1 /* $OpenBSD: if_iwn.c,v 1.203 2018/04/28 16:05:56 phessler Exp $ */ 2 3 /*- 4 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 /* 20 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 21 * adapters. 22 */ 23 24 #include "bpfilter.h" 25 26 #include <sys/param.h> 27 #include <sys/sockio.h> 28 #include <sys/mbuf.h> 29 #include <sys/kernel.h> 30 #include <sys/rwlock.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/conf.h> 35 #include <sys/device.h> 36 #include <sys/task.h> 37 #include <sys/endian.h> 38 39 #include <machine/bus.h> 40 #include <machine/intr.h> 41 42 #include <dev/pci/pcireg.h> 43 #include <dev/pci/pcivar.h> 44 #include <dev/pci/pcidevs.h> 45 46 #if NBPFILTER > 0 47 #include <net/bpf.h> 48 #endif 49 #include <net/if.h> 50 #include <net/if_dl.h> 51 #include <net/if_media.h> 52 53 #include <netinet/in.h> 54 #include <netinet/if_ether.h> 55 56 #include <net80211/ieee80211_var.h> 57 #include <net80211/ieee80211_amrr.h> 58 #include <net80211/ieee80211_mira.h> 59 #include <net80211/ieee80211_radiotap.h> 60 61 #include <dev/pci/if_iwnreg.h> 62 #include <dev/pci/if_iwnvar.h> 63 64 static const struct pci_matchid iwn_devices[] = { 65 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_1 }, 66 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_2 }, 67 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_1 }, 68 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_2 }, 69 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_1 }, 70 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_2 }, 71 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_1 }, 72 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_2 }, 73 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_1 }, 74 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_2 }, 75 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_1 }, 76 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_2 }, 77 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_1 }, 78 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_2 }, 79 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_1 }, 80 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_2 }, 81 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_1 }, 82 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_2 }, 83 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_1 }, 84 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_2 }, 85 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_1 }, 86 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_2 }, 87 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_1 }, 88 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_2 }, 89 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_1 }, 90 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_2 }, 91 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_1 }, 92 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_2 }, 93 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_1 }, 94 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_2 }, 95 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_1 }, 96 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_2 }, 97 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_1 }, 98 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_2 }, 99 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_1 }, 100 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_2 }, 101 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_1 }, 102 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_2 }, 103 }; 104 105 int iwn_match(struct device *, void *, void *); 106 void iwn_attach(struct device *, struct device *, void *); 107 int iwn4965_attach(struct iwn_softc *, pci_product_id_t); 108 int iwn5000_attach(struct iwn_softc *, pci_product_id_t); 109 #if NBPFILTER > 0 110 void iwn_radiotap_attach(struct iwn_softc *); 111 #endif 112 int iwn_detach(struct device *, int); 113 int iwn_activate(struct device *, int); 114 void iwn_wakeup(struct iwn_softc *); 115 void iwn_init_task(void *); 116 int iwn_nic_lock(struct iwn_softc *); 117 int iwn_eeprom_lock(struct iwn_softc *); 118 int iwn_init_otprom(struct iwn_softc *); 119 int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 120 int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, 121 void **, bus_size_t, bus_size_t); 122 void iwn_dma_contig_free(struct iwn_dma_info *); 123 int iwn_alloc_sched(struct iwn_softc *); 124 void iwn_free_sched(struct iwn_softc *); 125 int iwn_alloc_kw(struct iwn_softc *); 126 void iwn_free_kw(struct iwn_softc *); 127 int iwn_alloc_ict(struct iwn_softc *); 128 void iwn_free_ict(struct iwn_softc *); 129 int iwn_alloc_fwmem(struct iwn_softc *); 130 void iwn_free_fwmem(struct iwn_softc *); 131 int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 132 void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 133 void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 134 int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 135 int); 136 void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 137 void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 138 void iwn5000_ict_reset(struct iwn_softc *); 139 int iwn_read_eeprom(struct iwn_softc *); 140 void iwn4965_read_eeprom(struct iwn_softc *); 141 void iwn4965_print_power_group(struct iwn_softc *, int); 142 void iwn5000_read_eeprom(struct iwn_softc *); 143 void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 144 void iwn_read_eeprom_enhinfo(struct iwn_softc *); 145 struct ieee80211_node *iwn_node_alloc(struct ieee80211com *); 146 void iwn_newassoc(struct ieee80211com *, struct ieee80211_node *, 147 int); 148 int iwn_media_change(struct ifnet *); 149 int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 150 void iwn_iter_func(void *, struct ieee80211_node *); 151 void iwn_calib_timeout(void *); 152 int iwn_ccmp_decap(struct iwn_softc *, struct mbuf *, 153 struct ieee80211_node *); 154 void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 155 struct iwn_rx_data *); 156 void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 157 struct iwn_rx_data *); 158 void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 159 struct iwn_rx_data *); 160 void iwn5000_rx_calib_results(struct iwn_softc *, 161 struct iwn_rx_desc *, struct iwn_rx_data *); 162 void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 163 struct iwn_rx_data *); 164 void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 165 struct iwn_rx_data *); 166 void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 167 struct iwn_rx_data *); 168 void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 169 uint8_t, uint8_t, uint8_t, uint16_t); 170 void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 171 void iwn_notif_intr(struct iwn_softc *); 172 void iwn_wakeup_intr(struct iwn_softc *); 173 void iwn_fatal_intr(struct iwn_softc *); 174 int iwn_intr(void *); 175 void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 176 uint16_t); 177 void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 178 uint16_t); 179 void iwn5000_reset_sched(struct iwn_softc *, int, int); 180 int iwn_tx(struct iwn_softc *, struct mbuf *, 181 struct ieee80211_node *); 182 int iwn_rval2ridx(int); 183 void iwn_start(struct ifnet *); 184 void iwn_watchdog(struct ifnet *); 185 int iwn_ioctl(struct ifnet *, u_long, caddr_t); 186 int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 187 int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 188 int); 189 int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 190 int); 191 int iwn_set_link_quality(struct iwn_softc *, 192 struct ieee80211_node *); 193 int iwn_add_broadcast_node(struct iwn_softc *, int, int); 194 void iwn_updateedca(struct ieee80211com *); 195 void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 196 int iwn_set_critical_temp(struct iwn_softc *); 197 int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 198 void iwn4965_power_calibration(struct iwn_softc *, int); 199 int iwn4965_set_txpower(struct iwn_softc *, int); 200 int iwn5000_set_txpower(struct iwn_softc *, int); 201 int iwn4965_get_rssi(const struct iwn_rx_stat *); 202 int iwn5000_get_rssi(const struct iwn_rx_stat *); 203 int iwn_get_noise(const struct iwn_rx_general_stats *); 204 int iwn4965_get_temperature(struct iwn_softc *); 205 int iwn5000_get_temperature(struct iwn_softc *); 206 int iwn_init_sensitivity(struct iwn_softc *); 207 void iwn_collect_noise(struct iwn_softc *, 208 const struct iwn_rx_general_stats *); 209 int iwn4965_init_gains(struct iwn_softc *); 210 int iwn5000_init_gains(struct iwn_softc *); 211 int iwn4965_set_gains(struct iwn_softc *); 212 int iwn5000_set_gains(struct iwn_softc *); 213 void iwn_tune_sensitivity(struct iwn_softc *, 214 const struct iwn_rx_stats *); 215 int iwn_send_sensitivity(struct iwn_softc *); 216 int iwn_set_pslevel(struct iwn_softc *, int, int, int); 217 int iwn_send_temperature_offset(struct iwn_softc *); 218 int iwn_send_btcoex(struct iwn_softc *); 219 int iwn_send_advanced_btcoex(struct iwn_softc *); 220 int iwn5000_runtime_calib(struct iwn_softc *); 221 int iwn_config(struct iwn_softc *); 222 uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, uint8_t); 223 uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t); 224 uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t); 225 int iwn_scan(struct iwn_softc *, uint16_t, int); 226 void iwn_scan_abort(struct iwn_softc *); 227 int iwn_bgscan(struct ieee80211com *); 228 int iwn_auth(struct iwn_softc *, int); 229 int iwn_run(struct iwn_softc *); 230 int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 231 struct ieee80211_key *); 232 void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 233 struct ieee80211_key *); 234 void iwn_update_htprot(struct ieee80211com *, 235 struct ieee80211_node *); 236 int iwn_ampdu_rx_start(struct ieee80211com *, 237 struct ieee80211_node *, uint8_t); 238 void iwn_ampdu_rx_stop(struct ieee80211com *, 239 struct ieee80211_node *, uint8_t); 240 int iwn_ampdu_tx_start(struct ieee80211com *, 241 struct ieee80211_node *, uint8_t); 242 void iwn_ampdu_tx_stop(struct ieee80211com *, 243 struct ieee80211_node *, uint8_t); 244 void iwn4965_ampdu_tx_start(struct iwn_softc *, 245 struct ieee80211_node *, uint8_t, uint16_t); 246 void iwn4965_ampdu_tx_stop(struct iwn_softc *, 247 uint8_t, uint16_t); 248 void iwn5000_ampdu_tx_start(struct iwn_softc *, 249 struct ieee80211_node *, uint8_t, uint16_t); 250 void iwn5000_ampdu_tx_stop(struct iwn_softc *, 251 uint8_t, uint16_t); 252 int iwn5000_query_calibration(struct iwn_softc *); 253 int iwn5000_send_calibration(struct iwn_softc *); 254 int iwn5000_send_wimax_coex(struct iwn_softc *); 255 int iwn5000_crystal_calib(struct iwn_softc *); 256 int iwn6000_temp_offset_calib(struct iwn_softc *); 257 int iwn2000_temp_offset_calib(struct iwn_softc *); 258 int iwn4965_post_alive(struct iwn_softc *); 259 int iwn5000_post_alive(struct iwn_softc *); 260 int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 261 int); 262 int iwn4965_load_firmware(struct iwn_softc *); 263 int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 264 const uint8_t *, int); 265 int iwn5000_load_firmware(struct iwn_softc *); 266 int iwn_read_firmware_leg(struct iwn_softc *, 267 struct iwn_fw_info *); 268 int iwn_read_firmware_tlv(struct iwn_softc *, 269 struct iwn_fw_info *, uint16_t); 270 int iwn_read_firmware(struct iwn_softc *); 271 int iwn_clock_wait(struct iwn_softc *); 272 int iwn_apm_init(struct iwn_softc *); 273 void iwn_apm_stop_master(struct iwn_softc *); 274 void iwn_apm_stop(struct iwn_softc *); 275 int iwn4965_nic_config(struct iwn_softc *); 276 int iwn5000_nic_config(struct iwn_softc *); 277 int iwn_hw_prepare(struct iwn_softc *); 278 int iwn_hw_init(struct iwn_softc *); 279 void iwn_hw_stop(struct iwn_softc *); 280 int iwn_init(struct ifnet *); 281 void iwn_stop(struct ifnet *, int); 282 283 #ifdef IWN_DEBUG 284 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) 285 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) 286 int iwn_debug = 1; 287 #else 288 #define DPRINTF(x) 289 #define DPRINTFN(n, x) 290 #endif 291 292 struct cfdriver iwn_cd = { 293 NULL, "iwn", DV_IFNET 294 }; 295 296 struct cfattach iwn_ca = { 297 sizeof (struct iwn_softc), iwn_match, iwn_attach, iwn_detach, 298 iwn_activate 299 }; 300 301 int 302 iwn_match(struct device *parent, void *match, void *aux) 303 { 304 return pci_matchbyid((struct pci_attach_args *)aux, iwn_devices, 305 nitems(iwn_devices)); 306 } 307 308 void 309 iwn_attach(struct device *parent, struct device *self, void *aux) 310 { 311 struct iwn_softc *sc = (struct iwn_softc *)self; 312 struct ieee80211com *ic = &sc->sc_ic; 313 struct ifnet *ifp = &ic->ic_if; 314 struct pci_attach_args *pa = aux; 315 const char *intrstr; 316 pci_intr_handle_t ih; 317 pcireg_t memtype, reg; 318 int i, error; 319 320 sc->sc_pct = pa->pa_pc; 321 sc->sc_pcitag = pa->pa_tag; 322 sc->sc_dmat = pa->pa_dmat; 323 324 /* 325 * Get the offset of the PCI Express Capability Structure in PCI 326 * Configuration Space. 327 */ 328 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 329 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 330 if (error == 0) { 331 printf(": PCIe capability structure not found!\n"); 332 return; 333 } 334 335 /* Clear device-specific "PCI retry timeout" register (41h). */ 336 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 337 if (reg & 0xff00) 338 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 339 340 /* Hardware bug workaround. */ 341 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 342 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) { 343 DPRINTF(("PCIe INTx Disable set\n")); 344 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE; 345 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 346 PCI_COMMAND_STATUS_REG, reg); 347 } 348 349 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); 350 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, 351 &sc->sc_sh, NULL, &sc->sc_sz, 0); 352 if (error != 0) { 353 printf(": can't map mem space\n"); 354 return; 355 } 356 357 /* Install interrupt handler. */ 358 if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) { 359 printf(": can't map interrupt\n"); 360 return; 361 } 362 intrstr = pci_intr_string(sc->sc_pct, ih); 363 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc, 364 sc->sc_dev.dv_xname); 365 if (sc->sc_ih == NULL) { 366 printf(": can't establish interrupt"); 367 if (intrstr != NULL) 368 printf(" at %s", intrstr); 369 printf("\n"); 370 return; 371 } 372 printf(": %s", intrstr); 373 374 /* Read hardware revision and attach. */ 375 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0x1f; 376 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 377 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id)); 378 else 379 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id)); 380 if (error != 0) { 381 printf(": could not attach device\n"); 382 return; 383 } 384 385 if ((error = iwn_hw_prepare(sc)) != 0) { 386 printf(": hardware not ready\n"); 387 return; 388 } 389 390 /* Read MAC address, channels, etc from EEPROM. */ 391 if ((error = iwn_read_eeprom(sc)) != 0) { 392 printf(": could not read EEPROM\n"); 393 return; 394 } 395 396 /* Allocate DMA memory for firmware transfers. */ 397 if ((error = iwn_alloc_fwmem(sc)) != 0) { 398 printf(": could not allocate memory for firmware\n"); 399 return; 400 } 401 402 /* Allocate "Keep Warm" page. */ 403 if ((error = iwn_alloc_kw(sc)) != 0) { 404 printf(": could not allocate keep warm page\n"); 405 goto fail1; 406 } 407 408 /* Allocate ICT table for 5000 Series. */ 409 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 410 (error = iwn_alloc_ict(sc)) != 0) { 411 printf(": could not allocate ICT table\n"); 412 goto fail2; 413 } 414 415 /* Allocate TX scheduler "rings". */ 416 if ((error = iwn_alloc_sched(sc)) != 0) { 417 printf(": could not allocate TX scheduler rings\n"); 418 goto fail3; 419 } 420 421 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 422 for (i = 0; i < sc->ntxqs; i++) { 423 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 424 printf(": could not allocate TX ring %d\n", i); 425 goto fail4; 426 } 427 } 428 429 /* Allocate RX ring. */ 430 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 431 printf(": could not allocate RX ring\n"); 432 goto fail4; 433 } 434 435 /* Clear pending interrupts. */ 436 IWN_WRITE(sc, IWN_INT, 0xffffffff); 437 438 /* Count the number of available chains. */ 439 sc->ntxchains = 440 ((sc->txchainmask >> 2) & 1) + 441 ((sc->txchainmask >> 1) & 1) + 442 ((sc->txchainmask >> 0) & 1); 443 sc->nrxchains = 444 ((sc->rxchainmask >> 2) & 1) + 445 ((sc->rxchainmask >> 1) & 1) + 446 ((sc->rxchainmask >> 0) & 1); 447 printf(", MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains, 448 sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr)); 449 450 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 451 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 452 ic->ic_state = IEEE80211_S_INIT; 453 454 /* Set device capabilities. */ 455 ic->ic_caps = 456 IEEE80211_C_WEP | /* WEP */ 457 IEEE80211_C_RSN | /* WPA/RSN */ 458 IEEE80211_C_SCANALL | /* device scans all channels at once */ 459 IEEE80211_C_SCANALLBAND | /* driver scans all bands at once */ 460 IEEE80211_C_MONITOR | /* monitor mode supported */ 461 IEEE80211_C_SHSLOT | /* short slot time supported */ 462 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 463 IEEE80211_C_PMGT; /* power saving supported */ 464 465 /* No optional HT features supported for now, */ 466 ic->ic_htcaps = 0; 467 ic->ic_htxcaps = 0; 468 ic->ic_txbfcaps = 0; 469 ic->ic_aselcaps = 0; 470 ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */); 471 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 472 /* Set HT capabilities. */ 473 ic->ic_htcaps = IEEE80211_HTCAP_SGI20; 474 #ifdef notyet 475 ic->ic_htcaps |= 476 #if IWN_RBUF_SIZE == 8192 477 IEEE80211_HTCAP_AMSDU7935 | 478 #endif 479 IEEE80211_HTCAP_CBW20_40 | 480 IEEE80211_HTCAP_SGI40; 481 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 482 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 483 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 484 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 485 else 486 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 487 #endif /* notyet */ 488 } 489 490 /* Set supported legacy rates. */ 491 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 492 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 493 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 494 ic->ic_sup_rates[IEEE80211_MODE_11A] = 495 ieee80211_std_rateset_11a; 496 } 497 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 498 /* Set supported HT rates. */ 499 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ 500 #ifdef notyet 501 if (sc->nrxchains > 1) 502 ic->ic_sup_mcs[1] = 0xff; /* MCS 8-15 */ 503 if (sc->nrxchains > 2) 504 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 505 #endif 506 } 507 508 /* IBSS channel undefined for now. */ 509 ic->ic_ibss_chan = &ic->ic_channels[0]; 510 511 ifp->if_softc = sc; 512 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 513 ifp->if_ioctl = iwn_ioctl; 514 ifp->if_start = iwn_start; 515 ifp->if_watchdog = iwn_watchdog; 516 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 517 518 if_attach(ifp); 519 ieee80211_ifattach(ifp); 520 ic->ic_node_alloc = iwn_node_alloc; 521 ic->ic_bgscan_start = iwn_bgscan; 522 ic->ic_newassoc = iwn_newassoc; 523 ic->ic_updateedca = iwn_updateedca; 524 ic->ic_set_key = iwn_set_key; 525 ic->ic_delete_key = iwn_delete_key; 526 ic->ic_update_htprot = iwn_update_htprot; 527 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 528 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 529 #ifdef notyet 530 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 531 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 532 #endif 533 534 /* Override 802.11 state transition machine. */ 535 sc->sc_newstate = ic->ic_newstate; 536 ic->ic_newstate = iwn_newstate; 537 ieee80211_media_init(ifp, iwn_media_change, ieee80211_media_status); 538 539 sc->amrr.amrr_min_success_threshold = 1; 540 sc->amrr.amrr_max_success_threshold = 15; 541 542 #if NBPFILTER > 0 543 iwn_radiotap_attach(sc); 544 #endif 545 timeout_set(&sc->calib_to, iwn_calib_timeout, sc); 546 rw_init(&sc->sc_rwlock, "iwnlock"); 547 task_set(&sc->init_task, iwn_init_task, sc); 548 return; 549 550 /* Free allocated memory if something failed during attachment. */ 551 fail4: while (--i >= 0) 552 iwn_free_tx_ring(sc, &sc->txq[i]); 553 iwn_free_sched(sc); 554 fail3: if (sc->ict != NULL) 555 iwn_free_ict(sc); 556 fail2: iwn_free_kw(sc); 557 fail1: iwn_free_fwmem(sc); 558 } 559 560 int 561 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid) 562 { 563 struct iwn_ops *ops = &sc->ops; 564 565 ops->load_firmware = iwn4965_load_firmware; 566 ops->read_eeprom = iwn4965_read_eeprom; 567 ops->post_alive = iwn4965_post_alive; 568 ops->nic_config = iwn4965_nic_config; 569 ops->update_sched = iwn4965_update_sched; 570 ops->get_temperature = iwn4965_get_temperature; 571 ops->get_rssi = iwn4965_get_rssi; 572 ops->set_txpower = iwn4965_set_txpower; 573 ops->init_gains = iwn4965_init_gains; 574 ops->set_gains = iwn4965_set_gains; 575 ops->add_node = iwn4965_add_node; 576 ops->tx_done = iwn4965_tx_done; 577 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 578 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 579 sc->ntxqs = IWN4965_NTXQUEUES; 580 sc->ndmachnls = IWN4965_NDMACHNLS; 581 sc->broadcast_id = IWN4965_ID_BROADCAST; 582 sc->rxonsz = IWN4965_RXONSZ; 583 sc->schedsz = IWN4965_SCHEDSZ; 584 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 585 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 586 sc->fwsz = IWN4965_FWSZ; 587 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 588 sc->limits = &iwn4965_sensitivity_limits; 