xref: /openbsd-src/sys/dev/pci/if_lge.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: if_lge.c,v 1.55 2011/06/22 16:44:27 tedu Exp $	*/
2 /*
3  * Copyright (c) 2001 Wind River Systems
4  * Copyright (c) 1997, 1998, 1999, 2000, 2001
5  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.6 2001/06/20 19:47:55 bmilekic Exp $
35  */
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * Written by Bill Paul <william.paul@windriver.com>
42  * Wind River Systems
43  */
44 
45 /*
46  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49  * are three supported methods for data transfer between host and
50  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51  * Propulsion Technology (tm) DMA. The latter mechanism is a form
52  * of double buffer DMA where the packet data is copied to a
53  * pre-allocated DMA buffer who's physical address has been loaded
54  * into a table at device initialization time. The rationale is that
55  * the virtual to physical address translation needed for normal
56  * scatter/gather DMA is more expensive than the data copy needed
57  * for double buffering. This may be true in Windows NT and the like,
58  * but it isn't true for us, at least on the x86 arch. This driver
59  * uses the scatter/gather I/O method for both TX and RX.
60  *
61  * The LXT1001 only supports TCP/IP checksum offload on receive.
62  * Also, the VLAN tagging is done using a 16-entry table which allows
63  * the chip to perform hardware filtering based on VLAN tags. Sadly,
64  * our vlan support doesn't currently play well with this kind of
65  * hardware support.
66  *
67  * Special thanks to:
68  * - Jeff James at Intel, for arranging to have the LXT1001 manual
69  *   released (at long last)
70  * - Beny Chen at D-Link, for actually sending it to me
71  * - Brad Short and Keith Alexis at SMC, for sending me sample
72  *   SMC9462SX and SMC9462TX adapters for testing
73  * - Paul Saab at Y!, for not killing me (though it remains to be seen
74  *   if in fact he did me much of a favor)
75  */
76 
77 #include "bpfilter.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/sockio.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/device.h>
86 #include <sys/socket.h>
87 
88 #include <net/if.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 
92 #ifdef INET
93 #include <netinet/in.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/in_var.h>
96 #include <netinet/ip.h>
97 #include <netinet/if_ether.h>
98 #endif
99 
100 #if NBPFILTER > 0
101 #include <net/bpf.h>
102 #endif
103 
104 #include <uvm/uvm_extern.h>              /* for vtophys */
105 #define	VTOPHYS(v)	vtophys((vaddr_t)(v))
106 
107 #include <dev/pci/pcireg.h>
108 #include <dev/pci/pcivar.h>
109 #include <dev/pci/pcidevs.h>
110 
111 #include <dev/mii/mii.h>
112 #include <dev/mii/miivar.h>
113 
114 #define LGE_USEIOSPACE
115 
116 #include <dev/pci/if_lgereg.h>
117 
118 int lge_probe(struct device *, void *, void *);
119 void lge_attach(struct device *, struct device *, void *);
120 
121 struct cfattach lge_ca = {
122 	sizeof(struct lge_softc), lge_probe, lge_attach
123 };
124 
125 struct cfdriver lge_cd = {
126 	NULL, "lge", DV_IFNET
127 };
128 
129 int lge_alloc_jumbo_mem(struct lge_softc *);
130 void *lge_jalloc(struct lge_softc *);
131 void lge_jfree(caddr_t, u_int, void *);
132 
133 int lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
134 			     struct mbuf *);
135 int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
136 void lge_rxeof(struct lge_softc *, int);
137 void lge_txeof(struct lge_softc *);
138 int lge_intr(void *);
139 void lge_tick(void *);
140 void lge_start(struct ifnet *);
141 int lge_ioctl(struct ifnet *, u_long, caddr_t);
142 void lge_init(void *);
143 void lge_stop(struct lge_softc *);
144 void lge_watchdog(struct ifnet *);
145 int lge_ifmedia_upd(struct ifnet *);
146 void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
147 
148 void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
149 void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
150 
151 int lge_miibus_readreg(struct device *, int, int);
152 void lge_miibus_writereg(struct device *, int, int, int);
153 void lge_miibus_statchg(struct device *);
154 
155 void lge_setmulti(struct lge_softc *);
156 void lge_reset(struct lge_softc *);
157 int lge_list_rx_init(struct lge_softc *);
158 int lge_list_tx_init(struct lge_softc *);
159 
160 #ifdef LGE_DEBUG
161 #define DPRINTF(x)	if (lgedebug) printf x
162 #define DPRINTFN(n,x)	if (lgedebug >= (n)) printf x
163 int	lgedebug = 0;
164 #else
165 #define DPRINTF(x)
166 #define DPRINTFN(n,x)
167 #endif
168 
169 const struct pci_matchid lge_devices[] = {
170 	{ PCI_VENDOR_LEVEL1, PCI_PRODUCT_LEVEL1_LXT1001 }
171 };
172 
173 #define LGE_SETBIT(sc, reg, x)				\
174 	CSR_WRITE_4(sc, reg,				\
175 		CSR_READ_4(sc, reg) | (x))
176 
177 #define LGE_CLRBIT(sc, reg, x)				\
178 	CSR_WRITE_4(sc, reg,				\
179 		CSR_READ_4(sc, reg) & ~(x))
180 
181 #define SIO_SET(x)					\
182 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
183 
184 #define SIO_CLR(x)					\
185 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
186 
187 /*
188  * Read a word of data stored in the EEPROM at address 'addr.'
