xref: /openbsd-src/sys/dev/pci/if_jme.c (revision 4c1e55dc91edd6e69ccc60ce855900fbc12cf34f)
1 /*	$OpenBSD: if_jme.c,v 1.27 2012/02/28 03:58:16 jsg Exp $	*/
2 /*-
3  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $
29  * $DragonFly: src/sys/dev/netif/jme/if_jme.c,v 1.7 2008/09/13 04:04:39 sephe Exp $
30  */
31 
32 #include "bpfilter.h"
33 #include "vlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/endian.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/queue.h>
42 #include <sys/kernel.h>
43 #include <sys/device.h>
44 #include <sys/timeout.h>
45 #include <sys/socket.h>
46 
47 #include <machine/bus.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #ifdef INET
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip.h>
58 #include <netinet/if_ether.h>
59 #endif
60 
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #if NBPFILTER > 0
65 #include <net/bpf.h>
66 #endif
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/jmphyreg.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75 
76 #include <dev/pci/if_jmereg.h>
77 #include <dev/pci/if_jmevar.h>
78 
79 /* Define the following to disable printing Rx errors. */
80 #undef	JME_SHOW_ERRORS
81 
82 int	jme_match(struct device *, void *, void *);
83 void	jme_attach(struct device *, struct device *, void *);
84 int	jme_detach(struct device *, int);
85 
86 int	jme_miibus_readreg(struct device *, int, int);
87 void	jme_miibus_writereg(struct device *, int, int, int);
88 void	jme_miibus_statchg(struct device *);
89 
90 int	jme_init(struct ifnet *);
91 int	jme_ioctl(struct ifnet *, u_long, caddr_t);
92 
93 void	jme_start(struct ifnet *);
94 void	jme_watchdog(struct ifnet *);
95 void	jme_mediastatus(struct ifnet *, struct ifmediareq *);
96 int	jme_mediachange(struct ifnet *);
97 
98 int	jme_intr(void *);
99 void	jme_txeof(struct jme_softc *);
100 void	jme_rxeof(struct jme_softc *);
101 
102 int	jme_dma_alloc(struct jme_softc *);
103 void	jme_dma_free(struct jme_softc *);
104 int	jme_init_rx_ring(struct jme_softc *);
105 void	jme_init_tx_ring(struct jme_softc *);
106 void	jme_init_ssb(struct jme_softc *);
107 int	jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
108 int	jme_encap(struct jme_softc *, struct mbuf **);
109 void	jme_rxpkt(struct jme_softc *);
110 
111 void	jme_tick(void *);
112 void	jme_stop(struct jme_softc *);
113 void	jme_reset(struct jme_softc *);
114 void	jme_set_vlan(struct jme_softc *);
115 void	jme_iff(struct jme_softc *);
116 void	jme_stop_tx(struct jme_softc *);
117 void	jme_stop_rx(struct jme_softc *);
118 void	jme_mac_config(struct jme_softc *);
119 void	jme_reg_macaddr(struct jme_softc *, uint8_t[]);
120 int	jme_eeprom_macaddr(struct jme_softc *, uint8_t[]);
121 int	jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
122 void	jme_discard_rxbufs(struct jme_softc *, int, int);
123 #ifdef notyet
124 void	jme_setwol(struct jme_softc *);
125 void	jme_setlinkspeed(struct jme_softc *);
126 #endif
127 
128 /*
129  * Devices supported by this driver.
130  */
131 const struct pci_matchid jme_devices[] = {
132 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC250 },
133 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC260 }
134 };
135 
136 struct cfattach jme_ca = {
137 	sizeof (struct jme_softc), jme_match, jme_attach
138 };
139 
140 struct cfdriver jme_cd = {
141 	NULL, "jme", DV_IFNET
142 };
143 
144 int jmedebug = 0;
145 #define DPRINTF(x)	do { if (jmedebug) printf x; } while (0)
146 
147 /*
148  *	Read a PHY register on the MII of the JMC250.
149  */
150 int
151 jme_miibus_readreg(struct device *dev, int phy, int reg)
152 {
153 	struct jme_softc *sc = (struct jme_softc *)dev;
154 	uint32_t val;
155 	int i;
156 
157 	/* For FPGA version, PHY address 0 should be ignored. */
158 	if (sc->jme_caps & JME_CAP_FPGA) {
159 		if (phy == 0)
160 			return (0);
161 	} else {
162 		if (sc->jme_phyaddr != phy)
163 			return (0);
164 	}
165 
166 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
167 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
168 
169 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
170 		DELAY(1);
171 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
172 			break;
173 	}
174 	if (i == 0) {
175 		printf("%s: phy read timeout: phy %d, reg %d\n",
176 		    sc->sc_dev.dv_xname, phy, reg);
177 		return (0);
178 	}
179 
180 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
181 }
182 
183 /*
184  *	Write a PHY register on the MII of the JMC250.
185  */
186 void
187 jme_miibus_writereg(struct device *dev, int phy, int reg, int val)
188 {
189 	struct jme_softc *sc = (struct jme_softc *)dev;
190 	int i;
191 
192 	/* For FPGA version, PHY address 0 should be ignored. */
193 	if (sc->jme_caps & JME_CAP_FPGA) {
194 		if (phy == 0)
195 			return;
196 	} else {
197 		if (sc->jme_phyaddr != phy)
198 			return;
199 	}
200 
201 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
202 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
203 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
204 
205 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
206 		DELAY(1);
207 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
208 			break;
209 	}
210 	if (i == 0) {
211 		printf("%s: phy write timeout: phy %d, reg %d\n",
212 		    sc->sc_dev.dv_xname, phy, reg);
213 	}
214 }
215 
216 /*
217  *	Callback from MII layer when media changes.
218  */
219 void
220 jme_miibus_statchg(struct device *dev)
221 {
222 	struct jme_softc *sc = (struct jme_softc *)dev;
223 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
224 	struct mii_data *mii;
225 	struct jme_txdesc *txd;
226 	bus_addr_t paddr;
227 	int i;
228 
229 	if ((ifp->if_flags & IFF_RUNNING) == 0)
230 		return;
231 
232 	mii = &sc->sc_miibus;
233 
234 	sc->jme_flags &= ~JME_FLAG_LINK;
235 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
236 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
237 		case IFM_10_T:
238 		case IFM_100_TX:
239 			sc->jme_flags |= JME_FLAG_LINK;
240 			break;
241 		case IFM_1000_T:
242 			if (sc->jme_caps & JME_CAP_FASTETH)
243 				break;
244 			sc->jme_flags |= JME_FLAG_LINK;
245 			break;
246 		default:
247 			break;
248 		}
249 	}
250 
251 	/*
252 	 * Disabling Rx/Tx MACs have a side-effect of resetting
253 	 * JME_TXNDA/JME_RXNDA register to the first address of
254 	 * Tx/Rx descriptor address. So driver should reset its
255 	 * internal procucer/consumer pointer and reclaim any
256 	 * allocated resources.  Note, just saving the value of
257 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
258 	 * and restoring JME_TXNDA/JME_RXNDA register is not
259 	 * sufficient to make sure correct MAC state because
260 	 * stopping MAC operation can take a while and hardware
261 	 * might have updated JME_TXNDA/JME_RXNDA registers
262 	 * during the stop operation.
263 	 */
264 
265 	/* Disable interrupts */
266 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
267 
268 	/* Stop driver */
269 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
270 	ifp->if_timer = 0;
271 	timeout_del(&sc->jme_tick_ch);
272 
273 	/* Stop receiver/transmitter. */
274 	jme_stop_rx(sc);
275 	jme_stop_tx(sc);
276 
277 	jme_rxeof(sc);
278 	if (sc->jme_cdata.jme_rxhead != NULL)
279 		m_freem(sc->jme_cdata.jme_rxhead);
280 	JME_RXCHAIN_RESET(sc);
281 
282 	jme_txeof(sc);
283 	if (sc->jme_cdata.jme_tx_cnt != 0) {
284 		/* Remove queued packets for transmit. */
285 		for (i = 0; i < JME_TX_RING_CNT; i++) {
286 			txd = &sc->jme_cdata.jme_txdesc[i];
287 			if (txd->tx_m != NULL) {
288 				bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
289 				m_freem(txd->tx_m);
290 				txd->tx_m = NULL;
291 				txd->tx_ndesc = 0;
292 				ifp->if_oerrors++;
293 			}
294 		}
295 	}
296 
297 	/*
298 	 * Reuse configured Rx descriptors and reset
299 	 * procuder/consumer index.
300 	 */
301 	sc->jme_cdata.jme_rx_cons = 0;
302 
303 	jme_init_tx_ring(sc);
304 
305 	/* Initialize shadow status block. */
306 	jme_init_ssb(sc);
307 
308 	/* Program MAC with resolved speed/duplex/flow-control. */
309 	if (sc->jme_flags & JME_FLAG_LINK) {
310 		jme_mac_config(sc);
311 
312 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
313 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
314 
315 		/* Set Tx ring address to the hardware. */
316 		paddr = JME_TX_RING_ADDR(sc, 0);
317 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
318 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
319 
320 		/* Set Rx ring address to the hardware. */
321 		paddr = JME_RX_RING_ADDR(sc, 0);
322 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
323 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
324 
325 		/* Restart receiver/transmitter. */
326 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
327 		    RXCSR_RXQ_START);
328 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
329 	}
330 
331 	ifp->if_flags |= IFF_RUNNING;
332 	ifp->if_flags &= ~IFF_OACTIVE;
333 	timeout_add_sec(&sc->jme_tick_ch, 1);
334 
335 	/* Reenable interrupts. */
336 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
337 }
338 
339 /*
340  *	Get the current interface media status.
341  */
342 void
343 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
344 {
345 	struct jme_softc *sc = ifp->if_softc;
346 	struct mii_data *mii = &sc->sc_miibus;
347 
348 	mii_pollstat(mii);
349 	ifmr->ifm_status = mii->mii_media_status;
350 	ifmr->ifm_active = mii->mii_media_active;
351 }
352 
353 /*
354  *	Set hardware to newly-selected media.
