sk_mii);
596 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
597 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
598 }
599 
600 int
601 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
602 {
603 	struct sk_if_softc *sc_if = ifp->if_softc;
604 	struct ifaddr *ifa = (struct ifaddr *) data;
605 	struct ifreq *ifr = (struct ifreq *) data;
606 	struct mii_data *mii;
607 	int s, error = 0;
608 
609 	s = splnet();
610 
611 	switch(command) {
612 	case SIOCSIFADDR:
613 		ifp->if_flags |= IFF_UP;
614 		if (!(ifp->if_flags & IFF_RUNNING))
615 			msk_init(sc_if);
616 #ifdef INET
617 		if (ifa->ifa_addr->sa_family == AF_INET)
618 			arp_ifinit(&sc_if->arpcom, ifa);
619 #endif /* INET */
620 		break;
621 
622 	case SIOCSIFFLAGS:
623 		if (ifp->if_flags & IFF_UP) {
624 			if (ifp->if_flags & IFF_RUNNING &&
625 			    (sc_if->sk_if_flags ^ ifp->if_flags) &
626 			     IFF_PROMISC) {
627 				msk_setpromisc(sc_if);
628 				msk_setmulti(sc_if);
629 			} else {
630 				if (!(ifp->if_flags & IFF_RUNNING))
631 					msk_init(sc_if);
632 			}
633 		} else {
634 			if (ifp->if_flags & IFF_RUNNING)
635 				msk_stop(sc_if, 0);
636 		}
637 		sc_if->sk_if_flags = ifp->if_flags;
638 		break;
639 
640 	case SIOCGIFMEDIA:
641 	case SIOCSIFMEDIA:
642 		mii = &sc_if->sk_mii;
643 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
644 		break;
645 
646 	default:
647 		error = ether_ioctl(ifp, &sc_if->arpcom, command, data);
648 	}
649 
650 	if (error == ENETRESET) {
651 		if (ifp->if_flags & IFF_RUNNING)
652 			msk_setmulti(sc_if);
653 		error = 0;
654 	}
655 
656 	splx(s);
657 	return (error);
658 }
659 
660 /*
661  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
662  * IDs against our list and return a device name if we find a match.
663  */
664 int
665 mskc_probe(struct device *parent, void *match, void *aux)
666 {
667 	return (pci_matchbyid((struct pci_attach_args *)aux, mskc_devices,
668 	    nitems(mskc_devices)));
669 }
670 
671 /*
672  * Force the GEnesis into reset, then bring it out of reset.
673  */
674 void
675 mskc_reset(struct sk_softc *sc)
676 {
677 	u_int32_t imtimer_ticks, reg1;
678 	int reg;
679 
680 	DPRINTFN(2, ("mskc_reset\n"));
681 
682 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
683 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
684 
685 	DELAY(1000);
686 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
687 	DELAY(2);
688 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
689 
690 	sk_win_write_1(sc, SK_TESTCTL1, 2);
691 
692 	if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
693 	    sc->sk_type >= SK_YUKON_FE_P) {
694 		/* enable all clocks. */
695 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
696 		reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
697 		reg1 &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
698 		    SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
699 		    SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
700 		    SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
701 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), reg1);
702 
703 		reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5));
704 		reg1 &= SK_Y2_REG5_TIM_VMAIN_AV_MASK;
705 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), reg1);
706 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_CFGREG1), 0);
707 
708 		/*
709 		 * Disable status race, workaround for Yukon EC Ultra &
710 		 * Yukon EX.
711 		 */
712 		reg1 = sk_win_read_4(sc, SK_GPIO);
713 		reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
714 		sk_win_write_4(sc, SK_GPIO, reg1);
715 		sk_win_read_4(sc, SK_GPIO);
716 	}
717 
718 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
719 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
720 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
721 	else
722 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
723 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
724 
725 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
726 		sk_win_write_1(sc, SK_Y2_CLKGATE,
727 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
728 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
729 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
730 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
731 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
732 	else
733 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
734 
735 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
736 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
737 	DELAY(1000);
738 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
739 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
740 
741 	if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
742 		CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
743 		    SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
744 	}
745 
746 	sk_win_write_1(sc, SK_TESTCTL1, 1);
747 
748 	DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
749 	DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
750 		     CSR_READ_2(sc, SK_LINK_CTRL)));
751 
752 	/* Disable ASF */
753 	CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
754 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
755 
756 	/* Clear I2C IRQ noise */
757 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
758 
759 	/* Disable hardware timer */
760 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
761 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
762 
763 	/* Disable descriptor polling */
764 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
765 
766 	/* Disable time stamps */
767 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
768 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
769 
770 	/* Enable RAM interface */
771 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
772 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
773 		sk_win_write_1(sc, reg, 36);
774 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
775 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
776 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
777 
778 	/*
779 	 * Configure interrupt moderation. The moderation timer
780 	 * defers interrupts specified in the interrupt moderation
781 	 * timer mask based on the timeout specified in the interrupt
782 	 * moderation timer init register. Each bit in the timer
783 	 * register represents one tick, so to specify a timeout in
784 	 * microseconds, we have to multiply by the correct number of
785 	 * ticks-per-microsecond.
786 	 */
787 	switch (sc->sk_type) {
788 	case SK_YUKON_EC:
789 	case SK_YUKON_XL:
790 	case SK_YUKON_FE:
791 	case SK_YUKON_OPTIMA:
792 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
793 		break;
794 	default:
795 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
796 	}
797 
798 	/* Reset status ring. */
799 	bzero(sc->sk_status_ring,
800 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
801 	sc->sk_status_idx = 0;
802 
803 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
804 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
805 
806 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
807 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
808 	    sc->sk_status_map->dm_segs[0].ds_addr);
809 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
810 	    (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
811 	sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 10);
812 	sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 16);
813 	sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 16);
814 
815 #if 0
816 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
817 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
818 	sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(20));
819 #else
820 	sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(4));
821 #endif
822 
823 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
824 
825 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
826 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
827 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
828 }
829 
830 int
831 msk_probe(struct device *parent, void *match, void *aux)
832 {
833 	struct skc_attach_args *sa = aux;
834 
835 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
836 		return (0);
837 
838 	switch (sa->skc_type) {
839 	case SK_YUKON_XL:
840 	case SK_YUKON_EC_U:
841 	case SK_YUKON_EX:
842 	case SK_YUKON_EC:
843 	case SK_YUKON_FE:
844 	case SK_YUKON_FE_P:
845 	case SK_YUKON_SUPR:
846 	case SK_YUKON_ULTRA2:
847 	case SK_YUKON_OPTIMA:
848 		return (1);
849 	}
850 
851 	return (0);
852 }
853 
854 void
855 msk_reset(struct sk_if_softc *sc_if)
856 {
857 	/* GMAC and GPHY Reset */
858 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
859 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
860 	DELAY(1000);
861 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
862 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
863 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
864 }
865 
866 /*
867  * Each XMAC chip is attached as a separate logical IP interface.