189  */
190 void
191 lge_eeprom_getword(struct lge_softc *sc, int addr, u_int16_t *dest)
192 {
193 	int			i;
194 	u_int32_t		val;
195 
196 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
197 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
198 
199 	for (i = 0; i < LGE_TIMEOUT; i++)
200 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
201 			break;
202 
203 	if (i == LGE_TIMEOUT) {
204 		printf("%s: EEPROM read timed out\n", sc->sc_dv.dv_xname);
205 		return;
206 	}
207 
208 	val = CSR_READ_4(sc, LGE_EEDATA);
209 
210 	if (addr & 1)
211 		*dest = (val >> 16) & 0xFFFF;
212 	else
213 		*dest = val & 0xFFFF;
214 }
215 
216 /*
217  * Read a sequence of words from the EEPROM.
218  */
219 void
220 lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off,
221     int cnt, int swap)
222 {
223 	int			i;
224 	u_int16_t		word = 0, *ptr;
225 
226 	for (i = 0; i < cnt; i++) {
227 		lge_eeprom_getword(sc, off + i, &word);
228 		ptr = (u_int16_t *)(dest + (i * 2));
229 		if (swap)
230 			*ptr = ntohs(word);
231 		else
232 			*ptr = word;
233 	}
234 }
235 
236 int
237 lge_miibus_readreg(struct device *dev, int phy, int reg)
238 {
239 	struct lge_softc	*sc = (struct lge_softc *)dev;
240 	int			i;
241 
242 	/*
243 	 * If we have a non-PCS PHY, pretend that the internal
244 	 * autoneg stuff at PHY address 0 isn't there so that
245 	 * the miibus code will find only the GMII PHY.
246 	 */
247 	if (sc->lge_pcs == 0 && phy == 0)
248 		return (0);
249 
250 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
251 
252 	for (i = 0; i < LGE_TIMEOUT; i++)
253 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
254 			break;
255 
256 	if (i == LGE_TIMEOUT) {
257 		printf("%s: PHY read timed out\n", sc->sc_dv.dv_xname);
258 		return (0);
259 	}
260 
261 	return (CSR_READ_4(sc, LGE_GMIICTL) >> 16);
262 }
263 
264 void
265 lge_miibus_writereg(struct device *dev, int phy, int reg, int data)
266 {
267 	struct lge_softc	*sc = (struct lge_softc *)dev;
268 	int			i;
269 
270 	CSR_WRITE_4(sc, LGE_GMIICTL,
271 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
272 
273 	for (i = 0; i < LGE_TIMEOUT; i++)
274 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
275 			break;
276 
277 	if (i == LGE_TIMEOUT) {
278 		printf("%s: PHY write timed out\n", sc->sc_dv.dv_xname);
279 	}
280 }
281 
282 void
283 lge_miibus_statchg(struct device *dev)
284 {
285 	struct lge_softc	*sc = (struct lge_softc *)dev;
286 	struct mii_data		*mii = &sc->lge_mii;
287 
288 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
289 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
290 	case IFM_1000_T:
291 	case IFM_1000_SX:
292 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
293 		break;
294 	case IFM_100_TX:
295 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
296 		break;
297 	case IFM_10_T:
298 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
299 		break;
300 	default:
301 		/*
302 		 * Choose something, even if it's wrong. Clearing
303 		 * all the bits will hose autoneg on the internal
304 		 * PHY.
305 		 */
306 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
307 		break;
308 	}
309 
310 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
311 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
312 	} else {
313 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
314 	}
315 }
316 
317 void
318 lge_setmulti(struct lge_softc *sc)
319 {
320 	struct arpcom		*ac = &sc->arpcom;
321 	struct ifnet		*ifp = &ac->ac_if;
322 	struct ether_multi      *enm;
323 	struct ether_multistep  step;
324 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
325 
326 	/* Make sure multicast hash table is enabled. */
327 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
328 
329 allmulti:
330 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
331 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
332 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
333 		return;
334 	}
335 
336 	/* first, zot all the existing hash bits */
337 	CSR_WRITE_4(sc, LGE_MAR0, 0);
338 	CSR_WRITE_4(sc, LGE_MAR1, 0);
339 
340 	/* now program new ones */
341 	ETHER_FIRST_MULTI(step, ac, enm);
342 	while (enm != NULL) {
343 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
344 			ifp->if_flags |= IFF_ALLMULTI;
345 			goto allmulti;
346 		}
347 		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) &
348 		    0x0000003F;
349 		if (h < 32)
350 			hashes[0] |= (1 << h);
351 		else
352 			hashes[1] |= (1 << (h - 32));
353 		ETHER_NEXT_MULTI(step, enm);
354 	}
355 
356 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
357 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
358 }
359 
360 void
361 lge_reset(struct lge_softc *sc)
362 {
363 	int			i;
364 
365 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
366 
367 	for (i = 0; i < LGE_TIMEOUT; i++) {
368 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
369 			break;
370 	}
371 
372 	if (i == LGE_TIMEOUT)
373 		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
374 
375 	/* Wait a little while for the chip to get its brains in order. */
376 	DELAY(1000);
377 }
378 
379 /*
380  * Probe for a Level 1 chip. Check the PCI vendor and device
381  * IDs against our list and return a device name if we find a match.
382  */
383 int
384 lge_probe(struct device *parent, void *match, void *aux)
385 {
386 	return (pci_matchbyid((struct pci_attach_args *)aux, lge_devices,
387 	    nitems(lge_devices)));
388 }
389 
390 /*
391  * Attach the interface. Allocate softc structures, do ifmedia
392  * setup and ethernet/BPF attach.
393  */
394 void
395 lge_attach(struct device *parent, struct device *self, void *aux)
396 {
397 	struct lge_softc	*sc = (struct lge_softc *)self;
398 	struct pci_attach_args	*pa = aux;
399 	pci_chipset_tag_t	pc = pa->pa_pc;
400 	pci_intr_handle_t	ih;
401 	const char		*intrstr = NULL;
402 	bus_size_t		size;
403 	bus_dma_segment_t	seg;
404 	bus_dmamap_t		dmamap;
405 	int			rseg;
406 	u_char			eaddr[ETHER_ADDR_LEN];
407 	pcireg_t		command;
408 #ifndef LGE_USEIOSPACE
409 	pcireg_t		memtype;
410 #endif
411 	struct ifnet		*ifp;
412 	caddr_t			kva;
413 
414 	/*
415 	 * Handle power management nonsense.