589 sc->fwname = "iwn-4965"; 590 /* Override chains masks, ROM is known to be broken. */ 591 sc->txchainmask = IWN_ANT_AB; 592 sc->rxchainmask = IWN_ANT_ABC; 593 594 return 0; 595 } 596 597 int 598 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid) 599 { 600 struct iwn_ops *ops = &sc->ops; 601 602 ops->load_firmware = iwn5000_load_firmware; 603 ops->read_eeprom = iwn5000_read_eeprom; 604 ops->post_alive = iwn5000_post_alive; 605 ops->nic_config = iwn5000_nic_config; 606 ops->update_sched = iwn5000_update_sched; 607 ops->get_temperature = iwn5000_get_temperature; 608 ops->get_rssi = iwn5000_get_rssi; 609 ops->set_txpower = iwn5000_set_txpower; 610 ops->init_gains = iwn5000_init_gains; 611 ops->set_gains = iwn5000_set_gains; 612 ops->add_node = iwn5000_add_node; 613 ops->tx_done = iwn5000_tx_done; 614 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 615 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 616 sc->ntxqs = IWN5000_NTXQUEUES; 617 sc->ndmachnls = IWN5000_NDMACHNLS; 618 sc->broadcast_id = IWN5000_ID_BROADCAST; 619 sc->rxonsz = IWN5000_RXONSZ; 620 sc->schedsz = IWN5000_SCHEDSZ; 621 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 622 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 623 sc->fwsz = IWN5000_FWSZ; 624 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 625 626 switch (sc->hw_type) { 627 case IWN_HW_REV_TYPE_5100: 628 sc->limits = &iwn5000_sensitivity_limits; 629 sc->fwname = "iwn-5000"; 630 /* Override chains masks, ROM is known to be broken. */ 631 sc->txchainmask = IWN_ANT_B; 632 sc->rxchainmask = IWN_ANT_AB; 633 break; 634 case IWN_HW_REV_TYPE_5150: 635 sc->limits = &iwn5150_sensitivity_limits; 636 sc->fwname = "iwn-5150"; 637 break; 638 case IWN_HW_REV_TYPE_5300: 639 case IWN_HW_REV_TYPE_5350: 640 sc->limits = &iwn5000_sensitivity_limits; 641 sc->fwname = "iwn-5000"; 642 break; 643 case IWN_HW_REV_TYPE_1000: 644 sc->limits = &iwn1000_sensitivity_limits; 645 sc->fwname = "iwn-1000"; 646 break; 647 case IWN_HW_REV_TYPE_6000: 648 sc->limits = &iwn6000_sensitivity_limits; 649 sc->fwname = "iwn-6000"; 650 if (pid == PCI_PRODUCT_INTEL_WL_6200_1 || 651 pid == PCI_PRODUCT_INTEL_WL_6200_2) { 652 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 653 /* Override chains masks, ROM is known to be broken. */ 654 sc->txchainmask = IWN_ANT_BC; 655 sc->rxchainmask = IWN_ANT_BC; 656 } 657 break; 658 case IWN_HW_REV_TYPE_6050: 659 sc->limits = &iwn6000_sensitivity_limits; 660 sc->fwname = "iwn-6050"; 661 break; 662 case IWN_HW_REV_TYPE_6005: 663 sc->limits = &iwn6000_sensitivity_limits; 664 if (pid != PCI_PRODUCT_INTEL_WL_6005_1 && 665 pid != PCI_PRODUCT_INTEL_WL_6005_2) { 666 sc->fwname = "iwn-6030"; 667 sc->sc_flags |= IWN_FLAG_ADV_BT_COEX; 668 } else 669 sc->fwname = "iwn-6005"; 670 break; 671 case IWN_HW_REV_TYPE_2030: 672 sc->limits = &iwn2000_sensitivity_limits; 673 sc->fwname = "iwn-2030"; 674 sc->sc_flags |= IWN_FLAG_ADV_BT_COEX; 675 break; 676 case IWN_HW_REV_TYPE_2000: 677 sc->limits = &iwn2000_sensitivity_limits; 678 sc->fwname = "iwn-2000"; 679 break; 680 case IWN_HW_REV_TYPE_135: 681 sc->limits = &iwn2000_sensitivity_limits; 682 sc->fwname = "iwn-135"; 683 sc->sc_flags |= IWN_FLAG_ADV_BT_COEX; 684 break; 685 case IWN_HW_REV_TYPE_105: 686 sc->limits = &iwn2000_sensitivity_limits; 687 sc->fwname = "iwn-105"; 688 break; 689 default: 690 printf(": adapter type %d not supported\n", sc->hw_type); 691 return ENOTSUP; 692 } 693 return 0; 694 } 695 696 #if NBPFILTER > 0 697 /* 698 * Attach the interface to 802.11 radiotap. 699 */ 700 void 701 iwn_radiotap_attach(struct iwn_softc *sc) 702 { 703 bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO, 704 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 705 706 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 707 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 708 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); 709 710 sc->sc_txtap_len = sizeof sc->sc_txtapu; 711 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 712 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); 713 } 714 #endif 715 716 int 717 iwn_detach(struct device *self, int flags) 718 { 719 struct iwn_softc *sc = (struct iwn_softc *)self; 720 struct ifnet *ifp = &sc->sc_ic.ic_if; 721 int qid; 722 723 timeout_del(&sc->calib_to); 724 task_del(systq, &sc->init_task); 725 726 /* Uninstall interrupt handler. */ 727 if (sc->sc_ih != NULL) 728 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 729 730 /* Free DMA resources. */ 731 iwn_free_rx_ring(sc, &sc->rxq); 732 for (qid = 0; qid < sc->ntxqs; qid++) 733 iwn_free_tx_ring(sc, &sc->txq[qid]); 734 iwn_free_sched(sc); 735 iwn_free_kw(sc); 736 if (sc->ict != NULL) 737 iwn_free_ict(sc); 738 iwn_free_fwmem(sc); 739 740 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 741 742 ieee80211_ifdetach(ifp); 743 if_detach(ifp); 744 745 return 0; 746 } 747 748 int 749 iwn_activate(struct device *self, int act) 750 { 751 struct iwn_softc *sc = (struct iwn_softc *)self; 752 struct ifnet *ifp = &sc->sc_ic.ic_if; 753 754 switch (act) { 755 case DVACT_SUSPEND: 756 if (ifp->if_flags & IFF_RUNNING) 757 iwn_stop(ifp, 0); 758 break; 759 case DVACT_WAKEUP: 760 iwn_wakeup(sc); 761 break; 762 } 763 764 return 0; 765 } 766 767 void 768 iwn_wakeup(struct iwn_softc *sc) 769 { 770 pcireg_t reg; 771 772 /* Clear device-specific "PCI retry timeout" register (41h). */ 773 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 774 if (reg & 0xff00) 775 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 776 iwn_init_task(sc); 777 } 778 779 void 780 iwn_init_task(void *arg1) 781 { 782 struct iwn_softc *sc = arg1; 783 struct ifnet *ifp = &sc->sc_ic.ic_if; 784 int s; 785 786 rw_enter_write(&sc->sc_rwlock); 787 s = splnet(); 788 789 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP) 790 iwn_init(ifp); 791 792 splx(s); 793 rw_exit_write(&sc->sc_rwlock); 794 } 795 796 int 797 iwn_nic_lock(struct iwn_softc *sc) 798 { 799 int ntries; 800 801 /* Request exclusive access to NIC. */ 802 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 803 804 /* Spin until we actually get the lock. */ 805 for (ntries = 0; ntries < 1000; ntries++) { 806 if ((IWN_READ(sc, IWN_GP_CNTRL) & 807 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 808 IWN_GP_CNTRL_MAC_ACCESS_ENA) 809 return 0; 810 DELAY(10); 811 } 812 return ETIMEDOUT; 813 } 814 815 static __inline void 816 iwn_nic_unlock(struct iwn_softc *sc) 817 { 818 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 819 } 820 821 static __inline uint32_t 822 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 823 { 824 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 825 IWN_BARRIER_READ_WRITE(sc); 826 return IWN_READ(sc, IWN_PRPH_RDATA); 827 } 828 829 static __inline void 830 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 831 { 832 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 833 IWN_BARRIER_WRITE(sc); 834 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 835 } 836 837 static __inline void 838 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 839 { 840 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 841 } 842 843 static __inline void 844 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 845 { 846 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 847 } 848 849 static __inline void 850 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 851 const uint32_t *data, int count) 852 { 853 for (; count > 0; count--, data++, addr += 4) 854 iwn_prph_write(sc, addr, *data); 855 } 856 857 static __inline uint32_t 858 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 859 { 860 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 861 IWN_BARRIER_READ_WRITE(sc); 862 return IWN_READ(sc, IWN_MEM_RDATA); 863 } 864 865 static __inline void 866 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 867 { 868 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 869 IWN_BARRIER_WRITE(sc); 870 IWN_WRITE(sc, IWN_MEM_WDATA, data); 871 } 872 873 static __inline void 874 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 875 { 876 uint32_t tmp; 877 878 tmp = iwn_mem_read(sc, addr & ~3); 879 if (addr & 3) 880 tmp = (tmp & 0x0000ffff) | data << 16; 881 else 882 tmp = (tmp & 0xffff0000) | data; 883 iwn_mem_write(sc, addr & ~3, tmp); 884 } 885 886 #ifdef IWN_DEBUG 887 888 static __inline void 889 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 890 int count) 891 { 892 for (; count > 0; count--, addr += 4) 893 *data++ = iwn_mem_read(sc, addr); 894 } 895 896 #endif 897 898 static __inline void 899 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 900 int count) 901 { 902 for (; count > 0; count--, addr += 4) 903 iwn_mem_write(sc, addr, val); 904 } 905 906 int 907 iwn_eeprom_lock(struct iwn_softc *sc) 908 { 909 int i, ntries; 910 911 for (i = 0; i < 100; i++) { 912 /* Request exclusive access to EEPROM. */ 913 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 914 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 915 916 /* Spin until we actually get the lock. */ 917 for (ntries = 0; ntries < 100; ntries++) { 918 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 919 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 920 return 0; 921 DELAY(10); 922 } 923 } 924 return ETIMEDOUT; 925 } 926 927 static __inline void 928 iwn_eeprom_unlock(struct iwn_softc *sc) 929 { 930 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 931 } 932 933 /* 934 * Initialize access by host to One Time Programmable ROM. 935 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 936 */ 937 int 938 iwn_init_otprom(struct iwn_softc *sc) 939 { 940 uint16_t prev, base, next; 941 int count, error; 942 943 /* Wait for clock stabilization before accessing prph. */ 944 if ((error = iwn_clock_wait(sc)) != 0) 945 return error; 946 947 if ((error = iwn_nic_lock(sc)) != 0) 948 return error; 949 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 950 DELAY(5); 951 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 952 iwn_nic_unlock(sc); 953 954 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 955 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 956 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 957 IWN_RESET_LINK_PWR_MGMT_DIS); 958 } 959 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 960 /* Clear ECC status. */ 961 IWN_SETBITS(sc, IWN_OTP_GP, 962 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 963 964 /* 965 * Find the block before last block (contains the EEPROM image) 966 * for HW without OTP shadow RAM. 967 */ 968 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 969 /* Switch to absolute addressing mode. */ 970 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 971 base = 0; 972 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 973 error = iwn_read_prom_data(sc, base, &next, 2); 974 if (error != 0) 975 return error; 976 if (next == 0) /* End of linked-list. */ 977 break; 978 prev = base; 979 base = letoh16(next); 980 } 981 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 982 return EIO; 983 /* Skip "next" word. */ 984 sc->prom_base = prev + 1; 985 } 986 return 0; 987 } 988 989 int 990 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 991 { 992 uint8_t *out = data; 993 uint32_t val, tmp; 994 int ntries; 995 996 addr += sc->prom_base; 997 for (; count > 0; count -= 2, addr++) { 998 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 999 for (ntries = 0; ntries < 10; ntries++) { 1000 val = IWN_READ(sc, IWN_EEPROM); 1001 if (val & IWN_EEPROM_READ_VALID) 1002 break; 1003 DELAY(5); 1004 } 1005 if (ntries == 10) { 1006 printf("%s: timeout reading ROM at 0x%x\n", 1007 sc->sc_dev.dv_xname, addr); 1008 return ETIMEDOUT; 1009 } 1010 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1011 /* OTPROM, check for ECC errors. */ 1012 tmp = IWN_READ(sc, IWN_OTP_GP); 1013 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1014 printf("%s: OTPROM ECC error at 0x%x\n", 1015 sc->sc_dev.dv_xname, addr); 1016 return EIO; 1017 } 1018 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1019 /* Correctable ECC error, clear bit. */ 1020 IWN_SETBITS(sc, IWN_OTP_GP, 1021 IWN_OTP_GP_ECC_CORR_STTS); 1022 } 1023 } 1024 *out++ = val >> 16; 1025 if (count > 1) 1026 *out++ = val >> 24; 1027 } 1028 return 0; 1029 } 1030 1031 int 1032 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, 1033 bus_size_t size, bus_size_t alignment) 1034 { 1035 int nsegs, error; 1036 1037 dma->tag = tag; 1038 dma->size = size; 1039 1040 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 1041 &dma->map); 1042 if (error != 0) 1043 goto fail; 1044 1045 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 1046 BUS_DMA_NOWAIT | BUS_DMA_ZERO); 1047 if (error != 0) 1048 goto fail; 1049 1050 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 1051 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 1052 if (error != 0) 1053 goto fail; 1054 1055 error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size, 1056 BUS_DMA_NOWAIT); 1057 if (error != 0) 1058 goto fail; 1059 1060 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 1061 1062 dma->paddr = dma->map->dm_segs[0].ds_addr; 1063 if (kvap != NULL) 1064 *kvap = dma->vaddr; 1065 1066 return 0; 1067 1068 fail: iwn_dma_contig_free(dma); 1069 return error; 1070 } 1071 1072 void 1073 iwn_dma_contig_free(struct iwn_dma_info *dma) 1074 { 1075 if (dma->map != NULL) { 1076 if (dma->vaddr != NULL) { 1077 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 1078 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1079 bus_dmamap_unload(dma->tag, dma->map); 1080 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 1081 bus_dmamem_free(dma->tag, &dma->seg, 1); 1082 dma->vaddr = NULL; 1083 } 1084 bus_dmamap_destroy(dma->tag, dma->map); 1085 dma->map = NULL; 1086 } 1087 } 1088 1089 int 1090 iwn_alloc_sched(struct iwn_softc *sc) 1091 { 1092 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1093 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 1094 (void **)&sc->sched, sc->schedsz, 1024); 1095 } 1096 1097 void 1098 iwn_free_sched(struct iwn_softc *sc) 1099 { 1100 iwn_dma_contig_free(&sc->sched_dma); 1101 } 1102 1103 int 1104 iwn_alloc_kw(struct iwn_softc *sc) 1105 { 1106 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1107 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096, 1108 4096); 1109 } 1110 1111 void 1112 iwn_free_kw(struct iwn_softc *sc) 1113 { 1114 iwn_dma_contig_free(&sc->kw_dma); 1115 } 1116 1117 int 1118 iwn_alloc_ict(struct iwn_softc *sc) 1119 { 1120 /* ICT table must be aligned on a 4KB boundary. */ 1121 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 1122 (void **)&sc->ict, IWN_ICT_SIZE, 4096); 1123 } 1124 1125 void 1126 iwn_free_ict(struct iwn_softc *sc) 1127 { 1128 iwn_dma_contig_free(&sc->ict_dma); 1129 } 1130 1131 int 1132 iwn_alloc_fwmem(struct iwn_softc *sc) 1133 { 1134 /* Must be aligned on a 16-byte boundary. */ 1135 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 1136 sc->fwsz, 16); 1137 } 1138 1139 void 1140 iwn_free_fwmem(struct iwn_softc *sc) 1141 { 1142 iwn_dma_contig_free(&sc->fw_dma); 1143 } 1144 1145 int 1146 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1147 { 1148 bus_size_t size; 1149 int i, error; 1150 1151 ring->cur = 0; 1152 1153 /* Allocate RX descriptors (256-byte aligned). */ 1154 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1155 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1156 (void **)&ring->desc, size, 256); 1157 if (error != 0) { 1158 printf("%s: could not allocate RX ring DMA memory\n", 1159 sc->sc_dev.dv_xname); 1160 goto fail; 1161 } 1162 1163 /* Allocate RX status area (16-byte aligned). */ 1164 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 1165 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); 1166 if (error != 0) { 1167 printf("%s: could not allocate RX status DMA memory\n", 1168 sc->sc_dev.dv_xname); 1169 goto fail; 1170 } 1171 1172 /* 1173 * Allocate and map RX buffers. 1174 */ 1175 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1176 struct iwn_rx_data *data = &ring->data[i]; 1177 1178 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1, 1179 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 1180 &data->map); 1181 if (error != 0) { 1182 printf("%s: could not create RX buf DMA map\n", 1183 sc->sc_dev.dv_xname); 1184 goto fail; 1185 } 1186 1187 data->m = MCLGETI(NULL, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1188 if (data->m == NULL) { 1189 printf("%s: could not allocate RX mbuf\n", 1190 sc->sc_dev.dv_xname); 1191 error = ENOBUFS; 1192 goto fail; 1193 } 1194 1195 error = bus_dmamap_load(sc->sc_dmat, data->map, 1196 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1197 BUS_DMA_NOWAIT | BUS_DMA_READ); 1198 if (error != 0) { 1199 printf("%s: can't map mbuf (error %d)\n", 1200 sc->sc_dev.dv_xname, error); 1201 goto fail; 1202 } 1203 1204 /* Set physical address of RX buffer (256-byte aligned). */ 1205 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8); 1206 } 1207 1208 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 1209 BUS_DMASYNC_PREWRITE); 1210 1211 return 0; 1212 1213 fail: iwn_free_rx_ring(sc, ring); 1214 return error; 1215 } 1216 1217 void 1218 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1219 { 1220 int ntries; 1221 1222 if (iwn_nic_lock(sc) == 0) { 1223 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1224 for (ntries = 0; ntries < 1000; ntries++) { 1225 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1226 IWN_FH_RX_STATUS_IDLE) 1227 break; 1228 DELAY(10); 1229 } 1230 iwn_nic_unlock(sc); 1231 } 1232 ring->cur = 0; 1233 sc->last_rx_valid = 0; 1234 } 1235 1236 void 1237 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1238 { 1239 int i; 1240 1241 iwn_dma_contig_free(&ring->desc_dma); 1242 iwn_dma_contig_free(&ring->stat_dma); 1243 1244 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1245 struct iwn_rx_data *data = &ring->data[i]; 1246 1247 if (data->m != NULL) { 1248 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1249 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1250 bus_dmamap_unload(sc->sc_dmat, data->map); 1251 m_freem(data->m); 1252 } 1253 if (data->map != NULL) 1254 bus_dmamap_destroy(sc->sc_dmat, data->map); 1255 } 1256 } 1257 1258 int 1259 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1260 { 1261 bus_addr_t paddr; 1262 bus_size_t size; 1263 int i, error; 1264 1265 ring->qid = qid; 1266 ring->queued = 0; 1267 ring->cur = 0; 1268 1269 /* Allocate TX descriptors (256-byte aligned). */ 1270 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1271 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1272 (void **)&ring->desc, size, 256); 1273 if (error != 0) { 1274 printf("%s: could not allocate TX ring DMA memory\n", 1275 sc->sc_dev.dv_xname); 1276 goto fail; 1277 } 1278 /* 1279 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1280 * to allocate commands space for other rings. 1281 * XXX Do we really need to allocate descriptors for other rings? 1282 */ 1283 if (qid > 4) 1284 return 0; 1285 1286 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1287 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 1288 (void **)&ring->cmd, size, 4); 1289 if (error != 0) { 1290 printf("%s: could not allocate TX cmd DMA memory\n", 1291 sc->sc_dev.dv_xname); 1292 goto fail; 1293 } 1294 1295 paddr = ring->cmd_dma.paddr; 1296 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1297 struct iwn_tx_data *data = &ring->data[i]; 1298 1299 data->cmd_paddr = paddr; 1300 data->scratch_paddr = paddr + 12; 1301 paddr += sizeof (struct iwn_tx_cmd); 1302 1303 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1304 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 1305 &data->map); 1306 if (error != 0) { 1307 printf("%s: could not create TX buf DMA map\n", 1308 sc->sc_dev.dv_xname); 1309 goto fail; 1310 } 1311 } 1312 return 0; 1313 1314 fail: iwn_free_tx_ring(sc, ring); 1315 return error; 1316 } 1317 1318 void 1319 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1320 { 1321 int i; 1322 1323 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1324 struct iwn_tx_data *data = &ring->data[i]; 1325 1326 if (data->m != NULL) { 1327 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1328 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1329 bus_dmamap_unload(sc->sc_dmat, data->map); 1330 m_freem(data->m); 1331 data->m = NULL; 1332 } 1333 } 1334 /* Clear TX descriptors. */ 1335 memset(ring->desc, 0, ring->desc_dma.size); 1336 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1337 ring->desc_dma.size, BUS_DMASYNC_PREWRITE); 1338 sc->qfullmsk &= ~(1 << ring->qid); 1339 ring->queued = 0; 1340 ring->cur = 0; 1341 } 1342 1343 void 1344 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1345 { 1346 int i; 1347 1348 iwn_dma_contig_free(&ring->desc_dma); 1349 iwn_dma_contig_free(&ring->cmd_dma); 1350 1351 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1352 struct iwn_tx_data *data = &ring->data[i]; 1353 1354 if (data->m != NULL) { 1355 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1356 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1357 bus_dmamap_unload(sc->sc_dmat, data->map); 1358 m_freem(data->m); 1359 } 1360 if (data->map != NULL) 1361 bus_dmamap_destroy(sc->sc_dmat, data->map); 1362 } 1363 } 1364 1365 void 1366 iwn5000_ict_reset(struct iwn_softc *sc) 1367 { 1368 /* Disable interrupts. */ 1369 IWN_WRITE(sc, IWN_INT_MASK, 0); 1370 1371 /* Reset ICT table. */ 1372 memset(sc->ict, 0, IWN_ICT_SIZE); 1373 sc->ict_cur = 0; 1374 1375 /* Set physical address of ICT table (4KB aligned). */ 1376 DPRINTF(("enabling ICT\n")); 1377 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1378 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1379 1380 /* Enable periodic RX interrupt. */ 1381 sc->int_mask |= IWN_INT_RX_PERIODIC; 1382 /* Switch to ICT interrupt mode in driver. */ 1383 sc->sc_flags |= IWN_FLAG_USE_ICT; 1384 1385 /* Re-enable interrupts. */ 1386 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1387 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1388 } 1389 1390 int 1391 iwn_read_eeprom(struct iwn_softc *sc) 1392 { 1393 struct iwn_ops *ops = &sc->ops; 1394 struct ieee80211com *ic = &sc->sc_ic; 1395 uint16_t val; 1396 int error; 1397 1398 /* Check whether adapter has an EEPROM or an OTPROM. */ 1399 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1400 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1401 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1402 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? 