xref: /openbsd-src/sys/dev/pci/if_lge.c (revision 43003dfe3ad45d1698bed8a37f2b0f5b14f20d4f)
1 /*	$OpenBSD: if_lge.c,v 1.52 2009/08/13 14:24:47 jasper Exp $	*/
2 /*
3  * Copyright (c) 2001 Wind River Systems
4  * Copyright (c) 1997, 1998, 1999, 2000, 2001
5  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.6 2001/06/20 19:47:55 bmilekic Exp $
35  */
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * Written by Bill Paul <william.paul@windriver.com>
42  * Wind River Systems
43  */
44 
45 /*
46  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49  * are three supported methods for data transfer between host and
50  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51  * Propulsion Technology (tm) DMA. The latter mechanism is a form
52  * of double buffer DMA where the packet data is copied to a
53  * pre-allocated DMA buffer who's physical address has been loaded
54  * into a table at device initialization time. The rationale is that
55  * the virtual to physical address translation needed for normal
56  * scatter/gather DMA is more expensive than the data copy needed
57  * for double buffering. This may be true in Windows NT and the like,
58  * but it isn't true for us, at least on the x86 arch. This driver
59  * uses the scatter/gather I/O method for both TX and RX.
60  *
61  * The LXT1001 only supports TCP/IP checksum offload on receive.
62  * Also, the VLAN tagging is done using a 16-entry table which allows
63  * the chip to perform hardware filtering based on VLAN tags. Sadly,
64  * our vlan support doesn't currently play well with this kind of
65  * hardware support.
66  *
67  * Special thanks to:
68  * - Jeff James at Intel, for arranging to have the LXT1001 manual
69  *   released (at long last)
70  * - Beny Chen at D-Link, for actually sending it to me
71  * - Brad Short and Keith Alexis at SMC, for sending me sample
72  *   SMC9462SX and SMC9462TX adapters for testing
73  * - Paul Saab at Y!, for not killing me (though it remains to be seen
74  *   if in fact he did me much of a favor)
75  */
76 
77 #include "bpfilter.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/sockio.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/device.h>
86 #include <sys/socket.h>
87 
88 #include <net/if.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 
92 #ifdef INET
93 #include <netinet/in.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/in_var.h>
96 #include <netinet/ip.h>
97 #include <netinet/if_ether.h>
98 #endif
99 
100 #if NBPFILTER > 0
101 #include <net/bpf.h>
102 #endif
103 
104 #include <uvm/uvm_extern.h>              /* for vtophys */
105 #define	VTOPHYS(v)	vtophys((vaddr_t)(v))
106 
107 #include <dev/pci/pcireg.h>
108 #include <dev/pci/pcivar.h>
109 #include <dev/pci/pcidevs.h>
110 
111 #include <dev/mii/mii.h>
112 #include <dev/mii/miivar.h>
113 
114 #define LGE_USEIOSPACE
115 
116 #include <dev/pci/if_lgereg.h>
117 
118 int lge_probe(struct device *, void *, void *);
119 void lge_attach(struct device *, struct device *, void *);
120 
121 struct cfattach lge_ca = {
122 	sizeof(struct lge_softc), lge_probe, lge_attach
123 };
124 
125 struct cfdriver lge_cd = {
126 	NULL, "lge", DV_IFNET
127 };
128 
129 int lge_alloc_jumbo_mem(struct lge_softc *);
130 void *lge_jalloc(struct lge_softc *);
131 void lge_jfree(caddr_t, u_int, void *);
132 
133 int lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
134 			     struct mbuf *);
135 int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
136 void lge_rxeof(struct lge_softc *, int);
137 void lge_txeof(struct lge_softc *);
138 int lge_intr(void *);
139 void lge_tick(void *);
140 void lge_start(struct ifnet *);
141 int lge_ioctl(struct ifnet *, u_long, caddr_t);
142 void lge_init(void *);
143 void lge_stop(struct lge_softc *);
144 void lge_watchdog(struct ifnet *);
145 int lge_ifmedia_upd(struct ifnet *);
146 void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
147 
148 void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
149 void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
150 
151 int lge_miibus_readreg(struct device *, int, int);
152 void lge_miibus_writereg(struct device *, int, int, int);
153 void lge_miibus_statchg(struct device *);
154 
155 void lge_setmulti(struct lge_softc *);
156 void lge_reset(struct lge_softc *);
157 int lge_list_rx_init(struct lge_softc *);
158 int lge_list_tx_init(struct lge_softc *);
159 
160 #ifdef LGE_DEBUG
161 #define DPRINTF(x)	if (lgedebug) printf x
162 #define DPRINTFN(n,x)	if (lgedebug >= (n)) printf x
163 int	lgedebug = 0;
164 #else
165 #define DPRINTF(x)
166 #define DPRINTFN(n,x)
167 #endif
168 
169 const struct pci_matchid lge_devices[] = {
170 	{ PCI_VENDOR_LEVEL1, PCI_PRODUCT_LEVEL1_LXT1001 }
171 };
172 
173 #define LGE_SETBIT(sc, reg, x)				\
174 	CSR_WRITE_4(sc, reg,				\
175 		CSR_READ_4(sc, reg) | (x))
176 
177 #define LGE_CLRBIT(sc, reg, x)				\
178 	CSR_WRITE_4(sc, reg,				\
179 		CSR_READ_4(sc, reg) & ~(x))
180 
181 #define SIO_SET(x)					\
182 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
183 
184 #define SIO_CLR(x)					\
185 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
186 
187 /*
188  * Read a word of data stored in the EEPROM at address 'addr.'