416 	 */
417 	DPRINTFN(5, ("Preparing for conf read\n"));
418 	command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_CAPID) & 0x000000FF;
419 	if (command == 0x01) {
420 		command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_PWRMGMTCTRL);
421 		if (command & LGE_PSTATE_MASK) {
422 			pcireg_t	iobase, membase, irq;
423 
424 			/* Save important PCI config data. */
425 			iobase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOIO);
426 			membase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOMEM);
427 			irq = pci_conf_read(pc, pa->pa_tag, LGE_PCI_INTLINE);
428 
429 			/* Reset the power state. */
430 			printf("%s: chip is in D%d power mode "
431 			       "-- setting to D0\n", sc->sc_dv.dv_xname,
432 			       command & LGE_PSTATE_MASK);
433 			command &= 0xFFFFFFFC;
434 			pci_conf_write(pc, pa->pa_tag,
435 				       LGE_PCI_PWRMGMTCTRL, command);
436 
437 			/* Restore PCI config data. */
438 			pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOIO, iobase);
439 			pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOMEM, membase);
440 			pci_conf_write(pc, pa->pa_tag, LGE_PCI_INTLINE, irq);
441 		}
442 	}
443 
444 	/*
445 	 * Map control/status registers.
446 	 */
447 	DPRINTFN(5, ("Map control/status regs\n"));
448 
449 	DPRINTFN(5, ("pci_mapreg_map\n"));
450 #ifdef LGE_USEIOSPACE
451 	if (pci_mapreg_map(pa, LGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
452 	    &sc->lge_btag, &sc->lge_bhandle, NULL, &size, 0)) {
453 		printf(": can't map i/o space\n");
454 		return;
455 	}
456 #else
457 	memtype = pci_mapreg_type(pc, pa->pa_tag, LGE_PCI_LOMEM);
458 	if (pci_mapreg_map(pa, LGE_PCI_LOMEM, memtype, 0, &sc->lge_btag,
459 	    &sc->lge_bhandle, NULL, &size, 0)) {
460 		printf(": can't map mem space\n");
461 		return;
462 	}
463 #endif
464 
465 	DPRINTFN(5, ("pci_intr_map\n"));
466 	if (pci_intr_map(pa, &ih)) {
467 		printf(": couldn't map interrupt\n");
468 		goto fail_1;
469 	}
470 
471 	DPRINTFN(5, ("pci_intr_string\n"));
472 	intrstr = pci_intr_string(pc, ih);
473 	DPRINTFN(5, ("pci_intr_establish\n"));
474 	sc->lge_intrhand = pci_intr_establish(pc, ih, IPL_NET, lge_intr, sc,
475 					      sc->sc_dv.dv_xname);
476 	if (sc->lge_intrhand == NULL) {
477 		printf(": couldn't establish interrupt");
478 		if (intrstr != NULL)
479 			printf(" at %s", intrstr);
480 		printf("\n");
481 		goto fail_1;
482 	}
483 	printf(": %s", intrstr);
484 
485 	/* Reset the adapter. */
486 	DPRINTFN(5, ("lge_reset\n"));
487 	lge_reset(sc);
488 
489 	/*
490 	 * Get station address from the EEPROM.
491 	 */
492 	DPRINTFN(5, ("lge_read_eeprom\n"));
493 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
494 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
495 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
496 
497 	/*
498 	 * A Level 1 chip was detected. Inform the world.
499 	 */
500 	printf(", address %s\n", ether_sprintf(eaddr));
501 
502 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
503 
504 	sc->sc_dmatag = pa->pa_dmat;
505 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
506 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct lge_list_data),
507 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
508 		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
509 		goto fail_2;
510 	}
511 	DPRINTFN(5, ("bus_dmamem_map\n"));
512 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
513 			   sizeof(struct lge_list_data), &kva,
514 			   BUS_DMA_NOWAIT)) {
515 		printf("%s: can't map dma buffers (%d bytes)\n",
516 		       sc->sc_dv.dv_xname, sizeof(struct lge_list_data));
517 		goto fail_3;
518 	}
519 	DPRINTFN(5, ("bus_dmamem_create\n"));
520 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct lge_list_data), 1,
521 			      sizeof(struct lge_list_data), 0,
522 			      BUS_DMA_NOWAIT, &dmamap)) {
523 		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
524 		goto fail_4;
525 	}
526 	DPRINTFN(5, ("bus_dmamem_load\n"));
527 	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
528 			    sizeof(struct lge_list_data), NULL,
529 			    BUS_DMA_NOWAIT)) {
530 		goto fail_5;
531 	}
532 
533 	DPRINTFN(5, ("bzero\n"));
534 	sc->lge_ldata = (struct lge_list_data *)kva;
535 
536 	/* Try to allocate memory for jumbo buffers. */
537 	DPRINTFN(5, ("lge_alloc_jumbo_mem\n"));
538 	if (lge_alloc_jumbo_mem(sc)) {
539 		printf("%s: jumbo buffer allocation failed\n",
540 		       sc->sc_dv.dv_xname);
541 		goto fail_5;
542 	}
543 
544 	ifp = &sc->arpcom.ac_if;
545 	ifp->if_softc = sc;
546 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
547 	ifp->if_ioctl = lge_ioctl;
548 	ifp->if_start = lge_start;
549 	ifp->if_watchdog = lge_watchdog;
550 	ifp->if_baudrate = 1000000000;
551 	ifp->if_hardmtu = LGE_JUMBO_MTU;
552 	IFQ_SET_MAXLEN(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
553 	IFQ_SET_READY(&ifp->if_snd);
554 	DPRINTFN(5, ("bcopy\n"));
555 	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
556 
557 	ifp->if_capabilities = IFCAP_VLAN_MTU;
558 
559 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
560 		sc->lge_pcs = 1;
561 	else
562 		sc->lge_pcs = 0;
563 
564 	/*
565 	 * Do MII setup.