355  */
356 int
357 jme_mediachange(struct ifnet *ifp)
358 {
359 	struct jme_softc *sc = ifp->if_softc;
360 	struct mii_data *mii = &sc->sc_miibus;
361 	int error;
362 
363 	if (mii->mii_instance != 0) {
364 		struct mii_softc *miisc;
365 
366 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
367 			mii_phy_reset(miisc);
368 	}
369 	error = mii_mediachg(mii);
370 
371 	return (error);
372 }
373 
374 int
375 jme_match(struct device *dev, void *match, void *aux)
376 {
377 	return pci_matchbyid((struct pci_attach_args *)aux, jme_devices,
378 	    sizeof (jme_devices) / sizeof (jme_devices[0]));
379 }
380 
381 int
382 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
383 {
384 	uint32_t reg;
385 	int i;
386 
387 	*val = 0;
388 	for (i = JME_TIMEOUT; i > 0; i--) {
389 		reg = CSR_READ_4(sc, JME_SMBCSR);
390 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
391 			break;
392 		DELAY(1);
393 	}
394 
395 	if (i == 0) {
396 		printf("%s: EEPROM idle timeout!\n", sc->sc_dev.dv_xname);
397 		return (ETIMEDOUT);
398 	}
399 
400 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
401 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
402 	for (i = JME_TIMEOUT; i > 0; i--) {
403 		DELAY(1);
404 		reg = CSR_READ_4(sc, JME_SMBINTF);
405 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
406 			break;
407 	}
408 
409 	if (i == 0) {
410 		printf("%s: EEPROM read timeout!\n", sc->sc_dev.dv_xname);
411 		return (ETIMEDOUT);
412 	}
413 
414 	reg = CSR_READ_4(sc, JME_SMBINTF);
415 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
416 
417 	return (0);
418 }
419 
420 int
421 jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[])
422 {
423 	uint8_t fup, reg, val;
424 	uint32_t offset;
425 	int match;
426 
427 	offset = 0;
428 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
429 	    fup != JME_EEPROM_SIG0)
430 		return (ENOENT);
431 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
432 	    fup != JME_EEPROM_SIG1)
433 		return (ENOENT);
434 	match = 0;
435 	do {
436 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
437 			break;
438 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
439 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
440 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
441 				break;
442 			if (reg >= JME_PAR0 &&
443 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
444 				if (jme_eeprom_read_byte(sc, offset + 2,
445 				    &val) != 0)
446 					break;
447 				eaddr[reg - JME_PAR0] = val;
448 				match++;
449 			}
450 		}
451 		/* Check for the end of EEPROM descriptor. */
452 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
453 			break;
454 		/* Try next eeprom descriptor. */
455 		offset += JME_EEPROM_DESC_BYTES;
456 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
457 
458 	if (match == ETHER_ADDR_LEN)
459 		return (0);
460 
461 	return (ENOENT);
462 }
463 
464 void
465 jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[])
466 {
467 	uint32_t par0, par1;
468 
469 	/* Read station address. */
470 	par0 = CSR_READ_4(sc, JME_PAR0);
471 	par1 = CSR_READ_4(sc, JME_PAR1);
472 	par1 &= 0xFFFF;
473 
474 	eaddr[0] = (par0 >> 0) & 0xFF;
475 	eaddr[1] = (par0 >> 8) & 0xFF;
476 	eaddr[2] = (par0 >> 16) & 0xFF;
477 	eaddr[3] = (par0 >> 24) & 0xFF;
478 	eaddr[4] = (par1 >> 0) & 0xFF;
479 	eaddr[5] = (par1 >> 8) & 0xFF;
480 }
481 
482 void
483 jme_attach(struct device *parent, struct device *self, void *aux)
484 {
485 	struct jme_softc *sc = (struct jme_softc *)self;
486 	struct pci_attach_args *pa = aux;
487 	pci_chipset_tag_t pc = pa->pa_pc;
488 	pci_intr_handle_t ih;
489 	const char *intrstr;
490 	pcireg_t memtype;
491 
492 	struct ifnet *ifp;
493 	uint32_t reg;
494 	int error = 0;
495 
496 	/*
497 	 * Allocate IO memory
498 	 *
499 	 * JMC250 supports both memory mapped and I/O register space
500 	 * access.  Because I/O register access should use different
501 	 * BARs to access registers it's waste of time to use I/O
502 	 * register spce access.  JMC250 uses 16K to map entire memory
503 	 * space.
504 	 */
505 
506 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, JME_PCIR_BAR);
507 	if (pci_mapreg_map(pa, JME_PCIR_BAR, memtype, 0, &sc->jme_mem_bt,
508 	    &sc->jme_mem_bh, NULL, &sc->jme_mem_size, 0)) {
509 		printf(": can't map mem space\n");
510 		return;
511 	}
512 
513 	if (pci_intr_map(pa, &ih) != 0) {
514 		printf(": can't map interrupt\n");
515 		return;
516 	}
517 
518 	/*
519 	 * Allocate IRQ
520 	 */
521 	intrstr = pci_intr_string(pc, ih);
522 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, jme_intr, sc,
523 	    sc->sc_dev.dv_xname);
524 	if (sc->sc_irq_handle == NULL) {
525 		printf(": could not establish interrupt");
526 		if (intrstr != NULL)
527 			printf(" at %s", intrstr);
528 		printf("\n");
529 		return;
530 	}
531 	printf(": %s", intrstr);
532 
533 	sc->sc_dmat = pa->pa_dmat;
534 	sc->jme_pct = pa->pa_pc;
535 	sc->jme_pcitag = pa->pa_tag;
536 
537 	/*
538 	 * Extract FPGA revision
539 	 */
540 	reg = CSR_READ_4(sc, JME_CHIPMODE);
541 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
542 	    CHIPMODE_NOT_FPGA) {
543 		sc->jme_caps |= JME_CAP_FPGA;
544 
545 		if (jmedebug) {
546 			printf("%s: FPGA revision : 0x%04x\n",
547 			    sc->sc_dev.dv_xname,
548 			    (reg & CHIPMODE_FPGA_REV_MASK) >>
549 			    CHIPMODE_FPGA_REV_SHIFT);
550 		}
551 	}
552 
553 	sc->jme_revfm = (reg & CHIPMODE_REVFM_MASK) >> CHIPMODE_REVFM_SHIFT;
554 
555 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_JMICRON_JMC250 &&
556 	    PCI_REVISION(pa->pa_class) == JME_REV_JMC250_A2)
557 		sc->jme_workaround |= JME_WA_CRCERRORS | JME_WA_PACKETLOSS;
558 
559 	/* Reset the ethernet controller. */
560 	jme_reset(sc);
561 
562 	/* Get station address. */
563 	reg = CSR_READ_4(sc, JME_SMBCSR);
564 	if (reg & SMBCSR_EEPROM_PRESENT)
565 		error = jme_eeprom_macaddr(sc, sc->sc_arpcom.ac_enaddr);
566 	if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
567 		if (error != 0 && (jmedebug)) {
568 			printf("%s: ethernet hardware address "
569 			    "not found in EEPROM.\n", sc->sc_dev.dv_xname);
570 		}
571 		jme_reg_macaddr(sc, sc->sc_arpcom.ac_enaddr);
572 	}
573 
574 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
575 
576 	/*
577 	 * Save PHY address.
578 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
579 	 * requires PHY probing to get correct PHY address.