1403 "OTPROM" : "EEPROM")); 1404 1405 /* Adapter has to be powered on for EEPROM access to work. */ 1406 if ((error = iwn_apm_init(sc)) != 0) { 1407 printf("%s: could not power ON adapter\n", 1408 sc->sc_dev.dv_xname); 1409 return error; 1410 } 1411 1412 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1413 printf("%s: bad ROM signature\n", sc->sc_dev.dv_xname); 1414 return EIO; 1415 } 1416 if ((error = iwn_eeprom_lock(sc)) != 0) { 1417 printf("%s: could not lock ROM (error=%d)\n", 1418 sc->sc_dev.dv_xname, error); 1419 return error; 1420 } 1421 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1422 if ((error = iwn_init_otprom(sc)) != 0) { 1423 printf("%s: could not initialize OTPROM\n", 1424 sc->sc_dev.dv_xname); 1425 return error; 1426 } 1427 } 1428 1429 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 1430 DPRINTF(("SKU capabilities=0x%04x\n", letoh16(val))); 1431 /* Check if HT support is bonded out. */ 1432 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 1433 sc->sc_flags |= IWN_FLAG_HAS_11N; 1434 1435 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1436 sc->rfcfg = letoh16(val); 1437 DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); 1438 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 1439 if (sc->txchainmask == 0) 1440 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 1441 if (sc->rxchainmask == 0) 1442 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 1443 1444 /* Read MAC address. */ 1445 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6); 1446 1447 /* Read adapter-specific information from EEPROM. */ 1448 ops->read_eeprom(sc); 1449 1450 iwn_apm_stop(sc); /* Power OFF adapter. */ 1451 1452 iwn_eeprom_unlock(sc); 1453 return 0; 1454 } 1455 1456 void 1457 iwn4965_read_eeprom(struct iwn_softc *sc) 1458 { 1459 uint32_t addr; 1460 uint16_t val; 1461 int i; 1462 1463 /* Read regulatory domain (4 ASCII characters). */ 1464 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1465 1466 /* Read the list of authorized channels (20MHz ones only). */ 1467 for (i = 0; i < 5; i++) { 1468 addr = iwn4965_regulatory_bands[i]; 1469 iwn_read_eeprom_channels(sc, i, addr); 1470 } 1471 1472 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1473 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1474 sc->maxpwr2GHz = val & 0xff; 1475 sc->maxpwr5GHz = val >> 8; 1476 /* Check that EEPROM values are within valid range. */ 1477 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1478 sc->maxpwr5GHz = 38; 1479 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1480 sc->maxpwr2GHz = 38; 1481 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); 1482 1483 /* Read samples for each TX power group. */ 1484 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1485 sizeof sc->bands); 1486 1487 /* Read voltage at which samples were taken. */ 1488 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1489 sc->eeprom_voltage = (int16_t)letoh16(val); 1490 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); 1491 1492 #ifdef IWN_DEBUG 1493 /* Print samples. */ 1494 if (iwn_debug > 0) { 1495 for (i = 0; i < IWN_NBANDS; i++) 1496 iwn4965_print_power_group(sc, i); 1497 } 1498 #endif 1499 } 1500 1501 #ifdef IWN_DEBUG 1502 void 1503 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1504 { 1505 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1506 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1507 int j, c; 1508 1509 printf("===band %d===\n", i); 1510 printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1511 printf("chan1 num=%d\n", chans[0].num); 1512 for (c = 0; c < 2; c++) { 1513 for (j = 0; j < IWN_NSAMPLES; j++) { 1514 printf("chain %d, sample %d: temp=%d gain=%d " 1515 "power=%d pa_det=%d\n", c, j, 1516 chans[0].samples[c][j].temp, 1517 chans[0].samples[c][j].gain, 1518 chans[0].samples[c][j].power, 1519 chans[0].samples[c][j].pa_det); 1520 } 1521 } 1522 printf("chan2 num=%d\n", chans[1].num); 1523 for (c = 0; c < 2; c++) { 1524 for (j = 0; j < IWN_NSAMPLES; j++) { 1525 printf("chain %d, sample %d: temp=%d gain=%d " 1526 "power=%d pa_det=%d\n", c, j, 1527 chans[1].samples[c][j].temp, 1528 chans[1].samples[c][j].gain, 1529 chans[1].samples[c][j].power, 1530 chans[1].samples[c][j].pa_det); 1531 } 1532 } 1533 } 1534 #endif 1535 1536 void 1537 iwn5000_read_eeprom(struct iwn_softc *sc) 1538 { 1539 struct iwn5000_eeprom_calib_hdr hdr; 1540 int32_t volt; 1541 uint32_t base, addr; 1542 uint16_t val; 1543 int i; 1544 1545 /* Read regulatory domain (4 ASCII characters). */ 1546 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1547 base = letoh16(val); 1548 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1549 sc->eeprom_domain, 4); 1550 1551 /* Read the list of authorized channels (20MHz ones only). */ 1552 for (i = 0; i < 5; i++) { 1553 addr = base + iwn5000_regulatory_bands[i]; 1554 iwn_read_eeprom_channels(sc, i, addr); 1555 } 1556 1557 /* Read enhanced TX power information for 6000 Series. */ 1558 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1559 iwn_read_eeprom_enhinfo(sc); 1560 1561 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1562 base = letoh16(val); 1563 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1564 DPRINTF(("calib version=%u pa type=%u voltage=%u\n", 1565 hdr.version, hdr.pa_type, letoh16(hdr.volt))); 1566 sc->calib_ver = hdr.version; 1567 1568 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 1569 sc->hw_type == IWN_HW_REV_TYPE_2000 || 1570 sc->hw_type == IWN_HW_REV_TYPE_135 || 1571 sc->hw_type == IWN_HW_REV_TYPE_105) { 1572 sc->eeprom_voltage = letoh16(hdr.volt); 1573 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1574 sc->eeprom_temp = letoh16(val); 1575 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2); 1576 sc->eeprom_rawtemp = letoh16(val); 1577 } 1578 1579 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1580 /* Compute temperature offset. */ 1581 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1582 sc->eeprom_temp = letoh16(val); 1583 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1584 volt = letoh16(val); 1585 sc->temp_off = sc->eeprom_temp - (volt / -5); 1586 DPRINTF(("temp=%d volt=%d offset=%dK\n", 1587 sc->eeprom_temp, volt, sc->temp_off)); 1588 } else { 1589 /* Read crystal calibration. */ 1590 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1591 &sc->eeprom_crystal, sizeof (uint32_t)); 1592 DPRINTF(("crystal calibration 0x%08x\n", 1593 letoh32(sc->eeprom_crystal))); 1594 } 1595 } 1596 1597 void 1598 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1599 { 1600 struct ieee80211com *ic = &sc->sc_ic; 1601 const struct iwn_chan_band *band = &iwn_bands[n]; 1602 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 1603 uint8_t chan; 1604 int i; 1605 1606 iwn_read_prom_data(sc, addr, channels, 1607 band->nchan * sizeof (struct iwn_eeprom_chan)); 1608 1609 for (i = 0; i < band->nchan; i++) { 1610 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 1611 continue; 1612 1613 chan = band->chan[i]; 1614 1615 if (n == 0) { /* 2GHz band */ 1616 ic->ic_channels[chan].ic_freq = 1617 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 1618 ic->ic_channels[chan].ic_flags = 1619 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 1620 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 1621 1622 } else { /* 5GHz band */ 1623 /* 1624 * Some adapters support channels 7, 8, 11 and 12 1625 * both in the 2GHz and 4.9GHz bands. 1626 * Because of limitations in our net80211 layer, 1627 * we don't support them in the 4.9GHz band. 1628 */ 1629 if (chan <= 14) 1630 continue; 1631 1632 ic->ic_channels[chan].ic_freq = 1633 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 1634 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 1635 /* We have at least one valid 5GHz channel. */ 1636 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 1637 } 1638 1639 /* Is active scan allowed on this channel? */ 1640 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 1641 ic->ic_channels[chan].ic_flags |= 1642 IEEE80211_CHAN_PASSIVE; 1643 } 1644 1645 /* Save maximum allowed TX power for this channel. */ 1646 sc->maxpwr[chan] = channels[i].maxpwr; 1647 1648 if (sc->sc_flags & IWN_FLAG_HAS_11N) 1649 ic->ic_channels[chan].ic_flags |= IEEE80211_CHAN_HT; 1650 1651 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 1652 chan, channels[i].flags, sc->maxpwr[chan])); 1653 } 1654 } 1655 1656 void 1657 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 1658 { 1659 struct iwn_eeprom_enhinfo enhinfo[35]; 1660 uint16_t val, base; 1661 int8_t maxpwr; 1662 int i; 1663 1664 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1665 base = letoh16(val); 1666 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 1667 enhinfo, sizeof enhinfo); 1668 1669 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 1670 for (i = 0; i < nitems(enhinfo); i++) { 1671 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0) 1672 continue; /* Skip invalid entries. */ 1673 1674 maxpwr = 0; 1675 if (sc->txchainmask & IWN_ANT_A) 1676 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 1677 if (sc->txchainmask & IWN_ANT_B) 1678 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 1679 if (sc->txchainmask & IWN_ANT_C) 1680 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 1681 if (sc->ntxchains == 2) 1682 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 1683 else if (sc->ntxchains == 3) 1684 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 1685 maxpwr /= 2; /* Convert half-dBm to dBm. */ 1686 1687 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr)); 1688 sc->enh_maxpwr[i] = maxpwr; 1689 } 1690 } 1691 1692 struct ieee80211_node * 1693 iwn_node_alloc(struct ieee80211com *ic) 1694 { 1695 return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO); 1696 } 1697 1698 void 1699 iwn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 1700 { 1701 struct iwn_softc *sc = ic->ic_if.if_softc; 1702 struct iwn_node *wn = (void *)ni; 1703 uint8_t rate; 1704 int ridx, i; 1705 1706 if ((ni->ni_flags & IEEE80211_NODE_HT) == 0) 1707 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 1708 1709 /* Start at lowest available bit-rate, AMRR/MiRA will raise. */ 1710 ni->ni_txrate = 0; 1711 ni->ni_txmcs = 0; 1712 1713 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 1714 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 1715 /* Map 802.11 rate to HW rate index. */ 1716 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 1717 if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID && 1718 iwn_rates[ridx].rate == rate) 1719 break; 1720 } 1721 wn->ridx[i] = ridx; 1722 } 1723 } 1724 1725 int 1726 iwn_media_change(struct ifnet *ifp) 1727 { 1728 struct iwn_softc *sc = ifp->if_softc; 1729 struct ieee80211com *ic = &sc->sc_ic; 1730 uint8_t rate, ridx; 1731 int error; 1732 1733 error = ieee80211_media_change(ifp); 1734 if (error != ENETRESET) 1735 return error; 1736 1737 if (ic->ic_fixed_mcs != -1) 1738 sc->fixed_ridx = iwn_mcs2ridx[ic->ic_fixed_mcs]; 1739 if (ic->ic_fixed_rate != -1) { 1740 rate = ic->ic_sup_rates[ic->ic_curmode]. 1741 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1742 /* Map 802.11 rate to HW rate index. */ 1743 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1744 if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID && 1745 iwn_rates[ridx].rate == rate) 1746 break; 1747 sc->fixed_ridx = ridx; 1748 } 1749 1750 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1751 (IFF_UP | IFF_RUNNING)) { 1752 iwn_stop(ifp, 0); 1753 error = iwn_init(ifp); 1754 } 1755 return error; 1756 } 1757 1758 int 1759 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1760 { 1761 struct ifnet *ifp = &ic->ic_if; 1762 struct iwn_softc *sc = ifp->if_softc; 1763 struct ieee80211_node *ni = ic->ic_bss; 1764 struct iwn_node *wn = (void *)ni; 1765 int error; 1766 1767 if (ic->ic_state == IEEE80211_S_RUN) { 1768 ieee80211_mira_cancel_timeouts(&wn->mn); 1769 timeout_del(&sc->calib_to); 1770 sc->calib.state = IWN_CALIB_STATE_INIT; 1771 if (sc->sc_flags & IWN_FLAG_BGSCAN) 1772 iwn_scan_abort(sc); 1773 } 1774 1775 if (ic->ic_state == IEEE80211_S_SCAN) { 1776 if (nstate == IEEE80211_S_SCAN) { 1777 if (sc->sc_flags & IWN_FLAG_SCANNING) 1778 return 0; 1779 } else 1780 sc->sc_flags &= ~IWN_FLAG_SCANNING; 1781 /* Turn LED off when leaving scan state. */ 1782 iwn_set_led(sc, IWN_LED_LINK, 1, 0); 1783 } 1784 1785 if (ic->ic_state >= IEEE80211_S_ASSOC && 1786 nstate <= IEEE80211_S_ASSOC) { 1787 /* Reset state to handle re- and disassociations. */ 1788 sc->rxon.associd = 0; 1789 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 1790 sc->calib.state = IWN_CALIB_STATE_INIT; 1791 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 1792 if (error != 0) 1793 printf("%s: RXON command failed\n", 1794 sc->sc_dev.dv_xname); 1795 } 1796 1797 switch (nstate) { 1798 case IEEE80211_S_SCAN: 1799 /* Make the link LED blink while we're scanning. */ 1800 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 1801 1802 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 0)) != 0) { 1803 printf("%s: could not initiate scan\n", 1804 sc->sc_dev.dv_xname); 1805 return error; 1806 } 1807 if (ifp->if_flags & IFF_DEBUG) 1808 printf("%s: %s -> %s\n", ifp->if_xname, 1809 ieee80211_state_name[ic->ic_state], 1810 ieee80211_state_name[nstate]); 1811 if ((sc->sc_flags & IWN_FLAG_BGSCAN) == 0) { 1812 ieee80211_set_link_state(ic, LINK_STATE_DOWN); 1813 ieee80211_free_allnodes(ic, 1); 1814 } 1815 ic->ic_state = nstate; 1816 return 0; 1817 1818 case IEEE80211_S_ASSOC: 1819 if (ic->ic_state != IEEE80211_S_RUN) 1820 break; 1821 /* FALLTHROUGH */ 1822 case IEEE80211_S_AUTH: 1823 if ((error = iwn_auth(sc, arg)) != 0) { 1824 printf("%s: could not move to auth state\n", 1825 sc->sc_dev.dv_xname); 1826 return error; 1827 } 1828 break; 1829 1830 case IEEE80211_S_RUN: 1831 if ((error = iwn_run(sc)) != 0) { 1832 printf("%s: could not move to run state\n", 1833 sc->sc_dev.dv_xname); 1834 return error; 1835 } 1836 break; 1837 1838 case IEEE80211_S_INIT: 1839 sc->calib.state = IWN_CALIB_STATE_INIT; 1840 break; 1841 } 1842 1843 return sc->sc_newstate(ic, nstate, arg); 1844 } 1845 1846 void 1847 iwn_iter_func(void *arg, struct ieee80211_node *ni) 1848 { 1849 struct iwn_softc *sc = arg; 1850 struct iwn_node *wn = (void *)ni; 1851 1852 if ((ni->ni_flags & IEEE80211_NODE_HT) == 0) 1853 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1854 } 1855 1856 void 1857 iwn_calib_timeout(void *arg) 1858 { 1859 struct iwn_softc *sc = arg; 1860 struct ieee80211com *ic = &sc->sc_ic; 1861 int s; 1862 1863 s = splnet(); 1864 if (ic->ic_fixed_rate == -1) { 1865 if (ic->ic_opmode == IEEE80211_M_STA) 1866 iwn_iter_func(sc, ic->ic_bss); 1867 else 1868 ieee80211_iterate_nodes(ic, iwn_iter_func, sc); 1869 } 1870 /* Force automatic TX power calibration every 60 secs. */ 1871 if (++sc->calib_cnt >= 120) { 1872 uint32_t flags = 0; 1873 1874 DPRINTFN(2, ("sending request for statistics\n")); 1875 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 1876 sizeof flags, 1); 1877 sc->calib_cnt = 0; 1878 } 1879 splx(s); 1880 1881 /* Automatic rate control triggered every 500ms. */ 1882 timeout_add_msec(&sc->calib_to, 500); 1883 } 1884 1885 int 1886 iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 1887 { 1888 struct ieee80211com *ic = &sc->sc_ic; 1889 struct ieee80211_key *k = &ni->ni_pairwise_key; 1890 struct ieee80211_frame *wh; 1891 struct ieee80211_rx_ba *ba; 1892 uint64_t pn, *prsc; 1893 uint8_t *ivp; 1894 uint8_t tid; 1895 int hdrlen, hasqos; 1896 1897 wh = mtod(m, struct ieee80211_frame *); 1898 hdrlen = ieee80211_get_hdrlen(wh); 1899 ivp = (uint8_t *)wh + hdrlen; 1900 1901 /* Check that ExtIV bit is be set. */ 1902 if (!(ivp[3] & IEEE80211_WEP_EXTIV)) { 1903 DPRINTF(("CCMP decap ExtIV not set\n")); 1904 return 1; 1905 } 1906 hasqos = ieee80211_has_qos(wh); 1907 tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0; 1908 ba = hasqos ? &ni->ni_rx_ba[tid] : NULL; 1909 prsc = &k->k_rsc[tid]; 1910 1911 /* Extract the 48-bit PN from the CCMP header. */ 1912 pn = (uint64_t)ivp[0] | 1913 (uint64_t)ivp[1] << 8 | 1914 (uint64_t)ivp[4] << 16 | 1915 (uint64_t)ivp[5] << 24 | 1916 (uint64_t)ivp[6] << 32 | 1917 (uint64_t)ivp[7] << 40; 1918 if (pn <= *prsc) { 1919 if (hasqos && ba->ba_state == IEEE80211_BA_AGREED) { 1920 /* 1921 * This is an A-MPDU subframe. 1922 * Such frames may be received out of order due to 1923 * legitimate retransmissions of failed subframes 1924 * in previous A-MPDUs. Duplicates will be handled 1925 * in ieee80211_input() as part of A-MPDU reordering. 1926 */ 1927 } else if (ieee80211_has_seq(wh)) { 1928 /* 1929 * Not necessarily a replayed frame since we did not 1930 * check the sequence number of the 802.11 header yet. 1931 */ 1932 int nrxseq, orxseq; 1933 1934 nrxseq = letoh16(*(u_int16_t *)wh->i_seq) >> 1935 IEEE80211_SEQ_SEQ_SHIFT; 1936 if (hasqos) 1937 orxseq = ni->ni_qos_rxseqs[tid]; 1938 else 1939 orxseq = ni->ni_rxseq; 1940 if (nrxseq < orxseq) { 1941 DPRINTF(("CCMP replayed (n=%d < o=%d)\n", 1942 nrxseq, orxseq)); 1943 ic->ic_stats.is_ccmp_replays++; 1944 return 1; 1945 } 1946 } else { 1947 DPRINTF(("CCMP replayed\n")); 1948 ic->ic_stats.is_ccmp_replays++; 1949 return 1; 1950 } 1951 } 1952 /* Update last seen packet number. */ 1953 *prsc = pn; 1954 1955 /* Clear Protected bit and strip IV. */ 1956 wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; 1957 memmove(mtod(m, caddr_t) + IEEE80211_CCMP_HDRLEN, wh, hdrlen); 1958 m_adj(m, IEEE80211_CCMP_HDRLEN); 1959 /* Strip MIC. */ 1960 m_adj(m, -IEEE80211_CCMP_MICLEN); 1961 return 0; 1962 } 1963 1964 /* 1965 * Process an RX_PHY firmware notification. This is usually immediately 1966 * followed by an MPDU_RX_DONE notification. 1967 */ 1968 void 1969 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1970 struct iwn_rx_data *data) 1971 { 1972 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 1973 1974 DPRINTFN(2, ("received PHY stats\n")); 1975 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1976 sizeof (*stat), BUS_DMASYNC_POSTREAD); 1977 1978 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 1979 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 1980 sc->last_rx_valid = IWN_LAST_RX_VALID; 1981 /* 1982 * The firmware does not send separate RX_PHY 1983 * notifications for A-MPDU subframes. 1984 */ 1985 if (stat->flags & htole16(IWN_STAT_FLAG_AGG)) 1986 sc->last_rx_valid |= IWN_LAST_RX_AMPDU; 1987 } 1988 1989 /* 1990 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 1991 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 1992 */ 1993 void 1994 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1995 struct iwn_rx_data *data) 1996 { 1997 struct iwn_ops *ops = &sc->ops; 1998 struct ieee80211com *ic = &sc->sc_ic; 1999 struct ifnet *ifp = &ic->ic_if; 2000 struct iwn_rx_ring *ring = &sc->rxq; 2001 struct ieee80211_frame *wh; 2002 struct ieee80211_rxinfo rxi; 2003 struct ieee80211_node *ni; 2004 struct ieee80211_channel *bss_chan = NULL; 2005 struct mbuf *m, *m1; 2006 struct iwn_rx_stat *stat; 2007 caddr_t head; 2008 uint32_t flags; 2009 int error, len, rssi; 2010 uint16_t chan; 2011 2012 if (desc->type == IWN_MPDU_RX_DONE) { 2013 /* Check for prior RX_PHY notification. */ 2014 if (!sc->last_rx_valid) { 2015 DPRINTF(("missing RX_PHY\n")); 2016 return; 2017 } 2018 sc->last_rx_valid &= ~IWN_LAST_RX_VALID; 2019 stat = &sc->last_rx_stat; 2020 if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) && 2021 (stat->flags & htole16(IWN_STAT_FLAG_AGG)) == 0) { 2022 DPRINTF(("missing RX_PHY (expecting A-MPDU)\n")); 2023 return; 2024 } 2025 if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) == 0 && 2026 (stat->flags & htole16(IWN_STAT_FLAG_AGG))) { 2027 DPRINTF(("missing RX_PHY (unexpected A-MPDU)\n")); 2028 return; 2029 } 2030 } else 2031 stat = (struct iwn_rx_stat *)(desc + 1); 2032 2033 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE, 2034 BUS_DMASYNC_POSTREAD); 2035 2036 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2037 printf("%s: invalid RX statistic header\n", 2038 sc->sc_dev.dv_xname); 2039 return; 2040 } 2041 if (desc->type == IWN_MPDU_RX_DONE) { 2042 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2043 head = (caddr_t)(mpdu + 1); 2044 len = letoh16(mpdu->len); 2045 } else { 2046 head = (caddr_t)(stat + 1) + stat->cfg_phy_len; 2047 len = letoh16(stat->len); 2048 } 2049 2050 flags = letoh32(*(uint32_t *)(head + len)); 2051 2052 /* Discard frames with a bad FCS early. */ 2053 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2054 DPRINTFN(2, ("RX flags error %x\n", flags)); 2055 ifp->if_ierrors++; 2056 return; 2057 } 2058 /* Discard frames that are too short. */ 2059 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2060 /* Allow control frames in monitor mode. */ 2061 if (len < sizeof (struct ieee80211_frame_cts)) { 2062 DPRINTF(("frame too short: %d\n", len)); 2063 ic->ic_stats.is_rx_tooshort++; 2064 ifp->if_ierrors++; 2065 return; 2066 } 2067 } else if (len < sizeof (*wh)) { 2068 DPRINTF(("frame too short: %d\n", len)); 2069 ic->ic_stats.is_rx_tooshort++; 2070 ifp->if_ierrors++; 2071 return; 2072 } 2073 2074 m1 = MCLGETI(NULL, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 2075 if (m1 == NULL) { 2076 ic->ic_stats.is_rx_nombuf++; 2077 ifp->if_ierrors++; 2078 return; 2079 } 2080 bus_dmamap_unload(sc->sc_dmat, data->map); 2081 2082 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 2083 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 2084 if (error != 0) { 2085 m_freem(m1); 2086 2087 /* Try to reload the old mbuf. */ 2088 error = bus_dmamap_load(sc->sc_dmat, data->map, 2089 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 2090 BUS_DMA_NOWAIT | BUS_DMA_READ); 2091 if (error != 0) { 2092 panic("%s: could not load old RX mbuf", 2093 sc->sc_dev.dv_xname); 2094 } 2095 /* Physical address may have changed. */ 2096 ring->desc[ring->cur] = 2097 htole32(data->map->dm_segs[0].ds_addr >> 8); 2098 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2099 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2100 BUS_DMASYNC_PREWRITE); 2101 ifp->if_ierrors++; 2102 return; 2103 } 2104 2105 m = data->m; 2106 data->m = m1; 2107 /* Update RX descriptor. */ 2108 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); 2109 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2110 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2111 BUS_DMASYNC_PREWRITE); 2112 2113 /* Finalize mbuf. */ 2114 m->m_data = head; 2115 m->m_pkthdr.len = m->m_len = len; 2116 2117 /* 2118 * Grab a reference to the source node. Note that control frames are 2119 * shorter than struct ieee80211_frame but ieee80211_find_rxnode() 2120 * is being careful about control frames. 