566 	 */
567 	DPRINTFN(5, ("mii setup\n"));
568 	sc->lge_mii.mii_ifp = ifp;
569 	sc->lge_mii.mii_readreg = lge_miibus_readreg;
570 	sc->lge_mii.mii_writereg = lge_miibus_writereg;
571 	sc->lge_mii.mii_statchg = lge_miibus_statchg;
572 	ifmedia_init(&sc->lge_mii.mii_media, 0, lge_ifmedia_upd,
573 		     lge_ifmedia_sts);
574 	mii_attach(&sc->sc_dv, &sc->lge_mii, 0xffffffff, MII_PHY_ANY,
575 		   MII_OFFSET_ANY, 0);
576 
577 	if (LIST_FIRST(&sc->lge_mii.mii_phys) == NULL) {
578 		printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
579 		ifmedia_add(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL,
580 			    0, NULL);
581 		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL);
582 	} else {
583 		DPRINTFN(5, ("ifmedia_set\n"));
584 		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_AUTO);
585 	}
586 
587 	/*
588 	 * Call MI attach routine.
589 	 */
590 	DPRINTFN(5, ("if_attach\n"));
591 	if_attach(ifp);
592 	DPRINTFN(5, ("ether_ifattach\n"));
593 	ether_ifattach(ifp);
594 	DPRINTFN(5, ("timeout_set\n"));
595 	timeout_set(&sc->lge_timeout, lge_tick, sc);
596 	timeout_add_sec(&sc->lge_timeout, 1);
597 	return;
598 
599 fail_5:
600 	bus_dmamap_destroy(sc->sc_dmatag, dmamap);
601 
602 fail_4:
603 	bus_dmamem_unmap(sc->sc_dmatag, kva,
604 	    sizeof(struct lge_list_data));
605 
606 fail_3:
607 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
608 
609 fail_2:
610 	pci_intr_disestablish(pc, sc->lge_intrhand);
611 
612 fail_1:
613 	bus_space_unmap(sc->lge_btag, sc->lge_bhandle, size);
614 }
615 
616 /*
617  * Initialize the transmit descriptors.
618  */
619 int
620 lge_list_tx_init(struct lge_softc *sc)
621 {
622 	struct lge_list_data	*ld;
623 	struct lge_ring_data	*cd;
624 	int			i;
625 
626 	cd = &sc->lge_cdata;
627 	ld = sc->lge_ldata;
628 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
629 		ld->lge_tx_list[i].lge_mbuf = NULL;
630 		ld->lge_tx_list[i].lge_ctl = 0;
631 	}
632 
633 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
634 
635 	return (0);
636 }
637 
638 
639 /*
640  * Initialize the RX descriptors and allocate mbufs for them. Note that
641  * we arrange the descriptors in a closed ring, so that the last descriptor
642  * points back to the first.
643  */
644 int
645 lge_list_rx_init(struct lge_softc *sc)
646 {
647 	struct lge_list_data	*ld;
648 	struct lge_ring_data	*cd;
649 	int			i;
650 
651 	ld = sc->lge_ldata;
652 	cd = &sc->lge_cdata;
653 
654 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
655 
656 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
657 
658 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
659 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
660 			break;
661 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
662 			return (ENOBUFS);
663 	}
664 
665 	/* Clear possible 'rx command queue empty' interrupt. */
666 	CSR_READ_4(sc, LGE_ISR);
667 
668 	return (0);
669 }
670 
671 /*
672  * Initialize a RX descriptor and attach a MBUF cluster.
673  */
674 int
675 lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
676 {
677 	struct mbuf		*m_new = NULL;
678 
679 	if (m == NULL) {
680 		caddr_t buf = NULL;
681 
682 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
683 		if (m_new == NULL)
684 			return (ENOBUFS);
685 
686 		/* Allocate the jumbo buffer */
687 		buf = lge_jalloc(sc);
688 		if (buf == NULL) {
689 			m_freem(m_new);
690 			return (ENOBUFS);
691 		}
692 
693 		/* Attach the buffer to the mbuf */
694 		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
695 		MEXTADD(m_new, buf, LGE_JLEN, 0, lge_jfree, sc);
696 	} else {
697 		/*
698 		 * We're re-using a previously allocated mbuf;
699 		 * be sure to re-init pointers and lengths to
700 		 * default values.
701 		 */
702 		m_new = m;
703 		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
704 		m_new->m_data = m_new->m_ext.ext_buf;
705 	}
706 
707 	/*
708 	 * Adjust alignment so packet payload begins on a
709 	 * longword boundary. Mandatory for Alpha, useful on
710 	 * x86 too.
711 	*/
712 	m_adj(m_new, ETHER_ALIGN);
713 
714 	c->lge_mbuf = m_new;
715 	c->lge_fragptr_hi = 0;
716 	c->lge_fragptr_lo = VTOPHYS(mtod(m_new, caddr_t));
717 	c->lge_fraglen = m_new->m_len;
718 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
719 	c->lge_sts = 0;
720 
721 	/*
722 	 * Put this buffer in the RX command FIFO. To do this,
723 	 * we just write the physical address of the descriptor
724 	 * into the RX descriptor address registers. Note that
725 	 * there are two registers, one high DWORD and one low
726 	 * DWORD, which lets us specify a 64-bit address if
727 	 * desired. We only use a 32-bit address for now.
