xref: /openbsd-src/sys/dev/pci/if_msk.c (revision 43003dfe3ad45d1698bed8a37f2b0f5b14f20d4f)
1 /*	$OpenBSD: if_msk.c,v 1.78 2009/10/04 18:32:02 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
35  */
36 
37 /*
38  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
39  *
40  * Permission to use, copy, modify, and distribute this software for any
41  * purpose with or without fee is hereby granted, provided that the above
42  * copyright notice and this permission notice appear in all copies.
43  *
44  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
45  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
46  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
47  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
48  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
49  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
50  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
51  */
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 
72 /*
73  * The SysKonnect gigabit ethernet adapters consist of two main
74  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
75  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
76  * components and a PHY while the GEnesis controller provides a PCI
77  * interface with DMA support. Each card may have between 512K and
78  * 2MB of SRAM on board depending on the configuration.
79  *
80  * The SysKonnect GEnesis controller can have either one or two XMAC
81  * chips connected to it, allowing single or dual port NIC configurations.
82  * SysKonnect has the distinction of being the only vendor on the market
83  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
84  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
85  * XMAC registers. This driver takes advantage of these features to allow
86  * both XMACs to operate as independent interfaces.
87  */
88 
89 #include "bpfilter.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/timeout.h>
99 #include <sys/device.h>
100 #include <sys/queue.h>
101 
102 #include <net/if.h>
103 #include <net/if_dl.h>
104 #include <net/if_types.h>
105 
106 #ifdef INET
107 #include <netinet/in.h>
108 #include <netinet/in_systm.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip.h>
111 #include <netinet/udp.h>
112 #include <netinet/tcp.h>
113 #include <netinet/if_ether.h>
114 #endif
115 
116 #include <net/if_media.h>
117 #include <net/if_vlan_var.h>
118 
119 #if NBPFILTER > 0
120 #include <net/bpf.h>
121 #endif
122 
123 #include <dev/mii/mii.h>
124 #include <dev/mii/miivar.h>
125 #include <dev/mii/brgphyreg.h>
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130 
131 #include <dev/pci/if_skreg.h>
132 #include <dev/pci/if_mskvar.h>
133 
134 int mskc_probe(struct device *, void *, void *);
135 void mskc_attach(struct device *, struct device *self, void *aux);
136 int mskc_detach(struct device *, int);
137 void mskc_reset(struct sk_softc *);
138 void mskc_shutdown(void *);
139 int msk_probe(struct device *, void *, void *);
140 void msk_attach(struct device *, struct device *self, void *aux);
141 int msk_detach(struct device *, int);
142 void msk_reset(struct sk_if_softc *);
143 int mskcprint(void *, const char *);
144 int msk_intr(void *);
145 void msk_intr_yukon(struct sk_if_softc *);
146 static __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
147 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
148 void msk_txeof(struct sk_if_softc *);
149 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
150 void msk_start(struct ifnet *);
151 int msk_ioctl(struct ifnet *, u_long, caddr_t);
152 void msk_init(void *);
153 void msk_init_yukon(struct sk_if_softc *);
154 void msk_stop(struct sk_if_softc *);
155 void msk_watchdog(struct ifnet *);
156 int msk_ifmedia_upd(struct ifnet *);
157 void msk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
158 int msk_newbuf(struct sk_if_softc *);
159 int msk_init_rx_ring(struct sk_if_softc *);
160 int msk_init_tx_ring(struct sk_if_softc *);
161 void msk_fill_rx_ring(struct sk_if_softc *);
162 
163 int msk_miibus_readreg(struct device *, int, int);
164 void msk_miibus_writereg(struct device *, int, int, int);
165 void msk_miibus_statchg(struct device *);
166 
167 void msk_setmulti(struct sk_if_softc *);
168 void msk_setpromisc(struct sk_if_softc *);
169 void msk_tick(void *);
170 
171 #ifdef MSK_DEBUG
172 #define DPRINTF(x)	if (mskdebug) printf x
173 #define DPRINTFN(n,x)	if (mskdebug >= (n)) printf x
174 int	mskdebug = 0;
175 
176 void msk_dump_txdesc(struct msk_tx_desc *, int);
177 void msk_dump_mbuf(struct mbuf *);
178 void msk_dump_bytes(const char *, int);
179 #else
180 #define DPRINTF(x)
181 #define DPRINTFN(n,x)
182 #endif
183 
184 /* supported device vendors */
185 const struct pci_matchid mskc_devices[] = {
186 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
187 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550T_B1 },
188 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
189 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
190 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
191 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
192 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
193 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
194 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
195 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8021CU },
196 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8021X },
197 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8022CU },
198 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8022X },
199 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
200 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
201 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
202 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
203 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040 },
204 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040T },
205 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8042 },
206 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8048 },
207 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
208 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
209 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
210 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
211 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055_2 },
212 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
213 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8058 },
214 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8061CU },
215 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8061X },
216 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8062CU },
217 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8062X },
218 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8070 },
219 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8071 },
220 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8072 },
221 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8075 },
222 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8057 },
223 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK9Sxx },
224 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK9Exx }
225 };
226 
227 static inline u_int32_t
228 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
229 {
230 	return CSR_READ_4(sc, reg);
231 }
232 
233 static inline u_int16_t
234 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
235 {
236 	return CSR_READ_2(sc, reg);
237 }
238 
239 static inline u_int8_t
240 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
241 {
242 	return CSR_READ_1(sc, reg);
243 }
244 
245 static inline void
246 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
247 {
248 	CSR_WRITE_4(sc, reg, x);
249 }
250 
251 static inline void
252 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
253 {
254 	CSR_WRITE_2(sc, reg, x);
255 }
256 
257 static inline void
258 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
259 {
260 	CSR_WRITE_1(sc, reg, x);
261 }
262 
263 int
264 msk_miibus_readreg(struct device *dev, int phy, int reg)
265 {
266 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
267 	u_int16_t val;
268 	int i;
269 
270         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
271 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
272 
273 	for (i = 0; i < SK_TIMEOUT; i++) {
274 		DELAY(1);
275 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
276 		if (val & YU_SMICR_READ_VALID)
277 			break;
278 	}
279 
280 	if (i == SK_TIMEOUT) {
281 		printf("%s: phy failed to come ready\n",
282 		       sc_if->sk_dev.dv_xname);
283 		return (0);
284 	}
285 
286  	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
287 		     SK_TIMEOUT));
288 
289         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
290 
291 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
292 		     phy, reg, val));
293 
294 	return (val);
295 }
296 
297 void
298 msk_miibus_writereg(struct device *dev, int phy, int reg, int val)
299 {
300 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
301 	int i;
302 
303 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
304 		     phy, reg, val));
305 
306 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
307 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
308 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
309 
310 	for (i = 0; i < SK_TIMEOUT; i++) {
311 		DELAY(1);
312 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