2121 */ 2122 wh = mtod(m, struct ieee80211_frame *); 2123 if (len < sizeof (*wh) && 2124 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 2125 ic->ic_stats.is_rx_tooshort++; 2126 ifp->if_ierrors++; 2127 m_freem(m); 2128 return; 2129 } 2130 ni = ieee80211_find_rxnode(ic, wh); 2131 2132 rxi.rxi_flags = 0; 2133 if (((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) 2134 && (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 2135 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 2136 (ni->ni_flags & IEEE80211_NODE_RXPROT) && 2137 ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) { 2138 if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) { 2139 ic->ic_stats.is_ccmp_dec_errs++; 2140 ifp->if_ierrors++; 2141 m_freem(m); 2142 return; 2143 } 2144 /* Check whether decryption was successful or not. */ 2145 if ((desc->type == IWN_MPDU_RX_DONE && 2146 (flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) != 2147 (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) || 2148 (desc->type != IWN_MPDU_RX_DONE && 2149 (flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) { 2150 DPRINTF(("CCMP decryption failed 0x%x\n", flags)); 2151 ic->ic_stats.is_ccmp_dec_errs++; 2152 ifp->if_ierrors++; 2153 m_freem(m); 2154 return; 2155 } 2156 if (iwn_ccmp_decap(sc, m, ni) != 0) { 2157 ifp->if_ierrors++; 2158 m_freem(m); 2159 return; 2160 } 2161 rxi.rxi_flags |= IEEE80211_RXI_HWDEC; 2162 } 2163 2164 rssi = ops->get_rssi(stat); 2165 2166 chan = stat->chan; 2167 if (chan > IEEE80211_CHAN_MAX) 2168 chan = IEEE80211_CHAN_MAX; 2169 2170 if (ni == ic->ic_bss) { 2171 bss_chan = ni->ni_chan; 2172 /* Fix current channel. */ 2173 ni->ni_chan = &ic->ic_channels[chan]; 2174 } 2175 2176 #if NBPFILTER > 0 2177 if (sc->sc_drvbpf != NULL) { 2178 struct mbuf mb; 2179 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2180 uint16_t chan_flags; 2181 2182 tap->wr_flags = 0; 2183 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2184 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2185 tap->wr_chan_freq = htole16(ic->ic_channels[chan].ic_freq); 2186 chan_flags = ic->ic_channels[chan].ic_flags; 2187 if (ic->ic_curmode != IEEE80211_MODE_11N) 2188 chan_flags &= ~IEEE80211_CHAN_HT; 2189 tap->wr_chan_flags = htole16(chan_flags); 2190 tap->wr_dbm_antsignal = (int8_t)rssi; 2191 tap->wr_dbm_antnoise = (int8_t)sc->noise; 2192 tap->wr_tsft = stat->tstamp; 2193 if (stat->rflags & IWN_RFLAG_MCS) { 2194 tap->wr_rate = (0x80 | stat->rate); /* HT MCS index */ 2195 } else { 2196 switch (stat->rate) { 2197 /* CCK rates. */ 2198 case 10: tap->wr_rate = 2; break; 2199 case 20: tap->wr_rate = 4; break; 2200 case 55: tap->wr_rate = 11; break; 2201 case 110: tap->wr_rate = 22; break; 2202 /* OFDM rates. */ 2203 case 0xd: tap->wr_rate = 12; break; 2204 case 0xf: tap->wr_rate = 18; break; 2205 case 0x5: tap->wr_rate = 24; break; 2206 case 0x7: tap->wr_rate = 36; break; 2207 case 0x9: tap->wr_rate = 48; break; 2208 case 0xb: tap->wr_rate = 72; break; 2209 case 0x1: tap->wr_rate = 96; break; 2210 case 0x3: tap->wr_rate = 108; break; 2211 /* Unknown rate: should not happen. */ 2212 default: tap->wr_rate = 0; 2213 } 2214 } 2215 2216 mb.m_data = (caddr_t)tap; 2217 mb.m_len = sc->sc_rxtap_len; 2218 mb.m_next = m; 2219 mb.m_nextpkt = NULL; 2220 mb.m_type = 0; 2221 mb.m_flags = 0; 2222 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 2223 } 2224 #endif 2225 2226 /* Send the frame to the 802.11 layer. */ 2227 rxi.rxi_rssi = rssi; 2228 rxi.rxi_tstamp = 0; /* unused */ 2229 ieee80211_input(ifp, m, ni, &rxi); 2230 2231 /* Restore BSS channel. */ 2232 if (ni == ic->ic_bss) 2233 ni->ni_chan = bss_chan; 2234 2235 /* Node is no longer needed. */ 2236 ieee80211_release_node(ic, ni); 2237 } 2238 2239 /* Process an incoming Compressed BlockAck. */ 2240 void 2241 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2242 struct iwn_rx_data *data) 2243 { 2244 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2245 struct iwn_tx_ring *txq; 2246 2247 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba), 2248 BUS_DMASYNC_POSTREAD); 2249 2250 txq = &sc->txq[letoh16(ba->qid)]; 2251 /* XXX TBD */ 2252 } 2253 2254 /* 2255 * Process a CALIBRATION_RESULT notification sent by the initialization 2256 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2257 */ 2258 void 2259 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2260 struct iwn_rx_data *data) 2261 { 2262 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2263 int len, idx = -1; 2264 2265 /* Runtime firmware should not send such a notification. */ 2266 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2267 return; 2268 2269 len = (letoh32(desc->len) & 0x3fff) - 4; 2270 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len, 2271 BUS_DMASYNC_POSTREAD); 2272 2273 switch (calib->code) { 2274 case IWN5000_PHY_CALIB_DC: 2275 if (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2276 sc->hw_type == IWN_HW_REV_TYPE_2030 || 2277 sc->hw_type == IWN_HW_REV_TYPE_2000 || 2278 sc->hw_type == IWN_HW_REV_TYPE_135 || 2279 sc->hw_type == IWN_HW_REV_TYPE_105) 2280 idx = 0; 2281 break; 2282 case IWN5000_PHY_CALIB_LO: 2283 idx = 1; 2284 break; 2285 case IWN5000_PHY_CALIB_TX_IQ: 2286 idx = 2; 2287 break; 2288 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2289 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2290 sc->hw_type != IWN_HW_REV_TYPE_5150) 2291 idx = 3; 2292 break; 2293 case IWN5000_PHY_CALIB_BASE_BAND: 2294 idx = 4; 2295 break; 2296 } 2297 if (idx == -1) /* Ignore other results. */ 2298 return; 2299 2300 /* Save calibration result. */ 2301 if (sc->calibcmd[idx].buf != NULL) 2302 free(sc->calibcmd[idx].buf, M_DEVBUF, 0); 2303 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2304 if (sc->calibcmd[idx].buf == NULL) { 2305 DPRINTF(("not enough memory for calibration result %d\n", 2306 calib->code)); 2307 return; 2308 } 2309 DPRINTF(("saving calibration result code=%d len=%d\n", 2310 calib->code, len)); 2311 sc->calibcmd[idx].len = len; 2312 memcpy(sc->calibcmd[idx].buf, calib, len); 2313 } 2314 2315 /* 2316 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2317 * The latter is sent by the firmware after each received beacon. 2318 */ 2319 void 2320 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2321 struct iwn_rx_data *data) 2322 { 2323 struct iwn_ops *ops = &sc->ops; 2324 struct ieee80211com *ic = &sc->sc_ic; 2325 struct iwn_calib_state *calib = &sc->calib; 2326 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2327 int temp; 2328 2329 /* Ignore statistics received during a scan. */ 2330 if (ic->ic_state != IEEE80211_S_RUN) 2331 return; 2332 2333 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2334 sizeof (*stats), BUS_DMASYNC_POSTREAD); 2335 2336 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); 2337 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2338 2339 /* Test if temperature has changed. */ 2340 if (stats->general.temp != sc->rawtemp) { 2341 /* Convert "raw" temperature to degC. */ 2342 sc->rawtemp = stats->general.temp; 2343 temp = ops->get_temperature(sc); 2344 DPRINTFN(2, ("temperature=%dC\n", temp)); 2345 2346 /* Update TX power if need be (4965AGN only). */ 2347 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2348 iwn4965_power_calibration(sc, temp); 2349 } 2350 2351 if (desc->type != IWN_BEACON_STATISTICS) 2352 return; /* Reply to a statistics request. */ 2353 2354 sc->noise = iwn_get_noise(&stats->rx.general); 2355 2356 /* Test that RSSI and noise are present in stats report. */ 2357 if (letoh32(stats->rx.general.flags) != 1) { 2358 DPRINTF(("received statistics without RSSI\n")); 2359 return; 2360 } 2361 2362 /* 2363 * XXX Differential gain calibration makes the 6005 firmware 2364 * crap out, so skip it for now. This effectively disables 2365 * sensitivity tuning as well. 2366 */ 2367 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 2368 return; 2369 2370 if (calib->state == IWN_CALIB_STATE_ASSOC) 2371 iwn_collect_noise(sc, &stats->rx.general); 2372 else if (calib->state == IWN_CALIB_STATE_RUN) 2373 iwn_tune_sensitivity(sc, &stats->rx); 2374 } 2375 2376 /* 2377 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2378 * and 5000 adapters have different incompatible TX status formats. 2379 */ 2380 void 2381 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2382 struct iwn_rx_data *data) 2383 { 2384 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2385 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2386 struct iwn_tx_data *txdata = &ring->data[desc->idx]; 2387 /* XXX 4965 does not report byte count */ 2388 uint16_t len = txdata->totlen + IEEE80211_CRC_LEN; 2389 2390 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2391 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2392 iwn_tx_done(sc, desc, stat->nframes, stat->ackfailcnt, 2393 letoh32(stat->status) & 0xff, len); 2394 } 2395 2396 void 2397 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2398 struct iwn_rx_data *data) 2399 { 2400 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2401 2402 #ifdef notyet 2403 /* Reset TX scheduler slot. */ 2404 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2405 #endif 2406 2407 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2408 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2409 iwn_tx_done(sc, desc, stat->nframes, stat->ackfailcnt, 2410 letoh16(stat->status) & 0xff, letoh16(stat->len)); 2411 } 2412 2413 /* 2414 * Adapter-independent backend for TX_DONE firmware notifications. 2415 */ 2416 void 2417 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, uint8_t nframes, 2418 uint8_t ackfailcnt, uint8_t status, uint16_t len) 2419 { 2420 struct ieee80211com *ic = &sc->sc_ic; 2421 struct ifnet *ifp = &ic->ic_if; 2422 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2423 struct iwn_tx_data *data = &ring->data[desc->idx]; 2424 struct iwn_node *wn = (void *)data->ni; 2425 int txfail = (status != 1 && status != 2); 2426 2427 KASSERT(nframes == 1); /* We don't support aggregation yet. */ 2428 2429 /* Update rate control statistics. */ 2430 if (data->ni->ni_flags & IEEE80211_NODE_HT) { 2431 wn->mn.frames += nframes; 2432 wn->mn.ampdu_size = len; 2433 wn->mn.agglen = nframes; 2434 if (ackfailcnt > 0) 2435 wn->mn.retries += ackfailcnt; 2436 if (txfail) 2437 wn->mn.txfail += nframes; 2438 if (ic->ic_state == IEEE80211_S_RUN) 2439 ieee80211_mira_choose(&wn->mn, ic, data->ni); 2440 } else { 2441 wn->amn.amn_txcnt++; 2442 if (ackfailcnt > 0) 2443 wn->amn.amn_retrycnt++; 2444 } 2445 if (txfail) { 2446 DPRINTF(("%s: status=0x%x\n", __func__, status)); 2447 ifp->if_oerrors++; 2448 } 2449 2450 /* Unmap and free mbuf. */ 2451 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2452 BUS_DMASYNC_POSTWRITE); 2453 bus_dmamap_unload(sc->sc_dmat, data->map); 2454 m_freem(data->m); 2455 data->m = NULL; 2456 ieee80211_release_node(ic, data->ni); 2457 data->ni = NULL; 2458 2459 sc->sc_tx_timer = 0; 2460 if (--ring->queued < IWN_TX_RING_LOMARK) { 2461 sc->qfullmsk &= ~(1 << ring->qid); 2462 if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) { 2463 ifq_clr_oactive(&ifp->if_snd); 2464 (*ifp->if_start)(ifp); 2465 } 2466 } 2467 } 2468 2469 /* 2470 * Process a "command done" firmware notification. This is where we wakeup 2471 * processes waiting for a synchronous command completion. 2472 */ 2473 void 2474 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2475 { 2476 struct iwn_tx_ring *ring = &sc->txq[4]; 2477 struct iwn_tx_data *data; 2478 2479 if ((desc->qid & 0xf) != 4) 2480 return; /* Not a command ack. */ 2481 2482 data = &ring->data[desc->idx]; 2483 2484 /* If the command was mapped in an mbuf, free it. */ 2485 if (data->m != NULL) { 2486 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2487 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2488 bus_dmamap_unload(sc->sc_dmat, data->map); 2489 m_freem(data->m); 2490 data->m = NULL; 2491 } 2492 wakeup(&ring->desc[desc->idx]); 2493 } 2494 2495 /* 2496 * Process an INT_FH_RX or INT_SW_RX interrupt. 2497 */ 2498 void 2499 iwn_notif_intr(struct iwn_softc *sc) 2500 { 2501 struct iwn_ops *ops = &sc->ops; 2502 struct ieee80211com *ic = &sc->sc_ic; 2503 struct ifnet *ifp = &ic->ic_if; 2504 uint16_t hw; 2505 2506 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 2507 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); 2508 2509 hw = letoh16(sc->rxq.stat->closed_count) & 0xfff; 2510 while (sc->rxq.cur != hw) { 2511 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2512 struct iwn_rx_desc *desc; 2513 2514 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 2515 BUS_DMASYNC_POSTREAD); 2516 desc = mtod(data->m, struct iwn_rx_desc *); 2517 2518 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", 2519 desc->qid & 0xf, desc->idx, desc->flags, desc->type)); 2520 2521 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2522 iwn_cmd_done(sc, desc); 2523 2524 switch (desc->type) { 2525 case IWN_RX_PHY: 2526 iwn_rx_phy(sc, desc, data); 2527 break; 2528 2529 case IWN_RX_DONE: /* 4965AGN only. */ 2530 case IWN_MPDU_RX_DONE: 2531 /* An 802.11 frame has been received. */ 2532 iwn_rx_done(sc, desc, data); 2533 break; 2534 case IWN_RX_COMPRESSED_BA: 2535 /* A Compressed BlockAck has been received. */ 2536 iwn_rx_compressed_ba(sc, desc, data); 2537 break; 2538 case IWN_TX_DONE: 2539 /* An 802.11 frame has been transmitted. */ 2540 ops->tx_done(sc, desc, data); 2541 break; 2542 2543 case IWN_RX_STATISTICS: 2544 case IWN_BEACON_STATISTICS: 2545 iwn_rx_statistics(sc, desc, data); 2546 break; 2547 2548 case IWN_BEACON_MISSED: 2549 { 2550 struct iwn_beacon_missed *miss = 2551 (struct iwn_beacon_missed *)(desc + 1); 2552 uint32_t missed; 2553 2554 if ((ic->ic_opmode != IEEE80211_M_STA) || 2555 (ic->ic_state != IEEE80211_S_RUN)) 2556 break; 2557 2558 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2559 sizeof (*miss), BUS_DMASYNC_POSTREAD); 2560 missed = letoh32(miss->consecutive); 2561 2562 /* 2563 * If more than 5 consecutive beacons are missed, 2564 * reinitialize the sensitivity state machine. 2565 */ 2566 if (missed > 5) 2567 (void)iwn_init_sensitivity(sc); 2568 2569 /* 2570 * Rather than go directly to scan state, try to send a 2571 * directed probe request first. If that fails then the 2572 * state machine will drop us into scanning after timing 2573 * out waiting for a probe response. 2574 */ 2575 if (missed > ic->ic_bmissthres && !ic->ic_mgt_timer) 2576 IEEE80211_SEND_MGMT(ic, ic->ic_bss, 2577 IEEE80211_FC0_SUBTYPE_PROBE_REQ, 0); 2578 break; 2579 } 2580 case IWN_UC_READY: 2581 { 2582 struct iwn_ucode_info *uc = 2583 (struct iwn_ucode_info *)(desc + 1); 2584 2585 /* The microcontroller is ready. */ 2586 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2587 sizeof (*uc), BUS_DMASYNC_POSTREAD); 2588 DPRINTF(("microcode alive notification version=%d.%d " 2589 "subtype=%x alive=%x\n", uc->major, uc->minor, 2590 uc->subtype, letoh32(uc->valid))); 2591 2592 if (letoh32(uc->valid) != 1) { 2593 printf("%s: microcontroller initialization " 2594 "failed\n", sc->sc_dev.dv_xname); 2595 break; 2596 } 2597 if (uc->subtype == IWN_UCODE_INIT) { 2598 /* Save microcontroller report. */ 2599 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2600 } 2601 /* Save the address of the error log in SRAM. */ 2602 sc->errptr = letoh32(uc->errptr); 2603 break; 2604 } 2605 case IWN_STATE_CHANGED: 2606 { 2607 uint32_t *status = (uint32_t *)(desc + 1); 2608 2609 /* Enabled/disabled notification. */ 2610 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2611 sizeof (*status), BUS_DMASYNC_POSTREAD); 2612 DPRINTF(("state changed to %x\n", letoh32(*status))); 2613 2614 if (letoh32(*status) & 1) { 2615 /* The radio button has to be pushed. */ 2616 printf("%s: Radio transmitter is off\n", 2617 sc->sc_dev.dv_xname); 2618 /* Turn the interface down. */ 2619 iwn_stop(ifp, 1); 2620 return; /* No further processing. */ 2621 } 2622 break; 2623 } 2624 case IWN_START_SCAN: 2625 { 2626 struct iwn_start_scan *scan = 2627 (struct iwn_start_scan *)(desc + 1); 2628 2629 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2630 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2631 DPRINTFN(2, ("scanning channel %d status %x\n", 2632 scan->chan, letoh32(scan->status))); 2633 2634 if (sc->sc_flags & IWN_FLAG_BGSCAN) 2635 break; 2636 2637 /* Fix current channel. */ 2638 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 2639 break; 2640 } 2641 case IWN_STOP_SCAN: 2642 { 2643 struct iwn_stop_scan *scan = 2644 (struct iwn_stop_scan *)(desc + 1); 2645 2646 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2647 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2648 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 2649 scan->nchan, scan->status, scan->chan)); 2650 2651 if (scan->status == 1 && scan->chan <= 14 && 2652 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 2653 int error; 2654 /* 2655 * We just finished scanning 2GHz channels, 2656 * start scanning 5GHz ones. 2657 */ 2658 error = iwn_scan(sc, IEEE80211_CHAN_5GHZ, 2659 (sc->sc_flags & IWN_FLAG_BGSCAN) ? 1 : 0); 2660 if (error == 0) 2661 break; 2662 } 2663 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2664 sc->sc_flags &= ~IWN_FLAG_BGSCAN; 2665 ieee80211_end_scan(ifp); 2666 break; 2667 } 2668 case IWN5000_CALIBRATION_RESULT: 2669 iwn5000_rx_calib_results(sc, desc, data); 2670 break; 2671 2672 case IWN5000_CALIBRATION_DONE: 2673 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 2674 wakeup(sc); 2675 break; 2676 } 2677 2678 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 2679 } 2680 2681 /* Tell the firmware what we have processed. */ 2682 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 2683 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 2684 } 2685 2686 /* 2687 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2688 * from power-down sleep mode. 2689 */ 2690 void 2691 iwn_wakeup_intr(struct iwn_softc *sc) 2692 { 2693 int qid; 2694 2695 DPRINTF(("ucode wakeup from power-down sleep\n")); 2696 2697 /* Wakeup RX and TX rings. */ 2698 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 2699 for (qid = 0; qid < sc->ntxqs; qid++) { 2700 struct iwn_tx_ring *ring = &sc->txq[qid]; 2701 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 2702 } 2703 } 2704 2705 #ifdef IWN_DEBUG 2706 /* 2707 * Dump the error log of the firmware when a firmware panic occurs. Although 2708 * we can't debug the firmware because it is neither open source nor free, it 2709 * can help us to identify certain classes of problems. 2710 */ 2711 void 2712 iwn_fatal_intr(struct iwn_softc *sc) 2713 { 2714 struct iwn_fw_dump dump; 2715 int i; 2716 2717 /* Check that the error log address is valid. */ 2718 if (sc->errptr < IWN_FW_DATA_BASE || 2719 sc->errptr + sizeof (dump) > 2720 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 2721 printf("%s: bad firmware error log address 0x%08x\n", 2722 sc->sc_dev.dv_xname, sc->errptr); 2723 return; 2724 } 2725 if (iwn_nic_lock(sc) != 0) { 2726 printf("%s: could not read firmware error log\n", 2727 sc->sc_dev.dv_xname); 2728 return; 2729 } 2730 /* Read firmware error log from SRAM. */ 2731 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 2732 sizeof (dump) / sizeof (uint32_t)); 2733 iwn_nic_unlock(sc); 2734 2735 if (dump.valid == 0) { 2736 printf("%s: firmware error log is empty\n", 2737 sc->sc_dev.dv_xname); 2738 return; 2739 } 2740 printf("firmware error log:\n"); 2741 printf(" error type = \"%s\" (0x%08X)\n", 2742 (dump.id < nitems(iwn_fw_errmsg)) ? 