728 	 * Writing to the low DWORD register is what actually
729 	 * causes the command to be issued, so we do that
730 	 * last.
731 	 */
732 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, VTOPHYS(c));
733 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
734 
735 	return (0);
736 }
737 
738 int
739 lge_alloc_jumbo_mem(struct lge_softc *sc)
740 {
741 	caddr_t			ptr, kva;
742 	bus_dma_segment_t	seg;
743 	bus_dmamap_t		dmamap;
744 	int			i, rseg, state, error;
745 	struct lge_jpool_entry   *entry;
746 
747 	state = error = 0;
748 
749 	/* Grab a big chunk o' storage. */
750 	if (bus_dmamem_alloc(sc->sc_dmatag, LGE_JMEM, PAGE_SIZE, 0,
751 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
752 		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
753 		return (ENOBUFS);
754 	}
755 
756 	state = 1;
757 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, LGE_JMEM, &kva,
758 			   BUS_DMA_NOWAIT)) {
759 		printf("%s: can't map dma buffers (%d bytes)\n",
760 		       sc->sc_dv.dv_xname, LGE_JMEM);
761 		error = ENOBUFS;
762 		goto out;
763 	}
764 
765 	state = 2;
766 	if (bus_dmamap_create(sc->sc_dmatag, LGE_JMEM, 1,
767 			      LGE_JMEM, 0, BUS_DMA_NOWAIT, &dmamap)) {
768 		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
769 		error = ENOBUFS;
770 		goto out;
771 	}
772 
773 	state = 3;
774 	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, LGE_JMEM,
775 			    NULL, BUS_DMA_NOWAIT)) {
776 		printf("%s: can't load dma map\n", sc->sc_dv.dv_xname);
777 		error = ENOBUFS;
778 		goto out;
779         }
780 
781 	state = 4;
782 	sc->lge_cdata.lge_jumbo_buf = (caddr_t)kva;
783 	DPRINTFN(1,("lge_jumbo_buf = 0x%08X\n", sc->lge_cdata.lge_jumbo_buf));
784 	DPRINTFN(1,("LGE_JLEN = 0x%08X\n", LGE_JLEN));
785 
786 	LIST_INIT(&sc->lge_jfree_listhead);
787 	LIST_INIT(&sc->lge_jinuse_listhead);
788 
789 	/*
790 	 * Now divide it up into 9K pieces and save the addresses
791 	 * in an array.
792 	 */
793 	ptr = sc->lge_cdata.lge_jumbo_buf;
794 	for (i = 0; i < LGE_JSLOTS; i++) {
795 		sc->lge_cdata.lge_jslots[i] = ptr;
796 		ptr += LGE_JLEN;
797 		entry = malloc(sizeof(struct lge_jpool_entry),
798 		    M_DEVBUF, M_NOWAIT);
799 		if (entry == NULL) {
800 			sc->lge_cdata.lge_jumbo_buf = NULL;
801 			printf("%s: no memory for jumbo buffer queue!\n",
802 			       sc->sc_dv.dv_xname);
803 			error = ENOBUFS;
804 			goto out;
805 		}
806 		entry->slot = i;
807 		LIST_INSERT_HEAD(&sc->lge_jfree_listhead,
808 				 entry, jpool_entries);
809 	}
810 out:
811 	if (error != 0) {
812 		switch (state) {
813 		case 4:
814 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
815 		case 3:
816 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
817 		case 2:
818 			bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM);
819 		case 1:
820 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
821 			break;
822 		default:
823 			break;
824 		}
825 	}
826 
827 	return (error);
828 }
829 
830 /*
831  * Allocate a jumbo buffer.
832  */
833 void *
834 lge_jalloc(struct lge_softc *sc)
835 {
836 	struct lge_jpool_entry   *entry;
837 
838 	entry = LIST_FIRST(&sc->lge_jfree_listhead);
839 
840 	if (entry == NULL)
841 		return (NULL);
842 
843 	LIST_REMOVE(entry, jpool_entries);
844 	LIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
845 	return (sc->lge_cdata.lge_jslots[entry->slot]);
846 }
847 
848 /*
849  * Release a jumbo buffer.
850  */
851 void
852 lge_jfree(caddr_t buf, u_int size, void *arg)
853 {
854 	struct lge_softc	*sc;
855 	int		        i;
856 	struct lge_jpool_entry   *entry;
857 
858 	/* Extract the softc struct pointer. */
859 	sc = (struct lge_softc *)arg;
860 
861 	if (sc == NULL)
862 		panic("lge_jfree: can't find softc pointer!");
863 
864 	/* calculate the slot this buffer belongs to */
865 	i = ((vaddr_t)buf - (vaddr_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
866 
867 	if ((i < 0) || (i >= LGE_JSLOTS))
868 		panic("lge_jfree: asked to free buffer that we don't manage!");
869 
870 	entry = LIST_FIRST(&sc->lge_jinuse_listhead);
871 	if (entry == NULL)
872 		panic("lge_jfree: buffer not in use!");
873 	entry->slot = i;
874 	LIST_REMOVE(entry, jpool_entries);
875 	LIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
876 }
877 
878 /*
879  * A frame has been uploaded: pass the resulting mbuf chain up to
880  * the higher level protocols.