313 			break;
314 	}
315 
316 	if (i == SK_TIMEOUT)
317 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
318 }
319 
320 void
321 msk_miibus_statchg(struct device *dev)
322 {
323 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
324 	struct mii_data *mii = &sc_if->sk_mii;
325 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
326 	int gpcr;
327 
328 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
329 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
330 
331 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
332 	    sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
333 		/* Set speed. */
334 		gpcr |= YU_GPCR_SPEED_DIS;
335 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
336 		case IFM_1000_SX:
337 		case IFM_1000_LX:
338 		case IFM_1000_CX:
339 		case IFM_1000_T:
340 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
341 			break;
342 		case IFM_100_TX:
343 			gpcr |= YU_GPCR_SPEED;
344 			break;
345 		}
346 
347 		/* Set duplex. */
348 		gpcr |= YU_GPCR_DPLX_DIS;
349 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
350 			gpcr |= YU_GPCR_DUPLEX;
351 
352 		/* Disable flow control. */
353 		gpcr |= YU_GPCR_FCTL_DIS;
354 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
355 	}
356 
357 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
358 
359 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
360 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
361 }
362 
363 void
364 msk_setmulti(struct sk_if_softc *sc_if)
365 {
366 	struct ifnet *ifp= &sc_if->arpcom.ac_if;
367 	u_int32_t hashes[2] = { 0, 0 };
368 	int h;
369 	struct arpcom *ac = &sc_if->arpcom;
370 	struct ether_multi *enm;
371 	struct ether_multistep step;
372 
373 	/* First, zot all the existing filters. */
374 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
375 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
376 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
377 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
378 
379 
380 	/* Now program new ones. */
381 allmulti:
382 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
383 		hashes[0] = 0xFFFFFFFF;
384 		hashes[1] = 0xFFFFFFFF;
385 	} else {
386 		/* First find the tail of the list. */
387 		ETHER_FIRST_MULTI(step, ac, enm);
388 		while (enm != NULL) {
389 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
390 				 ETHER_ADDR_LEN)) {
391 				ifp->if_flags |= IFF_ALLMULTI;
392 				goto allmulti;
393 			}
394 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
395 			    ((1 << SK_HASH_BITS) - 1);
396 			if (h < 32)
397 				hashes[0] |= (1 << h);
398 			else
399 				hashes[1] |= (1 << (h - 32));
400 
401 			ETHER_NEXT_MULTI(step, enm);
402 		}
403 	}
404 
405 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
406 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
407 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
408 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
409 }
410 
411 void
412 msk_setpromisc(struct sk_if_softc *sc_if)
413 {
414 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
415 
416 	if (ifp->if_flags & IFF_PROMISC)
417 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
418 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
419 	else
420 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
421 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
422 }
423 
424 int
425 msk_init_rx_ring(struct sk_if_softc *sc_if)
426 {
427 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
428 	struct msk_ring_data	*rd = sc_if->sk_rdata;
429 	int			i, nexti;
430 
431 	bzero((char *)rd->sk_rx_ring,
432 	    sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
433 
434 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
435 		cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
436 		if (i == (MSK_RX_RING_CNT - 1))
437 			nexti = 0;
438 		else
439 			nexti = i + 1;
440 		cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
441 	}
442 
443 	sc_if->sk_cdata.sk_rx_prod = 0;
444 	sc_if->sk_cdata.sk_rx_cons = 0;
445 	sc_if->sk_cdata.sk_rx_cnt = 0;
446 
447 	msk_fill_rx_ring(sc_if);
448 	return (0);
449 }
450 
451 int
452 msk_init_tx_ring(struct sk_if_softc *sc_if)
453 {
454 	struct sk_softc		*sc = sc_if->sk_softc;
455 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
456 	struct msk_ring_data	*rd = sc_if->sk_rdata;
457 	bus_dmamap_t		dmamap;
458 	struct sk_txmap_entry	*entry;
459 	int			i, nexti;
460 
461 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
462 	    sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
463 
464 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
465 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
466 		cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
467 		if (i == (MSK_TX_RING_CNT - 1))
468 			nexti = 0;
469 		else
470 			nexti = i + 1;
471 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
472 
473 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
474 		   SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
475 			return (ENOBUFS);
476 
477 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
478 		if (!entry) {
479 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
480 			return (ENOBUFS);
481 		}
482 		entry->dmamap = dmamap;
483 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
484 	}
485 
486 	sc_if->sk_cdata.sk_tx_prod = 0;
487 	sc_if->sk_cdata.sk_tx_cons = 0;
488 	sc_if->sk_cdata.sk_tx_cnt = 0;
489 
490 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
491 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
492 
493 	return (0);
494 }
495 
496 int
497 msk_newbuf(struct sk_if_softc *sc_if)
498 {
499 	struct sk_chain		*c;
500 	struct msk_rx_desc	*r;
501 	struct mbuf		*m;
502 	bus_dmamap_t		dmamap;
503 	int			error;
504 	int			opcode, i;
505 
506 	m = MCLGETI(NULL, M_DONTWAIT, &sc_if->arpcom.ac_if, sc_if->sk_pktlen);
507 	if (!m)
508 		return (ENOBUFS);
509 	m->m_len = m->m_pkthdr.len = sc_if->sk_pktlen;
510 	m_adj(m, ETHER_ALIGN);
511 
512 	dmamap = sc_if->sk_cdata.sk_rx_map[sc_if->sk_cdata.sk_rx_prod];
513 
514 	error = bus_dmamap_load_mbuf(sc_if->sk_softc->sc_dmatag, dmamap, m,
515 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
516 	if (error) {
517 		m_freem(m);
518 		return (ENOBUFS);
519 	}
520 
521 	if (dmamap->dm_nsegs > (MSK_RX_RING_CNT - sc_if->sk_cdata.sk_rx_cnt)) {
522 		bus_dmamap_unload(sc_if->sk_softc->sc_dmatag, dmamap);
523 		m_freem(m);
524 		return (ENOBUFS);
525 	}
526 
527 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
528 	    dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
529 
530 	c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
531 	r = c->sk_le;
532 	c->sk_mbuf = m;
533 
534 	opcode = SK_Y2_RXOPC_PACKET;
535 	for (i = 0; i < dmamap->dm_nsegs; i++) {
536 		r->sk_addr = htole32(dmamap->dm_segs[i].ds_addr);
537 		r->sk_len = htole16(dmamap->dm_segs[i].ds_len);
538 		r->sk_ctl = 0;
539 		r->sk_opcode = opcode | SK_Y2_RXOPC_OWN;
540 		opcode = SK_Y2_RXOPC_BUFFER;
541 
542 		SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
543 		sc_if->sk_cdata.sk_rx_cnt++;
544 
545 		c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
546 		r = c->sk_le;
547 		c->sk_mbuf = NULL;
548 	}
549 
550 	MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
551 
552 	return (0);
553 }
554 
555 /*
556  * Set media options.
557  */
558 int
559 msk_ifmedia_upd(struct ifnet *ifp)
560 {
561 	struct sk_if_softc *sc_if = ifp->if_softc;
562 
563 	mii_mediachg(&sc_if->sk_mii);
564 	return (0);
565 }
566 
567 /*
568  * Report current media status.
569  */
570 void
571 msk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
572 {
573 	struct sk_if_softc *sc_if = ifp->if_softc;
574 
575 	mii_pollstat(&sc_if->sk_mii);
576 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
577 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
578 }
579 
580 int
581 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
582 {
583 	struct sk_if_softc *sc_if = ifp->if_softc;
584 	struct ifaddr *ifa = (struct ifaddr *) data;
585 	struct ifreq *ifr = (struct ifreq *) data;
586 	struct mii_data *mii;
587 	int s, error = 0;
588 
589 	s = splnet();
590 
591 	switch(command) {
592 	case SIOCSIFADDR:
593 		ifp->if_flags |= IFF_UP;
594 		if (!(ifp->if_flags & IFF_RUNNING))
595 			msk_init(sc_if);
596 #ifdef INET
597 		if (ifa->ifa_addr->sa_family == AF_INET)
598 			arp_ifinit(&sc_if->arpcom, ifa);
599 #endif /* INET */
600 		break;
601 
602 	case SIOCSIFFLAGS:
603 		if (ifp->if_flags & IFF_UP) {
604 			if (ifp->if_flags & IFF_RUNNING &&
605 			    (sc_if->sk_if_flags ^ ifp->if_flags) &
606 			     IFF_PROMISC) {
607 				msk_setpromisc(sc_if);
608 				msk_setmulti(sc_if);
609 			} else {
610 				if (!(ifp->if_flags & IFF_RUNNING))
611 					msk_init(sc_if);
612 			}
613 		} else {
614 			if (ifp->if_flags & IFF_RUNNING)
615 				msk_stop(sc_if);
616 		}
617 		sc_if->sk_if_flags = ifp->if_flags;
618 		break;
619 
620 	case SIOCGIFMEDIA:
621 	case SIOCSIFMEDIA:
622 		mii = &sc_if->sk_mii;
623 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
624 		break;
625 
626 	default:
627 		error = ether_ioctl(ifp, &sc_if->arpcom, command, data);
628 	}
629 
630 	if (error == ENETRESET) {
631 		if (ifp->if_flags & IFF_RUNNING)
632 			msk_setmulti(sc_if);
633 		error = 0;
634 	}
635 
636 	splx(s);
637 	return (error);
638 }
639 
640 /*
641  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
642  * IDs against our list and return a device name if we find a match.