189  */
190 void
191 lge_eeprom_getword(struct lge_softc *sc, int addr, u_int16_t *dest)
192 {
193 	int			i;
194 	u_int32_t		val;
195 
196 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
197 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
198 
199 	for (i = 0; i < LGE_TIMEOUT; i++)
200 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
201 			break;
202 
203 	if (i == LGE_TIMEOUT) {
204 		printf("%s: EEPROM read timed out\n", sc->sc_dv.dv_xname);
205 		return;
206 	}
207 
208 	val = CSR_READ_4(sc, LGE_EEDATA);
209 
210 	if (addr & 1)
211 		*dest = (val >> 16) & 0xFFFF;
212 	else
213 		*dest = val & 0xFFFF;
214 }
215 
216 /*
217  * Read a sequence of words from the EEPROM.
218  */
219 void
220 lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off,
221     int cnt, int swap)
222 {
223 	int			i;
224 	u_int16_t		word = 0, *ptr;
225 
226 	for (i = 0; i < cnt; i++) {
227 		lge_eeprom_getword(sc, off + i, &word);
228 		ptr = (u_int16_t *)(dest + (i * 2));
229 		if (swap)
230 			*ptr = ntohs(word);
231 		else
232 			*ptr = word;
233 	}
234 }
235 
236 int
237 lge_miibus_readreg(struct device *dev, int phy, int reg)
238 {
239 	struct lge_softc	*sc = (struct lge_softc *)dev;
240 	int			i;
241 
242 	/*
243 	 * If we have a non-PCS PHY, pretend that the internal
244 	 * autoneg stuff at PHY address 0 isn't there so that
245 	 * the miibus code will find only the GMII PHY.
246 	 */
247 	if (sc->lge_pcs == 0 && phy == 0)
248 		return (0);
249 
250 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
251 
252 	for (i = 0; i < LGE_TIMEOUT; i++)
253 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
254 			break;
255 
256 	if (i == LGE_TIMEOUT) {
257 		printf("%s: PHY read timed out\n", sc->sc_dv.dv_xname);
258 		return (0);
259 	}
260 
261 	return (CSR_READ_4(sc, LGE_GMIICTL) >> 16);
262 }
263 
264 void
265 lge_miibus_writereg(struct device *dev, int phy, int reg, int data)
266 {
267 	struct lge_softc	*sc = (struct lge_softc *)dev;
268 	int			i;
269 
270 	CSR_WRITE_4(sc, LGE_GMIICTL,
271 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
272 
273 	for (i = 0; i < LGE_TIMEOUT; i++)
274 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
275 			break;
276 
277 	if (i == LGE_TIMEOUT) {
278 		printf("%s: PHY write timed out\n", sc->sc_dv.dv_xname);
279 	}
280 }
281 
282 void
283 lge_miibus_statchg(struct device *dev)
284 {
285 	struct lge_softc	*sc = (struct lge_softc *)dev;
286 	struct mii_data		*mii = &sc->lge_mii;
287 
288 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
289 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
290 	case IFM_1000_T:
291 	case IFM_1000_SX:
292 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
293 		break;
294 	case IFM_100_TX:
295 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
296 		break;
297 	case IFM_10_T:
298 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
299 		break;
300 	default:
301 		/*
302 		 * Choose something, even if it's wrong. Clearing
303 		 * all the bits will hose autoneg on the internal
304 		 * PHY.
305 		 */
306 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
307 		break;
308 	}
309 
310 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
311 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
312 	} else {
313 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
314 	}
315 }
316 
317 void
318 lge_setmulti(struct lge_softc *sc)
319 {
320 	struct arpcom		*ac = &sc->arpcom;
321 	struct ifnet		*ifp = &ac->ac_if;
322 	struct ether_multi      *enm;
323 	struct ether_multistep  step;
324 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
325 
326 	/* Make sure multicast hash table is enabled. */
327 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
328 
329 allmulti:
330 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
331 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
332 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
333 		return;
334 	}
335 
336 	/* first, zot all the existing hash bits */
337 	CSR_WRITE_4(sc, LGE_MAR0, 0);
338 	CSR_WRITE_4(sc, LGE_MAR1, 0);
339 
340 	/* now program new ones */
341 	ETHER_FIRST_MULTI(step, ac, enm);
342 	while (enm != NULL) {
343 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
344 			ifp->if_flags |= IFF_ALLMULTI;
345 			goto allmulti;
346 		}
347 		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) &
348 		    0x0000003F;
349 		if (h < 32)
350 			hashes[0] |= (1 << h);
351 		else
352 			hashes[1] |= (1 << (h - 32));
353 		ETHER_NEXT_MULTI(step, enm);
354 	}
355 
356 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
357 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
358 }
359 
360 void
361 lge_reset(struct lge_softc *sc)
362 {
363 	int			i;
364 
365 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
366 
367 	for (i = 0; i < LGE_TIMEOUT; i++) {
368 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
369 			break;
370 	}
371 
372 	if (i == LGE_TIMEOUT)
373 		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
374 
375 	/* Wait a little while for the chip to get its brains in order. */
376 	DELAY(1000);
377 }
378 
379 /*
380  * Probe for a Level 1 chip. Check the PCI vendor and device
381  * IDs against our list and return a device name if we find a match.
382  */
383 int
384 lge_probe(struct device *parent, void *match, void *aux)
385 {
386 	return (pci_matchbyid((struct pci_attach_args *)aux, lge_devices,
387 	    sizeof(lge_devices)/sizeof(lge_devices[0])));
388 }
389 
390 /*
391  * Attach the interface. Allocate softc structures, do ifmedia
392  * setup and ethernet/BPF attach.
393  */
394 void
395 lge_attach(struct device *parent, struct device *self, void *aux)
396 {
397 	struct lge_softc	*sc = (struct lge_softc *)self;
398 	struct pci_attach_args	*pa = aux;
399 	pci_chipset_tag_t	pc = pa->pa_pc;
400 	pci_intr_handle_t	ih;
401 	const char		*intrstr = NULL;
402 	bus_size_t		size;
403 	bus_dma_segment_t	seg;
404 	bus_dmamap_t		dmamap;
405 	int			rseg;
406 	u_char			eaddr[ETHER_ADDR_LEN];
407 	pcireg_t		command;
408 #ifndef LGE_USEIOSPACE
409 	pcireg_t		memtype;
410 #endif
411 	struct ifnet		*ifp;
412 	caddr_t			kva;
413 
414 	/*
415 	 * Handle power management nonsense.