881  */
882 void
883 lge_rxeof(struct lge_softc *sc, int cnt)
884 {
885         struct mbuf		*m;
886         struct ifnet		*ifp;
887 	struct lge_rx_desc	*cur_rx;
888 	int			c, i, total_len = 0;
889 	u_int32_t		rxsts, rxctl;
890 
891 	ifp = &sc->arpcom.ac_if;
892 
893 	/* Find out how many frames were processed. */
894 	c = cnt;
895 	i = sc->lge_cdata.lge_rx_cons;
896 
897 	/* Suck them in. */
898 	while(c) {
899 		struct mbuf		*m0 = NULL;
900 
901 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
902 		rxctl = cur_rx->lge_ctl;
903 		rxsts = cur_rx->lge_sts;
904 		m = cur_rx->lge_mbuf;
905 		cur_rx->lge_mbuf = NULL;
906 		total_len = LGE_RXBYTES(cur_rx);
907 		LGE_INC(i, LGE_RX_LIST_CNT);
908 		c--;
909 
910 		/*
911 		 * If an error occurs, update stats, clear the
912 		 * status word and leave the mbuf cluster in place:
913 		 * it should simply get re-used next time this descriptor
914 	 	 * comes up in the ring.
915 		 */
916 		if (rxctl & LGE_RXCTL_ERRMASK) {
917 			ifp->if_ierrors++;
918 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
919 			continue;
920 		}
921 
922 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
923 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
924 			    ifp, NULL);
925 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
926 			if (m0 == NULL) {
927 				ifp->if_ierrors++;
928 				continue;
929 			}
930 			m = m0;
931 		} else {
932 			m->m_pkthdr.rcvif = ifp;
933 			m->m_pkthdr.len = m->m_len = total_len;
934 		}
935 
936 		ifp->if_ipackets++;
937 
938 #if NBPFILTER > 0
939 		/*
940 		 * Handle BPF listeners. Let the BPF user see the packet.
941 		 */
942 		if (ifp->if_bpf)
943 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
944 #endif
945 
946 		/* Do IP checksum checking. */
947 		if (rxsts & LGE_RXSTS_ISIP) {
948 			if (!(rxsts & LGE_RXSTS_IPCSUMERR))
949 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
950 		}
951 		if (rxsts & LGE_RXSTS_ISTCP) {
952 			if (!(rxsts & LGE_RXSTS_TCPCSUMERR))
953 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
954 		}
955 		if (rxsts & LGE_RXSTS_ISUDP) {
956 			if (!(rxsts & LGE_RXSTS_UDPCSUMERR))
957 				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
958 		}
959 
960 		ether_input_mbuf(ifp, m);
961 	}
962 
963 	sc->lge_cdata.lge_rx_cons = i;
964 }
965 
966 /*
967  * A frame was downloaded to the chip. It's safe for us to clean up
968  * the list buffers.
969  */
970 
971 void
972 lge_txeof(struct lge_softc *sc)
973 {
974 	struct lge_tx_desc	*cur_tx = NULL;
975 	struct ifnet		*ifp;
976 	u_int32_t		idx, txdone;
977 
978 	ifp = &sc->arpcom.ac_if;
979 
980 	/* Clear the timeout timer. */
981 	ifp->if_timer = 0;
982 
983 	/*
984 	 * Go through our tx list and free mbufs for those
985 	 * frames that have been transmitted.
986 	 */
987 	idx = sc->lge_cdata.lge_tx_cons;
988 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
989 
990 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
991 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
992 
993 		ifp->if_opackets++;
994 		if (cur_tx->lge_mbuf != NULL) {
995 			m_freem(cur_tx->lge_mbuf);
996 			cur_tx->lge_mbuf = NULL;
997 		}
998 		cur_tx->lge_ctl = 0;
999 
1000 		txdone--;
1001 		LGE_INC(idx, LGE_TX_LIST_CNT);
1002 		ifp->if_timer = 0;
1003 	}
1004 
1005 	sc->lge_cdata.lge_tx_cons = idx;
1006 
1007 	if (cur_tx != NULL)
1008 		ifp->if_flags &= ~IFF_OACTIVE;
1009 }
1010 
1011 void
1012 lge_tick(void *xsc)
1013 {
1014 	struct lge_softc	*sc = xsc;
1015 	struct mii_data		*mii = &sc->lge_mii;
1016 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1017 	int			s;
1018 
1019 	s = splnet();
1020 
1021 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1022 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1023 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1024 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1025 
1026 	if (!sc->lge_link) {
1027 		mii_tick(mii);
1028 		if (mii->mii_media_status & IFM_ACTIVE &&
1029 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1030 			sc->lge_link++;
1031 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1032 				lge_start(ifp);
1033 		}
1034 	}
1035 
1036 	timeout_add_sec(&sc->lge_timeout, 1);
1037 
1038 	splx(s);
1039 }
1040 
1041 int
1042 lge_intr(void *arg)
1043 {
1044 	struct lge_softc	*sc;
1045 	struct ifnet		*ifp;
1046 	u_int32_t		status;
1047 	int			claimed = 0;
1048 
1049 	sc = arg;
1050 	ifp = &sc->arpcom.ac_if;
1051 
1052 	/* Suppress unwanted interrupts */
1053 	if (!(ifp->if_flags & IFF_UP)) {
1054 		lge_stop(sc);
1055 		return (0);
1056 	}
1057 
1058 	for (;;) {
1059 		/*
1060 		 * Reading the ISR register clears all interrupts, and
1061 		 * clears the 'interrupts enabled' bit in the IMR
1062 		 * register.
1063 		 */
1064 		status = CSR_READ_4(sc, LGE_ISR);
1065 
1066 		if ((status & LGE_INTRS) == 0)
1067 			break;
1068 
1069 		claimed = 1;
1070 
1071 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1072 			lge_txeof(sc);
1073 
1074 		if (status & LGE_ISR_RXDMA_DONE)
1075 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1076 
1077 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1078 			lge_init(sc);
1079 
1080 		if (status & LGE_ISR_PHY_INTR) {
1081 			sc->lge_link = 0;
1082 			timeout_del(&sc->lge_timeout);
1083 			lge_tick(sc);
1084 		}
1085 	}
1086 
1087 	/* Re-enable interrupts. */
1088 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1089 
1090 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1091 		lge_start(ifp);
1092 
1093 	return (claimed);
1094 }
1095 
1096 /*
1097  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1098  * pointers to the fragment pointers.