868  * Single port cards will have only one logical interface of course.
869  */
870 void
871 msk_attach(struct device *parent, struct device *self, void *aux)
872 {
873 	struct sk_if_softc *sc_if = (struct sk_if_softc *)self;
874 	struct sk_softc *sc = (struct sk_softc *)parent;
875 	struct skc_attach_args *sa = aux;
876 	struct ifnet *ifp;
877 	caddr_t kva;
878 	int i;
879 	u_int32_t chunk;
880 	int mii_flags;
881 	int error;
882 
883 	sc_if->sk_port = sa->skc_port;
884 	sc_if->sk_softc = sc;
885 	sc->sk_if[sa->skc_port] = sc_if;
886 
887 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
888 
889 	/*
890 	 * Get station address for this interface. Note that
891 	 * dual port cards actually come with three station
892 	 * addresses: one for each port, plus an extra. The
893 	 * extra one is used by the SysKonnect driver software
894 	 * as a 'virtual' station address for when both ports
895 	 * are operating in failover mode. Currently we don't
896 	 * use this extra address.
897 	 */
898 	for (i = 0; i < ETHER_ADDR_LEN; i++)
899 		sc_if->arpcom.ac_enaddr[i] =
900 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
901 
902 	printf(": address %s\n",
903 	    ether_sprintf(sc_if->arpcom.ac_enaddr));
904 
905 	/*
906 	 * Set up RAM buffer addresses. The Yukon2 has a small amount
907 	 * of SRAM on it, somewhere between 4K and 48K.  We need to
908 	 * divide this up between the transmitter and receiver.  We
909 	 * give the receiver 2/3 of the memory (rounded down), and the
910 	 * transmitter whatever remains.
911 	 */
912 	chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
913 	sc_if->sk_rx_ramstart = 0;
914 	sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
915 	chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
916 	sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
917 	sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
918 
919 	DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
920 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
921 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
922 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
923 
924 	/* Allocate the descriptor queues. */
925 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
926 	    PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
927 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
928 		printf(": can't alloc rx buffers\n");
929 		goto fail;
930 	}
931 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
932 	    sc_if->sk_ring_nseg,
933 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
934 		printf(": can't map dma buffers (%lu bytes)\n",
935 		       (ulong)sizeof(struct msk_ring_data));
936 		goto fail_1;
937 	}
938 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
939 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
940             &sc_if->sk_ring_map)) {
941 		printf(": can't create dma map\n");
942 		goto fail_2;
943 	}
944 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
945 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
946 		printf(": can't load dma map\n");
947 		goto fail_3;
948 	}
949         sc_if->sk_rdata = (struct msk_ring_data *)kva;
950 
951 	if (sc->sk_type != SK_YUKON_FE &&
952 	    sc->sk_type != SK_YUKON_FE_P)
953 		sc_if->sk_pktlen = SK_JLEN;
954 	else
955 		sc_if->sk_pktlen = MCLBYTES;
956 
957 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
958 		if ((error = bus_dmamap_create(sc->sc_dmatag,
959 		    sc_if->sk_pktlen, 4, sc_if->sk_pktlen,
960 		    0, 0, &sc_if->sk_cdata.sk_rx_map[i])) != 0) {
961 			printf("\n%s: unable to create rx DMA map %d, "
962 			    "error = %d\n", sc->sk_dev.dv_xname, i, error);
963 			goto fail_4;
964 		}
965 	}
966 
967 	ifp = &sc_if->arpcom.ac_if;
968 	ifp->if_softc = sc_if;
969 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
970 	ifp->if_ioctl = msk_ioctl;
971 	ifp->if_start = msk_start;
972 	ifp->if_watchdog = msk_watchdog;
973 	ifp->if_baudrate = 1000000000;
974 	if (sc->sk_type != SK_YUKON_FE &&
975 	    sc->sk_type != SK_YUKON_FE_P)
976 		ifp->if_hardmtu = SK_JUMBO_MTU;
977 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
978 	IFQ_SET_READY(&ifp->if_snd);
979 	bcopy(sc_if->sk_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
980 
981 	ifp->if_capabilities = IFCAP_VLAN_MTU;
982 
983 	msk_reset(sc_if);
984 
985 	/*
986 	 * Do miibus setup.
987 	 */
988 	msk_init_yukon(sc_if);
989 
990  	DPRINTFN(2, ("msk_attach: 1\n"));
991 
992 	sc_if->sk_mii.mii_ifp = ifp;
993 	sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
994 	sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
995 	sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
996 
997 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
998 	    msk_ifmedia_upd, msk_ifmedia_sts);
999 	mii_flags = MIIF_DOPAUSE;
1000 	if (sc->sk_fibertype)
1001 		mii_flags |= MIIF_HAVEFIBER;
1002 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
1003 	    MII_OFFSET_ANY, mii_flags);
1004 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1005 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1006 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1007 			    0, NULL);
1008 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1009 	} else
1010 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1011 
1012 	timeout_set(&sc_if->sk_tick_ch, msk_tick, sc_if);
1013 
1014 	/*
1015 	 * Call MI attach routines.