416 	 */
417 	DPRINTFN(5, ("Preparing for conf read\n"));
418 	command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_CAPID) & 0x000000FF;
419 	if (command == 0x01) {
420 		command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_PWRMGMTCTRL);
421 		if (command & LGE_PSTATE_MASK) {
422 			pcireg_t	iobase, membase, irq;
423 
424 			/* Save important PCI config data. */
425 			iobase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOIO);
426 			membase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOMEM);
427 			irq = pci_conf_read(pc, pa->pa_tag, LGE_PCI_INTLINE);
428 
429 			/* Reset the power state. */
430 			printf("%s: chip is in D%d power mode "
431 			       "-- setting to D0\n", sc->sc_dv.dv_xname,
432 			       command & LGE_PSTATE_MASK);
433 			command &= 0xFFFFFFFC;
434 			pci_conf_write(pc, pa->pa_tag,
435 				       LGE_PCI_PWRMGMTCTRL, command);
436 
437 			/* Restore PCI config data. */
438 			pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOIO, iobase);
439 			pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOMEM, membase);
440 			pci_conf_write(pc, pa->pa_tag, LGE_PCI_INTLINE, irq);
441 		}
442 	}
443 
444 	/*
445 	 * Map control/status registers.
446 	 */
447 	DPRINTFN(5, ("Map control/status regs\n"));
448 
449 	DPRINTFN(5, ("pci_mapreg_map\n"));
450 #ifdef LGE_USEIOSPACE
451 	if (pci_mapreg_map(pa, LGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
452 	    &sc->lge_btag, &sc->lge_bhandle, NULL, &size, 0)) {
453 		printf(": can't map i/o space\n");
454 		return;
455 	}
456 #else
457 	memtype = pci_mapreg_type(pc, pa->pa_tag, LGE_PCI_LOMEM);
458 	if (pci_mapreg_map(pa, LGE_PCI_LOMEM, memtype, 0, &sc->lge_btag,
459 	    &sc->lge_bhandle, NULL, &size, 0)) {
460 		printf(": can't map mem space\n");
461 		return;
462 	}
463 #endif
464 
465 	DPRINTFN(5, ("pci_intr_map\n"));
466 	if (pci_intr_map(pa, &ih)) {
467 		printf(": couldn't map interrupt\n");
468 		goto fail_1;
469 	}
470 
471 	DPRINTFN(5, ("pci_intr_string\n"));
472 	intrstr = pci_intr_string(pc, ih);
473 	DPRINTFN(5, ("pci_intr_establish\n"));
474 	sc->lge_intrhand = pci_intr_establish(pc, ih, IPL_NET, lge_intr, sc,
475 					      sc->sc_dv.dv_xname);
476 	if (sc->lge_intrhand == NULL) {
477 		printf(": couldn't establish interrupt");
478 		if (intrstr != NULL)
479 			printf(" at %s", intrstr);
480 		printf("\n");
481 		goto fail_1;
482 	}
483 	printf(": %s", intrstr);
484 
485 	/* Reset the adapter. */
486 	DPRINTFN(5, ("lge_reset\n"));
487 	lge_reset(sc);
488 
489 	/*
490 	 * Get station address from the EEPROM.
491 	 */
492 	DPRINTFN(5, ("lge_read_eeprom\n"));
493 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
494 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
495 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
496 
497 	/*
498 	 * A Level 1 chip was detected. Inform the world.
499 	 */
500 	printf(", address %s\n", ether_sprintf(eaddr));
501 
502 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
503 
504 	sc->sc_dmatag = pa->pa_dmat;
505 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
506 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct lge_list_data),
507 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
508 		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
509 		goto fail_2;
510 	}
511 	DPRINTFN(5, ("bus_dmamem_map\n"));
512 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
513 			   sizeof(struct lge_list_data), &kva,
514 			   BUS_DMA_NOWAIT)) {
515 		printf("%s: can't map dma buffers (%d bytes)\n",
516 		       sc->sc_dv.dv_xname, sizeof(struct lge_list_data));
517 		goto fail_3;
518 	}
519 	DPRINTFN(5, ("bus_dmamem_create\n"));
520 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct lge_list_data), 1,
521 			      sizeof(struct lge_list_data), 0,
522 			      BUS_DMA_NOWAIT, &dmamap)) {
523 		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
524 		goto fail_4;
525 	}
526 	DPRINTFN(5, ("bus_dmamem_load\n"));
527 	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
528 			    sizeof(struct lge_list_data), NULL,
529 			    BUS_DMA_NOWAIT)) {
530 		goto fail_5;
531 	}
532 
533 	DPRINTFN(5, ("bzero\n"));
534 	sc->lge_ldata = (struct lge_list_data *)kva;
535 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
536 
537 	/* Try to allocate memory for jumbo buffers. */
538 	DPRINTFN(5, ("lge_alloc_jumbo_mem\n"));
539 	if (lge_alloc_jumbo_mem(sc)) {
540 		printf("%s: jumbo buffer allocation failed\n",
541 		       sc->sc_dv.dv_xname);
542 		goto fail_5;
543 	}
544 
545 	ifp = &sc->arpcom.ac_if;
546 	ifp->if_softc = sc;
547 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
548 	ifp->if_ioctl = lge_ioctl;
549 	ifp->if_start = lge_start;
550 	ifp->if_watchdog = lge_watchdog;
551 	ifp->if_baudrate = 1000000000;
552 	ifp->if_hardmtu = LGE_JUMBO_MTU;
553 	IFQ_SET_MAXLEN(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
554 	IFQ_SET_READY(&ifp->if_snd);
555 	DPRINTFN(5, ("bcopy\n"));
556 	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
557 
558 	ifp->if_capabilities = IFCAP_VLAN_MTU;
559 
560 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
561 		sc->lge_pcs = 1;
562 	else
563 		sc->lge_pcs = 0;
564 
565 	/*
566 	 * Do MII setup.