1099  */
1100 int
1101 lge_encap(struct lge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
1102 {
1103 	struct lge_frag		*f = NULL;
1104 	struct lge_tx_desc	*cur_tx;
1105 	struct mbuf		*m;
1106 	int			frag = 0, tot_len = 0;
1107 
1108 	/*
1109  	 * Start packing the mbufs in this chain into
1110 	 * the fragment pointers. Stop when we run out
1111  	 * of fragments or hit the end of the mbuf chain.
1112 	 */
1113 	m = m_head;
1114 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1115 	frag = 0;
1116 
1117 	for (m = m_head; m != NULL; m = m->m_next) {
1118 		if (m->m_len != 0) {
1119 			tot_len += m->m_len;
1120 			f = &cur_tx->lge_frags[frag];
1121 			f->lge_fraglen = m->m_len;
1122 			f->lge_fragptr_lo = VTOPHYS(mtod(m, vaddr_t));
1123 			f->lge_fragptr_hi = 0;
1124 			frag++;
1125 		}
1126 	}
1127 
1128 	if (m != NULL)
1129 		return (ENOBUFS);
1130 
1131 	cur_tx->lge_mbuf = m_head;
1132 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1133 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1134 
1135 	/* Queue for transmit */
1136 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, VTOPHYS(cur_tx));
1137 
1138 	return (0);
1139 }
1140 
1141 /*
1142  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1143  * to the mbuf data regions directly in the transmit lists. We also save a
1144  * copy of the pointers since the transmit list fragment pointers are
1145  * physical addresses.
1146  */
1147 
1148 void
1149 lge_start(struct ifnet *ifp)
1150 {
1151 	struct lge_softc	*sc;
1152 	struct mbuf		*m_head = NULL;
1153 	u_int32_t		idx;
1154 	int			pkts = 0;
1155 
1156 	sc = ifp->if_softc;
1157 
1158 	if (!sc->lge_link)
1159 		return;
1160 
1161 	idx = sc->lge_cdata.lge_tx_prod;
1162 
1163 	if (ifp->if_flags & IFF_OACTIVE)
1164 		return;
1165 
1166 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1167 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1168 			break;
1169 
1170 		IFQ_POLL(&ifp->if_snd, m_head);
1171 		if (m_head == NULL)
1172 			break;
1173 
1174 		if (lge_encap(sc, m_head, &idx)) {
1175 			ifp->if_flags |= IFF_OACTIVE;
1176 			break;
1177 		}
1178 
1179 		/* now we are committed to transmit the packet */
1180 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1181 		pkts++;
1182 
1183 #if NBPFILTER > 0
1184 		/*
1185 		 * If there's a BPF listener, bounce a copy of this frame
1186 		 * to him.
1187 		 */
1188 		if (ifp->if_bpf)
1189 			bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1190 #endif
1191 	}
1192 	if (pkts == 0)
1193 		return;
1194 
1195 	sc->lge_cdata.lge_tx_prod = idx;
1196 
1197 	/*
1198 	 * Set a timeout in case the chip goes out to lunch.
1199 	 */
1200 	ifp->if_timer = 5;
1201 }
1202 
1203 void
1204 lge_init(void *xsc)
1205 {
1206 	struct lge_softc	*sc = xsc;
1207 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1208 	int			s;
1209 
1210 	s = splnet();
1211 
1212 	/*
1213 	 * Cancel pending I/O and free all RX/TX buffers.
1214 	 */
1215 	lge_stop(sc);
1216 	lge_reset(sc);
1217 
1218 	/* Set MAC address */
1219 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1220 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1221 
1222 	/* Init circular RX list. */
1223 	if (lge_list_rx_init(sc) == ENOBUFS) {
1224 		printf("%s: initialization failed: no "
1225 		       "memory for rx buffers\n", sc->sc_dv.dv_xname);
1226 		lge_stop(sc);
1227 		splx(s);
1228 		return;
1229 	}
1230 
1231 	/*
1232 	 * Init tx descriptors.
1233 	 */
1234 	lge_list_tx_init(sc);
1235 
1236 	/* Set initial value for MODE1 register. */
1237 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1238 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1239 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1240 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1241 
1242 	 /* If we want promiscuous mode, set the allframes bit. */
1243 	if (ifp->if_flags & IFF_PROMISC) {
1244 		CSR_WRITE_4(sc, LGE_MODE1,
1245 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1246 	} else {
1247 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1248 	}
1249 
1250 	/*
1251 	 * Set the capture broadcast bit to capture broadcast frames.
1252 	 */
1253 	if (ifp->if_flags & IFF_BROADCAST) {
1254 		CSR_WRITE_4(sc, LGE_MODE1,
1255 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1256 	} else {
1257 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1258 	}
1259 
1260 	/* Packet padding workaround? */
1261 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1262 
1263 	/* No error frames */
1264 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1265 
1266 	/* Receive large frames */
1267 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1268 
1269 	/* Workaround: disable RX/TX flow control */
1270 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1271 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1272 
1273 	/* Make sure to strip CRC from received frames */
1274 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1275 
1276 	/* Turn off magic packet mode */
1277 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1278 
1279 	/* Turn off all VLAN stuff */
1280 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1281 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1282 
1283 	/* Workarond: FIFO overflow */
1284 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1285 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1286 
1287 	/*
1288 	 * Load the multicast filter.
1289 	 */
1290 	lge_setmulti(sc);
1291 
1292 	/*
1293 	 * Enable hardware checksum validation for all received IPv4
1294 	 * packets, do not reject packets with bad checksums.
1295 	 */
1296 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1297 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1298 	    LGE_MODE2_RX_ERRCSUM);
1299 
1300 	/*
1301 	 * Enable the delivery of PHY interrupts based on
1302 	 * link/speed/duplex status chalges.