1016 	 */
1017 	if_attach(ifp);
1018 	ether_ifattach(ifp);
1019 	m_clsetwms(ifp, sc_if->sk_pktlen, 2, MSK_RX_RING_CNT);
1020 
1021 	DPRINTFN(2, ("msk_attach: end\n"));
1022 	return;
1023 
1024 fail_4:
1025 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
1026 		if (sc_if->sk_cdata.sk_rx_map[i] != NULL)
1027 			bus_dmamap_destroy(sc->sc_dmatag,
1028 			    sc_if->sk_cdata.sk_rx_map[i]);
1029 	}
1030 
1031 fail_3:
1032 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1033 fail_2:
1034 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1035 fail_1:
1036 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1037 fail:
1038 	sc->sk_if[sa->skc_port] = NULL;
1039 }
1040 
1041 int
1042 msk_detach(struct device *self, int flags)
1043 {
1044 	struct sk_if_softc *sc_if = (struct sk_if_softc *)self;
1045 	struct sk_softc *sc = sc_if->sk_softc;
1046 	struct ifnet *ifp= &sc_if->arpcom.ac_if;
1047 
1048 	if (sc->sk_if[sc_if->sk_port] == NULL)
1049 		return (0);
1050 
1051 	msk_stop(sc_if, 1);
1052 
1053 	/* Detach any PHYs we might have. */
1054 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1055 		mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1056 
1057 	/* Delete any remaining media. */
1058 	ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1059 
1060 	ether_ifdetach(ifp);
1061 	if_detach(ifp);
1062 
1063 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc_if->sk_rdata,
1064 	    sizeof(struct msk_ring_data));
1065 	bus_dmamem_free(sc->sc_dmatag,
1066 	    &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1067 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1068 	sc->sk_if[sc_if->sk_port] = NULL;
1069 
1070 	return (0);
1071 }
1072 
1073 int
1074 msk_activate(struct device *self, int act)
1075 {
1076 	struct sk_if_softc *sc_if = (void *)self;
1077 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1078 	int rv = 0;
1079 
1080 	switch (act) {
1081 	case DVACT_QUIESCE:
1082 		rv = config_activate_children(self, act);
1083 		break;
1084 	case DVACT_SUSPEND:
1085 		rv = config_activate_children(self, act);
1086 		break;
1087 	case DVACT_RESUME:
1088 		msk_reset(sc_if);
1089 		rv = config_activate_children(self, act);
1090 		if (ifp->if_flags & IFF_RUNNING)
1091 			msk_init(sc_if);
1092 		break;
1093 	}
1094 	return (rv);
1095 }
1096 
1097 int
1098 mskcprint(void *aux, const char *pnp)
1099 {
1100 	struct skc_attach_args *sa = aux;
1101 
1102 	if (pnp)
1103 		printf("msk port %c at %s",
1104 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1105 	else
1106 		printf(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1107 	return (UNCONF);
1108 }
1109 
1110 /*
1111  * Attach the interface. Allocate softc structures, do ifmedia
1112  * setup and ethernet/BPF attach.
1113  */
1114 void
1115 mskc_attach(struct device *parent, struct device *self, void *aux)
1116 {
1117 	struct sk_softc *sc = (struct sk_softc *)self;
1118 	struct pci_attach_args *pa = aux;
1119 	struct skc_attach_args skca;
1120 	pci_chipset_tag_t pc = pa->pa_pc;
1121 	pcireg_t command, memtype;
1122 	pci_intr_handle_t ih;
1123 	const char *intrstr = NULL;
1124 	u_int8_t hw, pmd;
1125 	char *revstr = NULL;
1126 	caddr_t kva;
1127 
1128 	DPRINTFN(2, ("begin mskc_attach\n"));
1129 
1130 	/*
1131 	 * Handle power management nonsense.
1132 	 */
1133 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1134 
1135 	if (command == 0x01) {
1136 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1137 		if (command & SK_PSTATE_MASK) {
1138 			u_int32_t		iobase, membase, irq;
1139 
1140 			/* Save important PCI config data. */
1141 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1142 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1143 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1144 
1145 			/* Reset the power state. */
1146 			printf("%s chip is in D%d power mode "
1147 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1148 			    command & SK_PSTATE_MASK);
1149 			command &= 0xFFFFFFFC;
1150 			pci_conf_write(pc, pa->pa_tag,
1151 			    SK_PCI_PWRMGMTCTRL, command);
1152 
1153 			/* Restore PCI config data. */
1154 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1155 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1156 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1157 		}
1158 	}
1159 
1160 	/*
1161 	 * Map control/status registers.
1162 	 */
1163 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1164 	if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1165 	    &sc->sk_bhandle, NULL, &sc->sk_bsize, 0)) {
1166 		printf(": can't map mem space\n");
1167 		return;
1168 	}
1169 
1170 	sc->sc_dmatag = pa->pa_dmat;
1171 
1172 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1173 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1174 
1175 	/* bail out here if chip is not recognized */
1176 	if (!(SK_IS_YUKON2(sc))) {
1177 		printf(": unknown chip type: %d\n", sc->sk_type);
1178 		goto fail_1;
1179 	}
1180 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1181 
1182 	/* Allocate interrupt */
1183 	if (pci_intr_map(pa, &ih)) {
1184 		printf(": couldn't map interrupt\n");
1185 		goto fail_1;
1186 	}
1187 
1188 	intrstr = pci_intr_string(pc, ih);
1189 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc,
1190 	    self->dv_xname);
1191 	if (sc->sk_intrhand == NULL) {
1192 		printf(": couldn't establish interrupt");
1193 		if (intrstr != NULL)
1194 			printf(" at %s", intrstr);
1195 		printf("\n");
1196 		goto fail_1;
1197 	}
1198 	sc->sk_pc = pc;
1199 
1200 	if (bus_dmamem_alloc(sc->sc_dmatag,
1201 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1202 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1203 	    0, &sc->sk_status_seg, 1, &sc->sk_status_nseg,