2743 iwn_fw_errmsg[dump.id] : "UNKNOWN", 2744 dump.id); 2745 printf(" program counter = 0x%08X\n", dump.pc); 2746 printf(" source line = 0x%08X\n", dump.src_line); 2747 printf(" error data = 0x%08X%08X\n", 2748 dump.error_data[0], dump.error_data[1]); 2749 printf(" branch link = 0x%08X%08X\n", 2750 dump.branch_link[0], dump.branch_link[1]); 2751 printf(" interrupt link = 0x%08X%08X\n", 2752 dump.interrupt_link[0], dump.interrupt_link[1]); 2753 printf(" time = %u\n", dump.time[0]); 2754 2755 /* Dump driver status (TX and RX rings) while we're here. */ 2756 printf("driver status:\n"); 2757 for (i = 0; i < sc->ntxqs; i++) { 2758 struct iwn_tx_ring *ring = &sc->txq[i]; 2759 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2760 i, ring->qid, ring->cur, ring->queued); 2761 } 2762 printf(" rx ring: cur=%d\n", sc->rxq.cur); 2763 printf(" 802.11 state %d\n", sc->sc_ic.ic_state); 2764 } 2765 #endif 2766 2767 int 2768 iwn_intr(void *arg) 2769 { 2770 struct iwn_softc *sc = arg; 2771 struct ifnet *ifp = &sc->sc_ic.ic_if; 2772 uint32_t r1, r2, tmp; 2773 2774 /* Disable interrupts. */ 2775 IWN_WRITE(sc, IWN_INT_MASK, 0); 2776 2777 /* Read interrupts from ICT (fast) or from registers (slow). */ 2778 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2779 tmp = 0; 2780 while (sc->ict[sc->ict_cur] != 0) { 2781 tmp |= sc->ict[sc->ict_cur]; 2782 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 2783 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 2784 } 2785 tmp = letoh32(tmp); 2786 if (tmp == 0xffffffff) /* Shouldn't happen. */ 2787 tmp = 0; 2788 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 2789 tmp |= 0x8000; 2790 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 2791 r2 = 0; /* Unused. */ 2792 } else { 2793 r1 = IWN_READ(sc, IWN_INT); 2794 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 2795 return 0; /* Hardware gone! */ 2796 r2 = IWN_READ(sc, IWN_FH_INT); 2797 } 2798 if (r1 == 0 && r2 == 0) { 2799 if (ifp->if_flags & IFF_UP) 2800 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2801 return 0; /* Interrupt not for us. */ 2802 } 2803 2804 /* Acknowledge interrupts. */ 2805 IWN_WRITE(sc, IWN_INT, r1); 2806 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 2807 IWN_WRITE(sc, IWN_FH_INT, r2); 2808 2809 if (r1 & IWN_INT_RF_TOGGLED) { 2810 tmp = IWN_READ(sc, IWN_GP_CNTRL); 2811 printf("%s: RF switch: radio %s\n", sc->sc_dev.dv_xname, 2812 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 2813 } 2814 if (r1 & IWN_INT_CT_REACHED) { 2815 printf("%s: critical temperature reached!\n", 2816 sc->sc_dev.dv_xname); 2817 } 2818 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 2819 printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname); 2820 2821 /* Force a complete recalibration on next init. */ 2822 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 2823 2824 /* Dump firmware error log and stop. */ 2825 #ifdef IWN_DEBUG 2826 iwn_fatal_intr(sc); 2827 #endif 2828 iwn_stop(ifp, 1); 2829 task_add(systq, &sc->init_task); 2830 return 1; 2831 } 2832 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 2833 (r2 & IWN_FH_INT_RX)) { 2834 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2835 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 2836 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 2837 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2838 IWN_INT_PERIODIC_DIS); 2839 iwn_notif_intr(sc); 2840 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 2841 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2842 IWN_INT_PERIODIC_ENA); 2843 } 2844 } else 2845 iwn_notif_intr(sc); 2846 } 2847 2848 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 2849 if (sc->sc_flags & IWN_FLAG_USE_ICT) 2850 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 2851 wakeup(sc); /* FH DMA transfer completed. */ 2852 } 2853 2854 if (r1 & IWN_INT_ALIVE) 2855 wakeup(sc); /* Firmware is alive. */ 2856 2857 if (r1 & IWN_INT_WAKEUP) 2858 iwn_wakeup_intr(sc); 2859 2860 /* Re-enable interrupts. */ 2861 if (ifp->if_flags & IFF_UP) 2862 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2863 2864 return 1; 2865 } 2866 2867 /* 2868 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 2869 * 5000 adapters use a slightly different format). 2870 */ 2871 void 2872 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2873 uint16_t len) 2874 { 2875 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 2876 2877 *w = htole16(len + 8); 2878 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2879 (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t), 2880 BUS_DMASYNC_PREWRITE); 2881 if (idx < IWN_SCHED_WINSZ) { 2882 *(w + IWN_TX_RING_COUNT) = *w; 2883 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2884 (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr, 2885 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2886 } 2887 } 2888 2889 void 2890 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2891 uint16_t len) 2892 { 2893 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2894 2895 *w = htole16(id << 12 | (len + 8)); 2896 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2897 (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t), 2898 BUS_DMASYNC_PREWRITE); 2899 if (idx < IWN_SCHED_WINSZ) { 2900 *(w + IWN_TX_RING_COUNT) = *w; 2901 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2902 (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr, 2903 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2904 } 2905 } 2906 2907 void 2908 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 2909 { 2910 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2911 2912 *w = (*w & htole16(0xf000)) | htole16(1); 2913 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2914 (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t), 2915 BUS_DMASYNC_PREWRITE); 2916 if (idx < IWN_SCHED_WINSZ) { 2917 *(w + IWN_TX_RING_COUNT) = *w; 2918 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2919 (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr, 2920 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2921 } 2922 } 2923 2924 int 2925 iwn_rval2ridx(int rval) 2926 { 2927 int ridx; 2928 2929 for (ridx = 0; ridx < nitems(iwn_rates); ridx++) { 2930 if (rval == iwn_rates[ridx].rate) 2931 break; 2932 } 2933 2934 return ridx; 2935 } 2936 2937 int 2938 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 2939 { 2940 struct ieee80211com *ic = &sc->sc_ic; 2941 struct iwn_node *wn = (void *)ni; 2942 struct iwn_tx_ring *ring; 2943 struct iwn_tx_desc *desc; 2944 struct iwn_tx_data *data; 2945 struct iwn_tx_cmd *cmd; 2946 struct iwn_cmd_data *tx; 2947 const struct iwn_rate *rinfo; 2948 struct ieee80211_frame *wh; 2949 struct ieee80211_key *k = NULL; 2950 enum ieee80211_edca_ac ac; 2951 uint32_t flags; 2952 uint16_t qos; 2953 u_int hdrlen; 2954 bus_dma_segment_t *seg; 2955 uint8_t *ivp, tid, ridx, txant, type; 2956 int i, totlen, hasqos, error, pad; 2957 2958 wh = mtod(m, struct ieee80211_frame *); 2959 hdrlen = ieee80211_get_hdrlen(wh); 2960 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2961 2962 /* Select EDCA Access Category and TX ring for this frame. */ 2963 if ((hasqos = ieee80211_has_qos(wh))) { 2964 qos = ieee80211_get_qos(wh); 2965 tid = qos & IEEE80211_QOS_TID; 2966 ac = ieee80211_up_to_ac(ic, tid); 2967 } else { 2968 qos = 0; 2969 tid = 0; 2970 ac = EDCA_AC_BE; 2971 } 2972 2973 ring = &sc->txq[ac]; 2974 desc = &ring->desc[ring->cur]; 2975 data = &ring->data[ring->cur]; 2976 2977 /* Choose a TX rate index. */ 2978 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2979 type != IEEE80211_FC0_TYPE_DATA) 2980 ridx = iwn_rval2ridx(ieee80211_min_basic_rate(ic)); 2981 else if (ic->ic_fixed_mcs != -1) 2982 ridx = sc->fixed_ridx; 2983 else if (ic->ic_fixed_rate != -1) 2984 ridx = sc->fixed_ridx; 2985 else { 2986 if (ni->ni_flags & IEEE80211_NODE_HT) 2987 ridx = iwn_mcs2ridx[ni->ni_txmcs]; 2988 else 2989 ridx = wn->ridx[ni->ni_txrate]; 2990 } 2991 rinfo = &iwn_rates[ridx]; 2992 #if NBPFILTER > 0 2993 if (sc->sc_drvbpf != NULL) { 2994 struct mbuf mb; 2995 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 2996 uint16_t chan_flags; 2997 2998 tap->wt_flags = 0; 2999 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 3000 chan_flags = ni->ni_chan->ic_flags; 3001 if (ic->ic_curmode != IEEE80211_MODE_11N) 3002 chan_flags &= ~IEEE80211_CHAN_HT; 3003 tap->wt_chan_flags = htole16(chan_flags); 3004 if ((ni->ni_flags & IEEE80211_NODE_HT) && 3005 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 3006 type == IEEE80211_FC0_TYPE_DATA) { 3007 tap->wt_rate = (0x80 | ni->ni_txmcs); 3008 } else 3009 tap->wt_rate = rinfo->rate; 3010 tap->wt_hwqueue = ac; 3011 if ((ic->ic_flags & IEEE80211_F_WEPON) && 3012 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)) 3013 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3014 3015 mb.m_data = (caddr_t)tap; 3016 mb.m_len = sc->sc_txtap_len; 3017 mb.m_next = m; 3018 mb.m_nextpkt = NULL; 3019 mb.m_type = 0; 3020 mb.m_flags = 0; 3021 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 3022 } 3023 #endif 3024 3025 totlen = m->m_pkthdr.len; 3026 3027 /* Encrypt the frame if need be. */ 3028 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 3029 /* Retrieve key for TX. */ 3030 k = ieee80211_get_txkey(ic, wh, ni); 3031 if (k->k_cipher != IEEE80211_CIPHER_CCMP) { 3032 /* Do software encryption. */ 3033 if ((m = ieee80211_encrypt(ic, m, k)) == NULL) 3034 return ENOBUFS; 3035 /* 802.11 header may have moved. */ 3036 wh = mtod(m, struct ieee80211_frame *); 3037 totlen = m->m_pkthdr.len; 3038 3039 } else /* HW appends CCMP MIC. */ 3040 totlen += IEEE80211_CCMP_HDRLEN; 3041 } 3042 3043 data->totlen = totlen; 3044 3045 /* Prepare TX firmware command. */ 3046 cmd = &ring->cmd[ring->cur]; 3047 cmd->code = IWN_CMD_TX_DATA; 3048 cmd->flags = 0; 3049 cmd->qid = ring->qid; 3050 cmd->idx = ring->cur; 3051 3052 tx = (struct iwn_cmd_data *)cmd->data; 3053 /* NB: No need to clear tx, all fields are reinitialized here. */ 3054 tx->scratch = 0; /* clear "scratch" area */ 3055 3056 flags = 0; 3057 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3058 /* Unicast frame, check if an ACK is expected. */ 3059 if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) != 3060 IEEE80211_QOS_ACK_POLICY_NOACK) 3061 flags |= IWN_TX_NEED_ACK; 3062 } 3063 if ((wh->i_fc[0] & 3064 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 3065 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 3066 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 3067 3068 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 3069 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 3070 3071 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 3072 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3073 /* NB: Group frames are sent using CCK in 802.11b/g/n (2GHz). */ 3074 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 3075 flags |= IWN_TX_NEED_RTS; 3076 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3077 ridx >= IWN_RIDX_OFDM6) { 3078 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3079 flags |= IWN_TX_NEED_CTS; 3080 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3081 flags |= IWN_TX_NEED_RTS; 3082 } 3083 3084 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 3085 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3086 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3087 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 3088 flags |= IWN_TX_NEED_PROTECTION; 3089 } else 3090 flags |= IWN_TX_FULL_TXOP; 3091 } 3092 } 3093 3094 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3095 type != IEEE80211_FC0_TYPE_DATA) 3096 tx->id = sc->broadcast_id; 3097 else 3098 tx->id = wn->id; 3099 3100 if (type == IEEE80211_FC0_TYPE_MGT) { 3101 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3102 3103 #ifndef IEEE80211_STA_ONLY 3104 /* Tell HW to set timestamp in probe responses. */ 3105 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3106 flags |= IWN_TX_INSERT_TSTAMP; 3107 #endif 3108 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3109 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3110 tx->timeout = htole16(3); 3111 else 3112 tx->timeout = htole16(2); 3113 } else 3114 tx->timeout = htole16(0); 3115 3116 if (hdrlen & 3) { 3117 /* First segment length must be a multiple of 4. */ 3118 flags |= IWN_TX_NEED_PADDING; 3119 pad = 4 - (hdrlen & 3); 3120 } else 3121 pad = 0; 3122 3123 tx->len = htole16(totlen); 3124 tx->tid = tid; 3125 tx->rts_ntries = 60; 3126 tx->data_ntries = 15; 3127 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3128 3129 if ((ni->ni_flags & IEEE80211_NODE_HT) && 3130 tx->id != sc->broadcast_id) 3131 tx->plcp = rinfo->ht_plcp; 3132 else 3133 tx->plcp = rinfo->plcp; 3134 3135 if ((ni->ni_flags & IEEE80211_NODE_HT) && 3136 tx->id != sc->broadcast_id) { 3137 tx->rflags = rinfo->ht_flags; 3138 if (ni->ni_htcaps & IEEE80211_HTCAP_SGI20) 3139 tx->rflags |= IWN_RFLAG_SGI; 3140 } 3141 else 3142 tx->rflags = rinfo->flags; 3143 if (tx->id == sc->broadcast_id) { 3144 /* Group or management frame. */ 3145 tx->linkq = 0; 3146 /* XXX Alternate between antenna A and B? */ 3147 txant = IWN_LSB(sc->txchainmask); 3148 tx->rflags |= IWN_RFLAG_ANT(txant); 3149 } else { 3150 if (ni->ni_flags & IEEE80211_NODE_HT) 3151 tx->linkq = 7 - ni->ni_txmcs; /* XXX revisit for MIMO */ 3152 else 3153 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1; 3154 flags |= IWN_TX_LINKQ; /* enable MRR */ 3155 } 3156 /* Set physical address of "scratch area". */ 3157 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 3158 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 3159 3160 /* Copy 802.11 header in TX command. */ 3161 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 3162 3163 if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) { 3164 /* Trim 802.11 header and prepend CCMP IV. */ 3165 m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN); 3166 ivp = mtod(m, uint8_t *); 3167 k->k_tsc++; 3168 ivp[0] = k->k_tsc; 3169 ivp[1] = k->k_tsc >> 8; 3170 ivp[2] = 0; 3171 ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV; 3172 ivp[4] = k->k_tsc >> 16; 3173 ivp[5] = k->k_tsc >> 24; 3174 ivp[6] = k->k_tsc >> 32; 3175 ivp[7] = k->k_tsc >> 40; 3176 3177 tx->security = IWN_CIPHER_CCMP; 3178 /* XXX flags |= IWN_TX_AMPDU_CCMP; */ 3179 memcpy(tx->key, k->k_key, k->k_len); 3180 3181 /* TX scheduler includes CCMP MIC len w/5000 Series. */ 3182 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 3183 totlen += IEEE80211_CCMP_MICLEN; 3184 } else { 3185 /* Trim 802.11 header. */ 3186 m_adj(m, hdrlen); 3187 tx->security = 0; 3188 } 3189 tx->flags = htole32(flags); 3190 3191 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 3192 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3193 if (error != 0 && error != EFBIG) { 3194 printf("%s: can't map mbuf (error %d)\n", 3195 sc->sc_dev.dv_xname, error); 3196 m_freem(m); 3197 return error; 3198 } 3199 if (error != 0) { 3200 /* Too many DMA segments, linearize mbuf. */ 3201 if (m_defrag(m, M_DONTWAIT)) { 3202 m_freem(m); 3203 return ENOBUFS; 3204 } 3205 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 3206 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3207 if (error != 0) { 3208 printf("%s: can't map mbuf (error %d)\n", 3209 sc->sc_dev.dv_xname, error); 3210 m_freem(m); 3211 return error; 3212 } 3213 } 3214 3215 data->m = m; 3216 data->ni = ni; 3217 3218 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 3219 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 3220 3221 /* Fill TX descriptor. */ 3222 desc->nsegs = 1 + data->map->dm_nsegs; 3223 /* First DMA segment is used by the TX command. */ 3224 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3225 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3226 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3227 /* Other DMA segments are for data payload. */ 3228 seg = data->map->dm_segs; 3229 for (i = 1; i <= data->map->dm_nsegs; i++) { 3230 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 3231 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 3232 seg->ds_len << 4); 3233 seg++; 3234 } 3235 3236 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 3237 BUS_DMASYNC_PREWRITE); 3238 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3239 (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd), 3240 BUS_DMASYNC_PREWRITE); 3241 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3242 (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc), 3243 BUS_DMASYNC_PREWRITE); 3244 3245 #ifdef notyet 3246 /* Update TX scheduler. */ 3247 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3248 #endif 3249 3250 /* Kick TX ring. */ 3251 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3252 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3253 3254 /* Mark TX ring as full if we reach a certain threshold. */ 3255 if (++ring->queued > IWN_TX_RING_HIMARK) 3256 sc->qfullmsk |= 1 << ring->qid; 3257 3258 return 0; 3259 } 3260 3261 void 3262 iwn_start(struct ifnet *ifp) 3263 { 3264 struct iwn_softc *sc = ifp->if_softc; 3265 struct ieee80211com *ic = &sc->sc_ic; 3266 struct ieee80211_node *ni; 3267 struct mbuf *m; 3268 3269 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 3270 return; 3271 3272 for (;;) { 3273 if (sc->qfullmsk != 0) { 3274 ifq_set_oactive(&ifp->if_snd); 3275 break; 3276 } 3277 /* Send pending management frames first. */ 3278 m = mq_dequeue(&ic->ic_mgtq); 3279 if (m != NULL) { 3280 ni = m->m_pkthdr.ph_cookie; 3281 goto sendit; 3282 } 3283 if (ic->ic_state != IEEE80211_S_RUN || 3284 (ic->ic_xflags & IEEE80211_F_TX_MGMT_ONLY)) 3285 break; 3286 3287 /* Encapsulate and send data frames. */ 3288 IFQ_DEQUEUE(&ifp->if_snd, m); 3289 if (m == NULL) 3290 break; 3291 #if NBPFILTER > 0 3292 if (ifp->if_bpf != NULL) 3293 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 3294 #endif 3295 if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) 3296 continue; 3297 sendit: 3298 #if NBPFILTER > 0 3299 if (ic->ic_rawbpf != NULL) 3300 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 3301 #endif 3302 if (iwn_tx(sc, m, ni) != 0) { 3303 ieee80211_release_node(ic, ni); 3304 ifp->if_oerrors++; 3305 continue; 3306 } 3307 3308 sc->sc_tx_timer = 5; 3309 ifp->if_timer = 1; 3310 } 3311 } 3312 3313 void 3314 iwn_watchdog(struct ifnet *ifp) 3315 { 3316 struct iwn_softc *sc = ifp->if_softc; 3317 3318 ifp->if_timer = 0; 3319 3320 if (sc->sc_tx_timer > 0) { 3321 if (--sc->sc_tx_timer == 0) { 3322 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 3323 iwn_stop(ifp, 1); 3324 ifp->if_oerrors++; 3325 return; 3326 } 3327 ifp->if_timer = 1; 3328 } 3329 3330 ieee80211_watchdog(ifp); 3331 } 3332 3333 int 3334 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 3335 { 3336 struct iwn_softc *sc = ifp->if_softc; 3337 struct ieee80211com *ic = &sc->sc_ic; 3338 int s, error = 0; 3339 3340 error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR); 3341 if (error) 3342 return error; 3343 s = splnet(); 3344 3345 switch (cmd) { 3346 case SIOCSIFADDR: 3347 ifp->if_flags |= IFF_UP; 3348 /* FALLTHROUGH */ 3349 case SIOCSIFFLAGS: 3350 if (ifp->if_flags & IFF_UP) { 3351 if (!(ifp->if_flags & IFF_RUNNING)) 3352 error = iwn_init(ifp); 3353 } else { 3354 if (ifp->if_flags & IFF_RUNNING) 3355 iwn_stop(ifp, 1); 3356 } 3357 break; 3358 3359 case SIOCS80211POWER: 3360 error = ieee80211_ioctl(ifp, cmd, data); 3361 if (error != ENETRESET) 3362 break; 3363 if (ic->ic_state == IEEE80211_S_RUN && 3364 sc->calib.state == IWN_CALIB_STATE_RUN) { 3365 if (ic->ic_flags & IEEE80211_F_PMGTON) 3366 error = iwn_set_pslevel(sc, 0, 3, 0); 3367 else /* back to CAM */ 3368 error = iwn_set_pslevel(sc, 0, 0, 0); 3369 } else { 3370 /* Defer until transition to IWN_CALIB_STATE_RUN. */ 3371 error = 0; 3372 } 3373 break; 3374 3375 default: 3376 error = ieee80211_ioctl(ifp, cmd, data); 3377 } 3378 3379 if (error == ENETRESET) { 3380 error = 0; 3381 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 3382 (IFF_UP | IFF_RUNNING)) { 3383 iwn_stop(ifp, 0); 3384 error = iwn_init(ifp); 3385 } 3386 } 3387 3388 splx(s); 3389 rw_exit_write(&sc->sc_rwlock); 3390 return error; 3391 } 3392 3393 /* 3394 * Send a command to the firmware. 3395 */ 3396 int 3397 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3398 { 3399 struct iwn_tx_ring *ring = &sc->txq[4]; 3400 struct iwn_tx_desc *desc; 3401 struct iwn_tx_data *data; 3402 struct iwn_tx_cmd *cmd; 3403 struct mbuf *m; 3404 bus_addr_t paddr; 3405 int totlen, error; 3406 3407 desc = &ring->desc[ring->cur]; 3408 data = &ring->data[ring->cur]; 3409 totlen = 4 + size; 3410 3411 if (size > sizeof cmd->data) { 3412 /* Command is too large to fit in a descriptor. */ 3413 if (totlen > MCLBYTES) 3414 return EINVAL; 3415 MGETHDR(m, M_DONTWAIT, MT_DATA); 3416 if (m == NULL) 3417 return ENOMEM; 3418 if (totlen > MHLEN) { 3419 MCLGET(m, M_DONTWAIT); 3420 if (!(m->m_flags & M_EXT)) { 3421 m_freem(m); 3422 return ENOMEM; 3423 } 3424 } 3425 cmd = mtod(m, struct iwn_tx_cmd *); 3426 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 3427 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3428 if (error != 0) { 3429 m_freem(m); 3430 return error; 3431 } 3432 data->m = m; 3433 paddr = data->map->dm_segs[0].ds_addr; 3434 } else { 3435 cmd = &ring->cmd[ring->cur]; 3436 paddr = data->cmd_paddr; 3437 } 3438 3439 cmd->code = code; 3440 cmd->flags = 0; 3441 cmd->qid = ring->qid; 3442 cmd->idx = ring->cur; 3443 memcpy(cmd->data, buf, size); 3444 3445 desc->nsegs = 1; 3446 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3447 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3448 3449 if (size > sizeof cmd->data) { 3450 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 3451 BUS_DMASYNC_PREWRITE); 3452 } else { 3453 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3454 (caddr_t)cmd - ring->cmd_dma.vaddr, totlen, 3455 BUS_DMASYNC_PREWRITE); 3456 } 3457 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3458 (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc), 3459 BUS_DMASYNC_PREWRITE); 3460 3461 #ifdef notyet 3462 /* Update TX scheduler. */ 3463 ops->update_sched(sc, ring->qid, ring->cur, 0, 0); 3464 #endif 3465 3466 /* Kick command ring. */ 3467 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3468 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3469 3470 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz); 3471 } 3472 3473 int 3474 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3475 { 3476 struct iwn4965_node_info hnode; 3477 caddr_t src, dst; 3478 3479 /* 3480 * We use the node structure for 5000 Series internally (it is 3481 * a superset of the one for 4965AGN). We thus copy the common 3482 * fields before sending the command. 