580 	 */
581 	if ((sc->jme_caps & JME_CAP_FPGA) == 0) {
582 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
583 		    GPREG0_PHY_ADDR_MASK;
584 		if (jmedebug) {
585 			printf("%s: PHY is at address %d.\n",
586 			    sc->sc_dev.dv_xname, sc->jme_phyaddr);
587 		}
588 	} else {
589 		sc->jme_phyaddr = 0;
590 	}
591 
592 	/* Set max allowable DMA size. */
593 	sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
594 	sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
595 
596 #ifdef notyet
597 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
598 		sc->jme_caps |= JME_CAP_PMCAP;
599 #endif
600 
601 	/* Allocate DMA stuffs */
602 	error = jme_dma_alloc(sc);
603 	if (error)
604 		goto fail;
605 
606 	ifp = &sc->sc_arpcom.ac_if;
607 	ifp->if_softc = sc;
608 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
609 	ifp->if_ioctl = jme_ioctl;
610 	ifp->if_start = jme_start;
611 	ifp->if_watchdog = jme_watchdog;
612 	ifp->if_baudrate = IF_Gbps(1);
613 	IFQ_SET_MAXLEN(&ifp->if_snd, JME_TX_RING_CNT - 1);
614 	IFQ_SET_READY(&ifp->if_snd);
615 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
616 
617 	ifp->if_capabilities = IFCAP_VLAN_MTU;
618 
619 #ifdef JME_CHECKSUM
620 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
621 				IFCAP_CSUM_UDPv4;
622 #endif
623 
624 #if NVLAN > 0
625 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
626 #endif
627 
628 	/* Set up MII bus. */
629 	sc->sc_miibus.mii_ifp = ifp;
630 	sc->sc_miibus.mii_readreg = jme_miibus_readreg;
631 	sc->sc_miibus.mii_writereg = jme_miibus_writereg;
632 	sc->sc_miibus.mii_statchg = jme_miibus_statchg;
633 
634 	ifmedia_init(&sc->sc_miibus.mii_media, 0, jme_mediachange,
635 	    jme_mediastatus);
636 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
637 	    MII_OFFSET_ANY, 0);
638 
639 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
640 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
641 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
642 		    0, NULL);
643 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
644 	} else
645 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
646 
647 	/*
648 	 * Save PHYADDR for FPGA mode PHY not handled, not production hw
649 	 */
650 
651 	if_attach(ifp);
652 	ether_ifattach(ifp);
653 
654 	timeout_set(&sc->jme_tick_ch, jme_tick, sc);
655 
656 	return;
657 fail:
658 	jme_detach(&sc->sc_dev, 0);
659 }
660 
661 int
662 jme_detach(struct device *self, int flags)
663 {
664 	struct jme_softc *sc = (struct jme_softc *)self;
665 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
666 	int s;
667 
668 	s = splnet();
669 	jme_stop(sc);
670 	splx(s);
671 
672 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
673 
674 	/* Delete all remaining media. */
675 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
676 
677 	ether_ifdetach(ifp);
678 	if_detach(ifp);
679 	jme_dma_free(sc);
680 
681 	if (sc->sc_irq_handle != NULL) {
682 		pci_intr_disestablish(sc->jme_pct, sc->sc_irq_handle);
683 		sc->sc_irq_handle = NULL;
684 	}
685 
686 	return (0);
687 }
688 
689 int
690 jme_dma_alloc(struct jme_softc *sc)
691 {
692 	struct jme_txdesc *txd;
693 	struct jme_rxdesc *rxd;
694 	int error, i, nsegs;
695 
696 	/*
697 	 * Create DMA stuffs for TX ring
698 	 */
699 
700 	error = bus_dmamap_create(sc->sc_dmat, JME_TX_RING_SIZE, 1,
701 	    JME_TX_RING_SIZE, 0, BUS_DMA_NOWAIT,
702 	    &sc->jme_cdata.jme_tx_ring_map);
703 	if (error)
704 		return (ENOBUFS);
705 
706 	/* Allocate DMA'able memory for TX ring */
707 	error = bus_dmamem_alloc(sc->sc_dmat, JME_TX_RING_SIZE, ETHER_ALIGN, 0,
708 	    &sc->jme_rdata.jme_tx_ring_seg, 1, &nsegs,
709 	    BUS_DMA_WAITOK);
710 /* XXX zero */
711 	if (error) {
712 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
713 		    sc->sc_dev.dv_xname);
714 		return error;
715 	}
716 
717 	error = bus_dmamem_map(sc->sc_dmat, &sc->jme_rdata.jme_tx_ring_seg,
718 	    nsegs, JME_TX_RING_SIZE, (caddr_t *)&sc->jme_rdata.jme_tx_ring,
719 	    BUS_DMA_NOWAIT);
720 	if (error)
721 		return (ENOBUFS);
722 
723 	/*  Load the DMA map for Tx ring. */
724 	error = bus_dmamap_load(sc->sc_dmat,
725 	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
726 	    JME_TX_RING_SIZE, NULL, BUS_DMA_NOWAIT);
727 	if (error) {
728 		printf("%s: could not load DMA'able memory for Tx ring.\n",
729 		    sc->sc_dev.dv_xname);
730 		bus_dmamem_free(sc->sc_dmat,
731 		    (bus_dma_segment_t *)&sc->jme_rdata.jme_tx_ring, 1);
732 		return error;
733 	}
734 	sc->jme_rdata.jme_tx_ring_paddr =
735 	    sc->jme_cdata.jme_tx_ring_map->dm_segs[0].ds_addr;
736 
737 	/*
738 	 * Create DMA stuffs for RX ring
739 	 */
740 
741 	error = bus_dmamap_create(sc->sc_dmat, JME_RX_RING_SIZE, 1,
742 	    JME_RX_RING_SIZE, 0, BUS_DMA_NOWAIT,
743 	    &sc->jme_cdata.jme_rx_ring_map);
744 	if (error)
745 		return (ENOBUFS);
746 
747 	/* Allocate DMA'able memory for RX ring */
748 	error = bus_dmamem_alloc(sc->sc_dmat, JME_RX_RING_SIZE, ETHER_ALIGN, 0,
749 	    &sc->jme_rdata.jme_rx_ring_seg, 1, &nsegs,
750 	    BUS_DMA_WAITOK | BUS_DMA_ZERO);
751 /* XXX zero */
752 	if (error) {
753 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
754 		    sc->sc_dev.dv_xname);
755 		return error;
756 	}
757 
758 	error = bus_dmamem_map(sc->sc_dmat, &sc->jme_rdata.jme_rx_ring_seg,
759 	    nsegs, JME_RX_RING_SIZE, (caddr_t *)&sc->jme_rdata.jme_rx_ring,
760 	    BUS_DMA_NOWAIT);
761 	if (error)
762 		return (ENOBUFS);
763 
764 	/* Load the DMA map for Rx ring. */
765 	error = bus_dmamap_load(sc->sc_dmat,
766 	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
767 	    JME_RX_RING_SIZE, NULL, BUS_DMA_NOWAIT);
768 	if (error) {
769 		printf("%s: could not load DMA'able memory for Rx ring.\n",
770 		    sc->sc_dev.dv_xname);
771 		bus_dmamem_free(sc->sc_dmat,
772 		    (bus_dma_segment_t *)sc->jme_rdata.jme_rx_ring, 1);
773 		return error;
774 	}
775 	sc->jme_rdata.jme_rx_ring_paddr =
776 	    sc->jme_cdata.jme_rx_ring_map->dm_segs[0].ds_addr;
777 
778 #if 0
779 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
780 	tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr + JME_TX_RING_SIZE;
781 	rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr + JME_RX_RING_SIZE;
782 	if ((JME_ADDR_HI(tx_ring_end) !=
783 	     JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
784 	    (JME_ADDR_HI(rx_ring_end) !=
785 	     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
786 		printf("%s: 4GB boundary crossed, switching to 32bit "
787 		    "DMA address mode.\n", sc->sc_dev.dv_xname);
788 		jme_dma_free(sc);
789 		/* Limit DMA address space to 32bit and try again. */
790 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
791 		goto again;
792 	}
793 #endif
794 
795 	/*
796 	 * Create DMA stuffs for shadow status block
797 	 */
798 
799 	error = bus_dmamap_create(sc->sc_dmat, JME_SSB_SIZE, 1,
800 	    JME_SSB_SIZE, 0, BUS_DMA_NOWAIT, &sc->jme_cdata.jme_ssb_map);
801 	if (error)
802 		return (ENOBUFS);
803 
804 	/* Allocate DMA'able memory for shared status block. */
805 	error = bus_dmamem_alloc(sc->sc_dmat, JME_SSB_SIZE, 1, 0,
806 	    &sc->jme_rdata.jme_ssb_block_seg, 1, &nsegs, BUS_DMA_WAITOK);
807 	if (error) {
808 		printf("%s: could not allocate DMA'able "
809 		    "memory for shared status block.\n", sc->sc_dev.dv_xname);
810 		return error;
811 	}
812 
813 	error = bus_dmamem_map(sc->sc_dmat, &sc->jme_rdata.jme_ssb_block_seg,
814 	    nsegs, JME_SSB_SIZE, (caddr_t *)&sc->jme_rdata.jme_ssb_block,
815 	    BUS_DMA_NOWAIT);
816 	if (error)
817 		return (ENOBUFS);
818 
819 	/* Load the DMA map for shared status block */
820 	error = bus_dmamap_load(sc->sc_dmat,
821 	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
822 	    JME_SSB_SIZE, NULL, BUS_DMA_NOWAIT);
823 	if (error) {
824 		printf("%s: could not load DMA'able memory "
825 		    "for shared status block.\n", sc->sc_dev.dv_xname);
826 		bus_dmamem_free(sc->sc_dmat,
827 		    (bus_dma_segment_t *)sc->jme_rdata.jme_ssb_block, 1);
828 		return error;
829 	}
830 	sc->jme_rdata.jme_ssb_block_paddr =
831 	    sc->jme_cdata.jme_ssb_map->dm_segs[0].ds_addr;
832 
833 	/*
834 	 * Create DMA stuffs for TX buffers
835 	 */
836 
837 	/* Create DMA maps for Tx buffers. */
838 	for (i = 0; i < JME_TX_RING_CNT; i++) {
839 		txd = &sc->jme_cdata.jme_txdesc[i];
840 		error = bus_dmamap_create(sc->sc_dmat, JME_TSO_MAXSIZE,
841 		    JME_MAXTXSEGS, JME_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
842 		    &txd->tx_dmamap);
843 		if (error) {
844 			int j;
845 
846 			printf("%s: could not create %dth Tx dmamap.\n",
847 			    sc->sc_dev.dv_xname, i);
848 
849 			for (j = 0; j < i; ++j) {
850 				txd = &sc->jme_cdata.jme_txdesc[j];
851 				bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
852 			}
853 			return error;
854 		}
855 
856 	}
857 
858 	/*
859 	 * Create DMA stuffs for RX buffers
860 	 */
861 
862 	/* Create DMA maps for Rx buffers. */
863 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
864 	    0, BUS_DMA_NOWAIT, &sc->jme_cdata.jme_rx_sparemap);
865 	if (error) {
866 		printf("%s: could not create spare Rx dmamap.\n",
867 		    sc->sc_dev.dv_xname);
868 		return error;
869 	}
870 	for (i = 0; i < JME_RX_RING_CNT; i++) {
871 		rxd = &sc->jme_cdata.jme_rxdesc[i];
872 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
873 		    0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
874 		if (error) {
875 			int j;
876 
877 			printf("%s: could not create %dth Rx dmamap.\n",
878 			    sc->sc_dev.dv_xname, i);
879 
880 			for (j = 0; j < i; ++j) {
881 				rxd = &sc->jme_cdata.jme_rxdesc[j];
882 				bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
883 			}
884 			bus_dmamap_destroy(sc->sc_dmat,
885 			    sc->jme_cdata.jme_rx_sparemap);
886 			sc->jme_cdata.jme_rx_tag = NULL;
887 			return error;
888 		}
889 	}
890 
891 	return 0;
892 }
893 
894 void
895 jme_dma_free(struct jme_softc *sc)
896 {
897 	struct jme_txdesc *txd;
898 	struct jme_rxdesc *rxd;
899 	int i;
900 
901 	/* Tx ring */
902 	bus_dmamap_unload(sc->sc_dmat,
903 	    sc->jme_cdata.jme_tx_ring_map);
904 	bus_dmamem_free(sc->sc_dmat,
905 	    (bus_dma_segment_t *)sc->jme_rdata.jme_tx_ring, 1);
906 
907 	/* Rx ring */
908 	bus_dmamap_unload(sc->sc_dmat,
909 	    sc->jme_cdata.jme_rx_ring_map);
910 	bus_dmamem_free(sc->sc_dmat,
911 	    (bus_dma_segment_t *)sc->jme_rdata.jme_rx_ring, 1);
912 
913 	/* Tx buffers */
914 	for (i = 0; i < JME_TX_RING_CNT; i++) {
915 		txd = &sc->jme_cdata.jme_txdesc[i];
916 		bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
917 	}
918 
919 	/* Rx buffers */
920 	for (i = 0; i < JME_RX_RING_CNT; i++) {
921 		rxd = &sc->jme_cdata.jme_rxdesc[i];
922 		bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
923 	}
924 	bus_dmamap_destroy(sc->sc_dmat,
925 	    sc->jme_cdata.jme_rx_sparemap);
926 
927 	/* Shadow status block. */
928 	bus_dmamap_unload(sc->sc_dmat,
929 	    sc->jme_cdata.jme_ssb_map);
930 	bus_dmamem_free(sc->sc_dmat,
931 	    (bus_dma_segment_t *)sc->jme_rdata.jme_ssb_block, 1);
932 }
933 
934 #ifdef notyet
935 /*
936  * Unlike other ethernet controllers, JMC250 requires
937  * explicit resetting link speed to 10/100Mbps as gigabit
938  * link will cunsume more power than 375mA.