1204 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
1205 		printf(": can't alloc status buffers\n");
1206 		goto fail_2;
1207 	}
1208 
1209 	if (bus_dmamem_map(sc->sc_dmatag,
1210 	    &sc->sk_status_seg, sc->sk_status_nseg,
1211 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1212 	    &kva, BUS_DMA_NOWAIT)) {
1213 		printf(": can't map dma buffers (%lu bytes)\n",
1214 		    (ulong)(MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)));
1215 		goto fail_3;
1216 	}
1217 	if (bus_dmamap_create(sc->sc_dmatag,
1218 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1219 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1220 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1221 		printf(": can't create dma map\n");
1222 		goto fail_4;
1223 	}
1224 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1225 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1226 	    NULL, BUS_DMA_NOWAIT)) {
1227 		printf(": can't load dma map\n");
1228 		goto fail_5;
1229 	}
1230 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1231 
1232 	/* Reset the adapter. */
1233 	mskc_reset(sc);
1234 
1235 	sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1236 	DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1237 
1238 	pmd = sk_win_read_1(sc, SK_PMDTYPE);
1239 	if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1240 		sc->sk_fibertype = 1;
1241 
1242 	switch (sc->sk_type) {
1243 	case SK_YUKON_XL:
1244 		sc->sk_name = "Yukon-2 XL";
1245 		break;
1246 	case SK_YUKON_EC_U:
1247 		sc->sk_name = "Yukon-2 EC Ultra";
1248 		break;
1249 	case SK_YUKON_EX:
1250 		sc->sk_name = "Yukon-2 Extreme";
1251 		break;
1252 	case SK_YUKON_EC:
1253 		sc->sk_name = "Yukon-2 EC";
1254 		break;
1255 	case SK_YUKON_FE:
1256 		sc->sk_name = "Yukon-2 FE";
1257 		break;
1258 	case SK_YUKON_FE_P:
1259 		sc->sk_name = "Yukon-2 FE+";
1260 		break;
1261 	case SK_YUKON_SUPR:
1262 		sc->sk_name = "Yukon-2 Supreme";
1263 		break;
1264 	case SK_YUKON_ULTRA2:
1265 		sc->sk_name = "Yukon-2 Ultra2";
1266 		break;
1267 	case SK_YUKON_OPTIMA:
1268 		sc->sk_name = "Yukon-2 Optima";
1269 		break;
1270 	default:
1271 		sc->sk_name = "Yukon (Unknown)";
1272 	}
1273 
1274 	if (sc->sk_type == SK_YUKON_XL) {
1275 		switch (sc->sk_rev) {
1276 		case SK_YUKON_XL_REV_A0:
1277 			revstr = "A0";
1278 			break;
1279 		case SK_YUKON_XL_REV_A1:
1280 			revstr = "A1";
1281 			break;
1282 		case SK_YUKON_XL_REV_A2:
1283 			revstr = "A2";
1284 			break;
1285 		case SK_YUKON_XL_REV_A3:
1286 			revstr = "A3";
1287 			break;
1288 		default:
1289 			;
1290 		}
1291 	}
1292 
1293 	if (sc->sk_type == SK_YUKON_EC) {
1294 		switch (sc->sk_rev) {
1295 		case SK_YUKON_EC_REV_A1:
1296 			revstr = "A1";
1297 			break;
1298 		case SK_YUKON_EC_REV_A2:
1299 			revstr = "A2";
1300 			break;
1301 		case SK_YUKON_EC_REV_A3:
1302 			revstr = "A3";
1303 			break;
1304 		default:
1305 			;
1306 		}
1307 	}
1308 
1309 	if (sc->sk_type == SK_YUKON_EC_U) {
1310 		switch (sc->sk_rev) {
1311 		case SK_YUKON_EC_U_REV_A0:
1312 			revstr = "A0";
1313 			break;
1314 		case SK_YUKON_EC_U_REV_A1:
1315 			revstr = "A1";
1316 			break;
1317 		case SK_YUKON_EC_U_REV_B0:
1318 			revstr = "B0";
1319 			break;
1320 		default:
1321 			;
1322 		}
1323 	}
1324 
1325 	if (sc->sk_type == SK_YUKON_FE) {
1326 		switch (sc->sk_rev) {
1327 		case SK_YUKON_FE_REV_A1:
1328 			revstr = "A1";
1329 			break;
1330 		case SK_YUKON_FE_REV_A2:
1331 			revstr = "A2";
1332 			break;
1333 		default:
1334 			;
1335 		}
1336 	}
1337 
1338 	if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1339 		revstr = "A0";
1340 
1341 	if (sc->sk_type == SK_YUKON_EX) {
1342 		switch (sc->sk_rev) {
1343 		case SK_YUKON_EX_REV_A0:
1344 			revstr = "A0";
1345 			break;
1346 		case SK_YUKON_EX_REV_B0:
1347 			revstr = "B0";
1348 			break;
1349 		default:
1350 			;
1351 		}
1352 	}
1353 
1354 	if (sc->sk_type == SK_YUKON_SUPR && sc->sk_rev == SK_YUKON_SUPR_REV_A0)
1355 		revstr = "A0";
1356 
1357 
1358 	/* Announce the product name. */
1359 	printf(", %s", sc->sk_name);
1360 	if (revstr != NULL)
1361 		printf(" rev. %s", revstr);
1362 	printf(" (0x%x): %s\n", sc->sk_rev, intrstr);
1363 
1364 	sc->sk_macs = 1;
1365 
1366 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1367 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1368 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1369 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1370 			sc->sk_macs++;
1371 	}
1372 
1373 	skca.skc_port = SK_PORT_A;
1374 	skca.skc_type = sc->sk_type;
1375 	skca.skc_rev = sc->sk_rev;
1376 	(void)config_found(&sc->sk_dev, &skca, mskcprint);
1377 
1378 	if (sc->sk_macs > 1) {
1379 		skca.skc_port = SK_PORT_B;
1380 		skca.skc_type = sc->sk_type;
1381 		skca.skc_rev = sc->sk_rev;
1382 		(void)config_found(&sc->sk_dev, &skca, mskcprint);
1383 	}
1384 
1385 	/* Turn on the 'driver is loaded' LED. */
1386 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1387 
1388 	return;
1389 
1390 fail_4:
1391 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sk_status_ring,
1392 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1393 fail_3:
1394 	bus_dmamem_free(sc->sc_dmatag,
1395 	    &sc->sk_status_seg, sc->sk_status_nseg);
1396 	sc->sk_status_nseg = 0;
1397 fail_5:
1398 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1399 fail_2:
1400 	pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1401 	sc->sk_intrhand = NULL;
1402 fail_1:
1403 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1404 	sc->sk_bsize = 0;
1405 }
1406 
1407 int
1408 mskc_detach(struct device *self, int flags)
1409 {
1410 	struct sk_softc *sc = (struct sk_softc *)self;
1411 	int rv;
1412 
1413 	if (sc->sk_intrhand)