567 	 */
568 	DPRINTFN(5, ("mii setup\n"));
569 	sc->lge_mii.mii_ifp = ifp;
570 	sc->lge_mii.mii_readreg = lge_miibus_readreg;
571 	sc->lge_mii.mii_writereg = lge_miibus_writereg;
572 	sc->lge_mii.mii_statchg = lge_miibus_statchg;
573 	ifmedia_init(&sc->lge_mii.mii_media, 0, lge_ifmedia_upd,
574 		     lge_ifmedia_sts);
575 	mii_attach(&sc->sc_dv, &sc->lge_mii, 0xffffffff, MII_PHY_ANY,
576 		   MII_OFFSET_ANY, 0);
577 
578 	if (LIST_FIRST(&sc->lge_mii.mii_phys) == NULL) {
579 		printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
580 		ifmedia_add(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL,
581 			    0, NULL);
582 		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL);
583 	} else {
584 		DPRINTFN(5, ("ifmedia_set\n"));
585 		ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_AUTO);
586 	}
587 
588 	/*
589 	 * Call MI attach routine.
590 	 */
591 	DPRINTFN(5, ("if_attach\n"));
592 	if_attach(ifp);
593 	DPRINTFN(5, ("ether_ifattach\n"));
594 	ether_ifattach(ifp);
595 	DPRINTFN(5, ("timeout_set\n"));
596 	timeout_set(&sc->lge_timeout, lge_tick, sc);
597 	timeout_add_sec(&sc->lge_timeout, 1);
598 	return;
599 
600 fail_5:
601 	bus_dmamap_destroy(sc->sc_dmatag, dmamap);
602 
603 fail_4:
604 	bus_dmamem_unmap(sc->sc_dmatag, kva,
605 	    sizeof(struct lge_list_data));
606 
607 fail_3:
608 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
609 
610 fail_2:
611 	pci_intr_disestablish(pc, sc->lge_intrhand);
612 
613 fail_1:
614 	bus_space_unmap(sc->lge_btag, sc->lge_bhandle, size);
615 }
616 
617 /*
618  * Initialize the transmit descriptors.
619  */
620 int
621 lge_list_tx_init(struct lge_softc *sc)
622 {
623 	struct lge_list_data	*ld;
624 	struct lge_ring_data	*cd;
625 	int			i;
626 
627 	cd = &sc->lge_cdata;
628 	ld = sc->lge_ldata;
629 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
630 		ld->lge_tx_list[i].lge_mbuf = NULL;
631 		ld->lge_tx_list[i].lge_ctl = 0;
632 	}
633 
634 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
635 
636 	return (0);
637 }
638 
639 
640 /*
641  * Initialize the RX descriptors and allocate mbufs for them. Note that
642  * we arrange the descriptors in a closed ring, so that the last descriptor
643  * points back to the first.
644  */
645 int
646 lge_list_rx_init(struct lge_softc *sc)
647 {
648 	struct lge_list_data	*ld;
649 	struct lge_ring_data	*cd;
650 	int			i;
651 
652 	ld = sc->lge_ldata;
653 	cd = &sc->lge_cdata;
654 
655 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
656 
657 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
658 
659 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
660 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
661 			break;
662 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
663 			return (ENOBUFS);
664 	}
665 
666 	/* Clear possible 'rx command queue empty' interrupt. */
667 	CSR_READ_4(sc, LGE_ISR);
668 
669 	return (0);
670 }
671 
672 /*
673  * Initialize a RX descriptor and attach a MBUF cluster.
674  */
675 int
676 lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
677 {
678 	struct mbuf		*m_new = NULL;
679 
680 	if (m == NULL) {
681 		caddr_t buf = NULL;
682 
683 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
684 		if (m_new == NULL)
685 			return (ENOBUFS);
686 
687 		/* Allocate the jumbo buffer */
688 		buf = lge_jalloc(sc);
689 		if (buf == NULL) {
690 			m_freem(m_new);
691 			return (ENOBUFS);
692 		}
693 
694 		/* Attach the buffer to the mbuf */
695 		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
696 		MEXTADD(m_new, buf, LGE_JLEN, 0, lge_jfree, sc);
697 	} else {
698 		/*
699 		 * We're re-using a previously allocated mbuf;
700 		 * be sure to re-init pointers and lengths to
701 		 * default values.
702 		 */
703 		m_new = m;
704 		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
705 		m_new->m_data = m_new->m_ext.ext_buf;
706 	}
707 
708 	/*
709 	 * Adjust alignment so packet payload begins on a
710 	 * longword boundary. Mandatory for Alpha, useful on
711 	 * x86 too.
712 	*/
713 	m_adj(m_new, ETHER_ALIGN);
714 
715 	c->lge_mbuf = m_new;
716 	c->lge_fragptr_hi = 0;
717 	c->lge_fragptr_lo = VTOPHYS(mtod(m_new, caddr_t));
718 	c->lge_fraglen = m_new->m_len;
719 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
720 	c->lge_sts = 0;
721 
722 	/*
723 	 * Put this buffer in the RX command FIFO. To do this,
724 	 * we just write the physical address of the descriptor
725 	 * into the RX descriptor address registers. Note that
726 	 * there are two registers, one high DWORD and one low
727 	 * DWORD, which lets us specify a 64-bit address if
728 	 * desired. We only use a 32-bit address for now.