939  * Note, we reset the link speed to 10/100Mbps with
940  * auto-negotiation but we don't know whether that operation
941  * would succeed or not as we have no control after powering
942  * off. If the renegotiation fail WOL may not work. Running
943  * at 1Gbps draws more power than 375mA at 3.3V which is
944  * specified in PCI specification and that would result in
945  * complete shutdowning power to ethernet controller.
946  *
947  * TODO
948  *  Save current negotiated media speed/duplex/flow-control
949  *  to softc and restore the same link again after resuming.
950  *  PHY handling such as power down/resetting to 100Mbps
951  *  may be better handled in suspend method in phy driver.
952  */
953 void
954 jme_setlinkspeed(struct jme_softc *sc)
955 {
956 	struct mii_data *mii;
957 	int aneg, i;
958 
959 	JME_LOCK_ASSERT(sc);
960 
961 	mii = &sc->sc_miibus;
962 	mii_pollstat(mii);
963 	aneg = 0;
964 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
965 		switch IFM_SUBTYPE(mii->mii_media_active) {
966 		case IFM_10_T:
967 		case IFM_100_TX:
968 			return;
969 		case IFM_1000_T:
970 			aneg++;
971 		default:
972 			break;
973 		}
974 	}
975 	jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, MII_100T2CR, 0);
976 	jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, MII_ANAR,
977 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
978 	jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, MII_BMCR,
979 	    BMCR_AUTOEN | BMCR_STARTNEG);
980 	DELAY(1000);
981 	if (aneg != 0) {
982 		/* Poll link state until jme(4) get a 10/100 link. */
983 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
984 			mii_pollstat(mii);
985 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
986 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
987 				case IFM_10_T:
988 				case IFM_100_TX:
989 					jme_mac_config(sc);
990 					return;
991 				default:
992 					break;
993 				}
994 			}
995 			JME_UNLOCK(sc);
996 			pause("jmelnk", hz);
997 			JME_LOCK(sc);
998 		}
999 		if (i == MII_ANEGTICKS_GIGE)
1000 			printf("%s: establishing link failed, "
1001 			    "WOL may not work!\n", sc->sc_dev.dv_xname);
1002 	}
1003 	/*
1004 	 * No link, force MAC to have 100Mbps, full-duplex link.
1005 	 * This is the last resort and may/may not work.
1006 	 */
1007 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1008 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1009 	jme_mac_config(sc);
1010 }
1011 
1012 void
1013 jme_setwol(struct jme_softc *sc)
1014 {
1015 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1016 	uint32_t gpr, pmcs;
1017 	uint16_t pmstat;
1018 	int pmc;
1019 
1020 	if (pci_find_extcap(sc->sc_dev, PCIY_PMG, &pmc) != 0) {
1021 		/* No PME capability, PHY power down. */
1022 		jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr,
1023 		    MII_BMCR, BMCR_PDOWN);
1024 		return;
1025 	}
1026 
1027 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1028 	pmcs = CSR_READ_4(sc, JME_PMCS);
1029 	pmcs &= ~PMCS_WOL_ENB_MASK;
1030 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1031 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1032 		/* Enable PME message. */
1033 		gpr |= GPREG0_PME_ENB;
1034 		/* For gigabit controllers, reset link speed to 10/100. */
1035 		if ((sc->jme_caps & JME_CAP_FASTETH) == 0)
1036 			jme_setlinkspeed(sc);
1037 	}
1038 
1039 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1040 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1041 
1042 	/* Request PME. */
1043 	pmstat = pci_read_config(sc->sc_dev, pmc + PCIR_POWER_STATUS, 2);
1044 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1045 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1046 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1047 	pci_write_config(sc->sc_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1048 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1049 		/* No WOL, PHY power down. */
1050 		jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr,
1051 		    MII_BMCR, BMCR_PDOWN);
1052 	}
1053 }
1054 #endif
1055 
1056 int
1057 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1058 {
1059 	struct jme_txdesc *txd;
1060 	struct jme_desc *desc;
1061 	struct mbuf *m;
1062 	int maxsegs;
1063 	int error, i, prod;
1064 	uint32_t cflags;
1065 
1066 	prod = sc->jme_cdata.jme_tx_prod;
1067 	txd = &sc->jme_cdata.jme_txdesc[prod];
1068 
1069 	maxsegs = (JME_TX_RING_CNT - sc->jme_cdata.jme_tx_cnt) -
1070 		  (JME_TXD_RSVD + 1);
1071 	if (maxsegs > JME_MAXTXSEGS)
1072 		maxsegs = JME_MAXTXSEGS;
1073 	if (maxsegs < (sc->jme_txd_spare - 1))
1074 		panic("%s: not enough segments %d", sc->sc_dev.dv_xname,
1075 		    maxsegs);
1076 
1077 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txd->tx_dmamap,
1078 				     *m_head, BUS_DMA_NOWAIT);
1079 	if (error != 0) {
1080 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1081 		error = EFBIG;
1082 	}
1083 	if (error == EFBIG) {
1084 		if (m_defrag(*m_head, M_DONTWAIT)) {
1085 			printf("%s: can't defrag TX mbuf\n",
1086 			    sc->sc_dev.dv_xname);
1087 			m_freem(*m_head);
1088 			*m_head = NULL;
1089 			return (ENOBUFS);
1090 		}
1091 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
1092 					     txd->tx_dmamap, *m_head,
1093 					     BUS_DMA_NOWAIT);
1094 		if (error != 0) {
1095 			printf("%s: could not load defragged TX mbuf\n",
1096 			    sc->sc_dev.dv_xname);
1097 			m_freem(*m_head);
1098 			*m_head = NULL;
1099 			return (error);
1100 		}
1101 	} else if (error) {
1102 		printf("%s: could not load TX mbuf\n", sc->sc_dev.dv_xname);
1103 		return (error);
1104 	}
1105 
1106 	m = *m_head;
1107 	cflags = 0;
1108 
1109 	/* Configure checksum offload. */
1110 	if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1111 		cflags |= JME_TD_IPCSUM;
1112 	if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1113 		cflags |= JME_TD_TCPCSUM;
1114 	if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1115 		cflags |= JME_TD_UDPCSUM;
1116 
1117 #if NVLAN > 0
1118 	/* Configure VLAN. */
1119 	if (m->m_flags & M_VLANTAG) {
1120 		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1121 		cflags |= JME_TD_VLAN_TAG;
1122 	}
1123 #endif
1124 
1125 	desc = &sc->jme_rdata.jme_tx_ring[prod];
1126 	desc->flags = htole32(cflags);
1127 	desc->buflen = 0;
1128 	desc->addr_hi = htole32(m->m_pkthdr.len);
1129 	desc->addr_lo = 0;
1130 	sc->jme_cdata.jme_tx_cnt++;
1131 	KASSERT(sc->jme_cdata.jme_tx_cnt < JME_TX_RING_CNT - JME_TXD_RSVD);
1132 	JME_DESC_INC(prod, JME_TX_RING_CNT);
1133 	for (i = 0; i < txd->tx_dmamap->dm_nsegs; i++) {
1134 		desc = &sc->jme_rdata.jme_tx_ring[prod];
1135 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1136 		desc->buflen = htole32(txd->tx_dmamap->dm_segs[i].ds_len);
1137 		desc->addr_hi =
1138 		    htole32(JME_ADDR_HI(txd->tx_dmamap->dm_segs[i].ds_addr));
1139 		desc->addr_lo =
1140 		    htole32(JME_ADDR_LO(txd->tx_dmamap->dm_segs[i].ds_addr));
1141 
1142 		sc->jme_cdata.jme_tx_cnt++;
1143 		KASSERT(sc->jme_cdata.jme_tx_cnt <=
1144 			 JME_TX_RING_CNT - JME_TXD_RSVD);
1145 		JME_DESC_INC(prod, JME_TX_RING_CNT);
1146 	}
1147 
1148 	/* Update producer index. */
1149 	sc->jme_cdata.jme_tx_prod = prod;
1150 	/*
1151 	 * Finally request interrupt and give the first descriptor
1152 	 * owenership to hardware.