643  */
644 int
645 mskc_probe(struct device *parent, void *match, void *aux)
646 {
647 	return (pci_matchbyid((struct pci_attach_args *)aux, mskc_devices,
648 	    sizeof(mskc_devices)/sizeof(mskc_devices[0])));
649 }
650 
651 /*
652  * Force the GEnesis into reset, then bring it out of reset.
653  */
654 void
655 mskc_reset(struct sk_softc *sc)
656 {
657 	u_int32_t imtimer_ticks, reg1;
658 	int reg;
659 
660 	DPRINTFN(2, ("mskc_reset\n"));
661 
662 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
663 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
664 
665 	DELAY(1000);
666 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
667 	DELAY(2);
668 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
669 
670 	sk_win_write_1(sc, SK_TESTCTL1, 2);
671 
672 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
673 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
674 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
675 	else
676 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
677 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
678 
679 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
680 		sk_win_write_1(sc, SK_Y2_CLKGATE,
681 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
682 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
683 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
684 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
685 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
686 	else
687 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
688 
689 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
690 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
691 	DELAY(1000);
692 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
693 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
694 
695 	if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
696 		CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
697 		    SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
698 	}
699 
700 	sk_win_write_1(sc, SK_TESTCTL1, 1);
701 
702 	DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
703 	DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
704 		     CSR_READ_2(sc, SK_LINK_CTRL)));
705 
706 	/* Disable ASF */
707 	CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
708 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
709 
710 	/* Clear I2C IRQ noise */
711 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
712 
713 	/* Disable hardware timer */
714 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
715 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
716 
717 	/* Disable descriptor polling */
718 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
719 
720 	/* Disable time stamps */
721 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
722 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
723 
724 	/* Enable RAM interface */
725 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
726 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
727 		sk_win_write_1(sc, reg, 36);
728 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
729 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
730 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
731 
732 	/*
733 	 * Configure interrupt moderation. The moderation timer
734 	 * defers interrupts specified in the interrupt moderation
735 	 * timer mask based on the timeout specified in the interrupt
736 	 * moderation timer init register. Each bit in the timer
737 	 * register represents one tick, so to specify a timeout in
738 	 * microseconds, we have to multiply by the correct number of
739 	 * ticks-per-microsecond.
740 	 */
741 	switch (sc->sk_type) {
742 	case SK_YUKON_EC:
743 	case SK_YUKON_XL:
744 	case SK_YUKON_FE:
745 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
746 		break;
747 	default:
748 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
749 	}
750 
751 	/* Reset status ring. */
752 	bzero((char *)sc->sk_status_ring,
753 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
754 	sc->sk_status_idx = 0;
755 
756 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
757 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
758 
759 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
760 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
761 	    sc->sk_status_map->dm_segs[0].ds_addr);
762 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
763 	    (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
764 	sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 10);
765 	sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 16);
766 	sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 16);
767 
768 #if 0
769 	sk_win_write_4(sc, SK_Y2_LEV_TIMERINIT, SK_IM_USECS(100));
770 	sk_win_write_4(sc, 0x0ec0, SK_IM_USECS(1000));
771 
772 	sk_win_write_4(sc, 0x0ed0, SK_IM_USECS(20));
773 #else
774 	sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(4));
775 #endif
776 
777 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
778 
779 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
780 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
781 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
782 }
783 
784 int
785 msk_probe(struct device *parent, void *match, void *aux)
786 {
787 	struct skc_attach_args *sa = aux;
788 
789 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
790 		return (0);
791 
792 	switch (sa->skc_type) {
793 	case SK_YUKON_XL:
794 	case SK_YUKON_EC_U:
795 	case SK_YUKON_EX:
796 	case SK_YUKON_EC:
797 	case SK_YUKON_FE:
798 	case SK_YUKON_FE_P:
799 	case SK_YUKON_SUPR:
800 	case SK_YUKON_ULTRA2:
801 		return (1);
802 	}
803 
804 	return (0);
805 }
806 
807 void
808 msk_reset(struct sk_if_softc *sc_if)
809 {
810 	/* GMAC and GPHY Reset */
811 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
812 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
813 	DELAY(1000);
814 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
815 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
816 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
817 }
818 
819 /*
820  * Each XMAC chip is attached as a separate logical IP interface.
821  * Single port cards will have only one logical interface of course.
822  */
823 void
824 msk_attach(struct device *parent, struct device *self, void *aux)
825 {
826 	struct sk_if_softc *sc_if = (struct sk_if_softc *)self;
827 	struct sk_softc *sc = (struct sk_softc *)parent;
828 	struct skc_attach_args *sa = aux;
829 	struct ifnet *ifp;
830 	caddr_t kva;
831 	int i;
832 	u_int32_t chunk;
833 	int mii_flags;
834 	int error;
835 
836 	sc_if->sk_port = sa->skc_port;
837 	sc_if->sk_softc = sc;
838 	sc->sk_if[sa->skc_port] = sc_if;
839 
840 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
841 
842 	/*
843 	 * Get station address for this interface. Note that
844 	 * dual port cards actually come with three station
845 	 * addresses: one for each port, plus an extra. The
846 	 * extra one is used by the SysKonnect driver software
847 	 * as a 'virtual' station address for when both ports
848 	 * are operating in failover mode. Currently we don't
849 	 * use this extra address.
850 	 */
851 	for (i = 0; i < ETHER_ADDR_LEN; i++)
852 		sc_if->arpcom.ac_enaddr[i] =
853 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
854 
855 	printf(": address %s\n",
856 	    ether_sprintf(sc_if->arpcom.ac_enaddr));
857 
858 	/*
859 	 * Set up RAM buffer addresses. The Yukon2 has a small amount
860 	 * of SRAM on it, somewhere between 4K and 48K.  We need to
861 	 * divide this up between the transmitter and receiver.  We
862 	 * give the receiver 2/3 of the memory (rounded down), and the
863 	 * transmitter whatever remains.