729 	 * Writing to the low DWORD register is what actually
730 	 * causes the command to be issued, so we do that
731 	 * last.
732 	 */
733 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, VTOPHYS(c));
734 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
735 
736 	return (0);
737 }
738 
739 int
740 lge_alloc_jumbo_mem(struct lge_softc *sc)
741 {
742 	caddr_t			ptr, kva;
743 	bus_dma_segment_t	seg;
744 	bus_dmamap_t		dmamap;
745 	int			i, rseg, state, error;
746 	struct lge_jpool_entry   *entry;
747 
748 	state = error = 0;
749 
750 	/* Grab a big chunk o' storage. */
751 	if (bus_dmamem_alloc(sc->sc_dmatag, LGE_JMEM, PAGE_SIZE, 0,
752 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
753 		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
754 		return (ENOBUFS);
755 	}
756 
757 	state = 1;
758 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, LGE_JMEM, &kva,
759 			   BUS_DMA_NOWAIT)) {
760 		printf("%s: can't map dma buffers (%d bytes)\n",
761 		       sc->sc_dv.dv_xname, LGE_JMEM);
762 		error = ENOBUFS;
763 		goto out;
764 	}
765 
766 	state = 2;
767 	if (bus_dmamap_create(sc->sc_dmatag, LGE_JMEM, 1,
768 			      LGE_JMEM, 0, BUS_DMA_NOWAIT, &dmamap)) {
769 		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
770 		error = ENOBUFS;
771 		goto out;
772 	}
773 
774 	state = 3;
775 	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, LGE_JMEM,
776 			    NULL, BUS_DMA_NOWAIT)) {
777 		printf("%s: can't load dma map\n", sc->sc_dv.dv_xname);
778 		error = ENOBUFS;
779 		goto out;
780         }
781 
782 	state = 4;
783 	sc->lge_cdata.lge_jumbo_buf = (caddr_t)kva;
784 	DPRINTFN(1,("lge_jumbo_buf = 0x%08X\n", sc->lge_cdata.lge_jumbo_buf));
785 	DPRINTFN(1,("LGE_JLEN = 0x%08X\n", LGE_JLEN));
786 
787 	LIST_INIT(&sc->lge_jfree_listhead);
788 	LIST_INIT(&sc->lge_jinuse_listhead);
789 
790 	/*
791 	 * Now divide it up into 9K pieces and save the addresses
792 	 * in an array.
793 	 */
794 	ptr = sc->lge_cdata.lge_jumbo_buf;
795 	for (i = 0; i < LGE_JSLOTS; i++) {
796 		sc->lge_cdata.lge_jslots[i] = ptr;
797 		ptr += LGE_JLEN;
798 		entry = malloc(sizeof(struct lge_jpool_entry),
799 		    M_DEVBUF, M_NOWAIT);
800 		if (entry == NULL) {
801 			sc->lge_cdata.lge_jumbo_buf = NULL;
802 			printf("%s: no memory for jumbo buffer queue!\n",
803 			       sc->sc_dv.dv_xname);
804 			error = ENOBUFS;
805 			goto out;
806 		}
807 		entry->slot = i;
808 		LIST_INSERT_HEAD(&sc->lge_jfree_listhead,
809 				 entry, jpool_entries);
810 	}
811 out:
812 	if (error != 0) {
813 		switch (state) {
814 		case 4:
815 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
816 		case 3:
817 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
818 		case 2:
819 			bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM);
820 		case 1:
821 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
822 			break;
823 		default:
824 			break;
825 		}
826 	}
827 
828 	return (error);
829 }
830 
831 /*
832  * Allocate a jumbo buffer.
833  */
834 void *
835 lge_jalloc(struct lge_softc *sc)
836 {
837 	struct lge_jpool_entry   *entry;
838 
839 	entry = LIST_FIRST(&sc->lge_jfree_listhead);
840 
841 	if (entry == NULL)
842 		return (NULL);
843 
844 	LIST_REMOVE(entry, jpool_entries);
845 	LIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
846 	return (sc->lge_cdata.lge_jslots[entry->slot]);
847 }
848 
849 /*
850  * Release a jumbo buffer.
851  */
852 void
853 lge_jfree(caddr_t buf, u_int size, void *arg)
854 {
855 	struct lge_softc	*sc;
856 	int		        i;
857 	struct lge_jpool_entry   *entry;
858 
859 	/* Extract the softc struct pointer. */
860 	sc = (struct lge_softc *)arg;
861 
862 	if (sc == NULL)
863 		panic("lge_jfree: can't find softc pointer!");
864 
865 	/* calculate the slot this buffer belongs to */
866 	i = ((vaddr_t)buf - (vaddr_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
867 
868 	if ((i < 0) || (i >= LGE_JSLOTS))
869 		panic("lge_jfree: asked to free buffer that we don't manage!");
870 
871 	entry = LIST_FIRST(&sc->lge_jinuse_listhead);
872 	if (entry == NULL)
873 		panic("lge_jfree: buffer not in use!");
874 	entry->slot = i;
875 	LIST_REMOVE(entry, jpool_entries);
876 	LIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
877 }
878 
879 /*
880  * A frame has been uploaded: pass the resulting mbuf chain up to
881  * the higher level protocols.