1153 	 */
1154 	desc = txd->tx_desc;
1155 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1156 
1157 	txd->tx_m = m;
1158 	txd->tx_ndesc = txd->tx_dmamap->dm_nsegs + 1;
1159 
1160 	/* Sync descriptors. */
1161 	bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1162 	    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1163 	bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,
1164 	     sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1165 
1166 	return (0);
1167 }
1168 
1169 void
1170 jme_start(struct ifnet *ifp)
1171 {
1172 	struct jme_softc *sc = ifp->if_softc;
1173 	struct mbuf *m_head;
1174 	int enq = 0;
1175 
1176 	/* Reclaim transmitted frames. */
1177 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1178 		jme_txeof(sc);
1179 
1180 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1181 		return;
1182 	if ((sc->jme_flags & JME_FLAG_LINK) == 0)
1183 		return;
1184 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1185 		return;
1186 
1187 	for (;;) {
1188 		/*
1189 		 * Check number of available TX descs, always
1190 		 * leave JME_TXD_RSVD free TX descs.
1191 		 */
1192 		if (sc->jme_cdata.jme_tx_cnt + sc->jme_txd_spare >
1193 		    JME_TX_RING_CNT - JME_TXD_RSVD) {
1194 			ifp->if_flags |= IFF_OACTIVE;
1195 			break;
1196 		}
1197 
1198 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1199 		if (m_head == NULL)
1200 			break;
1201 
1202 		/*
1203 		 * Pack the data into the transmit ring. If we
1204 		 * don't have room, set the OACTIVE flag and wait
1205 		 * for the NIC to drain the ring.
1206 		 */
1207 		if (jme_encap(sc, &m_head)) {
1208 			if (m_head == NULL) {
1209 				ifp->if_oerrors++;
1210 				break;
1211 			}
1212 			ifp->if_flags |= IFF_OACTIVE;
1213 			break;
1214 		}
1215 		enq++;
1216 
1217 #if NBPFILTER > 0
1218 		/*
1219 		 * If there's a BPF listener, bounce a copy of this frame
1220 		 * to him.
1221 		 */
1222 		if (ifp->if_bpf != NULL)
1223 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1224 #endif
1225 	}
1226 
1227 	if (enq > 0) {
1228 		/*
1229 		 * Reading TXCSR takes very long time under heavy load
1230 		 * so cache TXCSR value and writes the ORed value with
1231 		 * the kick command to the TXCSR. This saves one register
1232 		 * access cycle.
1233 		 */
1234 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1235 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1236 		/* Set a timeout in case the chip goes out to lunch. */
1237 		ifp->if_timer = JME_TX_TIMEOUT;
1238 	}
1239 }
1240 
1241 void
1242 jme_watchdog(struct ifnet *ifp)
1243 {
1244 	struct jme_softc *sc = ifp->if_softc;
1245 
1246 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1247 		printf("%s: watchdog timeout (missed link)\n",
1248 		    sc->sc_dev.dv_xname);
1249 		ifp->if_oerrors++;
1250 		jme_init(ifp);
1251 		return;
1252 	}
1253 
1254 	jme_txeof(sc);
1255 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1256 		printf("%s: watchdog timeout (missed Tx interrupts) "
1257 			  "-- recovering\n", sc->sc_dev.dv_xname);
1258 		jme_start(ifp);
1259 		return;
1260 	}
1261 
1262 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1263 	ifp->if_oerrors++;
1264 	jme_init(ifp);
1265 	jme_start(ifp);
1266 }
1267 
1268 int
1269 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1270 {
1271 	struct jme_softc *sc = ifp->if_softc;
1272 	struct mii_data *mii = &sc->sc_miibus;
1273 	struct ifaddr *ifa = (struct ifaddr *)data;
1274 	struct ifreq *ifr = (struct ifreq *)data;
1275 	int error = 0, s;
1276 
1277 	s = splnet();
1278 
1279 	switch (cmd) {
1280 	case SIOCSIFADDR:
1281 		ifp->if_flags |= IFF_UP;
1282 		if (!(ifp->if_flags & IFF_RUNNING))
1283 			jme_init(ifp);
1284 #ifdef INET
1285 		if (ifa->ifa_addr->sa_family == AF_INET)
1286 			arp_ifinit(&sc->sc_arpcom, ifa);
1287 #endif
1288 		break;
1289 
1290 	case SIOCSIFFLAGS:
1291 		if (ifp->if_flags & IFF_UP) {
1292 			if (ifp->if_flags & IFF_RUNNING)
1293 				error = ENETRESET;
1294 			else
1295 				jme_init(ifp);
1296 		} else {
1297 			if (ifp->if_flags & IFF_RUNNING)
1298 				jme_stop(sc);
1299 		}
1300 		break;
1301 
1302 	case SIOCSIFMEDIA:
1303 	case SIOCGIFMEDIA:
1304 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1305 		break;
1306 
1307 	default:
1308 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1309 	}
1310 
1311 	if (error == ENETRESET) {
1312 		if (ifp->if_flags & IFF_RUNNING)
1313 			jme_iff(sc);
1314 		error = 0;
1315 	}
1316 
1317 	splx(s);
1318 	return (error);
1319 }
1320 
1321 void
1322 jme_mac_config(struct jme_softc *sc)
1323 {
1324 	struct mii_data *mii;
1325 	uint32_t ghc, rxmac, txmac, txpause, gp1;
1326 	int phyconf = JMPHY_CONF_DEFFIFO, hdx = 0;
1327 
1328 	mii = &sc->sc_miibus;
1329 
1330 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
1331 	DELAY(10);
1332 	CSR_WRITE_4(sc, JME_GHC, 0);
1333 	ghc = 0;
1334 	rxmac = CSR_READ_4(sc, JME_RXMAC);
1335 	rxmac &= ~RXMAC_FC_ENB;
1336 	txmac = CSR_READ_4(sc, JME_TXMAC);
1337 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1338 	txpause = CSR_READ_4(sc, JME_TXPFC);
1339 	txpause &= ~TXPFC_PAUSE_ENB;
1340 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1341 		ghc |= GHC_FULL_DUPLEX;
1342 		rxmac &= ~RXMAC_COLL_DET_ENB;
1343 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1344 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1345 		    TXMAC_FRAME_BURST);
1346 #ifdef notyet
1347 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1348 			txpause |= TXPFC_PAUSE_ENB;
1349 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1350 			rxmac |= RXMAC_FC_ENB;
1351 #endif
1352 		/* Disable retry transmit timer/retry limit. */
1353 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
1354 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1355 	} else {
1356 		rxmac |= RXMAC_COLL_DET_ENB;
1357 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1358 		/* Enable retry transmit timer/retry limit. */
1359 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
1360 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1361 	}
1362 
1363 	/*
1364 	 * Reprogram Tx/Rx MACs with resolved speed/duplex.
1365 	 */
1366 	gp1 = CSR_READ_4(sc, JME_GPREG1);
1367 	gp1 &= ~GPREG1_HALF_PATCH;
1368 
1369 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1370 		hdx = 1;
1371 
1372 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1373 	case IFM_10_T:
1374 		ghc |= GHC_SPEED_10;
1375 		if (hdx)
1376 			gp1 |= GPREG1_HALF_PATCH;
1377 		break;
1378 
1379 	case IFM_100_TX:
1380 		ghc |= GHC_SPEED_100;
1381 		if (hdx)
1382 			gp1 |= GPREG1_HALF_PATCH;
1383 
1384 		/*
1385 		 * Use extended FIFO depth to workaround CRC errors
1386 		 * emitted by chips before JMC250B
1387 		 */
1388 		phyconf = JMPHY_CONF_EXTFIFO;
1389 		break;
1390 
1391 	case IFM_1000_T:
1392 		if (sc->jme_caps & JME_CAP_FASTETH)
1393 			break;
1394 
1395 		ghc |= GHC_SPEED_1000;
1396 		if (hdx)
1397 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1398 		break;
1399 
1400 	default:
1401 		break;
1402 	}
1403 
1404 	if (sc->jme_revfm >= 2) {
1405 		/* set clock sources for tx mac and offload engine */
1406 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1407 			ghc |= GHC_TCPCK_1000 | GHC_TXCK_1000;
1408 		else
1409 			ghc |= GHC_TCPCK_10_100 | GHC_TXCK_10_100;
1410 	}
1411 
1412 	CSR_WRITE_4(sc, JME_GHC, ghc);
1413 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
1414 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
1415 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
1416 
1417 	if (sc->jme_workaround & JME_WA_CRCERRORS) {
1418 		jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr,
1419 				    JMPHY_CONF, phyconf);
1420 	}
1421 	if (sc->jme_workaround & JME_WA_PACKETLOSS)
1422 		CSR_WRITE_4(sc, JME_GPREG1, gp1);
1423 }
1424 
1425 int
1426 jme_intr(void *xsc)
1427 {
1428 	struct jme_softc *sc = xsc;
1429 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1430 	uint32_t status;
1431 	int claimed = 0;
1432 
1433 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
1434 	if (status == 0 || status == 0xFFFFFFFF)
1435 		return (0);
1436 
1437 	/* Disable interrupts. */
1438 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
1439 
1440 	status = CSR_READ_4(sc, JME_INTR_STATUS);
1441 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
1442 		goto back;
1443 
1444 	/* Reset PCC counter/timer and Ack interrupts. */
1445 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
1446 	if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO))
1447 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1448 	if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
1449 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1450 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
1451 
1452 	if (ifp->if_flags & IFF_RUNNING) {
1453 		if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
1454 			jme_rxeof(sc);
1455 
1456 		if (status & INTR_RXQ_DESC_EMPTY) {
1457 			/*
1458 			 * Notify hardware availability of new Rx buffers.
1459 			 * Reading RXCSR takes very long time under heavy
1460 			 * load so cache RXCSR value and writes the ORed
1461 			 * value with the kick command to the RXCSR. This
1462 			 * saves one register access cycle.
1463 			 */
1464 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
1465 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
1466 		}
1467 
1468 		if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) {
1469 			jme_txeof(sc);
1470 			jme_start(ifp);
1471 		}
1472 	}
1473 	claimed = 1;
1474 back:
1475 	/* Reenable interrupts. */
1476 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
1477 
1478 	return (claimed);
1479 }
1480 
1481 void
1482 jme_txeof(struct jme_softc *sc)
1483 {
1484 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1485 	struct jme_txdesc *txd;
1486 	uint32_t status;
1487 	int cons, nsegs;
1488 
1489 	cons = sc->jme_cdata.jme_tx_cons;
1490 	if (cons == sc->jme_cdata.jme_tx_prod)
1491 		return;
1492 
1493 	bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,
1494 	    sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1495 
1496 	/*
1497 	 * Go through our Tx list and free mbufs for those
1498 	 * frames which have been transmitted.