864 	 */
865 	chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
866 	sc_if->sk_rx_ramstart = 0;
867 	sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
868 	chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
869 	sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
870 	sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
871 
872 	DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
873 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
874 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
875 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
876 
877 	/* Allocate the descriptor queues. */
878 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
879 	    PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
880 	    BUS_DMA_NOWAIT)) {
881 		printf(": can't alloc rx buffers\n");
882 		goto fail;
883 	}
884 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
885 	    sc_if->sk_ring_nseg,
886 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
887 		printf(": can't map dma buffers (%lu bytes)\n",
888 		       (ulong)sizeof(struct msk_ring_data));
889 		goto fail_1;
890 	}
891 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
892 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
893             &sc_if->sk_ring_map)) {
894 		printf(": can't create dma map\n");
895 		goto fail_2;
896 	}
897 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
898 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
899 		printf(": can't load dma map\n");
900 		goto fail_3;
901 	}
902         sc_if->sk_rdata = (struct msk_ring_data *)kva;
903 	bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
904 
905 	if (sc->sk_type != SK_YUKON_FE &&
906 	    sc->sk_type != SK_YUKON_FE_P)
907 		sc_if->sk_pktlen = SK_JLEN;
908 	else
909 		sc_if->sk_pktlen = MCLBYTES;
910 
911 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
912 		if ((error = bus_dmamap_create(sc->sc_dmatag,
913 		    sc_if->sk_pktlen, 4, sc_if->sk_pktlen,
914 		    0, 0, &sc_if->sk_cdata.sk_rx_map[i])) != 0) {
915 			printf("\n%s: unable to create rx DMA map %d, "
916 			    "error = %d\n", sc->sk_dev.dv_xname, i, error);
917 			goto fail_4;
918 		}
919 	}
920 
921 	ifp = &sc_if->arpcom.ac_if;
922 	ifp->if_softc = sc_if;
923 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
924 	ifp->if_ioctl = msk_ioctl;
925 	ifp->if_start = msk_start;
926 	ifp->if_watchdog = msk_watchdog;
927 	ifp->if_baudrate = 1000000000;
928 	if (sc->sk_type != SK_YUKON_FE &&
929 	    sc->sk_type != SK_YUKON_FE_P)
930 		ifp->if_hardmtu = SK_JUMBO_MTU;
931 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
932 	IFQ_SET_READY(&ifp->if_snd);
933 	bcopy(sc_if->sk_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
934 
935 	ifp->if_capabilities = IFCAP_VLAN_MTU;
936 
937 	msk_reset(sc_if);
938 
939 	/*
940 	 * Do miibus setup.
941 	 */
942 	msk_init_yukon(sc_if);
943 
944  	DPRINTFN(2, ("msk_attach: 1\n"));
945 
946 	sc_if->sk_mii.mii_ifp = ifp;
947 	sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
948 	sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
949 	sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
950 
951 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
952 	    msk_ifmedia_upd, msk_ifmedia_sts);
953 	mii_flags = MIIF_DOPAUSE;
954 	if (sc->sk_fibertype)
955 		mii_flags |= MIIF_HAVEFIBER;
956 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
957 	    MII_OFFSET_ANY, mii_flags);
958 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
959 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
960 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
961 			    0, NULL);
962 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
963 	} else
964 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
965 
966 	timeout_set(&sc_if->sk_tick_ch, msk_tick, sc_if);
967 
968 	/*
969 	 * Call MI attach routines.
970 	 */
971 	if_attach(ifp);
972 	ether_ifattach(ifp);
973 
974 	sc_if->sk_sdhook = shutdownhook_establish(mskc_shutdown, sc);
975 
976 	DPRINTFN(2, ("msk_attach: end\n"));
977 	return;
978 
979 fail_4:
980 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
981 		if (sc_if->sk_cdata.sk_rx_map[i] != NULL)
982 			bus_dmamap_destroy(sc->sc_dmatag,
983 			    sc_if->sk_cdata.sk_rx_map[i]);
984 	}
985 
986 fail_3:
987 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
988 fail_2:
989 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
990 fail_1:
991 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
992 fail:
993 	sc->sk_if[sa->skc_port] = NULL;
994 }
995 
996 int
997 msk_detach(struct device *self, int flags)
998 {
999 	struct sk_if_softc *sc_if = (struct sk_if_softc *)self;
1000 	struct sk_softc *sc = sc_if->sk_softc;
1001 	struct ifnet *ifp= &sc_if->arpcom.ac_if;
1002 
1003 	if (sc->sk_if[sc_if->sk_port] == NULL)
1004 		return (0);
1005 
1006 	timeout_del(&sc_if->sk_tick_ch);
1007 
1008 	/* Detach any PHYs we might have. */
1009 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1010 		mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1011 
1012 	/* Delete any remaining media. */
1013 	ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1014 
1015 	if (sc_if->sk_sdhook != NULL)
1016 		shutdownhook_disestablish(sc_if->sk_sdhook);
1017 
1018 	ether_ifdetach(ifp);
1019 	if_detach(ifp);
1020 
1021 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1022 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc_if->sk_rdata,
1023 	    sizeof(struct msk_ring_data));
1024 	bus_dmamem_free(sc->sc_dmatag,
1025 	    &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1026 	sc->sk_if[sc_if->sk_port] = NULL;
1027 
1028 	return (0);
1029 }
1030 
1031 int
1032 mskcprint(void *aux, const char *pnp)
1033 {
1034 	struct skc_attach_args *sa = aux;
1035 
1036 	if (pnp)
1037 		printf("msk port %c at %s",
1038 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1039 	else
1040 		printf(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1041 	return (UNCONF);
1042 }
1043 
1044 /*
1045  * Attach the interface. Allocate softc structures, do ifmedia
1046  * setup and ethernet/BPF attach.
1047  */
1048 void
1049 mskc_attach(struct device *parent, struct device *self, void *aux)
1050 {
1051 	struct sk_softc *sc = (struct sk_softc *)self;
1052 	struct pci_attach_args *pa = aux;
1053 	struct skc_attach_args skca;
1054 	pci_chipset_tag_t pc = pa->pa_pc;
1055 	pcireg_t command, memtype;
1056 	pci_intr_handle_t ih;
1057 	const char *intrstr = NULL;
1058 	u_int8_t hw, pmd;
1059 	char *revstr = NULL;
1060 	caddr_t kva;
1061 
1062 	DPRINTFN(2, ("begin mskc_attach\n"));
1063 
1064 	/*
1065 	 * Handle power management nonsense.
1066 	 */
1067 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1068 
1069 	if (command == 0x01) {
1070 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1071 		if (command & SK_PSTATE_MASK) {
1072 			u_int32_t		iobase, membase, irq;
1073 
1074 			/* Save important PCI config data. */
1075 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1076 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1077 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1078 
1079 			/* Reset the power state. */
1080 			printf("%s chip is in D%d power mode "
1081 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1082 			    command & SK_PSTATE_MASK);
1083 			command &= 0xFFFFFFFC;
1084 			pci_conf_write(pc, pa->pa_tag,
1085 			    SK_PCI_PWRMGMTCTRL, command);
1086 
1087 			/* Restore PCI config data. */
1088 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1089 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1090 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1091 		}
1092 	}
1093 
1094 	/*
1095 	 * Map control/status registers.