3483 */ 3484 src = (caddr_t)node; 3485 dst = (caddr_t)&hnode; 3486 memcpy(dst, src, 48); 3487 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3488 memcpy(dst + 48, src + 72, 20); 3489 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3490 } 3491 3492 int 3493 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3494 { 3495 /* Direct mapping. */ 3496 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3497 } 3498 3499 int 3500 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 3501 { 3502 struct ieee80211com *ic = &sc->sc_ic; 3503 struct iwn_node *wn = (void *)ni; 3504 struct ieee80211_rateset *rs = &ni->ni_rates; 3505 struct iwn_cmd_link_quality linkq; 3506 const struct iwn_rate *rinfo; 3507 uint8_t txant; 3508 int i, txrate; 3509 3510 /* Use the first valid TX antenna. */ 3511 txant = IWN_LSB(sc->txchainmask); 3512 3513 memset(&linkq, 0, sizeof linkq); 3514 linkq.id = wn->id; 3515 linkq.antmsk_1stream = txant; 3516 linkq.antmsk_2stream = IWN_ANT_AB; 3517 linkq.ampdu_max = IWN_AMPDU_MAX; 3518 linkq.ampdu_threshold = 3; 3519 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3520 3521 if (ni->ni_flags & IEEE80211_NODE_HT) { 3522 /* Fill LQ table with MCS 7 - 0 (XXX revisit for MIMO) */ 3523 i = 0; 3524 for (txrate = 7; txrate >= 0; txrate--) { 3525 rinfo = &iwn_rates[iwn_mcs2ridx[txrate]]; 3526 linkq.retry[i].plcp = rinfo->ht_plcp; 3527 linkq.retry[i].rflags = rinfo->ht_flags; 3528 3529 if (ni->ni_htcaps & IEEE80211_HTCAP_SGI20) 3530 linkq.retry[i].rflags |= IWN_RFLAG_SGI; 3531 3532 /* XXX set correct ant mask for MIMO rates here */ 3533 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3534 3535 if (++i >= IWN_MAX_TX_RETRIES) 3536 break; 3537 } 3538 3539 /* Fill the rest with the lowest basic rate. */ 3540 rinfo = &iwn_rates[iwn_rval2ridx(ieee80211_min_basic_rate(ic))]; 3541 while (i < IWN_MAX_TX_RETRIES) { 3542 linkq.retry[i].plcp = rinfo->plcp; 3543 linkq.retry[i].rflags = rinfo->flags; 3544 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3545 i++; 3546 } 3547 } else { 3548 /* Start at highest available bit-rate. */ 3549 txrate = rs->rs_nrates - 1; 3550 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 3551 rinfo = &iwn_rates[wn->ridx[txrate]]; 3552 linkq.retry[i].plcp = rinfo->plcp; 3553 linkq.retry[i].rflags = rinfo->flags; 3554 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3555 /* Next retry at immediate lower bit-rate. */ 3556 if (txrate > 0) 3557 txrate--; 3558 } 3559 } 3560 3561 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 3562 } 3563 3564 /* 3565 * Broadcast node is used to send group-addressed and management frames. 3566 */ 3567 int 3568 iwn_add_broadcast_node(struct iwn_softc *sc, int async, int ridx) 3569 { 3570 struct iwn_ops *ops = &sc->ops; 3571 struct iwn_node_info node; 3572 struct iwn_cmd_link_quality linkq; 3573 const struct iwn_rate *rinfo; 3574 uint8_t txant; 3575 int i, error; 3576 3577 memset(&node, 0, sizeof node); 3578 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 3579 node.id = sc->broadcast_id; 3580 DPRINTF(("adding broadcast node\n")); 3581 if ((error = ops->add_node(sc, &node, async)) != 0) 3582 return error; 3583 3584 /* Use the first valid TX antenna. */ 3585 txant = IWN_LSB(sc->txchainmask); 3586 3587 memset(&linkq, 0, sizeof linkq); 3588 linkq.id = sc->broadcast_id; 3589 linkq.antmsk_1stream = txant; 3590 linkq.antmsk_2stream = IWN_ANT_AB; 3591 linkq.ampdu_max = IWN_AMPDU_MAX_NO_AGG; 3592 linkq.ampdu_threshold = 3; 3593 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3594 3595 /* Use lowest mandatory bit-rate. */ 3596 rinfo = &iwn_rates[ridx]; 3597 linkq.retry[0].plcp = rinfo->plcp; 3598 linkq.retry[0].rflags = rinfo->flags; 3599 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 3600 /* Use same bit-rate for all TX retries. */ 3601 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 3602 linkq.retry[i].plcp = linkq.retry[0].plcp; 3603 linkq.retry[i].rflags = linkq.retry[0].rflags; 3604 } 3605 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 3606 } 3607 3608 void 3609 iwn_updateedca(struct ieee80211com *ic) 3610 { 3611 #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 3612 struct iwn_softc *sc = ic->ic_softc; 3613 struct iwn_edca_params cmd; 3614 int aci; 3615 3616 memset(&cmd, 0, sizeof cmd); 3617 cmd.flags = htole32(IWN_EDCA_UPDATE); 3618 for (aci = 0; aci < EDCA_NUM_AC; aci++) { 3619 const struct ieee80211_edca_ac_params *ac = 3620 &ic->ic_edca_ac[aci]; 3621 cmd.ac[aci].aifsn = ac->ac_aifsn; 3622 cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin)); 3623 cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax)); 3624 cmd.ac[aci].txoplimit = 3625 htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit)); 3626 } 3627 (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 3628 #undef IWN_EXP2 3629 } 3630 3631 void 3632 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3633 { 3634 struct iwn_cmd_led led; 3635 3636 /* Clear microcode LED ownership. */ 3637 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 3638 3639 led.which = which; 3640 led.unit = htole32(10000); /* on/off in unit of 100ms */ 3641 led.off = off; 3642 led.on = on; 3643 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 3644 } 3645 3646 /* 3647 * Set the critical temperature at which the firmware will stop the radio 3648 * and notify us. 3649 */ 3650 int 3651 iwn_set_critical_temp(struct iwn_softc *sc) 3652 { 3653 struct iwn_critical_temp crit; 3654 int32_t temp; 3655 3656 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 3657 3658 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 3659 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 3660 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3661 temp = IWN_CTOK(110); 3662 else 3663 temp = 110; 3664 memset(&crit, 0, sizeof crit); 3665 crit.tempR = htole32(temp); 3666 DPRINTF(("setting critical temperature to %d\n", temp)); 3667 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 3668 } 3669 3670 int 3671 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 3672 { 3673 struct iwn_cmd_timing cmd; 3674 uint64_t val, mod; 3675 3676 memset(&cmd, 0, sizeof cmd); 3677 memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t)); 3678 cmd.bintval = htole16(ni->ni_intval); 3679 cmd.lintval = htole16(10); 3680 3681 /* Compute remaining time until next beacon. */ 3682 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 3683 mod = letoh64(cmd.tstamp) % val; 3684 cmd.binitval = htole32((uint32_t)(val - mod)); 3685 3686 DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n", 3687 ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod))); 3688 3689 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 3690 } 3691 3692 void 3693 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 3694 { 3695 /* Adjust TX power if need be (delta >= 3 degC). */ 3696 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 3697 if (abs(temp - sc->temp) >= 3) { 3698 /* Record temperature of last calibration. */ 3699 sc->temp = temp; 3700 (void)iwn4965_set_txpower(sc, 1); 3701 } 3702 } 3703 3704 /* 3705 * Set TX power for current channel (each rate has its own power settings). 3706 * This function takes into account the regulatory information from EEPROM, 3707 * the current temperature and the current voltage. 3708 */ 3709 int 3710 iwn4965_set_txpower(struct iwn_softc *sc, int async) 3711 { 3712 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3713 #define fdivround(a, b, n) \ 3714 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3715 /* Linear interpolation. */ 3716 #define interpolate(x, x1, y1, x2, y2, n) \ 3717 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3718 3719 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 3720 struct ieee80211com *ic = &sc->sc_ic; 3721 struct iwn_ucode_info *uc = &sc->ucode_info; 3722 struct ieee80211_channel *ch; 3723 struct iwn4965_cmd_txpower cmd; 3724 struct iwn4965_eeprom_chan_samples *chans; 3725 const uint8_t *rf_gain, *dsp_gain; 3726 int32_t vdiff, tdiff; 3727 int i, c, grp, maxpwr; 3728 uint8_t chan; 3729 3730 /* Retrieve current channel from last RXON. */ 3731 chan = sc->rxon.chan; 3732 DPRINTF(("setting TX power for channel %d\n", chan)); 3733 ch = &ic->ic_channels[chan]; 3734 3735 memset(&cmd, 0, sizeof cmd); 3736 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 3737 cmd.chan = chan; 3738 3739 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 3740 maxpwr = sc->maxpwr5GHz; 3741 rf_gain = iwn4965_rf_gain_5ghz; 3742 dsp_gain = iwn4965_dsp_gain_5ghz; 3743 } else { 3744 maxpwr = sc->maxpwr2GHz; 3745 rf_gain = iwn4965_rf_gain_2ghz; 3746 dsp_gain = iwn4965_dsp_gain_2ghz; 3747 } 3748 3749 /* Compute voltage compensation. */ 3750 vdiff = ((int32_t)letoh32(uc->volt) - sc->eeprom_voltage) / 7; 3751 if (vdiff > 0) 3752 vdiff *= 2; 3753 if (abs(vdiff) > 2) 3754 vdiff = 0; 3755 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 3756 vdiff, letoh32(uc->volt), sc->eeprom_voltage)); 3757 3758 /* Get channel attenuation group. */ 3759 if (chan <= 20) /* 1-20 */ 3760 grp = 4; 3761 else if (chan <= 43) /* 34-43 */ 3762 grp = 0; 3763 else if (chan <= 70) /* 44-70 */ 3764 grp = 1; 3765 else if (chan <= 124) /* 71-124 */ 3766 grp = 2; 3767 else /* 125-200 */ 3768 grp = 3; 3769 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); 3770 3771 /* Get channel sub-band. */ 3772 for (i = 0; i < IWN_NBANDS; i++) 3773 if (sc->bands[i].lo != 0 && 3774 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 3775 break; 3776 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 3777 return EINVAL; 3778 chans = sc->bands[i].chans; 3779 DPRINTF(("chan %d sub-band=%d\n", chan, i)); 3780 3781 for (c = 0; c < 2; c++) { 3782 uint8_t power, gain, temp; 3783 int maxchpwr, pwr, ridx, idx; 3784 3785 power = interpolate(chan, 3786 chans[0].num, chans[0].samples[c][1].power, 3787 chans[1].num, chans[1].samples[c][1].power, 1); 3788 gain = interpolate(chan, 3789 chans[0].num, chans[0].samples[c][1].gain, 3790 chans[1].num, chans[1].samples[c][1].gain, 1); 3791 temp = interpolate(chan, 3792 chans[0].num, chans[0].samples[c][1].temp, 3793 chans[1].num, chans[1].samples[c][1].temp, 1); 3794 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", 3795 c, power, gain, temp)); 3796 3797 /* Compute temperature compensation. */ 3798 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 3799 DPRINTF(("temperature compensation=%d (current=%d, " 3800 "EEPROM=%d)\n", tdiff, sc->temp, temp)); 3801 3802 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 3803 /* Convert dBm to half-dBm. */ 3804 maxchpwr = sc->maxpwr[chan] * 2; 3805 #ifdef notyet 3806 if (ridx > iwn_mcs2ridx[7] && ridx < iwn_mcs2ridx[16]) 3807 maxchpwr -= 6; /* MIMO 2T: -3dB */ 3808 #endif 3809 3810 pwr = maxpwr; 3811 3812 /* Adjust TX power based on rate. */ 3813 if ((ridx % 8) == 5) 3814 pwr -= 15; /* OFDM48: -7.5dB */ 3815 else if ((ridx % 8) == 6) 3816 pwr -= 17; /* OFDM54: -8.5dB */ 3817 else if ((ridx % 8) == 7) 3818 pwr -= 20; /* OFDM60: -10dB */ 3819 else 3820 pwr -= 10; /* Others: -5dB */ 3821 3822 /* Do not exceed channel max TX power. */ 3823 if (pwr > maxchpwr) 3824 pwr = maxchpwr; 3825 3826 idx = gain - (pwr - power) - tdiff - vdiff; 3827 if (ridx > iwn_mcs2ridx[7]) /* MIMO */ 3828 idx += (int32_t)letoh32(uc->atten[grp][c]); 3829 3830 if (cmd.band == 0) 3831 idx += 9; /* 5GHz */ 3832 if (ridx == IWN_RIDX_MAX) 3833 idx += 5; /* CCK */ 3834 3835 /* Make sure idx stays in a valid range. */ 3836 if (idx < 0) 3837 idx = 0; 3838 else if (idx > IWN4965_MAX_PWR_INDEX) 3839 idx = IWN4965_MAX_PWR_INDEX; 3840 3841 DPRINTF(("TX chain %d, rate idx %d: power=%d\n", 3842 c, ridx, idx)); 3843 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 3844 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 3845 } 3846 } 3847 3848 DPRINTF(("setting TX power for chan %d\n", chan)); 3849 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 3850 3851 #undef interpolate 3852 #undef fdivround 3853 } 3854 3855 int 3856 iwn5000_set_txpower(struct iwn_softc *sc, int async) 3857 { 3858 struct iwn5000_cmd_txpower cmd; 3859 3860 /* 3861 * TX power calibration is handled automatically by the firmware 3862 * for 5000 Series. 3863 */ 3864 memset(&cmd, 0, sizeof cmd); 3865 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 3866 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 3867 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 3868 DPRINTF(("setting TX power\n")); 3869 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 3870 } 3871 3872 /* 3873 * Retrieve the maximum RSSI (in dBm) among receivers. 3874 */ 3875 int 3876 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 3877 { 3878 struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; 3879 uint8_t mask, agc; 3880 int rssi; 3881 3882 mask = (letoh16(phy->antenna) >> 4) & IWN_ANT_ABC; 3883 agc = (letoh16(phy->agc) >> 7) & 0x7f; 3884 3885 rssi = 0; 3886 if (mask & IWN_ANT_A) 3887 rssi = MAX(rssi, phy->rssi[0]); 3888 if (mask & IWN_ANT_B) 3889 rssi = MAX(rssi, phy->rssi[2]); 3890 if (mask & IWN_ANT_C) 3891 rssi = MAX(rssi, phy->rssi[4]); 3892 3893 return rssi - agc - IWN_RSSI_TO_DBM; 3894 } 3895 3896 int 3897 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 3898 { 3899 struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; 3900 uint8_t agc; 3901 int rssi; 3902 3903 agc = (letoh32(phy->agc) >> 9) & 0x7f; 3904 3905 rssi = MAX(letoh16(phy->rssi[0]) & 0xff, 3906 letoh16(phy->rssi[1]) & 0xff); 3907 rssi = MAX(letoh16(phy->rssi[2]) & 0xff, rssi); 3908 3909 return rssi - agc - IWN_RSSI_TO_DBM; 3910 } 3911 3912 /* 3913 * Retrieve the average noise (in dBm) among receivers. 3914 */ 3915 int 3916 iwn_get_noise(const struct iwn_rx_general_stats *stats) 3917 { 3918 int i, total, nbant, noise; 3919 3920 total = nbant = 0; 3921 for (i = 0; i < 3; i++) { 3922 if ((noise = letoh32(stats->noise[i]) & 0xff) == 0) 3923 continue; 3924 total += noise; 3925 nbant++; 3926 } 3927 /* There should be at least one antenna but check anyway. */ 3928 return (nbant == 0) ? -127 : (total / nbant) - 107; 3929 } 3930 3931 /* 3932 * Compute temperature (in degC) from last received statistics. 3933 */ 3934 int 3935 iwn4965_get_temperature(struct iwn_softc *sc) 3936 { 3937 struct iwn_ucode_info *uc = &sc->ucode_info; 3938 int32_t r1, r2, r3, r4, temp; 3939 3940 r1 = letoh32(uc->temp[0].chan20MHz); 3941 r2 = letoh32(uc->temp[1].chan20MHz); 3942 r3 = letoh32(uc->temp[2].chan20MHz); 3943 r4 = letoh32(sc->rawtemp); 3944 3945 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 3946 return 0; 3947 3948 /* Sign-extend 23-bit R4 value to 32-bit. */ 3949 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 3950 /* Compute temperature in Kelvin. */ 3951 temp = (259 * (r4 - r2)) / (r3 - r1); 3952 temp = (temp * 97) / 100 + 8; 3953 3954 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); 3955 return IWN_KTOC(temp); 3956 } 3957 3958 int 3959 iwn5000_get_temperature(struct iwn_softc *sc) 3960 { 3961 int32_t temp; 3962 3963 /* 3964 * Temperature is not used by the driver for 5000 Series because 3965 * TX power calibration is handled by firmware. 3966 */ 3967 temp = letoh32(sc->rawtemp); 3968 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 3969 temp = (temp / -5) + sc->temp_off; 3970 temp = IWN_KTOC(temp); 3971 } 3972 return temp; 3973 } 3974 3975 /* 3976 * Initialize sensitivity calibration state machine. 3977 */ 3978 int 3979 iwn_init_sensitivity(struct iwn_softc *sc) 3980 { 3981 struct iwn_ops *ops = &sc->ops; 3982 struct iwn_calib_state *calib = &sc->calib; 3983 uint32_t flags; 3984 int error; 3985 3986 /* Reset calibration state machine. */ 3987 memset(calib, 0, sizeof (*calib)); 3988 calib->state = IWN_CALIB_STATE_INIT; 3989 calib->cck_state = IWN_CCK_STATE_HIFA; 3990 /* Set initial correlation values. */ 3991 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 3992 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 3993 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 3994 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 3995 calib->cck_x4 = 125; 3996 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 3997 calib->energy_cck = sc->limits->energy_cck; 3998 3999 /* Write initial sensitivity. */ 4000 if ((error = iwn_send_sensitivity(sc)) != 0) 4001 return error; 4002 4003 /* Write initial gains. */ 4004 if ((error = ops->init_gains(sc)) != 0) 4005 return error; 4006 4007 /* Request statistics at each beacon interval. */ 4008 flags = 0; 4009 DPRINTFN(2, ("sending request for statistics\n")); 4010 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 4011 } 4012 4013 /* 4014 * Collect noise and RSSI statistics for the first 20 beacons received 4015 * after association and use them to determine connected antennas and 4016 * to set differential gains. 4017 */ 4018 void 4019 iwn_collect_noise(struct iwn_softc *sc, 4020 const struct iwn_rx_general_stats *stats) 4021 { 4022 struct iwn_ops *ops = &sc->ops; 4023 struct iwn_calib_state *calib = &sc->calib; 4024 uint32_t val; 4025 int i; 4026 4027 /* Accumulate RSSI and noise for all 3 antennas. */ 4028 for (i = 0; i < 3; i++) { 4029 calib->rssi[i] += letoh32(stats->rssi[i]) & 0xff; 4030 calib->noise[i] += letoh32(stats->noise[i]) & 0xff; 4031 } 4032 /* NB: We update differential gains only once after 20 beacons. */ 4033 if (++calib->nbeacons < 20) 4034 return; 4035 4036 /* Determine highest average RSSI. */ 4037 val = MAX(calib->rssi[0], calib->rssi[1]); 4038 val = MAX(calib->rssi[2], val); 4039 4040 /* Determine which antennas are connected. */ 4041 sc->chainmask = sc->rxchainmask; 4042 for (i = 0; i < 3; i++) 4043 if (val - calib->rssi[i] > 15 * 20) 4044 sc->chainmask &= ~(1 << i); 4045 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n", 4046 sc->rxchainmask, sc->chainmask)); 4047 4048 /* If none of the TX antennas are connected, keep at least one. */ 4049 if ((sc->chainmask & sc->txchainmask) == 0) 4050 sc->chainmask |= IWN_LSB(sc->txchainmask); 4051 4052 (void)ops->set_gains(sc); 4053 calib->state = IWN_CALIB_STATE_RUN; 4054 4055 #ifdef notyet 4056 /* XXX Disable RX chains with no antennas connected. */ 4057 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 4058 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4059 #endif 4060 4061 /* Enable power-saving mode if requested by user. */ 4062 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 4063 (void)iwn_set_pslevel(sc, 0, 3, 1); 4064 } 4065 4066 int 4067 iwn4965_init_gains(struct iwn_softc *sc) 4068 { 4069 struct iwn_phy_calib_gain cmd; 4070 4071 memset(&cmd, 0, sizeof cmd); 4072 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4073 /* Differential gains initially set to 0 for all 3 antennas. */ 4074 DPRINTF(("setting initial differential gains\n")); 4075 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4076 } 4077 4078 int 4079 iwn5000_init_gains(struct iwn_softc *sc) 4080 { 4081 struct iwn_phy_calib cmd; 4082 4083 memset(&cmd, 0, sizeof cmd); 4084 cmd.code = sc->reset_noise_gain; 4085 cmd.ngroups = 1; 4086 cmd.isvalid = 1; 4087 DPRINTF(("setting initial differential gains\n")); 4088 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4089 } 4090 4091 int 4092 iwn4965_set_gains(struct iwn_softc *sc) 4093 { 4094 struct iwn_calib_state *calib = &sc->calib; 4095 struct iwn_phy_calib_gain cmd; 4096 int i, delta, noise; 4097 4098 /* Get minimal noise among connected antennas. */ 4099 noise = INT_MAX; /* NB: There's at least one antenna. */ 4100 for (i = 0; i < 3; i++) 4101 if (sc->chainmask & (1 << i)) 4102 noise = MIN(calib->noise[i], noise); 4103 4104 memset(&cmd, 0, sizeof cmd); 4105 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4106 /* Set differential gains for connected antennas. */ 4107 for (i = 0; i < 3; i++) { 4108 if (sc->chainmask & (1 << i)) { 4109 /* Compute attenuation (in unit of 1.5dB). */ 4110 delta = (noise - (int32_t)calib->noise[i]) / 30; 4111 /* NB: delta <= 0 */ 4112 /* Limit to [-4.5dB,0]. */ 4113 cmd.gain[i] = MIN(abs(delta), 3); 4114 if (delta < 0) 4115 cmd.gain[i] |= 1 << 2; /* sign bit */ 4116 } 4117 } 4118 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 4119 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask)); 4120 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4121 } 4122 4123 int 4124 iwn5000_set_gains(struct iwn_softc *sc) 4125 { 4126 struct iwn_calib_state *calib = &sc->calib; 4127 struct iwn_phy_calib_gain cmd; 4128 int i, ant, div, delta; 4129 4130 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 4131 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 4132 4133 memset(&cmd, 0, sizeof cmd); 4134 cmd.code = sc->noise_gain; 4135 cmd.ngroups = 1; 4136 cmd.isvalid = 1; 4137 /* Get first available RX antenna as referential. */ 4138 ant = IWN_LSB(sc->rxchainmask); 4139 /* Set differential gains for other antennas. */ 4140 for (i = ant + 1; i < 3; i++) { 4141 if (sc->chainmask & (1 << i)) { 4142 /* The delta is relative to antenna "ant". */ 4143 delta = ((int32_t)calib->noise[ant] - 4144 (int32_t)calib->noise[i]) / div; 4145 /* Limit to [-4.5dB,+4.5dB]. */ 4146 cmd.gain[i - 1] = MIN(abs(delta), 3); 4147 if (delta < 0) 4148 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 4149 } 4150 } 4151 DPRINTF(("setting differential gains: %x/%x (%x)\n", 4152 cmd.gain[0], cmd.gain[1], sc->chainmask)); 4153 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4154 } 4155 4156 /* 4157 * Tune RF RX sensitivity based on the number of false alarms detected 4158 * during the last beacon period. 