1499 	 */
1500 	while (cons != sc->jme_cdata.jme_tx_prod) {
1501 		txd = &sc->jme_cdata.jme_txdesc[cons];
1502 
1503 		if (txd->tx_m == NULL)
1504 			panic("%s: freeing NULL mbuf!", sc->sc_dev.dv_xname);
1505 
1506 		status = letoh32(txd->tx_desc->flags);
1507 		if ((status & JME_TD_OWN) == JME_TD_OWN)
1508 			break;
1509 
1510 		if (status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) {
1511 			ifp->if_oerrors++;
1512 		} else {
1513 			ifp->if_opackets++;
1514 			if (status & JME_TD_COLLISION) {
1515 				ifp->if_collisions +=
1516 				    letoh32(txd->tx_desc->buflen) &
1517 				    JME_TD_BUF_LEN_MASK;
1518 			}
1519 		}
1520 
1521 		/*
1522 		 * Only the first descriptor of multi-descriptor
1523 		 * transmission is updated so driver have to skip entire
1524 		 * chained buffers for the transmiited frame. In other
1525 		 * words, JME_TD_OWN bit is valid only at the first
1526 		 * descriptor of a multi-descriptor transmission.
1527 		 */
1528 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1529 			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
1530 			JME_DESC_INC(cons, JME_TX_RING_CNT);
1531 		}
1532 
1533 		/* Reclaim transferred mbufs. */
1534 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1535 		m_freem(txd->tx_m);
1536 		txd->tx_m = NULL;
1537 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
1538 		if (sc->jme_cdata.jme_tx_cnt < 0)
1539 			panic("%s: Active Tx desc counter was garbled",
1540 			    sc->sc_dev.dv_xname);
1541 		txd->tx_ndesc = 0;
1542 	}
1543 	sc->jme_cdata.jme_tx_cons = cons;
1544 
1545 	if (sc->jme_cdata.jme_tx_cnt == 0)
1546 		ifp->if_timer = 0;
1547 
1548 	if (sc->jme_cdata.jme_tx_cnt + sc->jme_txd_spare <=
1549 	    JME_TX_RING_CNT - JME_TXD_RSVD)
1550 		ifp->if_flags &= ~IFF_OACTIVE;
1551 
1552 	bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,
1553 	    sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1554 }
1555 
1556 void
1557 jme_discard_rxbufs(struct jme_softc *sc, int cons, int count)
1558 {
1559 	int i;
1560 
1561 	for (i = 0; i < count; ++i) {
1562 		struct jme_desc *desc = &sc->jme_rdata.jme_rx_ring[cons];
1563 
1564 		desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
1565 		desc->buflen = htole32(MCLBYTES);
1566 		JME_DESC_INC(cons, JME_RX_RING_CNT);
1567 	}
1568 }
1569 
1570 /* Receive a frame. */
1571 void
1572 jme_rxpkt(struct jme_softc *sc)
1573 {
1574 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1575 	struct jme_desc *desc;
1576 	struct jme_rxdesc *rxd;
1577 	struct mbuf *mp, *m;
1578 	uint32_t flags, status;
1579 	int cons, count, nsegs;
1580 
1581 	cons = sc->jme_cdata.jme_rx_cons;
1582 	desc = &sc->jme_rdata.jme_rx_ring[cons];
1583 	flags = letoh32(desc->flags);
1584 	status = letoh32(desc->buflen);
1585 	nsegs = JME_RX_NSEGS(status);
1586 
1587 	if (status & JME_RX_ERR_STAT) {
1588 		ifp->if_ierrors++;
1589 		jme_discard_rxbufs(sc, cons, nsegs);
1590 #ifdef JME_SHOW_ERRORS
1591 		printf("%s : receive error = 0x%b\n",
1592 		    sc->sc_dev.dv_xname, JME_RX_ERR(status), JME_RX_ERR_BITS);
1593 #endif
1594 		sc->jme_cdata.jme_rx_cons += nsegs;
1595 		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
1596 		return;
1597 	}
1598 
1599 	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
1600 	for (count = 0; count < nsegs; count++,
1601 	     JME_DESC_INC(cons, JME_RX_RING_CNT)) {
1602 		rxd = &sc->jme_cdata.jme_rxdesc[cons];
1603 		mp = rxd->rx_m;
1604 
1605 		/* Add a new receive buffer to the ring. */
1606 		if (jme_newbuf(sc, rxd) != 0) {
1607 			ifp->if_iqdrops++;
1608 			/* Reuse buffer. */
1609 			jme_discard_rxbufs(sc, cons, nsegs - count);
1610 			if (sc->jme_cdata.jme_rxhead != NULL) {
1611 				m_freem(sc->jme_cdata.jme_rxhead);
1612 				JME_RXCHAIN_RESET(sc);
1613 			}
1614 			break;
1615 		}
1616 
1617 		/*
1618 		 * Assume we've received a full sized frame.
1619 		 * Actual size is fixed when we encounter the end of
1620 		 * multi-segmented frame.
1621 		 */
1622 		mp->m_len = MCLBYTES;
1623 
1624 		/* Chain received mbufs. */
1625 		if (sc->jme_cdata.jme_rxhead == NULL) {
1626 			sc->jme_cdata.jme_rxhead = mp;
1627 			sc->jme_cdata.jme_rxtail = mp;
1628 		} else {
1629 			/*
1630 			 * Receive processor can receive a maximum frame
1631 			 * size of 65535 bytes.
1632 			 */
1633 			mp->m_flags &= ~M_PKTHDR;
1634 			sc->jme_cdata.jme_rxtail->m_next = mp;
1635 			sc->jme_cdata.jme_rxtail = mp;
1636 		}
1637 
1638 		if (count == nsegs - 1) {
1639 			/* Last desc. for this frame. */
1640 			m = sc->jme_cdata.jme_rxhead;
1641 			/* XXX assert PKTHDR? */
1642 			m->m_flags |= M_PKTHDR;
1643 			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
1644 			if (nsegs > 1) {
1645 				/* Set first mbuf size. */
1646 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
1647 				/* Set last mbuf size. */
1648 				mp->m_len = sc->jme_cdata.jme_rxlen -
1649 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
1650 				    (MCLBYTES * (nsegs - 2)));
1651 			} else {
1652 				m->m_len = sc->jme_cdata.jme_rxlen;
1653 			}
1654 			m->m_pkthdr.rcvif = ifp;
1655 
1656 			/*
1657 			 * Account for 10bytes auto padding which is used
1658 			 * to align IP header on 32bit boundary. Also note,
1659 			 * CRC bytes is automatically removed by the
1660 			 * hardware.
1661 			 */
1662 			m->m_data += JME_RX_PAD_BYTES;
1663 
1664 			/* Set checksum information. */
1665 			if (flags & (JME_RD_IPV4|JME_RD_IPV6)) {
1666 				if ((flags & JME_RD_IPV4) &&
1667 				    (flags & JME_RD_IPCSUM))
1668 					m->m_pkthdr.csum_flags |=
1669 					    M_IPV4_CSUM_IN_OK;
1670 				if ((flags & JME_RD_MORE_FRAG) == 0 &&
1671 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
1672 				     (JME_RD_TCP | JME_RD_TCPCSUM) ||
1673 				     (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
1674 				     (JME_RD_UDP | JME_RD_UDPCSUM))) {
1675 					m->m_pkthdr.csum_flags |=
1676 					    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1677 				}
1678 			}
1679 
1680 #if NVLAN > 0
1681 			/* Check for VLAN tagged packets. */
1682 			if (flags & JME_RD_VLAN_TAG) {
1683 				m->m_pkthdr.ether_vtag = flags & JME_RD_VLAN_MASK;
1684 				m->m_flags |= M_VLANTAG;
1685 			}
1686 #endif
1687 
1688 #if NBPFILTER > 0
1689 			if (ifp->if_bpf)
1690 				bpf_mtap_ether(ifp->if_bpf, m,
1691 				    BPF_DIRECTION_IN);
1692 #endif
1693 
1694 			ifp->if_ipackets++;
1695 			/* Pass it on. */
1696 			ether_input_mbuf(ifp, m);
1697 
1698 			/* Reset mbuf chains. */
1699 			JME_RXCHAIN_RESET(sc);
1700 		}
1701 	}
1702 
1703 	sc->jme_cdata.jme_rx_cons += nsegs;
1704 	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
1705 }
1706 
1707 void
1708 jme_rxeof(struct jme_softc *sc)
1709 {
1710 	struct jme_desc *desc;
1711 	int nsegs, prog, pktlen;
1712 
1713 	bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_rx_ring_map, 0,
1714 	    sc->jme_cdata.jme_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1715 
1716 	prog = 0;
1717 	for (;;) {
1718 		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
1719 		if ((letoh32(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
1720 			break;
1721 		if ((letoh32(desc->buflen) & JME_RD_VALID) == 0)
1722 			break;
1723 
1724 		/*
1725 		 * Check number of segments against received bytes.
1726 		 * Non-matching value would indicate that hardware
1727 		 * is still trying to update Rx descriptors. I'm not
1728 		 * sure whether this check is needed.