882  */
883 void
884 lge_rxeof(struct lge_softc *sc, int cnt)
885 {
886         struct mbuf		*m;
887         struct ifnet		*ifp;
888 	struct lge_rx_desc	*cur_rx;
889 	int			c, i, total_len = 0;
890 	u_int32_t		rxsts, rxctl;
891 
892 	ifp = &sc->arpcom.ac_if;
893 
894 	/* Find out how many frames were processed. */
895 	c = cnt;
896 	i = sc->lge_cdata.lge_rx_cons;
897 
898 	/* Suck them in. */
899 	while(c) {
900 		struct mbuf		*m0 = NULL;
901 
902 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
903 		rxctl = cur_rx->lge_ctl;
904 		rxsts = cur_rx->lge_sts;
905 		m = cur_rx->lge_mbuf;
906 		cur_rx->lge_mbuf = NULL;
907 		total_len = LGE_RXBYTES(cur_rx);
908 		LGE_INC(i, LGE_RX_LIST_CNT);
909 		c--;
910 
911 		/*
912 		 * If an error occurs, update stats, clear the
913 		 * status word and leave the mbuf cluster in place:
914 		 * it should simply get re-used next time this descriptor
915 	 	 * comes up in the ring.
916 		 */
917 		if (rxctl & LGE_RXCTL_ERRMASK) {
918 			ifp->if_ierrors++;
919 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
920 			continue;
921 		}
922 
923 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
924 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
925 			    ifp, NULL);
926 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
927 			if (m0 == NULL) {
928 				ifp->if_ierrors++;
929 				continue;
930 			}
931 			m = m0;
932 		} else {
933 			m->m_pkthdr.rcvif = ifp;
934 			m->m_pkthdr.len = m->m_len = total_len;
935 		}
936 
937 		ifp->if_ipackets++;
938 
939 #if NBPFILTER > 0
940 		/*
941 		 * Handle BPF listeners. Let the BPF user see the packet.
942 		 */
943 		if (ifp->if_bpf)
944 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
945 #endif
946 
947 		/* Do IP checksum checking. */
948 		if (rxsts & LGE_RXSTS_ISIP) {
949 			if (!(rxsts & LGE_RXSTS_IPCSUMERR))
950 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
951 		}
952 		if (rxsts & LGE_RXSTS_ISTCP) {
953 			if (!(rxsts & LGE_RXSTS_TCPCSUMERR))
954 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
955 		}
956 		if (rxsts & LGE_RXSTS_ISUDP) {
957 			if (!(rxsts & LGE_RXSTS_UDPCSUMERR))
958 				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
959 		}
960 
961 		ether_input_mbuf(ifp, m);
962 	}
963 
964 	sc->lge_cdata.lge_rx_cons = i;
965 }
966 
967 /*
968  * A frame was downloaded to the chip. It's safe for us to clean up
969  * the list buffers.
970  */
971 
972 void
973 lge_txeof(struct lge_softc *sc)
974 {
975 	struct lge_tx_desc	*cur_tx = NULL;
976 	struct ifnet		*ifp;
977 	u_int32_t		idx, txdone;
978 
979 	ifp = &sc->arpcom.ac_if;
980 
981 	/* Clear the timeout timer. */
982 	ifp->if_timer = 0;
983 
984 	/*
985 	 * Go through our tx list and free mbufs for those
986 	 * frames that have been transmitted.
987 	 */
988 	idx = sc->lge_cdata.lge_tx_cons;
989 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
990 
991 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
992 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
993 
994 		ifp->if_opackets++;
995 		if (cur_tx->lge_mbuf != NULL) {
996 			m_freem(cur_tx->lge_mbuf);
997 			cur_tx->lge_mbuf = NULL;
998 		}
999 		cur_tx->lge_ctl = 0;
1000 
1001 		txdone--;
1002 		LGE_INC(idx, LGE_TX_LIST_CNT);
1003 		ifp->if_timer = 0;
1004 	}
1005 
1006 	sc->lge_cdata.lge_tx_cons = idx;
1007 
1008 	if (cur_tx != NULL)
1009 		ifp->if_flags &= ~IFF_OACTIVE;
1010 }
1011 
1012 void
1013 lge_tick(void *xsc)
1014 {
1015 	struct lge_softc	*sc = xsc;
1016 	struct mii_data		*mii = &sc->lge_mii;
1017 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1018 	int			s;
1019 
1020 	s = splnet();
1021 
1022 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1023 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1024 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1025 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1026 
1027 	if (!sc->lge_link) {
1028 		mii_tick(mii);
1029 		if (mii->mii_media_status & IFM_ACTIVE &&
1030 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1031 			sc->lge_link++;
1032 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1033 				lge_start(ifp);
1034 		}
1035 	}
1036 
1037 	timeout_add_sec(&sc->lge_timeout, 1);
1038 
1039 	splx(s);
1040 }
1041 
1042 int
1043 lge_intr(void *arg)
1044 {
1045 	struct lge_softc	*sc;
1046 	struct ifnet		*ifp;
1047 	u_int32_t		status;
1048 	int			claimed = 0;
1049 
1050 	sc = arg;
1051 	ifp = &sc->arpcom.ac_if;
1052 
1053 	/* Suppress unwanted interrupts */
1054 	if (!(ifp->if_flags & IFF_UP)) {
1055 		lge_stop(sc);
1056 		return (0);
1057 	}
1058 
1059 	for (;;) {
1060 		/*
1061 		 * Reading the ISR register clears all interrupts, and
1062 		 * clears the 'interrupts enabled' bit in the IMR
1063 		 * register.
1064 		 */
1065 		status = CSR_READ_4(sc, LGE_ISR);
1066 
1067 		if ((status & LGE_INTRS) == 0)
1068 			break;
1069 
1070 		claimed = 1;
1071 
1072 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1073 			lge_txeof(sc);
1074 
1075 		if (status & LGE_ISR_RXDMA_DONE)
1076 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1077 
1078 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1079 			lge_init(sc);
1080 
1081 		if (status & LGE_ISR_PHY_INTR) {
1082 			sc->lge_link = 0;
1083 			timeout_del(&sc->lge_timeout);
1084 			lge_tick(sc);
1085 		}
1086 	}
1087 
1088 	/* Re-enable interrupts. */
1089 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1090 
1091 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1092 		lge_start(ifp);
1093 
1094 	return (claimed);
1095 }
1096 
1097 /*
1098  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1099  * pointers to the fragment pointers.