1303 	 */
1304 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1305 
1306 	/* Enable receiver and transmitter. */
1307 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1308 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1309 
1310 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1311 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1312 
1313 	/*
1314 	 * Enable interrupts.
1315 	 */
1316 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1317 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1318 
1319 	lge_ifmedia_upd(ifp);
1320 
1321 	ifp->if_flags |= IFF_RUNNING;
1322 	ifp->if_flags &= ~IFF_OACTIVE;
1323 
1324 	splx(s);
1325 
1326 	timeout_add_sec(&sc->lge_timeout, 1);
1327 }
1328 
1329 /*
1330  * Set media options.
1331  */
1332 int
1333 lge_ifmedia_upd(struct ifnet *ifp)
1334 {
1335 	struct lge_softc	*sc = ifp->if_softc;
1336 	struct mii_data		*mii = &sc->lge_mii;
1337 
1338 	sc->lge_link = 0;
1339 	if (mii->mii_instance) {
1340 		struct mii_softc *miisc;
1341 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1342 			mii_phy_reset(miisc);
1343 	}
1344 	mii_mediachg(mii);
1345 
1346 	return (0);
1347 }
1348 
1349 /*
1350  * Report current media status.
1351  */
1352 void
1353 lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1354 {
1355 	struct lge_softc	*sc = ifp->if_softc;
1356 	struct mii_data		*mii = &sc->lge_mii;
1357 
1358 	mii_pollstat(mii);
1359 	ifmr->ifm_active = mii->mii_media_active;
1360 	ifmr->ifm_status = mii->mii_media_status;
1361 }
1362 
1363 int
1364 lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1365 {
1366 	struct lge_softc	*sc = ifp->if_softc;
1367 	struct ifaddr		*ifa = (struct ifaddr *) data;
1368 	struct ifreq		*ifr = (struct ifreq *) data;
1369 	struct mii_data		*mii;
1370 	int			s, error = 0;
1371 
1372 	s = splnet();
1373 
1374 	switch(command) {
1375 	case SIOCSIFADDR:
1376 		ifp->if_flags |= IFF_UP;
1377 		if (!(ifp->if_flags & IFF_RUNNING))
1378 			lge_init(sc);
1379 #ifdef INET
1380 		if (ifa->ifa_addr->sa_family == AF_INET)
1381 			arp_ifinit(&sc->arpcom, ifa);
1382 #endif /* INET */
1383 		break;
1384 
1385 	case SIOCSIFFLAGS:
1386 		if (ifp->if_flags & IFF_UP) {
1387 			if (ifp->if_flags & IFF_RUNNING &&
1388 			    ifp->if_flags & IFF_PROMISC &&
1389 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1390 				CSR_WRITE_4(sc, LGE_MODE1,
1391 				    LGE_MODE1_SETRST_CTL1|
1392 				    LGE_MODE1_RX_PROMISC);
1393 				lge_setmulti(sc);
1394 			} else if (ifp->if_flags & IFF_RUNNING &&
1395 			    !(ifp->if_flags & IFF_PROMISC) &&
1396 			    sc->lge_if_flags & IFF_PROMISC) {
1397 				CSR_WRITE_4(sc, LGE_MODE1,
1398 				    LGE_MODE1_RX_PROMISC);
1399 				lge_setmulti(sc);
1400 			} else if (ifp->if_flags & IFF_RUNNING &&
1401 			    (ifp->if_flags ^ sc->lge_if_flags) & IFF_ALLMULTI) {
1402 				lge_setmulti(sc);
1403 			} else {
1404 				if (!(ifp->if_flags & IFF_RUNNING))
1405 					lge_init(sc);
1406 			}
1407 		} else {
1408 			if (ifp->if_flags & IFF_RUNNING)
1409 				lge_stop(sc);
1410 		}
1411 		sc->lge_if_flags = ifp->if_flags;
1412 		break;
1413 
1414 	case SIOCGIFMEDIA:
1415 	case SIOCSIFMEDIA:
1416 		mii = &sc->lge_mii;
1417 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1418 		break;
1419 
1420 	default:
1421 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1422 	}
1423 
1424 	if (error == ENETRESET) {
1425 		if (ifp->if_flags & IFF_RUNNING)
1426 			lge_setmulti(sc);
1427 		error = 0;
1428 	}
1429 
1430 	splx(s);
1431 	return (error);
1432 }
1433 
1434 void
1435 lge_watchdog(struct ifnet *ifp)
1436 {
1437 	struct lge_softc	*sc;
1438 
1439 	sc = ifp->if_softc;
1440 
1441 	ifp->if_oerrors++;
1442 	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
1443 
1444 	lge_stop(sc);
1445 	lge_reset(sc);
1446 	lge_init(sc);
1447 
1448 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1449 		lge_start(ifp);
1450 }
1451 
1452 /*
1453  * Stop the adapter and free any mbufs allocated to the
1454  * RX and TX lists.
1455  */
1456 void
1457 lge_stop(struct lge_softc *sc)
1458 {
1459 	int			i;
1460 	struct ifnet		*ifp;
1461 
1462 	ifp = &sc->arpcom.ac_if;
1463 	ifp->if_timer = 0;
1464 	timeout_del(&sc->lge_timeout);
1465 
1466 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1467 
1468 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1469 
1470 	/* Disable receiver and transmitter. */
1471 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1472 	sc->lge_link = 0;
1473 
1474 	/*
1475 	 * Free data in the RX lists.
1476 	 */
1477 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1478 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1479 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1480 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1481 		}
1482 	}
1483 	bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list));
1484 
1485 	/*
1486 	 * Free the TX list buffers.
1487 	 */
1488 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1489 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1490 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1491 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1492 		}
1493 	}
1494 
1495 	bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list));
1496 }
1497