1729 		 */
1730 		nsegs = JME_RX_NSEGS(letoh32(desc->buflen));
1731 		pktlen = JME_RX_BYTES(letoh32(desc->buflen));
1732 		if (nsegs != howmany(pktlen, MCLBYTES)) {
1733 			printf("%s: RX fragment count(%d) "
1734 			    "and packet size(%d) mismach\n",
1735 			     sc->sc_dev.dv_xname, nsegs, pktlen);
1736 			break;
1737 		}
1738 
1739 		/* Received a frame. */
1740 		jme_rxpkt(sc);
1741 		prog++;
1742 	}
1743 
1744 	if (prog > 0) {
1745 		bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_rx_ring_map, 0,
1746 		    sc->jme_cdata.jme_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1747 	}
1748 }
1749 
1750 void
1751 jme_tick(void *xsc)
1752 {
1753 	struct jme_softc *sc = xsc;
1754 	struct mii_data *mii = &sc->sc_miibus;
1755 	int s;
1756 
1757 	s = splnet();
1758 	mii_tick(mii);
1759 	timeout_add_sec(&sc->jme_tick_ch, 1);
1760 	splx(s);
1761 }
1762 
1763 void
1764 jme_reset(struct jme_softc *sc)
1765 {
1766 #ifdef foo
1767 	/* Stop receiver, transmitter. */
1768 	jme_stop_rx(sc);
1769 	jme_stop_tx(sc);
1770 #endif
1771 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
1772 	DELAY(10);
1773 	CSR_WRITE_4(sc, JME_GHC, 0);
1774 }
1775 
1776 int
1777 jme_init(struct ifnet *ifp)
1778 {
1779 	struct jme_softc *sc = ifp->if_softc;
1780 	struct mii_data *mii;
1781 	uint8_t eaddr[ETHER_ADDR_LEN];
1782 	bus_addr_t paddr;
1783 	uint32_t reg;
1784 	int error;
1785 
1786 	/*
1787 	 * Cancel any pending I/O.
1788 	 */
1789 	jme_stop(sc);
1790 
1791 	/*
1792 	 * Reset the chip to a known state.
1793 	 */
1794 	jme_reset(sc);
1795 
1796 	/*
1797 	 * Since we always use 64bit address mode for transmitting,
1798 	 * each Tx request requires one more dummy descriptor.
1799 	 */
1800 	sc->jme_txd_spare =
1801 	howmany(ifp->if_mtu + sizeof(struct ether_vlan_header), MCLBYTES) + 1;
1802 	KASSERT(sc->jme_txd_spare >= 2);
1803 
1804 	/* Init descriptors. */
1805 	error = jme_init_rx_ring(sc);
1806         if (error != 0) {
1807                 printf("%s: initialization failed: no memory for Rx buffers.\n",
1808 		    sc->sc_dev.dv_xname);
1809                 jme_stop(sc);
1810 		return (error);
1811         }
1812 	jme_init_tx_ring(sc);
1813 
1814 	/* Initialize shadow status block. */
1815 	jme_init_ssb(sc);
1816 
1817 	/* Reprogram the station address. */
1818 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1819 	CSR_WRITE_4(sc, JME_PAR0,
1820 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
1821 	CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
1822 
1823 	/*
1824 	 * Configure Tx queue.
1825 	 *  Tx priority queue weight value : 0
1826 	 *  Tx FIFO threshold for processing next packet : 16QW
1827 	 *  Maximum Tx DMA length : 512
1828 	 *  Allow Tx DMA burst.
1829 	 */
1830 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
1831 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
1832 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
1833 	sc->jme_txcsr |= sc->jme_tx_dma_size;
1834 	sc->jme_txcsr |= TXCSR_DMA_BURST;
1835 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
1836 
1837 	/* Set Tx descriptor counter. */
1838 	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
1839 
1840 	/* Set Tx ring address to the hardware. */
1841 	paddr = JME_TX_RING_ADDR(sc, 0);
1842 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
1843 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
1844 
1845 	/* Configure TxMAC parameters. */
1846 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
1847 	reg |= TXMAC_THRESH_1_PKT;
1848 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
1849 	CSR_WRITE_4(sc, JME_TXMAC, reg);
1850 
1851 	/*
1852 	 * Configure Rx queue.
1853 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
1854 	 *  FIFO threshold for processing next packet : 128QW
1855 	 *  Rx queue 0 select
1856 	 *  Max Rx DMA length : 128
1857 	 *  Rx descriptor retry : 32
1858 	 *  Rx descriptor retry time gap : 256ns
1859 	 *  Don't receive runt/bad frame.
1860 	 */
1861 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
1862 
1863 	/*
1864 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
1865 	 * than 4K bytes will suffer from Rx FIFO overruns. So
1866 	 * decrease FIFO threshold to reduce the FIFO overruns for
1867 	 * frames larger than 4000 bytes.
1868 	 * For best performance of standard MTU sized frames use
1869 	 * maximum allowable FIFO threshold, which is 32QW for
1870 	 * chips with a full mask >= 2 otherwise 128QW. FIFO
1871 	 * thresholds of 64QW and 128QW are not valid for chips
1872 	 * with a full mask >= 2.
1873 	 */
1874 	if (sc->jme_revfm >= 2)
1875 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
1876 	else {
1877 		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1878 		    ETHER_VLAN_ENCAP_LEN) > JME_RX_FIFO_SIZE)
1879 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
1880 		else
1881 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
1882 	}
1883 	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
1884 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
1885 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
1886 	/* XXX TODO DROP_BAD */
1887 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
1888 
1889 	/* Set Rx descriptor counter. */
1890 	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
1891 
1892 	/* Set Rx ring address to the hardware. */
1893 	paddr = JME_RX_RING_ADDR(sc, 0);
1894 	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
1895 	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
1896 
1897 	/* Clear receive filter. */
1898 	CSR_WRITE_4(sc, JME_RXMAC, 0);
1899 
1900 	/* Set up the receive filter. */
1901 	jme_iff(sc);
1902 
1903 	jme_set_vlan(sc);
1904 
1905 	/*
1906 	 * Disable all WOL bits as WOL can interfere normal Rx
1907 	 * operation. Also clear WOL detection status bits.
1908 	 */
1909 	reg = CSR_READ_4(sc, JME_PMCS);
1910 	reg &= ~PMCS_WOL_ENB_MASK;
1911 	CSR_WRITE_4(sc, JME_PMCS, reg);
1912 
1913 	/*
1914 	 * Pad 10bytes right before received frame. This will greatly
1915 	 * help Rx performance on strict-alignment architectures as
1916 	 * it does not need to copy the frame to align the payload.
1917 	 */
1918 	reg = CSR_READ_4(sc, JME_RXMAC);
1919 	reg |= RXMAC_PAD_10BYTES;
1920 	reg |= RXMAC_CSUM_ENB;
1921 	CSR_WRITE_4(sc, JME_RXMAC, reg);
1922 
1923 	/* Configure general purpose reg0 */
1924 	reg = CSR_READ_4(sc, JME_GPREG0);
1925 	reg &= ~GPREG0_PCC_UNIT_MASK;
1926 	/* Set PCC timer resolution to micro-seconds unit. */
1927 	reg |= GPREG0_PCC_UNIT_US;
1928 	/*
1929 	 * Disable all shadow register posting as we have to read
1930 	 * JME_INTR_STATUS register in jme_intr. Also it seems
1931 	 * that it's hard to synchronize interrupt status between
1932 	 * hardware and software with shadow posting due to
1933 	 * requirements of bus_dmamap_sync(9).
1934 	 */
1935 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
1936 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
1937 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
1938 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
1939 	/* Disable posting of DW0. */
1940 	reg &= ~GPREG0_POST_DW0_ENB;
1941 	/* Clear PME message. */
1942 	reg &= ~GPREG0_PME_ENB;
1943 	/* Set PHY address. */
1944 	reg &= ~GPREG0_PHY_ADDR_MASK;
1945 	reg |= sc->jme_phyaddr;
1946 	CSR_WRITE_4(sc, JME_GPREG0, reg);
1947 
1948 	/* Configure Tx queue 0 packet completion coalescing. */
1949 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1950 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
1951 	    PCCTX_COAL_TO_MASK;
1952 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1953 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
1954 	    PCCTX_COAL_PKT_MASK;
1955 	reg |= PCCTX_COAL_TXQ0;
1956 	CSR_WRITE_4(sc, JME_PCCTX, reg);
1957 
1958 	/* Configure Rx queue 0 packet completion coalescing. */
1959 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1960 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
1961 	    PCCRX_COAL_TO_MASK;
1962 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1963 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
1964 	    PCCRX_COAL_PKT_MASK;
1965 	CSR_WRITE_4(sc, JME_PCCRX0, reg);
1966 
1967 	/* Configure shadow status block but don't enable posting. */
1968 	paddr = sc->jme_rdata.jme_ssb_block_paddr;
1969 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
1970 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
1971 
1972 	/* Disable Timer 1 and Timer 2. */
1973 	CSR_WRITE_4(sc, JME_TIMER1, 0);
1974 	CSR_WRITE_4(sc, JME_TIMER2, 0);
1975 
1976 	/* Configure retry transmit period, retry limit value. */
1977 	CSR_WRITE_4(sc, JME_TXTRHD,
1978 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
1979 	    TXTRHD_RT_PERIOD_MASK) |
1980 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
1981 	    TXTRHD_RT_LIMIT_SHIFT));
1982 
1983 	/* Disable RSS. */
1984 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
1985 
1986 	/* Initialize the interrupt mask. */
1987 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
1988 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
1989 
1990 	/*
1991 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
1992 	 * done after detection of valid link in jme_miibus_statchg.
1993 	 */
1994 	sc->jme_flags &= ~JME_FLAG_LINK;
1995 
1996 	/* Set the current media. */
1997 	mii = &sc->sc_miibus;
1998 	mii_mediachg(mii);
1999 
2000 	timeout_add_sec(&sc->jme_tick_ch, 1);
2001 
2002 	ifp->if_flags |= IFF_RUNNING;
2003 	ifp->if_flags &= ~IFF_OACTIVE;
2004 
2005 	return (0);
2006 }
2007 
2008 void
2009 jme_stop(struct jme_softc *sc)
2010 {
2011 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2012 	struct jme_txdesc *txd;
2013 	struct jme_rxdesc *rxd;
2014 	int i;
2015 
2016 	/*
2017 	 * Mark the interface down and cancel the watchdog timer.