1096 	 */
1097 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1098 	if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1099 	    &sc->sk_bhandle, NULL, &sc->sk_bsize, 0)) {
1100 		printf(": can't map mem space\n");
1101 		return;
1102 	}
1103 
1104 	sc->sc_dmatag = pa->pa_dmat;
1105 
1106 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1107 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1108 
1109 	/* bail out here if chip is not recognized */
1110 	if (!(SK_IS_YUKON2(sc))) {
1111 		printf(": unknown chip type: %d\n", sc->sk_type);
1112 		goto fail_1;
1113 	}
1114 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1115 
1116 	/* Allocate interrupt */
1117 	if (pci_intr_map(pa, &ih)) {
1118 		printf(": couldn't map interrupt\n");
1119 		goto fail_1;
1120 	}
1121 
1122 	intrstr = pci_intr_string(pc, ih);
1123 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc,
1124 	    self->dv_xname);
1125 	if (sc->sk_intrhand == NULL) {
1126 		printf(": couldn't establish interrupt");
1127 		if (intrstr != NULL)
1128 			printf(" at %s", intrstr);
1129 		printf("\n");
1130 		goto fail_1;
1131 	}
1132 	sc->sk_pc = pc;
1133 
1134 	if (bus_dmamem_alloc(sc->sc_dmatag,
1135 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1136 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1137 	    0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1138 		printf(": can't alloc status buffers\n");
1139 		goto fail_2;
1140 	}
1141 
1142 	if (bus_dmamem_map(sc->sc_dmatag,
1143 	    &sc->sk_status_seg, sc->sk_status_nseg,
1144 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1145 	    &kva, BUS_DMA_NOWAIT)) {
1146 		printf(": can't map dma buffers (%lu bytes)\n",
1147 		    (ulong)(MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)));
1148 		goto fail_3;
1149 	}
1150 	if (bus_dmamap_create(sc->sc_dmatag,
1151 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1152 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1153 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1154 		printf(": can't create dma map\n");
1155 		goto fail_4;
1156 	}
1157 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1158 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1159 	    NULL, BUS_DMA_NOWAIT)) {
1160 		printf(": can't load dma map\n");
1161 		goto fail_5;
1162 	}
1163 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1164 	bzero(sc->sk_status_ring,
1165 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1166 
1167 	/* Reset the adapter. */
1168 	mskc_reset(sc);
1169 
1170 	sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1171 	DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1172 
1173 	pmd = sk_win_read_1(sc, SK_PMDTYPE);
1174 	if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1175 		sc->sk_fibertype = 1;
1176 
1177 	switch (sc->sk_type) {
1178 	case SK_YUKON_XL:
1179 		sc->sk_name = "Yukon-2 XL";
1180 		break;
1181 	case SK_YUKON_EC_U:
1182 		sc->sk_name = "Yukon-2 EC Ultra";
1183 		break;
1184 	case SK_YUKON_EX:
1185 		sc->sk_name = "Yukon-2 Extreme";
1186 		break;
1187 	case SK_YUKON_EC:
1188 		sc->sk_name = "Yukon-2 EC";
1189 		break;
1190 	case SK_YUKON_FE:
1191 		sc->sk_name = "Yukon-2 FE";
1192 		break;
1193 	case SK_YUKON_FE_P:
1194 		sc->sk_name = "Yukon-2 FE+";
1195 		break;
1196 	case SK_YUKON_SUPR:
1197 		sc->sk_name = "Yukon-2 Supreme";
1198 		break;
1199 	case SK_YUKON_ULTRA2:
1200 		sc->sk_name = "Yukon-2 Ultra2";
1201 		break;
1202 	default:
1203 		sc->sk_name = "Yukon (Unknown)";
1204 	}
1205 
1206 	if (sc->sk_type == SK_YUKON_XL) {
1207 		switch (sc->sk_rev) {
1208 		case SK_YUKON_XL_REV_A0:
1209 			revstr = "A0";
1210 			break;
1211 		case SK_YUKON_XL_REV_A1:
1212 			revstr = "A1";
1213 			break;
1214 		case SK_YUKON_XL_REV_A2:
1215 			revstr = "A2";
1216 			break;
1217 		case SK_YUKON_XL_REV_A3:
1218 			revstr = "A3";
1219 			break;
1220 		default:
1221 			;
1222 		}
1223 	}
1224 
1225 	if (sc->sk_type == SK_YUKON_EC) {
1226 		switch (sc->sk_rev) {
1227 		case SK_YUKON_EC_REV_A1:
1228 			revstr = "A1";
1229 			break;
1230 		case SK_YUKON_EC_REV_A2:
1231 			revstr = "A2";
1232 			break;
1233 		case SK_YUKON_EC_REV_A3:
1234 			revstr = "A3";
1235 			break;
1236 		default:
1237 			;
1238 		}
1239 	}
1240 
1241 	if (sc->sk_type == SK_YUKON_EC_U) {
1242 		switch (sc->sk_rev) {
1243 		case SK_YUKON_EC_U_REV_A0:
1244 			revstr = "A0";
1245 			break;
1246 		case SK_YUKON_EC_U_REV_A1:
1247 			revstr = "A1";
1248 			break;
1249 		case SK_YUKON_EC_U_REV_B0:
1250 			revstr = "B0";
1251 			break;
1252 		default:
1253 			;
1254 		}
1255 	}
1256 
1257 	if (sc->sk_type == SK_YUKON_FE) {
1258 		switch (sc->sk_rev) {
1259 		case SK_YUKON_FE_REV_A1:
1260 			revstr = "A1";
1261 			break;
1262 		case SK_YUKON_FE_REV_A2:
1263 			revstr = "A2";
1264 			break;
1265 		default:
1266 			;
1267 		}
1268 	}
1269 
1270 	if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1271 		revstr = "A0";
1272 
1273 	if (sc->sk_type == SK_YUKON_EX) {
1274 		switch (sc->sk_rev) {
1275 		case SK_YUKON_EX_REV_A0:
1276 			revstr = "A0";
1277 			break;
1278 		case SK_YUKON_EX_REV_B0:
1279 			revstr = "B0";
1280 			break;
1281 		default:
1282 			;
1283 		}
1284 	}
1285 
1286 	if (sc->sk_type == SK_YUKON_SUPR && sc->sk_rev == SK_YUKON_SUPR_REV_A0)
1287 		revstr = "A0";
1288 
1289 
1290 	/* Announce the product name. */
1291 	printf(", %s", sc->sk_name);
1292 	if (revstr != NULL)
1293 		printf(" rev. %s", revstr);
1294 	printf(" (0x%x): %s\n", sc->sk_rev, intrstr);
1295 
1296 	sc->sk_macs = 1;
1297 
1298 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1299 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1300 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1301 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1302 			sc->sk_macs++;
1303 	}
1304 
1305 	skca.skc_port = SK_PORT_A;
1306 	skca.skc_type = sc->sk_type;
1307 	skca.skc_rev = sc->sk_rev;
1308 	(void)config_found(&sc->sk_dev, &skca, mskcprint);
1309 
1310 	if (sc->sk_macs > 1) {
1311 		skca.skc_port = SK_PORT_B;
1312 		skca.skc_type = sc->sk_type;
1313 		skca.skc_rev = sc->sk_rev;
1314 		(void)config_found(&sc->sk_dev, &skca, mskcprint);
1315 	}
1316 
1317 	/* Turn on the 'driver is loaded' LED. */
1318 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1319 
1320 	return;
1321 
1322 fail_5:
1323 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1324 fail_4:
1325 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sk_status_ring,
1326 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1327 fail_3:
1328 	bus_dmamem_free(sc->sc_dmatag,
1329 	    &sc->sk_status_seg, sc->sk_status_nseg);
1330 	sc->sk_status_nseg = 0;
1331 fail_2:
1332 	pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1333 	sc->sk_intrhand = NULL;
1334 fail_1:
1335 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1336 	sc->sk_bsize = 0;
1337 }
1338 
1339 int
1340 mskc_detach(struct device *self, int flags)
1341 {
1342 	struct sk_softc *sc = (struct sk_softc *)self;
1343 	int rv;
1344 
1345 	rv = config_detach_children(self, flags);
1346 	if (rv != 0)
1347 		return (rv);
1348 
1349 	if (sc->sk_status_nseg > 0) {
1350 		bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1351 		bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sk_status_ring,
1352 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1353 		bus_dmamem_free(sc->sc_dmatag,
1354 		    &sc->sk_status_seg, sc->sk_status_nseg);
1355 	}
1356 
1357 	if (sc->sk_intrhand)
1358 		pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1359 
1360 	if (sc->sk_bsize > 0)
1361 		bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1362 
1363 	return(0);
1364 }
1365 
1366 int
1367 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1368 {
1369 	struct sk_softc		*sc = sc_if->sk_softc;
1370 	struct msk_tx_desc		*f = NULL;
1371 	u_int32_t		frag, cur;
1372 	int			i;
1373 	struct sk_txmap_entry	*entry;
1374 	bus_dmamap_t		txmap;
1375 
1376 	DPRINTFN(2, ("msk_encap\n"));
1377 
1378 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1379 	if (entry == NULL) {
1380 		DPRINTFN(2, ("msk_encap: no txmap available\n"));
1381 		return (ENOBUFS);
1382 	}
1383 	txmap = entry->dmamap;
1384 
1385 	cur = frag = *txidx;
1386 
1387 #ifdef MSK_DEBUG
1388 	if (mskdebug >= 2)
1389 		msk_dump_mbuf(m_head);
1390 #endif
1391 
1392 	/*
1393 	 * Start packing the mbufs in this chain into
1394 	 * the fragment pointers. Stop when we run out
1395 	 * of fragments or hit the end of the mbuf chain.