1414 		pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1415 
1416 	rv = config_detach_children(self, flags);
1417 	if (rv != 0)
1418 		return (rv);
1419 
1420 	if (sc->sk_status_nseg > 0) {
1421 		bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1422 		bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sk_status_ring,
1423 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1424 		bus_dmamem_free(sc->sc_dmatag,
1425 		    &sc->sk_status_seg, sc->sk_status_nseg);
1426 	}
1427 
1428 	if (sc->sk_bsize > 0)
1429 		bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1430 
1431 	return(0);
1432 }
1433 
1434 int
1435 mskc_activate(struct device *self, int act)
1436 {
1437 	struct sk_softc *sc = (void *)self;
1438 	int rv = 0;
1439 
1440 	switch (act) {
1441 	case DVACT_QUIESCE:
1442 		rv = config_activate_children(self, act);
1443 		break;
1444 	case DVACT_SUSPEND:
1445 		rv = config_activate_children(self, act);
1446 		break;
1447 	case DVACT_RESUME:
1448 		mskc_reset(sc);
1449 		rv = config_activate_children(self, act);
1450 		break;
1451 	}
1452 	return (rv);
1453 }
1454 
1455 int
1456 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1457 {
1458 	struct sk_softc		*sc = sc_if->sk_softc;
1459 	struct msk_tx_desc		*f = NULL;
1460 	u_int32_t		frag, cur;
1461 	int			i;
1462 	struct sk_txmap_entry	*entry;
1463 	bus_dmamap_t		txmap;
1464 
1465 	DPRINTFN(2, ("msk_encap\n"));
1466 
1467 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1468 	if (entry == NULL) {
1469 		DPRINTFN(2, ("msk_encap: no txmap available\n"));
1470 		return (ENOBUFS);
1471 	}
1472 	txmap = entry->dmamap;
1473 
1474 	cur = frag = *txidx;
1475 
1476 #ifdef MSK_DEBUG
1477 	if (mskdebug >= 2)
1478 		msk_dump_mbuf(m_head);
1479 #endif
1480 
1481 	/*
1482 	 * Start packing the mbufs in this chain into
1483 	 * the fragment pointers. Stop when we run out
1484 	 * of fragments or hit the end of the mbuf chain.
1485 	 */
1486 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1487 	    BUS_DMA_NOWAIT)) {
1488 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1489 		return (ENOBUFS);
1490 	}
1491 
1492 	if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1493 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1494 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1495 		return (ENOBUFS);
1496 	}
1497 
1498 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1499 
1500 	/* Sync the DMA map. */
1501 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1502 	    BUS_DMASYNC_PREWRITE);
1503 
1504 	for (i = 0; i < txmap->dm_nsegs; i++) {
1505 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1506 		f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1507 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1508 		f->sk_ctl = 0;
1509 		if (i == 0)
1510 			f->sk_opcode = SK_Y2_TXOPC_PACKET;
1511 		else
1512 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1513 		cur = frag;
1514 		SK_INC(frag, MSK_TX_RING_CNT);
1515 	}
1516 
1517 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1518 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1519 
1520 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1521 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1522 
1523 	/* Sync descriptors before handing to chip */
1524 	MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1525             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1526 
1527 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1528 
1529 	/* Sync first descriptor to hand it off */
1530 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1531 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1532 
1533 	sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1534 
1535 #ifdef MSK_DEBUG
1536 	if (mskdebug >= 2) {
1537 		struct msk_tx_desc *le;
1538 		u_int32_t idx;
1539 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1540 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1541 			msk_dump_txdesc(le, idx);
1542 		}
1543 	}
1544 #endif
1545 
1546 	*txidx = frag;
1547 
1548 	DPRINTFN(2, ("msk_encap: completed successfully\n"));
1549 
1550 	return (0);
1551 }
1552 
1553 void
1554 msk_start(struct ifnet *ifp)
1555 {
1556 	struct sk_if_softc	*sc_if = ifp->if_softc;
1557 	struct mbuf		*m_head = NULL;
1558 	u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1559 	int			pkts = 0;
1560 
1561 	DPRINTFN(2, ("msk_start\n"));
1562 
1563 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1564 		IFQ_POLL(&ifp->if_snd, m_head);
1565 		if (m_head == NULL)
1566 			break;
1567 
1568 		/*
1569 		 * Pack the data into the transmit ring. If we
1570 		 * don't have room, set the OACTIVE flag and wait
1571 		 * for the NIC to drain the ring.
1572 		 */
1573 		if (msk_encap(sc_if, m_head, &idx)) {
1574 			ifp->if_flags |= IFF_OACTIVE;
1575 			break;
1576 		}
1577 
1578 		/* now we are committed to transmit the packet */
1579 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1580 		pkts++;
1581 
1582 		/*
1583 		 * If there's a BPF listener, bounce a copy of this frame
1584 		 * to him.
1585 		 */
1586 #if NBPFILTER > 0
1587 		if (ifp->if_bpf)
1588 			bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1589 #endif
1590 	}
1591 	if (pkts == 0)
1592 		return;
1593 
1594 	/* Transmit */
1595 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1596 		sc_if->sk_cdata.sk_tx_prod = idx;
1597 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1598 
1599 		/* Set a timeout in case the chip goes out to lunch. */
1600 		ifp->if_timer = 5;
1601 	}
1602 }
1603 
1604 void
1605 msk_watchdog(struct ifnet *ifp)
1606 {
1607 	struct sk_if_softc *sc_if = ifp->if_softc;
1608 
1609 	/*
1610 	 * Reclaim first as there is a possibility of losing Tx completion
1611 	 * interrupts.