4159 */ 4160 void 4161 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 4162 { 4163 #define inc(val, inc, max) \ 4164 if ((val) < (max)) { \ 4165 if ((val) < (max) - (inc)) \ 4166 (val) += (inc); \ 4167 else \ 4168 (val) = (max); \ 4169 needs_update = 1; \ 4170 } 4171 #define dec(val, dec, min) \ 4172 if ((val) > (min)) { \ 4173 if ((val) > (min) + (dec)) \ 4174 (val) -= (dec); \ 4175 else \ 4176 (val) = (min); \ 4177 needs_update = 1; \ 4178 } 4179 4180 const struct iwn_sensitivity_limits *limits = sc->limits; 4181 struct iwn_calib_state *calib = &sc->calib; 4182 uint32_t val, rxena, fa; 4183 uint32_t energy[3], energy_min; 4184 uint8_t noise[3], noise_ref; 4185 int i, needs_update = 0; 4186 4187 /* Check that we've been enabled long enough. */ 4188 if ((rxena = letoh32(stats->general.load)) == 0) 4189 return; 4190 4191 /* Compute number of false alarms since last call for OFDM. */ 4192 fa = letoh32(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 4193 fa += letoh32(stats->ofdm.fa) - calib->fa_ofdm; 4194 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 4195 4196 /* Save counters values for next call. */ 4197 calib->bad_plcp_ofdm = letoh32(stats->ofdm.bad_plcp); 4198 calib->fa_ofdm = letoh32(stats->ofdm.fa); 4199 4200 if (fa > 50 * rxena) { 4201 /* High false alarm count, decrease sensitivity. */ 4202 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); 4203 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 4204 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 4205 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 4206 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 4207 4208 } else if (fa < 5 * rxena) { 4209 /* Low false alarm count, increase sensitivity. */ 4210 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); 4211 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 4212 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 4213 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 4214 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 4215 } 4216 4217 /* Compute maximum noise among 3 receivers. */ 4218 for (i = 0; i < 3; i++) 4219 noise[i] = (letoh32(stats->general.noise[i]) >> 8) & 0xff; 4220 val = MAX(noise[0], noise[1]); 4221 val = MAX(noise[2], val); 4222 /* Insert it into our samples table. */ 4223 calib->noise_samples[calib->cur_noise_sample] = val; 4224 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 4225 4226 /* Compute maximum noise among last 20 samples. */ 4227 noise_ref = calib->noise_samples[0]; 4228 for (i = 1; i < 20; i++) 4229 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 4230 4231 /* Compute maximum energy among 3 receivers. */ 4232 for (i = 0; i < 3; i++) 4233 energy[i] = letoh32(stats->general.energy[i]); 4234 val = MIN(energy[0], energy[1]); 4235 val = MIN(energy[2], val); 4236 /* Insert it into our samples table. */ 4237 calib->energy_samples[calib->cur_energy_sample] = val; 4238 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 4239 4240 /* Compute minimum energy among last 10 samples. */ 4241 energy_min = calib->energy_samples[0]; 4242 for (i = 1; i < 10; i++) 4243 energy_min = MAX(energy_min, calib->energy_samples[i]); 4244 energy_min += 6; 4245 4246 /* Compute number of false alarms since last call for CCK. */ 4247 fa = letoh32(stats->cck.bad_plcp) - calib->bad_plcp_cck; 4248 fa += letoh32(stats->cck.fa) - calib->fa_cck; 4249 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 4250 4251 /* Save counters values for next call. */ 4252 calib->bad_plcp_cck = letoh32(stats->cck.bad_plcp); 4253 calib->fa_cck = letoh32(stats->cck.fa); 4254 4255 if (fa > 50 * rxena) { 4256 /* High false alarm count, decrease sensitivity. */ 4257 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); 4258 calib->cck_state = IWN_CCK_STATE_HIFA; 4259 calib->low_fa = 0; 4260 4261 if (calib->cck_x4 > 160) { 4262 calib->noise_ref = noise_ref; 4263 if (calib->energy_cck > 2) 4264 dec(calib->energy_cck, 2, energy_min); 4265 } 4266 if (calib->cck_x4 < 160) { 4267 calib->cck_x4 = 161; 4268 needs_update = 1; 4269 } else 4270 inc(calib->cck_x4, 3, limits->max_cck_x4); 4271 4272 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 4273 4274 } else if (fa < 5 * rxena) { 4275 /* Low false alarm count, increase sensitivity. */ 4276 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); 4277 calib->cck_state = IWN_CCK_STATE_LOFA; 4278 calib->low_fa++; 4279 4280 if (calib->cck_state != IWN_CCK_STATE_INIT && 4281 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 4282 calib->low_fa > 100)) { 4283 inc(calib->energy_cck, 2, limits->min_energy_cck); 4284 dec(calib->cck_x4, 3, limits->min_cck_x4); 4285 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 4286 } 4287 } else { 4288 /* Not worth to increase or decrease sensitivity. */ 4289 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); 4290 calib->low_fa = 0; 4291 calib->noise_ref = noise_ref; 4292 4293 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4294 /* Previous interval had many false alarms. */ 4295 dec(calib->energy_cck, 8, energy_min); 4296 } 4297 calib->cck_state = IWN_CCK_STATE_INIT; 4298 } 4299 4300 if (needs_update) 4301 (void)iwn_send_sensitivity(sc); 4302 #undef dec 4303 #undef inc 4304 } 4305 4306 int 4307 iwn_send_sensitivity(struct iwn_softc *sc) 4308 { 4309 struct iwn_calib_state *calib = &sc->calib; 4310 struct iwn_enhanced_sensitivity_cmd cmd; 4311 int len; 4312 4313 memset(&cmd, 0, sizeof cmd); 4314 len = sizeof (struct iwn_sensitivity_cmd); 4315 cmd.which = IWN_SENSITIVITY_WORKTBL; 4316 /* OFDM modulation. */ 4317 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4318 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4319 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4320 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4321 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4322 cmd.energy_ofdm_th = htole16(62); 4323 /* CCK modulation. */ 4324 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4325 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4326 cmd.energy_cck = htole16(calib->energy_cck); 4327 /* Barker modulation: use default values. */ 4328 cmd.corr_barker = htole16(190); 4329 cmd.corr_barker_mrc = htole16(390); 4330 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 4331 goto send; 4332 /* Enhanced sensitivity settings. */ 4333 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 4334 cmd.ofdm_det_slope_mrc = htole16(668); 4335 cmd.ofdm_det_icept_mrc = htole16(4); 4336 cmd.ofdm_det_slope = htole16(486); 4337 cmd.ofdm_det_icept = htole16(37); 4338 cmd.cck_det_slope_mrc = htole16(853); 4339 cmd.cck_det_icept_mrc = htole16(4); 4340 cmd.cck_det_slope = htole16(476); 4341 cmd.cck_det_icept = htole16(99); 4342 send: 4343 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 4344 } 4345 4346 /* 4347 * Set STA mode power saving level (between 0 and 5). 4348 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4349 */ 4350 int 4351 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4352 { 4353 struct iwn_pmgt_cmd cmd; 4354 const struct iwn_pmgt *pmgt; 4355 uint32_t max, skip_dtim; 4356 pcireg_t reg; 4357 int i; 4358 4359 /* Select which PS parameters to use. */ 4360 if (dtim <= 2) 4361 pmgt = &iwn_pmgt[0][level]; 4362 else if (dtim <= 10) 4363 pmgt = &iwn_pmgt[1][level]; 4364 else 4365 pmgt = &iwn_pmgt[2][level]; 4366 4367 memset(&cmd, 0, sizeof cmd); 4368 if (level != 0) /* not CAM */ 4369 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4370 if (level == 5) 4371 cmd.flags |= htole16(IWN_PS_FAST_PD); 4372 /* Retrieve PCIe Active State Power Management (ASPM). */ 4373 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 4374 sc->sc_cap_off + PCI_PCIE_LCSR); 4375 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 4376 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4377 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4378 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4379 4380 if (dtim == 0) { 4381 dtim = 1; 4382 skip_dtim = 0; 4383 } else 4384 skip_dtim = pmgt->skip_dtim; 4385 if (skip_dtim != 0) { 4386 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4387 max = pmgt->intval[4]; 4388 if (max == (uint32_t)-1) 4389 max = dtim * (skip_dtim + 1); 4390 else if (max > dtim) 4391 max = (max / dtim) * dtim; 4392 } else 4393 max = dtim; 4394 for (i = 0; i < 5; i++) 4395 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 4396 4397 DPRINTF(("setting power saving level to %d\n", level)); 4398 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4399 } 4400 4401 int 4402 iwn_send_btcoex(struct iwn_softc *sc) 4403 { 4404 struct iwn_bluetooth cmd; 4405 4406 memset(&cmd, 0, sizeof cmd); 4407 cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 4408 cmd.lead_time = IWN_BT_LEAD_TIME_DEF; 4409 cmd.max_kill = IWN_BT_MAX_KILL_DEF; 4410 DPRINTF(("configuring bluetooth coexistence\n")); 4411 return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 4412 } 4413 4414 int 4415 iwn_send_advanced_btcoex(struct iwn_softc *sc) 4416 { 4417 static const uint32_t btcoex_3wire[12] = { 4418 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, 4419 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, 4420 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, 4421 }; 4422 struct iwn_btcoex_priotable btprio; 4423 struct iwn_btcoex_prot btprot; 4424 int error, i; 4425 4426 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 4427 sc->hw_type == IWN_HW_REV_TYPE_135) { 4428 struct iwn2000_btcoex_config btconfig; 4429 4430 memset(&btconfig, 0, sizeof btconfig); 4431 btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION | 4432 (IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) | 4433 IWN_BT_SYNC_2_BT_DISABLE; 4434 btconfig.max_kill = 5; 4435 btconfig.bt3_t7_timer = 1; 4436 btconfig.kill_ack = htole32(0xffff0000); 4437 btconfig.kill_cts = htole32(0xffff0000); 4438 btconfig.sample_time = 2; 4439 btconfig.bt3_t2_timer = 0xc; 4440 for (i = 0; i < 12; i++) 4441 btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); 4442 btconfig.valid = htole16(0xff); 4443 btconfig.prio_boost = htole32(0xf0); 4444 DPRINTF(("configuring advanced bluetooth coexistence\n")); 4445 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, 4446 sizeof(btconfig), 1); 4447 if (error != 0) 4448 return (error); 4449 } else { 4450 struct iwn6000_btcoex_config btconfig; 4451 4452 memset(&btconfig, 0, sizeof btconfig); 4453 btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION | 4454 (IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) | 4455 IWN_BT_SYNC_2_BT_DISABLE; 4456 btconfig.max_kill = 5; 4457 btconfig.bt3_t7_timer = 1; 4458 btconfig.kill_ack = htole32(0xffff0000); 4459 btconfig.kill_cts = htole32(0xffff0000); 4460 btconfig.sample_time = 2; 4461 btconfig.bt3_t2_timer = 0xc; 4462 for (i = 0; i < 12; i++) 4463 btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); 4464 btconfig.valid = htole16(0xff); 4465 btconfig.prio_boost = 0xf0; 4466 DPRINTF(("configuring advanced bluetooth coexistence\n")); 4467 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, 4468 sizeof(btconfig), 1); 4469 if (error != 0) 4470 return (error); 4471 } 4472 4473 memset(&btprio, 0, sizeof btprio); 4474 btprio.calib_init1 = 0x6; 4475 btprio.calib_init2 = 0x7; 4476 btprio.calib_periodic_low1 = 0x2; 4477 btprio.calib_periodic_low2 = 0x3; 4478 btprio.calib_periodic_high1 = 0x4; 4479 btprio.calib_periodic_high2 = 0x5; 4480 btprio.dtim = 0x6; 4481 btprio.scan52 = 0x8; 4482 btprio.scan24 = 0xa; 4483 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio), 4484 1); 4485 if (error != 0) 4486 return (error); 4487 4488 /* Force BT state machine change */ 4489 memset(&btprot, 0, sizeof btprot); 4490 btprot.open = 1; 4491 btprot.type = 1; 4492 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 4493 if (error != 0) 4494 return (error); 4495 4496 btprot.open = 0; 4497 return (iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1)); 4498 } 4499 4500 int 4501 iwn5000_runtime_calib(struct iwn_softc *sc) 4502 { 4503 struct iwn5000_calib_config cmd; 4504 4505 memset(&cmd, 0, sizeof cmd); 4506 cmd.ucode.once.enable = 0xffffffff; 4507 cmd.ucode.once.start = IWN5000_CALIB_DC; 4508 DPRINTF(("configuring runtime calibration\n")); 4509 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 4510 } 4511 4512 int 4513 iwn_config(struct iwn_softc *sc) 4514 { 4515 struct iwn_ops *ops = &sc->ops; 4516 struct ieee80211com *ic = &sc->sc_ic; 4517 struct ifnet *ifp = &ic->ic_if; 4518 uint32_t txmask; 4519 uint16_t rxchain; 4520 int error, ridx; 4521 4522 /* Set radio temperature sensor offset. */ 4523 if (sc->hw_type == IWN_HW_REV_TYPE_6005) { 4524 error = iwn6000_temp_offset_calib(sc); 4525 if (error != 0) { 4526 printf("%s: could not set temperature offset\n", 4527 sc->sc_dev.dv_xname); 4528 return error; 4529 } 4530 } 4531 4532 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 4533 sc->hw_type == IWN_HW_REV_TYPE_2000 || 4534 sc->hw_type == IWN_HW_REV_TYPE_135 || 4535 sc->hw_type == IWN_HW_REV_TYPE_105) { 4536 error = iwn2000_temp_offset_calib(sc); 4537 if (error != 0) { 4538 printf("%s: could not set temperature offset\n", 4539 sc->sc_dev.dv_xname); 4540 return error; 4541 } 4542 } 4543 4544 if (sc->hw_type == IWN_HW_REV_TYPE_6050 || 4545 sc->hw_type == IWN_HW_REV_TYPE_6005) { 4546 /* Configure runtime DC calibration. */ 4547 error = iwn5000_runtime_calib(sc); 4548 if (error != 0) { 4549 printf("%s: could not configure runtime calibration\n", 4550 sc->sc_dev.dv_xname); 4551 return error; 4552 } 4553 } 4554 4555 /* Configure valid TX chains for >=5000 Series. */ 4556 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4557 txmask = htole32(sc->txchainmask); 4558 DPRINTF(("configuring valid TX chains 0x%x\n", txmask)); 4559 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 4560 sizeof txmask, 0); 4561 if (error != 0) { 4562 printf("%s: could not configure valid TX chains\n", 4563 sc->sc_dev.dv_xname); 4564 return error; 4565 } 4566 } 4567 4568 /* Configure bluetooth coexistence. */ 4569 if (sc->sc_flags & IWN_FLAG_ADV_BT_COEX) 4570 error = iwn_send_advanced_btcoex(sc); 4571 else 4572 error = iwn_send_btcoex(sc); 4573 if (error != 0) { 4574 printf("%s: could not configure bluetooth coexistence\n", 4575 sc->sc_dev.dv_xname); 4576 return error; 4577 } 4578 4579 /* Set mode, channel, RX filter and enable RX. */ 4580 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 4581 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 4582 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 4583 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr); 4584 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 4585 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4586 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) { 4587 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4588 if (ic->ic_flags & IEEE80211_F_USEPROT) 4589 sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT); 4590 DPRINTF(("%s: 2ghz prot 0x%x\n", __func__, 4591 le32toh(sc->rxon.flags))); 4592 } 4593 switch (ic->ic_opmode) { 4594 case IEEE80211_M_STA: 4595 sc->rxon.mode = IWN_MODE_STA; 4596 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 4597 break; 4598 case IEEE80211_M_MONITOR: 4599 sc->rxon.mode = IWN_MODE_MONITOR; 4600 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 4601 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 4602 break; 4603 default: 4604 /* Should not get there. */ 4605 break; 4606 } 4607 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 4608 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 4609 sc->rxon.ht_single_mask = 0xff; 4610 sc->rxon.ht_dual_mask = 0xff; 4611 sc->rxon.ht_triple_mask = 0xff; 4612 rxchain = 4613 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4614 IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) | 4615 IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains); 4616 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4617 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4618 rxchain |= IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask); 4619 rxchain |= (IWN_RXCHAIN_DRIVER_FORCE | IWN_RXCHAIN_MIMO_FORCE); 4620 } 4621 sc->rxon.rxchain = htole16(rxchain); 4622 DPRINTF(("setting configuration\n")); 4623 DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x rxchain %x\n", 4624 __func__, sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask, 4625 sc->rxon.ofdm_mask, sc->rxon.rxchain)); 4626 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); 4627 if (error != 0) { 4628 printf("%s: RXON command failed\n", sc->sc_dev.dv_xname); 4629 return error; 4630 } 4631 4632 ridx = (sc->sc_ic.ic_curmode == IEEE80211_MODE_11A) ? 4633 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 4634 if ((error = iwn_add_broadcast_node(sc, 0, ridx)) != 0) { 4635 printf("%s: could not add broadcast node\n", 4636 sc->sc_dev.dv_xname); 4637 return error; 4638 } 4639 4640 /* Configuration has changed, set TX power accordingly. */ 4641 if ((error = ops->set_txpower(sc, 0)) != 0) { 4642 printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); 4643 return error; 4644 } 4645 4646 if ((error = iwn_set_critical_temp(sc)) != 0) { 4647 printf("%s: could not set critical temperature\n", 4648 sc->sc_dev.dv_xname); 4649 return error; 4650 } 4651 4652 /* Set power saving level to CAM during initialization. */ 4653 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 4654 printf("%s: could not set power saving level\n", 4655 sc->sc_dev.dv_xname); 4656 return error; 4657 } 4658 return 0; 4659 } 4660 4661 uint16_t 4662 iwn_get_active_dwell_time(struct iwn_softc *sc, 4663 uint16_t flags, uint8_t n_probes) 4664 { 4665 /* No channel? Default to 2GHz settings */ 4666 if (flags & IEEE80211_CHAN_2GHZ) { 4667 return (IWN_ACTIVE_DWELL_TIME_2GHZ + 4668 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); 4669 } 4670 4671 /* 5GHz dwell time */ 4672 return (IWN_ACTIVE_DWELL_TIME_5GHZ + 4673 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); 4674 } 4675 4676 /* 4677 * Limit the total dwell time to 85% of the beacon interval. 4678 * 4679 * Returns the dwell time in milliseconds. 4680 */ 4681 uint16_t 4682 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 4683 { 4684 struct ieee80211com *ic = &sc->sc_ic; 4685 struct ieee80211_node *ni = ic->ic_bss; 4686 int bintval = 0; 4687 4688 /* bintval is in TU (1.024mS) */ 4689 if (ni != NULL) 4690 bintval = ni->ni_intval; 4691 4692 /* 4693 * If it's non-zero, we should calculate the minimum of 4694 * it and the DWELL_BASE. 4695 * 4696 * XXX Yes, the math should take into account that bintval 4697 * is 1.024mS, not 1mS.. 4698 */ 4699 if (ic->ic_state == IEEE80211_S_RUN && bintval > 0) 4700 return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100))); 4701 4702 /* No association context? Default */ 4703 return (IWN_PASSIVE_DWELL_BASE); 4704 } 4705 4706 uint16_t 4707 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags) 4708 { 4709 uint16_t passive; 4710 if (flags & IEEE80211_CHAN_2GHZ) { 4711 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 4712 } else { 4713 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 4714 } 4715 4716 /* Clamp to the beacon interval if we're associated */ 4717 return (iwn_limit_dwell(sc, passive)); 4718 } 4719 4720 int 4721 iwn_scan(struct iwn_softc *sc, uint16_t flags, int bgscan) 4722 { 4723 struct ieee80211com *ic = &sc->sc_ic; 4724 struct iwn_scan_hdr *hdr; 4725 struct iwn_cmd_data *tx; 4726 struct iwn_scan_essid *essid; 4727 struct iwn_scan_chan *chan; 4728 struct ieee80211_frame *wh; 4729 struct ieee80211_rateset *rs; 4730 struct ieee80211_channel *c; 4731 struct ifnet *ifp = &ic->ic_if; 4732 uint8_t *buf, *frm; 4733 uint16_t rxchain, dwell_active, dwell_passive; 4734 uint8_t txant; 4735 int buflen, error, is_active; 4736 4737 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4738 if (buf == NULL) { 4739 printf("%s: could not allocate buffer for scan command\n", 4740 sc->sc_dev.dv_xname); 4741 return ENOMEM; 4742 } 4743 hdr = (struct iwn_scan_hdr *)buf; 4744 /* 4745 * Move to the next channel if no frames are received within 10ms 4746 * after sending the probe request. 4747 */ 4748 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 4749 hdr->quiet_threshold = htole16(1); /* min # of packets */ 4750 4751 if (bgscan) { 4752 int bintval; 4753 4754 /* Set maximum off-channel time. */ 4755 hdr->max_out = htole32(200 * 1024); 4756 4757 /* Configure scan pauses which service on-channel traffic. */ 4758 bintval = ic->ic_bss->ni_intval ? ic->ic_bss->ni_intval : 100; 4759 hdr->pause_scan = htole32(((100 / bintval) << 22) | 4760 ((100 % bintval) * 1024)); 4761 } 4762 4763 /* Select antennas for scanning. */ 4764 rxchain = 4765 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4766 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 4767 IWN_RXCHAIN_DRIVER_FORCE; 4768 if ((flags & IEEE80211_CHAN_5GHZ) && 4769 sc->hw_type == IWN_HW_REV_TYPE_4965) { 4770 /* 4771 * On 4965 ant A and C must be avoided in 5GHz because of a 4772 * HW bug which causes very weak RSSI values being reported. 4773 */ 4774 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B); 4775 } else /* Use all available RX antennas. */ 4776 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4777 hdr->rxchain = htole16(rxchain); 4778 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 4779 4780 tx = (struct iwn_cmd_data *)(hdr + 1); 4781 tx->flags = htole32(IWN_TX_AUTO_SEQ); 4782 tx->id = sc->broadcast_id; 4783 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4784 4785 if (flags & IEEE80211_CHAN_5GHZ) { 4786 /* Send probe requests at 6Mbps. */ 4787 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4788 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4789 } else { 4790 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 4791 if (bgscan && sc->hw_type == IWN_HW_REV_TYPE_4965 && 4792 sc->rxon.chan > 14) { 4793 /* 4794 * 4965 firmware can crash when sending probe requests 4795 * with CCK rates while associated to a 5GHz AP. 4796 * Send probe requests at 6Mbps OFDM as a workaround. 4797 */ 4798 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4799 } else { 4800 /* Send probe requests at 1Mbps. */ 4801 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 4802 tx->rflags = IWN_RFLAG_CCK; 4803 } 4804 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4805 } 4806 /* Use the first valid TX antenna. */ 4807 txant = IWN_LSB(sc->txchainmask); 4808 tx->rflags |= IWN_RFLAG_ANT(txant); 4809 4810 /* 4811 * Only do active scanning if we're announcing a probe request 4812 * for a given SSID (or more, if we ever add it to the driver.) 