1396 	 */
1397 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1398 	    BUS_DMA_NOWAIT)) {
1399 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1400 		return (ENOBUFS);
1401 	}
1402 
1403 	if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1404 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1405 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1406 		return (ENOBUFS);
1407 	}
1408 
1409 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1410 
1411 	/* Sync the DMA map. */
1412 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1413 	    BUS_DMASYNC_PREWRITE);
1414 
1415 	for (i = 0; i < txmap->dm_nsegs; i++) {
1416 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1417 		f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1418 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1419 		f->sk_ctl = 0;
1420 		if (i == 0)
1421 			f->sk_opcode = SK_Y2_TXOPC_PACKET;
1422 		else
1423 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1424 		cur = frag;
1425 		SK_INC(frag, MSK_TX_RING_CNT);
1426 	}
1427 
1428 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1429 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1430 
1431 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1432 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1433 
1434 	/* Sync descriptors before handing to chip */
1435 	MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1436             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1437 
1438 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1439 
1440 	/* Sync first descriptor to hand it off */
1441 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1442 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1443 
1444 	sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1445 
1446 #ifdef MSK_DEBUG
1447 	if (mskdebug >= 2) {
1448 		struct msk_tx_desc *le;
1449 		u_int32_t idx;
1450 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1451 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1452 			msk_dump_txdesc(le, idx);
1453 		}
1454 	}
1455 #endif
1456 
1457 	*txidx = frag;
1458 
1459 	DPRINTFN(2, ("msk_encap: completed successfully\n"));
1460 
1461 	return (0);
1462 }
1463 
1464 void
1465 msk_start(struct ifnet *ifp)
1466 {
1467 	struct sk_if_softc	*sc_if = ifp->if_softc;
1468 	struct mbuf		*m_head = NULL;
1469 	u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1470 	int			pkts = 0;
1471 
1472 	DPRINTFN(2, ("msk_start\n"));
1473 
1474 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1475 		IFQ_POLL(&ifp->if_snd, m_head);
1476 		if (m_head == NULL)
1477 			break;
1478 
1479 		/*
1480 		 * Pack the data into the transmit ring. If we
1481 		 * don't have room, set the OACTIVE flag and wait
1482 		 * for the NIC to drain the ring.
1483 		 */
1484 		if (msk_encap(sc_if, m_head, &idx)) {
1485 			ifp->if_flags |= IFF_OACTIVE;
1486 			break;
1487 		}
1488 
1489 		/* now we are committed to transmit the packet */
1490 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1491 		pkts++;
1492 
1493 		/*
1494 		 * If there's a BPF listener, bounce a copy of this frame
1495 		 * to him.
1496 		 */
1497 #if NBPFILTER > 0
1498 		if (ifp->if_bpf)
1499 			bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1500 #endif
1501 	}
1502 	if (pkts == 0)
1503 		return;
1504 
1505 	/* Transmit */
1506 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1507 		sc_if->sk_cdata.sk_tx_prod = idx;
1508 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1509 
1510 		/* Set a timeout in case the chip goes out to lunch. */
1511 		ifp->if_timer = 5;
1512 	}
1513 }
1514 
1515 void
1516 msk_watchdog(struct ifnet *ifp)
1517 {
1518 	struct sk_if_softc *sc_if = ifp->if_softc;
1519 
1520 	/*
1521 	 * Reclaim first as there is a possibility of losing Tx completion
1522 	 * interrupts.
1523 	 */
1524 	msk_txeof(sc_if);
1525 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1526 		printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1527 
1528 		ifp->if_oerrors++;
1529 
1530 		/* XXX Resets both ports; we shouldn't do that. */
1531 		mskc_reset(sc_if->sk_softc);
1532 		msk_reset(sc_if);
1533 		msk_init(sc_if);
1534 	}
1535 }
1536 
1537 void
1538 mskc_shutdown(void *v)
1539 {
1540 	struct sk_softc		*sc = v;
1541 
1542 	DPRINTFN(2, ("msk_shutdown\n"));
1543 
1544 	/* Turn off the 'driver is loaded' LED. */
1545 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1546 
1547 	/*
1548 	 * Reset the GEnesis controller. Doing this should also
1549 	 * assert the resets on the attached XMAC(s).
1550 	 */
1551 	mskc_reset(sc);
1552 }
1553 
1554 static __inline int
1555 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1556 {
1557 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1558 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1559 	    YU_RXSTAT_JABBER)) != 0 ||
1560 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1561 	    YU_RXSTAT_BYTES(stat) != len)
1562 		return (0);
1563 
1564 	return (1);
1565 }
1566 
1567 void
1568 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1569 {
1570 	struct sk_softc		*sc = sc_if->sk_softc;
1571 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
1572 	struct mbuf		*m;
1573 	struct sk_chain		*cur_rx;
1574 	int			i, cur, total_len = len;
1575 	bus_dmamap_t		dmamap;
1576 
1577 	DPRINTFN(2, ("msk_rxeof\n"));
1578 
1579 	cur = sc_if->sk_cdata.sk_rx_cons;
1580 
1581 	/* Sync the descriptor */
1582 	MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1583 
1584 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1585 	if (cur_rx->sk_mbuf == NULL)
1586 		return;
1587 
1588 	dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1589 	for (i = 0; i < dmamap->dm_nsegs; i++) {
1590 	  	SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1591 		sc_if->sk_cdata.sk_rx_cnt--;
1592 	}
1593 
1594 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1595 	    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1596 	bus_dmamap_unload(sc_if->sk_softc->sc_dmatag, dmamap);
1597 
1598 	m = cur_rx->sk_mbuf;
1599 	cur_rx->sk_mbuf = NULL;
1600 
1601 	if (total_len < SK_MIN_FRAMELEN ||
1602 	    total_len > SK_JUMBO_FRAMELEN ||
1603 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
1604 		ifp->if_ierrors++;
1605 		m_freem(m);
1606 		return;
1607 	}
1608 
1609 	m->m_pkthdr.rcvif = ifp;
1610 	m->m_pkthdr.len = m->m_len = total_len;
1611 
1612 	ifp->if_ipackets++;
1613 
1614 #if NBPFILTER > 0
1615 	if (ifp->if_bpf)
1616 		bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
1617 #endif
1618 
1619 	/* pass it on. */
1620 	ether_input_mbuf(ifp, m);
1621 }
1622 
1623 void
1624 msk_txeof(struct sk_if_softc *sc_if)
1625 {
1626 	struct sk_softc		*sc = sc_if->sk_softc;
1627 	struct msk_tx_desc	*cur_tx;
1628 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
1629 	u_int32_t		idx, reg, sk_ctl;
1630 	struct sk_txmap_entry	*entry;
1631 
1632 	DPRINTFN(2, ("msk_txeof\n"));
1633 
1634 	if (sc_if->sk_port == SK_PORT_A)
1635 		reg = SK_STAT_BMU_TXA1_RIDX;
1636 	else
1637 		reg = SK_STAT_BMU_TXA2_RIDX;
1638 
1639 	/*
1640 	 * Go through our tx ring and free mbufs for those
1641 	 * frames that have been sent.