1100  */
1101 int
1102 lge_encap(struct lge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
1103 {
1104 	struct lge_frag		*f = NULL;
1105 	struct lge_tx_desc	*cur_tx;
1106 	struct mbuf		*m;
1107 	int			frag = 0, tot_len = 0;
1108 
1109 	/*
1110  	 * Start packing the mbufs in this chain into
1111 	 * the fragment pointers. Stop when we run out
1112  	 * of fragments or hit the end of the mbuf chain.
1113 	 */
1114 	m = m_head;
1115 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1116 	frag = 0;
1117 
1118 	for (m = m_head; m != NULL; m = m->m_next) {
1119 		if (m->m_len != 0) {
1120 			tot_len += m->m_len;
1121 			f = &cur_tx->lge_frags[frag];
1122 			f->lge_fraglen = m->m_len;
1123 			f->lge_fragptr_lo = VTOPHYS(mtod(m, vaddr_t));
1124 			f->lge_fragptr_hi = 0;
1125 			frag++;
1126 		}
1127 	}
1128 
1129 	if (m != NULL)
1130 		return (ENOBUFS);
1131 
1132 	cur_tx->lge_mbuf = m_head;
1133 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1134 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1135 
1136 	/* Queue for transmit */
1137 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, VTOPHYS(cur_tx));
1138 
1139 	return (0);
1140 }
1141 
1142 /*
1143  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1144  * to the mbuf data regions directly in the transmit lists. We also save a
1145  * copy of the pointers since the transmit list fragment pointers are
1146  * physical addresses.
1147  */
1148 
1149 void
1150 lge_start(struct ifnet *ifp)
1151 {
1152 	struct lge_softc	*sc;
1153 	struct mbuf		*m_head = NULL;
1154 	u_int32_t		idx;
1155 	int			pkts = 0;
1156 
1157 	sc = ifp->if_softc;
1158 
1159 	if (!sc->lge_link)
1160 		return;
1161 
1162 	idx = sc->lge_cdata.lge_tx_prod;
1163 
1164 	if (ifp->if_flags & IFF_OACTIVE)
1165 		return;
1166 
1167 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1168 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1169 			break;
1170 
1171 		IFQ_POLL(&ifp->if_snd, m_head);
1172 		if (m_head == NULL)
1173 			break;
1174 
1175 		if (lge_encap(sc, m_head, &idx)) {
1176 			ifp->if_flags |= IFF_OACTIVE;
1177 			break;
1178 		}
1179 
1180 		/* now we are committed to transmit the packet */
1181 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1182 		pkts++;
1183 
1184 #if NBPFILTER > 0
1185 		/*
1186 		 * If there's a BPF listener, bounce a copy of this frame
1187 		 * to him.
1188 		 */
1189 		if (ifp->if_bpf)
1190 			bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1191 #endif
1192 	}
1193 	if (pkts == 0)
1194 		return;
1195 
1196 	sc->lge_cdata.lge_tx_prod = idx;
1197 
1198 	/*
1199 	 * Set a timeout in case the chip goes out to lunch.
1200 	 */
1201 	ifp->if_timer = 5;
1202 }
1203 
1204 void
1205 lge_init(void *xsc)
1206 {
1207 	struct lge_softc	*sc = xsc;
1208 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1209 	int			s;
1210 
1211 	s = splnet();
1212 
1213 	/*
1214 	 * Cancel pending I/O and free all RX/TX buffers.
1215 	 */
1216 	lge_stop(sc);
1217 	lge_reset(sc);
1218 
1219 	/* Set MAC address */
1220 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1221 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1222 
1223 	/* Init circular RX list. */
1224 	if (lge_list_rx_init(sc) == ENOBUFS) {
1225 		printf("%s: initialization failed: no "
1226 		       "memory for rx buffers\n", sc->sc_dv.dv_xname);
1227 		lge_stop(sc);
1228 		splx(s);
1229 		return;
1230 	}
1231 
1232 	/*
1233 	 * Init tx descriptors.
1234 	 */
1235 	lge_list_tx_init(sc);
1236 
1237 	/* Set initial value for MODE1 register. */
1238 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1239 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1240 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1241 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1242 
1243 	 /* If we want promiscuous mode, set the allframes bit. */
1244 	if (ifp->if_flags & IFF_PROMISC) {
1245 		CSR_WRITE_4(sc, LGE_MODE1,
1246 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1247 	} else {
1248 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1249 	}
1250 
1251 	/*
1252 	 * Set the capture broadcast bit to capture broadcast frames.
1253 	 */
1254 	if (ifp->if_flags & IFF_BROADCAST) {
1255 		CSR_WRITE_4(sc, LGE_MODE1,
1256 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1257 	} else {
1258 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1259 	}
1260 
1261 	/* Packet padding workaround? */
1262 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1263 
1264 	/* No error frames */
1265 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1266 
1267 	/* Receive large frames */
1268 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1269 
1270 	/* Workaround: disable RX/TX flow control */
1271 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1272 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1273 
1274 	/* Make sure to strip CRC from received frames */
1275 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1276 
1277 	/* Turn off magic packet mode */
1278 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1279 
1280 	/* Turn off all VLAN stuff */
1281 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1282 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1283 
1284 	/* Workarond: FIFO overflow */
1285 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1286 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1287 
1288 	/*
1289 	 * Load the multicast filter.
1290 	 */
1291 	lge_setmulti(sc);
1292 
1293 	/*
1294 	 * Enable hardware checksum validation for all received IPv4
1295 	 * packets, do not reject packets with bad checksums.
1296 	 */
1297 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1298 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1299 	    LGE_MODE2_RX_ERRCSUM);
1300 
1301 	/*
1302 	 * Enable the delivery of PHY interrupts based on
1303 	 * link/speed/duplex status chalges.