1612 	 */
1613 	msk_txeof(sc_if);
1614 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1615 		printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1616 
1617 		ifp->if_oerrors++;
1618 
1619 		/* XXX Resets both ports; we shouldn't do that. */
1620 		mskc_reset(sc_if->sk_softc);
1621 		msk_reset(sc_if);
1622 		msk_init(sc_if);
1623 	}
1624 }
1625 
1626 static __inline int
1627 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1628 {
1629 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1630 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1631 	    YU_RXSTAT_JABBER)) != 0 ||
1632 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1633 	    YU_RXSTAT_BYTES(stat) != len)
1634 		return (0);
1635 
1636 	return (1);
1637 }
1638 
1639 void
1640 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1641 {
1642 	struct sk_softc		*sc = sc_if->sk_softc;
1643 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
1644 	struct mbuf		*m;
1645 	struct sk_chain		*cur_rx;
1646 	int			i, cur, total_len = len;
1647 	bus_dmamap_t		dmamap;
1648 
1649 	DPRINTFN(2, ("msk_rxeof\n"));
1650 
1651 	cur = sc_if->sk_cdata.sk_rx_cons;
1652 
1653 	/* Sync the descriptor */
1654 	MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1655 
1656 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1657 	if (cur_rx->sk_mbuf == NULL)
1658 		return;
1659 
1660 	dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1661 	for (i = 0; i < dmamap->dm_nsegs; i++) {
1662 	  	SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1663 		sc_if->sk_cdata.sk_rx_cnt--;
1664 	}
1665 
1666 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1667 	    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1668 	bus_dmamap_unload(sc_if->sk_softc->sc_dmatag, dmamap);
1669 
1670 	m = cur_rx->sk_mbuf;
1671 	cur_rx->sk_mbuf = NULL;
1672 
1673 	if (total_len < SK_MIN_FRAMELEN ||
1674 	    total_len > SK_JUMBO_FRAMELEN ||
1675 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
1676 		ifp->if_ierrors++;
1677 		m_freem(m);
1678 		return;
1679 	}
1680 
1681 	m->m_pkthdr.rcvif = ifp;
1682 	m->m_pkthdr.len = m->m_len = total_len;
1683 
1684 	ifp->if_ipackets++;
1685 
1686 #if NBPFILTER > 0
1687 	if (ifp->if_bpf)
1688 		bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
1689 #endif
1690 
1691 	/* pass it on. */
1692 	ether_input_mbuf(ifp, m);
1693 }
1694 
1695 void
1696 msk_txeof(struct sk_if_softc *sc_if)
1697 {
1698 	struct sk_softc		*sc = sc_if->sk_softc;
1699 	struct msk_tx_desc	*cur_tx;
1700 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
1701 	u_int32_t		idx, reg, sk_ctl;
1702 	struct sk_txmap_entry	*entry;
1703 
1704 	DPRINTFN(2, ("msk_txeof\n"));
1705 
1706 	if (sc_if->sk_port == SK_PORT_A)
1707 		reg = SK_STAT_BMU_TXA1_RIDX;
1708 	else
1709 		reg = SK_STAT_BMU_TXA2_RIDX;
1710 
1711 	/*
1712 	 * Go through our tx ring and free mbufs for those
1713 	 * frames that have been sent.
1714 	 */
1715 	idx = sc_if->sk_cdata.sk_tx_cons;
1716 	while (idx != sk_win_read_2(sc, reg)) {
1717 		MSK_CDTXSYNC(sc_if, idx, 1,
1718 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1719 
1720 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1721 		sk_ctl = cur_tx->sk_ctl;
1722 #ifdef MSK_DEBUG
1723 		if (mskdebug >= 2)
1724 			msk_dump_txdesc(cur_tx, idx);
1725 #endif
1726 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1727 			ifp->if_opackets++;
1728 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1729 			entry = sc_if->sk_cdata.sk_tx_map[idx];
1730 
1731 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1732 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1733 
1734 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1735 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1736 
1737 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1738 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1739 					  link);
1740 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1741 		}
1742 		sc_if->sk_cdata.sk_tx_cnt--;
1743 		SK_INC(idx, MSK_TX_RING_CNT);
1744 	}
1745 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1746 
1747 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1748 		ifp->if_flags &= ~IFF_OACTIVE;
1749 
1750 	sc_if->sk_cdata.sk_tx_cons = idx;
1751 }
1752 
1753 void
1754 msk_fill_rx_ring(struct sk_if_softc *sc_if)
1755 {
1756 	while (sc_if->sk_cdata.sk_rx_cnt < MSK_RX_RING_CNT) {
1757 		if (msk_newbuf(sc_if) == ENOBUFS)
1758 			break;
1759 	}
1760 }
1761 
1762 void
1763 msk_tick(void *xsc_if)
1764 {
1765 	struct sk_if_softc *sc_if = xsc_if;
1766 	struct mii_data *mii = &sc_if->sk_mii;
1767 	int s;
1768 
1769 	s = splnet();
1770 	mii_tick(mii);
1771 	splx(s);
1772 	timeout_add_sec(&sc_if->sk_tick_ch, 1);
1773 }
1774 
1775 void
1776 msk_intr_yukon(struct sk_if_softc *sc_if)
1777 {
1778 	u_int8_t status;
1779 
1780 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1781 	/* RX overrun */
1782 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1783 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1784 		    SK_RFCTL_RX_FIFO_OVER);
1785 	}
1786 	/* TX underrun */
1787 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1788 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1789 		    SK_TFCTL_TX_FIFO_UNDER);
1790 	}
1791 
1792 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1793 }
1794 
1795 int
1796 msk_intr(void *xsc)
1797 {
1798 	struct sk_softc		*sc = xsc;
1799 	struct sk_if_softc	*sc_if;
1800 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1801 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1802 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1803 	int			claimed = 0, rx[2] = {0, 0};
1804 	u_int32_t		status;
1805 	struct msk_status_desc	*cur_st;
1806 
1807 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
1808 	if (status == 0xffffffff)
1809 		return (0);
1810 	if (status == 0) {
1811 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1812 		return (0);
1813 	}
1814 
1815 	status = CSR_READ_4(sc, SK_ISR);
1816 
1817 	if (sc_if0 != NULL)
1818 		ifp0 = &sc_if0->arpcom.ac_if;
1819 	if (sc_if1 != NULL)
1820 		ifp1 = &sc_if1->arpcom.ac_if;
1821 
1822 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1823 	    (ifp0->if_flags & IFF_RUNNING)) {