1642 	 */
1643 	idx = sc_if->sk_cdata.sk_tx_cons;
1644 	while (idx != sk_win_read_2(sc, reg)) {
1645 		MSK_CDTXSYNC(sc_if, idx, 1,
1646 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1647 
1648 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1649 		sk_ctl = cur_tx->sk_ctl;
1650 #ifdef MSK_DEBUG
1651 		if (mskdebug >= 2)
1652 			msk_dump_txdesc(cur_tx, idx);
1653 #endif
1654 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1655 			ifp->if_opackets++;
1656 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1657 			entry = sc_if->sk_cdata.sk_tx_map[idx];
1658 
1659 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1660 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1661 
1662 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1663 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1664 
1665 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1666 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1667 					  link);
1668 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1669 		}
1670 		sc_if->sk_cdata.sk_tx_cnt--;
1671 		SK_INC(idx, MSK_TX_RING_CNT);
1672 	}
1673 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1674 
1675 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1676 		ifp->if_flags &= ~IFF_OACTIVE;
1677 
1678 	sc_if->sk_cdata.sk_tx_cons = idx;
1679 }
1680 
1681 void
1682 msk_fill_rx_ring(struct sk_if_softc *sc_if)
1683 {
1684 	while (sc_if->sk_cdata.sk_rx_cnt < MSK_RX_RING_CNT) {
1685 		if (msk_newbuf(sc_if) == ENOBUFS)
1686 			break;
1687 	}
1688 }
1689 
1690 void
1691 msk_tick(void *xsc_if)
1692 {
1693 	struct sk_if_softc *sc_if = xsc_if;
1694 	struct mii_data *mii = &sc_if->sk_mii;
1695 	int s;
1696 
1697 	s = splnet();
1698 	mii_tick(mii);
1699 	splx(s);
1700 	timeout_add_sec(&sc_if->sk_tick_ch, 1);
1701 }
1702 
1703 void
1704 msk_intr_yukon(struct sk_if_softc *sc_if)
1705 {
1706 	u_int8_t status;
1707 
1708 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1709 	/* RX overrun */
1710 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1711 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1712 		    SK_RFCTL_RX_FIFO_OVER);
1713 	}
1714 	/* TX underrun */
1715 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1716 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1717 		    SK_TFCTL_TX_FIFO_UNDER);
1718 	}
1719 
1720 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1721 }
1722 
1723 int
1724 msk_intr(void *xsc)
1725 {
1726 	struct sk_softc		*sc = xsc;
1727 	struct sk_if_softc	*sc_if;
1728 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1729 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1730 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1731 	int			claimed = 0;
1732 	u_int32_t		status;
1733 	struct msk_status_desc	*cur_st;
1734 
1735 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
1736 	if (status == 0) {
1737 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1738 		return (0);
1739 	}
1740 
1741 	status = CSR_READ_4(sc, SK_ISR);
1742 
1743 	if (sc_if0 != NULL)
1744 		ifp0 = &sc_if0->arpcom.ac_if;
1745 	if (sc_if1 != NULL)
1746 		ifp1 = &sc_if1->arpcom.ac_if;
1747 
1748 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1749 	    (ifp0->if_flags & IFF_RUNNING)) {
1750 		msk_intr_yukon(sc_if0);
1751 	}
1752 
1753 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1754 	    (ifp1->if_flags & IFF_RUNNING)) {
1755 		msk_intr_yukon(sc_if1);
1756 	}
1757 
1758 	MSK_CDSTSYNC(sc, sc->sk_status_idx,
1759 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1760 	cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1761 
1762 	while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
1763 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1764 		switch (cur_st->sk_opcode) {
1765 		case SK_Y2_STOPC_RXSTAT:
1766 			sc_if = sc->sk_if[cur_st->sk_link & 0x01];
1767 			msk_rxeof(sc_if, letoh16(cur_st->sk_len),
1768 			    letoh32(cur_st->sk_status));
1769 			msk_fill_rx_ring(sc_if);
1770 			SK_IF_WRITE_2(sc_if, 0,  SK_RXQ1_Y2_PREF_PUTIDX,
1771 			    sc_if->sk_cdata.sk_rx_prod);
1772 			break;
1773 		case SK_Y2_STOPC_TXSTAT:
1774 			if (sc_if0)
1775 				msk_txeof(sc_if0);
1776 			if (sc_if1)
1777 				msk_txeof(sc_if1);
1778 			break;
1779 		default:
1780 			printf("opcode=0x%x\n", cur_st->sk_opcode);
1781 			break;
1782 		}
1783 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1784 
1785 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
1786 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1787 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1788 	}
1789 
1790 	if (status & SK_Y2_IMR_BMU) {
1791 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1792 		claimed = 1;
1793 	}
1794 
1795 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1796 
1797 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1798 		msk_start(ifp0);
1799 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1800 		msk_start(ifp1);
1801 
1802 	return (claimed);
1803 }
1804 
1805 void
1806 msk_init_yukon(struct sk_if_softc *sc_if)
1807 {
1808 	u_int32_t		v;
1809 	u_int16_t		reg;
1810 	struct sk_softc		*sc;
1811 	int			i;
1812 
1813 	sc = sc_if->sk_softc;
1814 
1815 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1816 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1817 
1818 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
1819 
1820 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1821 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1822 
1823 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
1824 
1825 	/* unused read of the interrupt source register */
1826 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
1827 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1828 
1829 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1830 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1831 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1832 
1833 	/* MIB Counter Clear Mode set */
1834         reg |= YU_PAR_MIB_CLR;
1835 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1836 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1837 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1838 
1839 	/* MIB Counter Clear Mode clear */
1840 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
1841         reg &= ~YU_PAR_MIB_CLR;
1842 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1843 
1844 	/* receive control reg */
1845 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
1846 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1847 
1848 	/* transmit parameter register */
1849 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
1850 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
1851 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
1852 
1853 	/* serial mode register */
1854 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
1855 	reg = YU_SMR_DATA_BLIND(0x1c) |
1856 	      YU_SMR_MFL_VLAN |
1857 	      YU_SMR_IPG_DATA(0x1e);
1858 
1859 	if (sc->sk_type != SK_YUKON_FE &&
1860 	    sc->sk_type != SK_YUKON_FE_P)
1861 		reg |= YU_SMR_MFL_JUMBO;
1862 
1863 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
1864 
1865 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
1866 	/* Setup Yukon's address */
1867 	for (i = 0; i < 3; i++) {
1868 		/* Write Source Address 1 (unicast filter) */
1869 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
1870 			      sc_if->arpcom.ac_enaddr[i * 2] |
1871 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
1872 	}
1873 
1874 	for (i = 0; i < 3; i++) {
1875 		reg = sk_win_read_2(sc_if->sk_softc,
1876 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
1877 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
1878 	}
1879 
1880 	/* Set promiscuous mode */
1881 	msk_setpromisc(sc_if);
1882 
1883 	/* Set multicast filter */
1884 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
1885 	msk_setmulti(sc_if);
1886 
1887 	/* enable interrupt mask for counter overflows */
1888 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
1889 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
1890 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
1891 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
1892 
1893 	/* Configure RX MAC FIFO Flush Mask */
1894 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
1895 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
1896 	    YU_RXSTAT_JABBER;
1897 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
1898 
1899 	/* Configure RX MAC FIFO */
1900 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
1901 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
1902 	    SK_RFCTL_FIFO_FLUSH_ON);
1903 
1904 	/* Increase flush threshould to 64 bytes */
1905 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
1906 	    SK_RFCTL_FIFO_THRESHOLD + 1);
1907 
1908 	/* Configure TX MAC FIFO */
1909 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
1910 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
1911 
1912 #if 1
1913 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
1914 #endif
1915 	DPRINTFN(6, ("msk_init_yukon: end\n"));
1916 }
1917 
1918 /*
1919  * Note that to properly initialize any part of the GEnesis chip,
1920  * you first have to take it out of reset mode.