1304 	 */
1305 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1306 
1307 	/* Enable receiver and transmitter. */
1308 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1309 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1310 
1311 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1312 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1313 
1314 	/*
1315 	 * Enable interrupts.
1316 	 */
1317 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1318 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1319 
1320 	lge_ifmedia_upd(ifp);
1321 
1322 	ifp->if_flags |= IFF_RUNNING;
1323 	ifp->if_flags &= ~IFF_OACTIVE;
1324 
1325 	splx(s);
1326 
1327 	timeout_add_sec(&sc->lge_timeout, 1);
1328 }
1329 
1330 /*
1331  * Set media options.
1332  */
1333 int
1334 lge_ifmedia_upd(struct ifnet *ifp)
1335 {
1336 	struct lge_softc	*sc = ifp->if_softc;
1337 	struct mii_data		*mii = &sc->lge_mii;
1338 
1339 	sc->lge_link = 0;
1340 	if (mii->mii_instance) {
1341 		struct mii_softc *miisc;
1342 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1343 			mii_phy_reset(miisc);
1344 	}
1345 	mii_mediachg(mii);
1346 
1347 	return (0);
1348 }
1349 
1350 /*
1351  * Report current media status.
1352  */
1353 void
1354 lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1355 {
1356 	struct lge_softc	*sc = ifp->if_softc;
1357 	struct mii_data		*mii = &sc->lge_mii;
1358 
1359 	mii_pollstat(mii);
1360 	ifmr->ifm_active = mii->mii_media_active;
1361 	ifmr->ifm_status = mii->mii_media_status;
1362 }
1363 
1364 int
1365 lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1366 {
1367 	struct lge_softc	*sc = ifp->if_softc;
1368 	struct ifaddr		*ifa = (struct ifaddr *) data;
1369 	struct ifreq		*ifr = (struct ifreq *) data;
1370 	struct mii_data		*mii;
1371 	int			s, error = 0;
1372 
1373 	s = splnet();
1374 
1375 	switch(command) {
1376 	case SIOCSIFADDR:
1377 		ifp->if_flags |= IFF_UP;
1378 		if (!(ifp->if_flags & IFF_RUNNING))
1379 			lge_init(sc);
1380 #ifdef INET
1381 		if (ifa->ifa_addr->sa_family == AF_INET)
1382 			arp_ifinit(&sc->arpcom, ifa);
1383 #endif /* INET */
1384 		break;
1385 
1386 	case SIOCSIFFLAGS:
1387 		if (ifp->if_flags & IFF_UP) {
1388 			if (ifp->if_flags & IFF_RUNNING &&
1389 			    ifp->if_flags & IFF_PROMISC &&
1390 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1391 				CSR_WRITE_4(sc, LGE_MODE1,
1392 				    LGE_MODE1_SETRST_CTL1|
1393 				    LGE_MODE1_RX_PROMISC);
1394 				lge_setmulti(sc);
1395 			} else if (ifp->if_flags & IFF_RUNNING &&
1396 			    !(ifp->if_flags & IFF_PROMISC) &&
1397 			    sc->lge_if_flags & IFF_PROMISC) {
1398 				CSR_WRITE_4(sc, LGE_MODE1,
1399 				    LGE_MODE1_RX_PROMISC);
1400 				lge_setmulti(sc);
1401 			} else if (ifp->if_flags & IFF_RUNNING &&
1402 			    (ifp->if_flags ^ sc->lge_if_flags) & IFF_ALLMULTI) {
1403 				lge_setmulti(sc);
1404 			} else {
1405 				if (!(ifp->if_flags & IFF_RUNNING))
1406 					lge_init(sc);
1407 			}
1408 		} else {
1409 			if (ifp->if_flags & IFF_RUNNING)
1410 				lge_stop(sc);
1411 		}
1412 		sc->lge_if_flags = ifp->if_flags;
1413 		break;
1414 
1415 	case SIOCGIFMEDIA:
1416 	case SIOCSIFMEDIA:
1417 		mii = &sc->lge_mii;
1418 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1419 		break;
1420 
1421 	default:
1422 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1423 	}
1424 
1425 	if (error == ENETRESET) {
1426 		if (ifp->if_flags & IFF_RUNNING)
1427 			lge_setmulti(sc);
1428 		error = 0;
1429 	}
1430 
1431 	splx(s);
1432 	return (error);
1433 }
1434 
1435 void
1436 lge_watchdog(struct ifnet *ifp)
1437 {
1438 	struct lge_softc	*sc;
1439 
1440 	sc = ifp->if_softc;
1441 
1442 	ifp->if_oerrors++;
1443 	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
1444 
1445 	lge_stop(sc);
1446 	lge_reset(sc);
1447 	lge_init(sc);
1448 
1449 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1450 		lge_start(ifp);
1451 }
1452 
1453 /*
1454  * Stop the adapter and free any mbufs allocated to the
1455  * RX and TX lists.
1456  */
1457 void
1458 lge_stop(struct lge_softc *sc)
1459 {
1460 	int			i;
1461 	struct ifnet		*ifp;
1462 
1463 	ifp = &sc->arpcom.ac_if;
1464 	ifp->if_timer = 0;
1465 	timeout_del(&sc->lge_timeout);
1466 
1467 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1468 
1469 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1470 
1471 	/* Disable receiver and transmitter. */
1472 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1473 	sc->lge_link = 0;
1474 
1475 	/*
1476 	 * Free data in the RX lists.
1477 	 */
1478 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1479 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1480 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1481 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1482 		}
1483 	}
1484 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1485 		sizeof(sc->lge_ldata->lge_rx_list));
1486 
1487 	/*
1488 	 * Free the TX list buffers.
1489 	 */
1490 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1491 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1492 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1493 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1494 		}
1495 	}
1496 
1497 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1498 		sizeof(sc->lge_ldata->lge_tx_list));
1499 }
1500