1824 		msk_intr_yukon(sc_if0);
1825 	}
1826 
1827 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1828 	    (ifp1->if_flags & IFF_RUNNING)) {
1829 		msk_intr_yukon(sc_if1);
1830 	}
1831 
1832 	MSK_CDSTSYNC(sc, sc->sk_status_idx,
1833 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1834 	cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1835 
1836 	while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
1837 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1838 		switch (cur_st->sk_opcode) {
1839 		case SK_Y2_STOPC_RXSTAT:
1840 			sc_if = sc->sk_if[cur_st->sk_link & 0x01];
1841 			rx[cur_st->sk_link & 0x01] = 1;
1842 			msk_rxeof(sc_if, letoh16(cur_st->sk_len),
1843 			    letoh32(cur_st->sk_status));
1844 			break;
1845 		case SK_Y2_STOPC_TXSTAT:
1846 			if (sc_if0)
1847 				msk_txeof(sc_if0);
1848 			if (sc_if1)
1849 				msk_txeof(sc_if1);
1850 			break;
1851 		default:
1852 			printf("opcode=0x%x\n", cur_st->sk_opcode);
1853 			break;
1854 		}
1855 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1856 
1857 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
1858 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1859 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1860 	}
1861 
1862 	if (status & SK_Y2_IMR_BMU) {
1863 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1864 		claimed = 1;
1865 	}
1866 
1867 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1868 
1869 	if (rx[0]) {
1870 		msk_fill_rx_ring(sc_if0);
1871 		SK_IF_WRITE_2(sc_if0, 0, SK_RXQ1_Y2_PREF_PUTIDX,
1872 		    sc_if0->sk_cdata.sk_rx_prod);
1873 	}
1874 	if (rx[1]) {
1875 		msk_fill_rx_ring(sc_if1);
1876 		SK_IF_WRITE_2(sc_if1, 0, SK_RXQ1_Y2_PREF_PUTIDX,
1877 		    sc_if1->sk_cdata.sk_rx_prod);
1878 	}
1879 
1880 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1881 		msk_start(ifp0);
1882 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1883 		msk_start(ifp1);
1884 
1885 	return (claimed);
1886 }
1887 
1888 void
1889 msk_init_yukon(struct sk_if_softc *sc_if)
1890 {
1891 	u_int32_t		v;
1892 	u_int16_t		reg;
1893 	struct sk_softc		*sc;
1894 	int			i;
1895 
1896 	sc = sc_if->sk_softc;
1897 
1898 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1899 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1900 
1901 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
1902 
1903 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1904 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1905 
1906 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
1907 
1908 	/* unused read of the interrupt source register */
1909 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
1910 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1911 
1912 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1913 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1914 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1915 
1916 	/* MIB Counter Clear Mode set */
1917         reg |= YU_PAR_MIB_CLR;
1918 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1919 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1920 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1921 
1922 	/* MIB Counter Clear Mode clear */
1923 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
1924         reg &= ~YU_PAR_MIB_CLR;
1925 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1926 
1927 	/* receive control reg */
1928 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
1929 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1930 
1931 	/* transmit parameter register */
1932 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
1933 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
1934 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
1935 
1936 	/* serial mode register */
1937 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
1938 	reg = YU_SMR_DATA_BLIND(0x1c) |
1939 	      YU_SMR_MFL_VLAN |
1940 	      YU_SMR_IPG_DATA(0x1e);
1941 
1942 	if (sc->sk_type != SK_YUKON_FE &&
1943 	    sc->sk_type != SK_YUKON_FE_P)
1944 		reg |= YU_SMR_MFL_JUMBO;
1945 
1946 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
1947 
1948 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
1949 	/* Setup Yukon's address */
1950 	for (i = 0; i < 3; i++) {
1951 		/* Write Source Address 1 (unicast filter) */
1952 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
1953 			      sc_if->arpcom.ac_enaddr[i * 2] |
1954 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
1955 	}
1956 
1957 	for (i = 0; i < 3; i++) {
1958 		reg = sk_win_read_2(sc_if->sk_softc,
1959 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
1960 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
1961 	}
1962 
1963 	/* Set promiscuous mode */
1964 	msk_setpromisc(sc_if);
1965 
1966 	/* Set multicast filter */
1967 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
1968 	msk_setmulti(sc_if);
1969 
1970 	/* enable interrupt mask for counter overflows */
1971 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
1972 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
1973 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
1974 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
1975 
1976 	/* Configure RX MAC FIFO Flush Mask */
1977 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
1978 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
1979 	    YU_RXSTAT_JABBER;
1980 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
1981 
1982 	/* Configure RX MAC FIFO */
1983 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
1984 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
1985 	    SK_RFCTL_FIFO_FLUSH_ON);
1986 
1987 	/* Increase flush threshould to 64 bytes */
1988 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
1989 	    SK_RFCTL_FIFO_THRESHOLD + 1);
1990 
1991 	/* Configure TX MAC FIFO */
1992 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
1993 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
1994 
1995 #if 1
1996 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
1997 #endif
1998 	DPRINTFN(6, ("msk_init_yukon: end\n"));
1999 }
2000 
2001 /*
2002  * Note that to properly initialize any part of the GEnesis chip,
2003  * you first have to take it out of reset mode.