1921  */
1922 void
1923 msk_init(void *xsc_if)
1924 {
1925 	struct sk_if_softc	*sc_if = xsc_if;
1926 	struct sk_softc		*sc = sc_if->sk_softc;
1927 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
1928 	struct mii_data		*mii = &sc_if->sk_mii;
1929 	int			s;
1930 
1931 	DPRINTFN(2, ("msk_init\n"));
1932 
1933 	s = splnet();
1934 
1935 	/* Cancel pending I/O and free all RX/TX buffers. */
1936 	msk_stop(sc_if);
1937 
1938 	/* Configure I2C registers */
1939 
1940 	/* Configure XMAC(s) */
1941 	msk_init_yukon(sc_if);
1942 	mii_mediachg(mii);
1943 
1944 	/* Configure transmit arbiter(s) */
1945 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
1946 #if 0
1947 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
1948 #endif
1949 
1950 	/* Configure RAMbuffers */
1951 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
1952 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
1953 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
1954 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
1955 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
1956 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
1957 
1958 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
1959 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
1960 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
1961 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
1962 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
1963 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
1964 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
1965 
1966 	/* Configure BMUs */
1967 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
1968 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
1969 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
1970 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_WATERMARK, 0x00000600);
1971 
1972 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
1973 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
1974 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
1975 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_WATERMARK, 0x00000600);
1976 
1977 	/* Make sure the sync transmit queue is disabled. */
1978 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
1979 
1980 	/* Init descriptors */
1981 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
1982 		printf("%s: initialization failed: no "
1983 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
1984 		msk_stop(sc_if);
1985 		splx(s);
1986 		return;
1987 	}
1988 
1989 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
1990 		printf("%s: initialization failed: no "
1991 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
1992 		msk_stop(sc_if);
1993 		splx(s);
1994 		return;
1995 	}
1996 
1997 	/* Initialize prefetch engine. */
1998 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
1999 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2000 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2001 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2002 	    MSK_RX_RING_ADDR(sc_if, 0));
2003 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2004 	    (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2005 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2006 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2007 
2008 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2009 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2010 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2011 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2012 	    MSK_TX_RING_ADDR(sc_if, 0));
2013 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2014 	    (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2015 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2016 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2017 
2018 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2019 	    sc_if->sk_cdata.sk_rx_prod);
2020 
2021 	/* Configure interrupt handling */
2022 	if (sc_if->sk_port == SK_PORT_A)
2023 		sc->sk_intrmask |= SK_Y2_INTRS1;
2024 	else
2025 		sc->sk_intrmask |= SK_Y2_INTRS2;
2026 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2027 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2028 
2029 	ifp->if_flags |= IFF_RUNNING;
2030 	ifp->if_flags &= ~IFF_OACTIVE;
2031 
2032 	timeout_add_sec(&sc_if->sk_tick_ch, 1);
2033 
2034 	splx(s);
2035 }
2036 
2037 void
2038 msk_stop(struct sk_if_softc *sc_if)
2039 {
2040 	struct sk_softc		*sc = sc_if->sk_softc;
2041 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
2042 	struct sk_txmap_entry	*dma;
2043 	int			i;
2044 
2045 	DPRINTFN(2, ("msk_stop\n"));
2046 
2047 	timeout_del(&sc_if->sk_tick_ch);
2048 
2049 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2050 
2051 	/* Stop transfer of Tx descriptors */
2052 
2053 	/* Stop transfer of Rx descriptors */
2054 
2055 	/* Turn off various components of this interface. */
2056 	SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2057 	SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2058 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2059 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2060 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2061 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2062 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2063 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2064 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2065 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2066 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2067 
2068 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2069 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2070 
2071 	/* Disable interrupts */
2072 	if (sc_if->sk_port == SK_PORT_A)
2073 		sc->sk_intrmask &= ~SK_Y2_INTRS1;
2074 	else
2075 		sc->sk_intrmask &= ~SK_Y2_INTRS2;
2076 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2077 
2078 	/* Free RX and TX mbufs still in the queues. */
2079 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2080 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2081 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2082 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2083 		}
2084 	}
2085 
2086 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2087 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2088 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2089 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2090 			SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2091 			    sc_if->sk_cdata.sk_tx_map[i], link);
2092 			sc_if->sk_cdata.sk_tx_map[i] = 0;
2093 		}
2094 	}
2095 
2096 	while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2097 		SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2098 		bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2099 		free(dma, M_DEVBUF);
2100 	}
2101 }
2102 
2103 struct cfattach mskc_ca = {
2104 	sizeof(struct sk_softc), mskc_probe, mskc_attach, mskc_detach
2105 };
2106 
2107 struct cfdriver mskc_cd = {
2108 	NULL, "mskc", DV_DULL
2109 };
2110 
2111 struct cfattach msk_ca = {
2112 	sizeof(struct sk_if_softc), msk_probe, msk_attach, msk_detach
2113 };
2114 
2115 struct cfdriver msk_cd = {
2116 	NULL, "msk", DV_IFNET
2117 };
2118 
2119 #ifdef MSK_DEBUG
2120 void
2121 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2122 {
2123 #define DESC_PRINT(X)					\
2124 	if (X)					\
2125 		printf("txdesc[%d]." #X "=%#x\n",	\
2126 		       idx, X);
2127 
2128 	DESC_PRINT(letoh32(le->sk_addr));
2129 	DESC_PRINT(letoh16(le->sk_len));
2130 	DESC_PRINT(le->sk_ctl);
2131 	DESC_PRINT(le->sk_opcode);
2132 #undef DESC_PRINT
2133 }
2134 
2135 void
2136 msk_dump_bytes(const char *data, int len)
2137 {
2138 	int c, i, j;
2139 
2140 	for (i = 0; i < len; i += 16) {
2141 		printf("%08x  ", i);
2142 		c = len - i;
2143 		if (c > 16) c = 16;
2144 
2145 		for (j = 0; j < c; j++) {
2146 			printf("%02x ", data[i + j] & 0xff);
2147 			if ((j & 0xf) == 7 && j > 0)
2148 				printf(" ");
2149 		}
2150 
2151 		for (; j < 16; j++)
2152 			printf("   ");
2153 		printf("  ");
2154 
2155 		for (j = 0; j < c; j++) {
2156 			int ch = data[i + j] & 0xff;
2157 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2158 		}
2159 
2160 		printf("\n");
2161 
2162 		if (c < 16)
2163 			break;
2164 	}
2165 }
2166 
2167 void
2168 msk_dump_mbuf(struct mbuf *m)
2169 {
2170 	int count = m->m_pkthdr.len;
2171 
2172 	printf("m=%#lx, m->m_pkthdr.len=%#d\n", m, m->m_pkthdr.len);
2173 
2174 	while (count > 0 && m) {
2175 		printf("m=%#lx, m->m_data=%#lx, m->m_len=%d\n",
2176 		       m, m->m_data, m->m_len);
2177 		msk_dump_bytes(mtod(m, char *), m->m_len);
2178 
2179 		count -= m->m_len;
2180 		m = m->m_next;
2181 	}
2182 }
2183 #endif
2184