2018 	 */
2019 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2020 	ifp->if_timer = 0;
2021 
2022 	timeout_del(&sc->jme_tick_ch);
2023 	sc->jme_flags &= ~JME_FLAG_LINK;
2024 
2025 	/*
2026 	 * Disable interrupts.
2027 	 */
2028 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2029 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2030 
2031 	/* Disable updating shadow status block. */
2032 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2033 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2034 
2035 	/* Stop receiver, transmitter. */
2036 	jme_stop_rx(sc);
2037 	jme_stop_tx(sc);
2038 
2039 #ifdef foo
2040 	 /* Reclaim Rx/Tx buffers that have been completed. */
2041 	jme_rxeof(sc);
2042 	if (sc->jme_cdata.jme_rxhead != NULL)
2043 		m_freem(sc->jme_cdata.jme_rxhead);
2044 	JME_RXCHAIN_RESET(sc);
2045 	jme_txeof(sc);
2046 #endif
2047 
2048 	/*
2049 	 * Free partial finished RX segments
2050 	 */
2051 	if (sc->jme_cdata.jme_rxhead != NULL)
2052 		m_freem(sc->jme_cdata.jme_rxhead);
2053 	JME_RXCHAIN_RESET(sc);
2054 
2055 	/*
2056 	 * Free RX and TX mbufs still in the queues.
2057 	 */
2058 	for (i = 0; i < JME_RX_RING_CNT; i++) {
2059 		rxd = &sc->jme_cdata.jme_rxdesc[i];
2060 		if (rxd->rx_m != NULL) {
2061 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2062 			m_freem(rxd->rx_m);
2063 			rxd->rx_m = NULL;
2064 		}
2065         }
2066 	for (i = 0; i < JME_TX_RING_CNT; i++) {
2067 		txd = &sc->jme_cdata.jme_txdesc[i];
2068 		if (txd->tx_m != NULL) {
2069 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2070 			m_freem(txd->tx_m);
2071 			txd->tx_m = NULL;
2072 			txd->tx_ndesc = 0;
2073 		}
2074         }
2075 }
2076 
2077 void
2078 jme_stop_tx(struct jme_softc *sc)
2079 {
2080 	uint32_t reg;
2081 	int i;
2082 
2083 	reg = CSR_READ_4(sc, JME_TXCSR);
2084 	if ((reg & TXCSR_TX_ENB) == 0)
2085 		return;
2086 	reg &= ~TXCSR_TX_ENB;
2087 	CSR_WRITE_4(sc, JME_TXCSR, reg);
2088 	for (i = JME_TIMEOUT; i > 0; i--) {
2089 		DELAY(1);
2090 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2091 			break;
2092 	}
2093 	if (i == 0)
2094 		printf("%s: stopping transmitter timeout!\n",
2095 		    sc->sc_dev.dv_xname);
2096 }
2097 
2098 void
2099 jme_stop_rx(struct jme_softc *sc)
2100 {
2101 	uint32_t reg;
2102 	int i;
2103 
2104 	reg = CSR_READ_4(sc, JME_RXCSR);
2105 	if ((reg & RXCSR_RX_ENB) == 0)
2106 		return;
2107 	reg &= ~RXCSR_RX_ENB;
2108 	CSR_WRITE_4(sc, JME_RXCSR, reg);
2109 	for (i = JME_TIMEOUT; i > 0; i--) {
2110 		DELAY(1);
2111 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
2112 			break;
2113 	}
2114 	if (i == 0)
2115 		printf("%s: stopping recevier timeout!\n", sc->sc_dev.dv_xname);
2116 }
2117 
2118 void
2119 jme_init_tx_ring(struct jme_softc *sc)
2120 {
2121 	struct jme_ring_data *rd;
2122 	struct jme_txdesc *txd;
2123 	int i;
2124 
2125 	sc->jme_cdata.jme_tx_prod = 0;
2126 	sc->jme_cdata.jme_tx_cons = 0;
2127 	sc->jme_cdata.jme_tx_cnt = 0;
2128 
2129 	rd = &sc->jme_rdata;
2130 	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
2131 	for (i = 0; i < JME_TX_RING_CNT; i++) {
2132 		txd = &sc->jme_cdata.jme_txdesc[i];
2133 		txd->tx_m = NULL;
2134 		txd->tx_desc = &rd->jme_tx_ring[i];
2135 		txd->tx_ndesc = 0;
2136 	}
2137 
2138 	bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,
2139 	    sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2140 }
2141 
2142 void
2143 jme_init_ssb(struct jme_softc *sc)
2144 {
2145 	struct jme_ring_data *rd;
2146 
2147 	rd = &sc->jme_rdata;
2148 	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
2149 	bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_ssb_map, 0,
2150 	    sc->jme_cdata.jme_ssb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2151 }
2152 
2153 int
2154 jme_init_rx_ring(struct jme_softc *sc)
2155 {
2156 	struct jme_ring_data *rd;
2157 	struct jme_rxdesc *rxd;
2158 	int i;
2159 
2160 	KASSERT(sc->jme_cdata.jme_rxhead == NULL &&
2161 		 sc->jme_cdata.jme_rxtail == NULL &&
2162 		 sc->jme_cdata.jme_rxlen == 0);
2163 	sc->jme_cdata.jme_rx_cons = 0;
2164 
2165 	rd = &sc->jme_rdata;
2166 	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
2167 	for (i = 0; i < JME_RX_RING_CNT; i++) {
2168 		int error;
2169 
2170 		rxd = &sc->jme_cdata.jme_rxdesc[i];
2171 		rxd->rx_m = NULL;
2172 		rxd->rx_desc = &rd->jme_rx_ring[i];
2173 		error = jme_newbuf(sc, rxd);
2174 		if (error)
2175 			return (error);
2176 	}
2177 
2178 	bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_rx_ring_map, 0,
2179 	    sc->jme_cdata.jme_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2180 
2181 	return (0);
2182 }
2183 
2184 int
2185 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
2186 {
2187 	struct jme_desc *desc;
2188 	struct mbuf *m;
2189 	bus_dmamap_t map;
2190 	int error;
2191 
2192 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2193 	if (m == NULL)
2194 		return (ENOBUFS);
2195 	MCLGET(m, M_DONTWAIT);
2196 	if (!(m->m_flags & M_EXT)) {
2197 		m_freem(m);
2198 		return (ENOBUFS);
2199 	}
2200 
2201 	/*
2202 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
2203 	 * takes advantage of 10 bytes padding feature of hardware
2204 	 * in order not to copy entire frame to align IP header on
2205 	 * 32bit boundary.
2206 	 */
2207 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2208 
2209 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2210 	    sc->jme_cdata.jme_rx_sparemap, m, BUS_DMA_NOWAIT);
2211 
2212 	if (error != 0) {
2213 		m_freem(m);
2214 		printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2215 		return (error);
2216 	}
2217 
2218 	if (rxd->rx_m != NULL) {
2219 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2220 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2221 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2222 	}
2223 	map = rxd->rx_dmamap;
2224 	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
2225 	sc->jme_cdata.jme_rx_sparemap = map;
2226 	rxd->rx_m = m;
2227 
2228 	desc = rxd->rx_desc;
2229 	desc->buflen = htole32(rxd->rx_dmamap->dm_segs[0].ds_len);
2230 	desc->addr_lo =
2231 	    htole32(JME_ADDR_LO(rxd->rx_dmamap->dm_segs[0].ds_addr));
2232 	desc->addr_hi =
2233 	    htole32(JME_ADDR_HI(rxd->rx_dmamap->dm_segs[0].ds_addr));
2234 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2235 
2236 	return (0);
2237 }
2238 
2239 void
2240 jme_set_vlan(struct jme_softc *sc)
2241 {
2242 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2243 	uint32_t reg;
2244 
2245 	reg = CSR_READ_4(sc, JME_RXMAC);
2246 	reg &= ~RXMAC_VLAN_ENB;
2247 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2248 		reg |= RXMAC_VLAN_ENB;
2249 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2250 }
2251 
2252 void
2253 jme_iff(struct jme_softc *sc)
2254 {
2255 	struct arpcom *ac = &sc->sc_arpcom;
2256 	struct ifnet *ifp = &ac->ac_if;
2257 	struct ether_multi *enm;
2258 	struct ether_multistep step;
2259 	uint32_t crc;
2260 	uint32_t mchash[2];
2261 	uint32_t rxcfg;
2262 
2263 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
2264 	rxcfg &= ~(RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
2265 	    RXMAC_ALLMULTI);
2266 	ifp->if_flags &= ~IFF_ALLMULTI;
2267 
2268 	/*
2269 	 * Always accept frames destined to our station address.
2270 	 * Always accept broadcast frames.
2271 	 */
2272 	rxcfg |= RXMAC_UNICAST | RXMAC_BROADCAST;
2273 
2274 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2275 		ifp->if_flags |= IFF_ALLMULTI;
2276 		if (ifp->if_flags & IFF_PROMISC)
2277 			rxcfg |= RXMAC_PROMISC;
2278 		else
2279 			rxcfg |= RXMAC_ALLMULTI;
2280 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2281 	} else {
2282 		/*
2283 		 * Set up the multicast address filter by passing all
2284 		 * multicast addresses through a CRC generator, and then
2285 		 * using the low-order 6 bits as an index into the 64 bit
2286 		 * multicast hash table.  The high order bits select the
2287 		 * register, while the rest of the bits select the bit
2288 		 * within the register.
2289 		 */
2290 		rxcfg |= RXMAC_MULTICAST;
2291 		bzero(mchash, sizeof(mchash));
2292 
2293 		ETHER_FIRST_MULTI(step, ac, enm);
2294 		while (enm != NULL) {
2295 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2296 
2297 			/* Just want the 6 least significant bits. */
2298 			crc &= 0x3f;
2299 
2300 			/* Set the corresponding bit in the hash table. */
2301 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
2302 
2303 			ETHER_NEXT_MULTI(step, enm);
2304 		}
2305 	}
2306 
2307 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
2308 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
2309 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
2310 }
2311