2004  */
2005 void
2006 msk_init(void *xsc_if)
2007 {
2008 	struct sk_if_softc	*sc_if = xsc_if;
2009 	struct sk_softc		*sc = sc_if->sk_softc;
2010 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
2011 	struct mii_data		*mii = &sc_if->sk_mii;
2012 	int			s;
2013 
2014 	DPRINTFN(2, ("msk_init\n"));
2015 
2016 	s = splnet();
2017 
2018 	/* Cancel pending I/O and free all RX/TX buffers. */
2019 	msk_stop(sc_if, 0);
2020 
2021 	/* Configure I2C registers */
2022 
2023 	/* Configure XMAC(s) */
2024 	msk_init_yukon(sc_if);
2025 	mii_mediachg(mii);
2026 
2027 	/* Configure transmit arbiter(s) */
2028 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2029 #if 0
2030 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2031 #endif
2032 
2033 	/* Configure RAMbuffers */
2034 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2035 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2036 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2037 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2038 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2039 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2040 
2041 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2042 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2043 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2044 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2045 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2046 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2047 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2048 
2049 	/* Configure BMUs */
2050 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2051 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2052 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2053 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_WATERMARK, 0x00000600);
2054 
2055 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2056 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2057 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2058 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_WATERMARK, 0x00000600);
2059 
2060 	/* Make sure the sync transmit queue is disabled. */
2061 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2062 
2063 	/* Init descriptors */
2064 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2065 		printf("%s: initialization failed: no "
2066 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2067 		msk_stop(sc_if, 0);
2068 		splx(s);
2069 		return;
2070 	}
2071 
2072 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2073 		printf("%s: initialization failed: no "
2074 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2075 		msk_stop(sc_if, 0);
2076 		splx(s);
2077 		return;
2078 	}
2079 
2080 	/* Initialize prefetch engine. */
2081 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2082 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2083 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2084 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2085 	    MSK_RX_RING_ADDR(sc_if, 0));
2086 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2087 	    (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2088 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2089 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2090 
2091 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2092 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2093 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2094 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2095 	    MSK_TX_RING_ADDR(sc_if, 0));
2096 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2097 	    (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2098 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2099 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2100 
2101 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2102 	    sc_if->sk_cdata.sk_rx_prod);
2103 
2104 	/* Configure interrupt handling */
2105 	if (sc_if->sk_port == SK_PORT_A)
2106 		sc->sk_intrmask |= SK_Y2_INTRS1;
2107 	else
2108 		sc->sk_intrmask |= SK_Y2_INTRS2;
2109 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2110 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2111 
2112 	ifp->if_flags |= IFF_RUNNING;
2113 	ifp->if_flags &= ~IFF_OACTIVE;
2114 
2115 	timeout_add_sec(&sc_if->sk_tick_ch, 1);
2116 
2117 	splx(s);
2118 }
2119 
2120 void
2121 msk_stop(struct sk_if_softc *sc_if, int softonly)
2122 {
2123 	struct sk_softc		*sc = sc_if->sk_softc;
2124 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
2125 	struct sk_txmap_entry	*dma;
2126 	int			i;
2127 
2128 	DPRINTFN(2, ("msk_stop\n"));
2129 
2130 	timeout_del(&sc_if->sk_tick_ch);
2131 
2132 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2133 
2134 	/* Stop transfer of Tx descriptors */
2135 
2136 	/* Stop transfer of Rx descriptors */
2137 
2138 	if (!softonly) {
2139 		/* Turn off various components of this interface. */
2140 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2141 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2142 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2143 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2144 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2145 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2146 		SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2147 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2148 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2149 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2150 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2151 
2152 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2153 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2154 
2155 		/* Disable interrupts */
2156 		if (sc_if->sk_port == SK_PORT_A)
2157 			sc->sk_intrmask &= ~SK_Y2_INTRS1;
2158 		else
2159 			sc->sk_intrmask &= ~SK_Y2_INTRS2;
2160 		CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2161 	}
2162 
2163 	/* Free RX and TX mbufs still in the queues. */
2164 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2165 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2166 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2167 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2168 		}
2169 	}
2170 
2171 	sc_if->sk_cdata.sk_rx_prod = 0;
2172 	sc_if->sk_cdata.sk_rx_cons = 0;
2173 	sc_if->sk_cdata.sk_rx_cnt = 0;
2174 
2175 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2176 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2177 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2178 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2179 			SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2180 			    sc_if->sk_cdata.sk_tx_map[i], link);
2181 			sc_if->sk_cdata.sk_tx_map[i] = 0;
2182 		}
2183 	}
2184 
2185 	while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2186 		SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2187 		bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2188 		free(dma, M_DEVBUF);
2189 	}
2190 }
2191 
2192 struct cfattach mskc_ca = {
2193 	sizeof(struct sk_softc), mskc_probe, mskc_attach, mskc_detach,
2194 	mskc_activate
2195 };
2196 
2197 struct cfdriver mskc_cd = {
2198 	NULL, "mskc", DV_DULL
2199 };
2200 
2201 struct cfattach msk_ca = {
2202 	sizeof(struct sk_if_softc), msk_probe, msk_attach, msk_detach,
2203 	msk_activate
2204 };
2205 
2206 struct cfdriver msk_cd = {
2207 	NULL, "msk", DV_IFNET
2208 };
2209 
2210 #ifdef MSK_DEBUG
2211 void
2212 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2213 {
2214 #define DESC_PRINT(X)					\
2215 	if (X)					\
2216 		printf("txdesc[%d]." #X "=%#x\n",	\
2217 		       idx, X);
2218 
2219 	DESC_PRINT(letoh32(le->sk_addr));
2220 	DESC_PRINT(letoh16(le->sk_len));
2221 	DESC_PRINT(le->sk_ctl);
2222 	DESC_PRINT(le->sk_opcode);
2223 #undef DESC_PRINT
2224 }
2225 
2226 void
2227 msk_dump_bytes(const char *data, int len)
2228 {
2229 	int c, i, j;
2230 
2231 	for (i = 0; i < len; i += 16) {
2232 		printf("%08x  ", i);
2233 		c = len - i;
2234 		if (c > 16) c = 16;
2235 
2236 		for (j = 0; j < c; j++) {
2237 			printf("%02x ", data[i + j] & 0xff);
2238 			if ((j & 0xf) == 7 && j > 0)
2239 				printf(" ");
2240 		}
2241 
2242 		for (; j < 16; j++)
2243 			printf("   ");
2244 		printf("  ");
2245 
2246 		for (j = 0; j < c; j++) {
2247 			int ch = data[i + j] & 0xff;
2248 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2249 		}
2250 
2251 		printf("\n");
2252 
2253 		if (c < 16)
2254 			break;
2255 	}
2256 }
2257 
2258 void
2259 msk_dump_mbuf(struct mbuf *m)
2260 {
2261 	int count = m->m_pkthdr.len;
2262 
2263 	printf("m=%#lx, m->m_pkthdr.len=%#d\n", m, m->m_pkthdr.len);
2264 
2265 	while (count > 0 && m) {
2266 		printf("m=%#lx, m->m_data=%#lx, m->m_len=%d\n",
2267 		       m, m->m_data, m->m_len);
2268 		msk_dump_bytes(mtod(m, char *), m->m_len);
2269 
2270 		count -= m->m_len;
2271 		m = m->m_next;
2272 	}
2273 }
2274 #endif
2275