4813 */ 4814 is_active = 0; 4815 4816 /* 4817 * If we're scanning for a specific SSID, add it to the command. 4818 */ 4819 essid = (struct iwn_scan_essid *)(tx + 1); 4820 if (ic->ic_des_esslen != 0) { 4821 essid[0].id = IEEE80211_ELEMID_SSID; 4822 essid[0].len = ic->ic_des_esslen; 4823 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 4824 4825 is_active = 1; 4826 } 4827 /* 4828 * Build a probe request frame. Most of the following code is a 4829 * copy & paste of what is done in net80211. 4830 */ 4831 wh = (struct ieee80211_frame *)(essid + 20); 4832 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4833 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4834 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4835 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 4836 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 4837 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 4838 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 4839 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 4840 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 4841 4842 frm = (uint8_t *)(wh + 1); 4843 frm = ieee80211_add_ssid(frm, NULL, 0); 4844 frm = ieee80211_add_rates(frm, rs); 4845 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4846 frm = ieee80211_add_xrates(frm, rs); 4847 if (ic->ic_flags & IEEE80211_F_HTON) 4848 frm = ieee80211_add_htcaps(frm, ic); 4849 4850 /* Set length of probe request. */ 4851 tx->len = htole16(frm - (uint8_t *)wh); 4852 4853 /* 4854 * If active scanning is requested but a certain channel is 4855 * marked passive, we can do active scanning if we detect 4856 * transmissions. 4857 * 4858 * There is an issue with some firmware versions that triggers 4859 * a sysassert on a "good CRC threshold" of zero (== disabled), 4860 * on a radar channel even though this means that we should NOT 4861 * send probes. 4862 * 4863 * The "good CRC threshold" is the number of frames that we 4864 * need to receive during our dwell time on a channel before 4865 * sending out probes -- setting this to a huge value will 4866 * mean we never reach it, but at the same time work around 4867 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER 4868 * here instead of IWN_GOOD_CRC_TH_DISABLED. 4869 * 4870 * This was fixed in later versions along with some other 4871 * scan changes, and the threshold behaves as a flag in those 4872 * versions. 4873 */ 4874 4875 /* 4876 * If we're doing active scanning, set the crc_threshold 4877 * to a suitable value. This is different to active veruss 4878 * passive scanning depending upon the channel flags; the 4879 * firmware will obey that particular check for us. 4880 */ 4881 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 4882 hdr->crc_threshold = is_active ? 4883 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 4884 else 4885 hdr->crc_threshold = is_active ? 4886 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 4887 4888 chan = (struct iwn_scan_chan *)frm; 4889 for (c = &ic->ic_channels[1]; 4890 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 4891 if ((c->ic_flags & flags) != flags) 4892 continue; 4893 4894 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 4895 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 4896 chan->flags = 0; 4897 if (ic->ic_des_esslen != 0) 4898 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 4899 4900 if (c->ic_flags & IEEE80211_CHAN_PASSIVE) 4901 chan->flags |= htole32(IWN_CHAN_PASSIVE); 4902 else 4903 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4904 4905 /* 4906 * Calculate the active/passive dwell times. 4907 */ 4908 4909 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active); 4910 dwell_passive = iwn_get_passive_dwell_time(sc, flags); 4911 4912 /* Make sure they're valid */ 4913 if (dwell_passive <= dwell_active) 4914 dwell_passive = dwell_active + 1; 4915 4916 chan->active = htole16(dwell_active); 4917 chan->passive = htole16(dwell_passive); 4918 4919 chan->dsp_gain = 0x6e; 4920 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4921 chan->rf_gain = 0x3b; 4922 } else { 4923 chan->rf_gain = 0x28; 4924 } 4925 hdr->nchan++; 4926 chan++; 4927 } 4928 4929 buflen = (uint8_t *)chan - buf; 4930 hdr->len = htole16(buflen); 4931 4932 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 4933 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 4934 if (error == 0) { 4935 sc->sc_flags |= IWN_FLAG_SCANNING; 4936 if (bgscan) 4937 sc->sc_flags |= IWN_FLAG_BGSCAN; 4938 } 4939 free(buf, M_DEVBUF, IWN_SCAN_MAXSZ); 4940 return error; 4941 } 4942 4943 void 4944 iwn_scan_abort(struct iwn_softc *sc) 4945 { 4946 iwn_cmd(sc, IWN_CMD_SCAN_ABORT, NULL, 0, 1); 4947 4948 /* XXX Cannot wait for status response in interrupt context. */ 4949 DELAY(100); 4950 4951 sc->sc_flags &= ~IWN_FLAG_SCANNING; 4952 sc->sc_flags &= ~IWN_FLAG_BGSCAN; 4953 } 4954 4955 int 4956 iwn_bgscan(struct ieee80211com *ic) 4957 { 4958 struct iwn_softc *sc = ic->ic_softc; 4959 int error; 4960 4961 if (sc->sc_flags & IWN_FLAG_SCANNING) 4962 return 0; 4963 4964 error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 1); 4965 if (error) 4966 printf("%s: could not initiate background scan\n", 4967 sc->sc_dev.dv_xname); 4968 return error; 4969 } 4970 4971 int 4972 iwn_auth(struct iwn_softc *sc, int arg) 4973 { 4974 struct iwn_ops *ops = &sc->ops; 4975 struct ieee80211com *ic = &sc->sc_ic; 4976 struct ieee80211_node *ni = ic->ic_bss; 4977 int error, ridx; 4978 int bss_switch = 4979 (!IEEE80211_ADDR_EQ(sc->bss_node_addr, etheranyaddr) && 4980 !IEEE80211_ADDR_EQ(sc->bss_node_addr, ni->ni_macaddr)); 4981 4982 /* Update adapter configuration. */ 4983 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4984 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 4985 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4986 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 4987 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4988 if (ic->ic_flags & IEEE80211_F_USEPROT) 4989 sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT); 4990 DPRINTF(("%s: 2ghz prot 0x%x\n", __func__, 4991 le32toh(sc->rxon.flags))); 4992 } 4993 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4994 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4995 else 4996 sc->rxon.flags &= ~htole32(IWN_RXON_SHSLOT); 4997 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4998 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4999 else 5000 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE); 5001 switch (ic->ic_curmode) { 5002 case IEEE80211_MODE_11A: 5003 sc->rxon.cck_mask = 0; 5004 sc->rxon.ofdm_mask = 0x15; 5005 break; 5006 case IEEE80211_MODE_11B: 5007 sc->rxon.cck_mask = 0x03; 5008 sc->rxon.ofdm_mask = 0; 5009 break; 5010 default: /* Assume 802.11b/g/n. */ 5011 sc->rxon.cck_mask = 0x0f; 5012 sc->rxon.ofdm_mask = 0x15; 5013 } 5014 DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__, 5015 sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask, 5016 sc->rxon.ofdm_mask)); 5017 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 5018 if (error != 0) { 5019 printf("%s: RXON command failed\n", sc->sc_dev.dv_xname); 5020 return error; 5021 } 5022 5023 /* Configuration has changed, set TX power accordingly. */ 5024 if ((error = ops->set_txpower(sc, 1)) != 0) { 5025 printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); 5026 return error; 5027 } 5028 /* 5029 * Reconfiguring RXON clears the firmware nodes table so we must 5030 * add the broadcast node again. 5031 */ 5032 ridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 5033 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 5034 if ((error = iwn_add_broadcast_node(sc, 1, ridx)) != 0) { 5035 printf("%s: could not add broadcast node\n", 5036 sc->sc_dev.dv_xname); 5037 return error; 5038 } 5039 5040 /* 5041 * Make sure the firmware gets to see a beacon before we send 5042 * the auth request. Otherwise the Tx attempt can fail due to 5043 * the firmware's built-in regulatory domain enforcement. 5044 * Delaying here for every incoming deauth frame can result in a DoS. 5045 * Don't delay if we're here because of an incoming frame (arg != -1) 5046 * or if we're already waiting for a response (ic_mgt_timer != 0). 5047 * If we are switching APs after a background scan then net80211 has 5048 * just faked the reception of a deauth frame from our old AP, so it 5049 * is safe to delay in that case. 5050 */ 5051 if ((arg == -1 || bss_switch) && ic->ic_mgt_timer == 0) 5052 DELAY(ni->ni_intval * 3 * IEEE80211_DUR_TU); 5053 5054 /* We can now clear the cached address of our previous AP. */ 5055 memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr)); 5056 5057 return 0; 5058 } 5059 5060 int 5061 iwn_run(struct iwn_softc *sc) 5062 { 5063 struct iwn_ops *ops = &sc->ops; 5064 struct ieee80211com *ic = &sc->sc_ic; 5065 struct ieee80211_node *ni = ic->ic_bss; 5066 struct iwn_node *wn = (void *)ni; 5067 struct iwn_node_info node; 5068 int error; 5069 5070 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 5071 /* Link LED blinks while monitoring. */ 5072 iwn_set_led(sc, IWN_LED_LINK, 50, 50); 5073 return 0; 5074 } 5075 if ((error = iwn_set_timing(sc, ni)) != 0) { 5076 printf("%s: could not set timing\n", sc->sc_dev.dv_xname); 5077 return error; 5078 } 5079 5080 /* Update adapter configuration. */ 5081 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 5082 /* Short preamble and slot time are negotiated when associating. */ 5083 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 5084 if (ic->ic_flags & IEEE80211_F_SHSLOT) 5085 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 5086 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 5087 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 5088 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 5089 5090 /* HT is negotiated when associating. */ 5091 if (ni->ni_flags & IEEE80211_NODE_HT) { 5092 enum ieee80211_htprot htprot = 5093 (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK); 5094 DPRINTF(("%s: htprot = %d\n", __func__, htprot)); 5095 sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot)); 5096 } else 5097 sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3)); 5098 5099 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) { 5100 /* 11a or 11n 5GHz */ 5101 sc->rxon.cck_mask = 0; 5102 sc->rxon.ofdm_mask = 0x15; 5103 } else if (ni->ni_flags & IEEE80211_NODE_HT) { 5104 /* 11n 2GHz */ 5105 sc->rxon.cck_mask = 0x0f; 5106 sc->rxon.ofdm_mask = 0x15; 5107 } else { 5108 if (ni->ni_rates.rs_nrates == 4) { 5109 /* 11b */ 5110 sc->rxon.cck_mask = 0x03; 5111 sc->rxon.ofdm_mask = 0; 5112 } else { 5113 /* assume 11g */ 5114 sc->rxon.cck_mask = 0x0f; 5115 sc->rxon.ofdm_mask = 0x15; 5116 } 5117 } 5118 DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__, 5119 sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask, 5120 sc->rxon.ofdm_mask)); 5121 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 5122 if (error != 0) { 5123 printf("%s: could not update configuration\n", 5124 sc->sc_dev.dv_xname); 5125 return error; 5126 } 5127 5128 /* Configuration has changed, set TX power accordingly. */ 5129 if ((error = ops->set_txpower(sc, 1)) != 0) { 5130 printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); 5131 return error; 5132 } 5133 5134 /* Fake a join to initialize the TX rate. */ 5135 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 5136 iwn_newassoc(ic, ni, 1); 5137 5138 /* Add BSS node. */ 5139 memset(&node, 0, sizeof node); 5140 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 5141 node.id = IWN_ID_BSS; 5142 if (ni->ni_flags & IEEE80211_NODE_HT) { 5143 node.htmask = (IWN_AMDPU_SIZE_FACTOR_MASK | 5144 IWN_AMDPU_DENSITY_MASK); 5145 node.htflags = htole32( 5146 IWN_AMDPU_SIZE_FACTOR( 5147 (ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_LE)) | 5148 IWN_AMDPU_DENSITY( 5149 (ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_SS) >> 2)); 5150 } 5151 DPRINTF(("adding BSS node\n")); 5152 error = ops->add_node(sc, &node, 1); 5153 if (error != 0) { 5154 printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname); 5155 return error; 5156 } 5157 5158 /* Cache address of AP in case it changes after a background scan. */ 5159 IEEE80211_ADDR_COPY(sc->bss_node_addr, ni->ni_macaddr); 5160 5161 DPRINTF(("setting link quality for node %d\n", node.id)); 5162 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 5163 printf("%s: could not setup link quality for node %d\n", 5164 sc->sc_dev.dv_xname, node.id); 5165 return error; 5166 } 5167 5168 if ((error = iwn_init_sensitivity(sc)) != 0) { 5169 printf("%s: could not set sensitivity\n", 5170 sc->sc_dev.dv_xname); 5171 return error; 5172 } 5173 /* Start periodic calibration timer. */ 5174 sc->calib.state = IWN_CALIB_STATE_ASSOC; 5175 sc->calib_cnt = 0; 5176 timeout_add_msec(&sc->calib_to, 500); 5177 5178 ieee80211_mira_node_init(&wn->mn); 5179 5180 /* Link LED always on while associated. */ 5181 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 5182 return 0; 5183 } 5184 5185 /* 5186 * We support CCMP hardware encryption/decryption of unicast frames only. 5187 * HW support for TKIP really sucks. We should let TKIP die anyway. 5188 */ 5189 int 5190 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 5191 struct ieee80211_key *k) 5192 { 5193 struct iwn_softc *sc = ic->ic_softc; 5194 struct iwn_ops *ops = &sc->ops; 5195 struct iwn_node *wn = (void *)ni; 5196 struct iwn_node_info node; 5197 uint16_t kflags; 5198 5199 if ((k->k_flags & IEEE80211_KEY_GROUP) || 5200 k->k_cipher != IEEE80211_CIPHER_CCMP) 5201 return ieee80211_set_key(ic, ni, k); 5202 5203 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 5204 if (k->k_flags & IEEE80211_KEY_GROUP) 5205 kflags |= IWN_KFLAG_GROUP; 5206 5207 memset(&node, 0, sizeof node); 5208 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 5209 sc->broadcast_id : wn->id; 5210 node.control = IWN_NODE_UPDATE; 5211 node.flags = IWN_FLAG_SET_KEY; 5212 node.kflags = htole16(kflags); 5213 node.kid = k->k_id; 5214 memcpy(node.key, k->k_key, k->k_len); 5215 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 5216 return ops->add_node(sc, &node, 1); 5217 } 5218 5219 void 5220 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 5221 struct ieee80211_key *k) 5222 { 5223 struct iwn_softc *sc = ic->ic_softc; 5224 struct iwn_ops *ops = &sc->ops; 5225 struct iwn_node *wn = (void *)ni; 5226 struct iwn_node_info node; 5227 5228 if ((k->k_flags & IEEE80211_KEY_GROUP) || 5229 k->k_cipher != IEEE80211_CIPHER_CCMP) { 5230 /* See comment about other ciphers above. */ 5231 ieee80211_delete_key(ic, ni, k); 5232 return; 5233 } 5234 if (ic->ic_state != IEEE80211_S_RUN) 5235 return; /* Nothing to do. */ 5236 memset(&node, 0, sizeof node); 5237 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 5238 sc->broadcast_id : wn->id; 5239 node.control = IWN_NODE_UPDATE; 5240 node.flags = IWN_FLAG_SET_KEY; 5241 node.kflags = htole16(IWN_KFLAG_INVALID); 5242 node.kid = 0xff; 5243 DPRINTF(("delete keys for node %d\n", node.id)); 5244 (void)ops->add_node(sc, &node, 1); 5245 } 5246 5247 /* 5248 * This function is called by upper layer when HT protection settings in 5249 * beacons have changed. 5250 */ 5251 void 5252 iwn_update_htprot(struct ieee80211com *ic, struct ieee80211_node *ni) 5253 { 5254 struct iwn_softc *sc = ic->ic_softc; 5255 struct iwn_ops *ops = &sc->ops; 5256 enum ieee80211_htprot htprot; 5257 struct iwn_rxon_assoc rxon_assoc; 5258 int s, error; 5259 5260 /* Update HT protection mode setting. */ 5261 htprot = (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK) >> 5262 IEEE80211_HTOP1_PROT_SHIFT; 5263 sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3)); 5264 sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot)); 5265 5266 /* Update RXON config. */ 5267 memset(&rxon_assoc, 0, sizeof(rxon_assoc)); 5268 rxon_assoc.flags = sc->rxon.flags; 5269 rxon_assoc.filter = sc->rxon.filter; 5270 rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask; 5271 rxon_assoc.cck_mask = sc->rxon.cck_mask; 5272 rxon_assoc.ht_single_mask = sc->rxon.ht_single_mask; 5273 rxon_assoc.ht_dual_mask = sc->rxon.ht_dual_mask; 5274 rxon_assoc.ht_triple_mask = sc->rxon.ht_triple_mask; 5275 rxon_assoc.rxchain = sc->rxon.rxchain; 5276 rxon_assoc.acquisition = sc->rxon.acquisition; 5277 5278 s = splnet(); 5279 5280 error = iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &rxon_assoc, 5281 sizeof(rxon_assoc), 1); 5282 if (error != 0) 5283 printf("%s: RXON_ASSOC command failed\n", sc->sc_dev.dv_xname); 5284 5285 DELAY(100); 5286 5287 /* All RXONs wipe the firmware's txpower table. Restore it. */ 5288 error = ops->set_txpower(sc, 1); 5289 if (error != 0) 5290 printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); 5291 5292 DELAY(100); 5293 5294 /* Restore power saving level */ 5295 if (ic->ic_flags & IEEE80211_F_PMGTON) 5296 error = iwn_set_pslevel(sc, 0, 3, 1); 5297 else 5298 error = iwn_set_pslevel(sc, 0, 0, 1); 5299 if (error != 0) 5300 printf("%s: could not set PS level\n", sc->sc_dev.dv_xname); 5301 5302 splx(s); 5303 } 5304 5305 /* 5306 * This function is called by upper layer when an ADDBA request is received 5307 * from another STA and before the ADDBA response is sent. 5308 */ 5309 int 5310 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 5311 uint8_t tid) 5312 { 5313 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; 5314 struct iwn_softc *sc = ic->ic_softc; 5315 struct iwn_ops *ops = &sc->ops; 5316 struct iwn_node *wn = (void *)ni; 5317 struct iwn_node_info node; 5318 5319 memset(&node, 0, sizeof node); 5320 node.id = wn->id; 5321 node.control = IWN_NODE_UPDATE; 5322 node.flags = IWN_FLAG_SET_ADDBA; 5323 node.addba_tid = tid; 5324 node.addba_ssn = htole16(ba->ba_winstart); 5325 DPRINTF(("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, 5326 ba->ba_winstart)); 5327 /* XXX async command, so firmware may still fail to add BA agreement */ 5328 return ops->add_node(sc, &node, 1); 5329 } 5330 5331 /* 5332 * This function is called by upper layer on teardown of an HT-immediate 5333 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 5334 */ 5335 void 5336 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 5337 uint8_t tid) 5338 { 5339 struct iwn_softc *sc = ic->ic_softc; 5340 struct iwn_ops *ops = &sc->ops; 5341 struct iwn_node *wn = (void *)ni; 5342 struct iwn_node_info node; 5343 5344 memset(&node, 0, sizeof node); 5345 node.id = wn->id; 5346 node.control = IWN_NODE_UPDATE; 5347 node.flags = IWN_FLAG_SET_DELBA; 5348 node.delba_tid = tid; 5349 DPRINTF(("DELBA RA=%d TID=%d\n", wn->id, tid)); 5350 (void)ops->add_node(sc, &node, 1); 5351 } 5352 5353 /* 5354 * This function is called by upper layer when an ADDBA response is received 5355 * from another STA. 5356 */ 5357 int 5358 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 5359 uint8_t tid) 5360 { 5361 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5362 struct iwn_softc *sc = ic->ic_softc; 5363 struct iwn_ops *ops = &sc->ops; 5364 struct iwn_node *wn = (void *)ni; 5365 struct iwn_node_info node; 5366 int error; 5367 5368 /* Enable TX for the specified RA/TID. */ 5369 wn->disable_tid &= ~(1 << tid); 5370 memset(&node, 0, sizeof node); 5371 node.id = wn->id; 5372 node.control = IWN_NODE_UPDATE; 5373 node.flags = IWN_FLAG_SET_DISABLE_TID; 5374 node.disable_tid = htole16(wn->disable_tid); 5375 error = ops->add_node(sc, &node, 1); 5376 if (error != 0) 5377 return error; 5378 5379 if ((error = iwn_nic_lock(sc)) != 0) 5380 return error; 5381 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 5382 iwn_nic_unlock(sc); 5383 return 0; 5384 } 5385 5386 void 5387 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 5388 uint8_t tid) 5389 { 5390 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5391 struct iwn_softc *sc = ic->ic_softc; 5392 struct iwn_ops *ops = &sc->ops; 5393 5394 if (iwn_nic_lock(sc) != 0) 5395 return; 5396 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart); 5397 iwn_nic_unlock(sc); 5398 } 5399 5400 void 5401 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5402 uint8_t tid, uint16_t ssn) 5403 { 5404 struct iwn_node *wn = (void *)ni; 5405 int qid = 7 + tid; 5406 5407 /* Stop TX scheduler while we're changing its configuration. */ 5408 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5409 IWN4965_TXQ_STATUS_CHGACT); 5410 5411 /* Assign RA/TID translation to the queue. */ 5412 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 5413 wn->id << 4 | tid); 5414 5415 /* Enable chain-building mode for the queue. */ 5416 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 5417 5418 /* Set starting sequence number from the ADDBA request. */ 5419 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5420 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5421 5422 /* Set scheduler window size. */ 5423 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 5424 IWN_SCHED_WINSZ); 5425 /* Set scheduler frame limit. */ 5426 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5427 IWN_SCHED_LIMIT << 16); 5428 5429 /* Enable interrupts for the queue. */ 5430 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5431 5432 /* Mark the queue as active. */ 5433 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5434 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 5435 iwn_tid2fifo[tid] << 1); 5436 } 5437 5438 void 5439 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5440 { 5441 int qid = 7 + tid; 5442 5443 /* Stop TX scheduler while we're changing its configuration. */ 5444 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5445 IWN4965_TXQ_STATUS_CHGACT); 5446 5447 /* Set starting sequence number from the ADDBA request. */ 5448 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5449 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5450 5451 /* Disable interrupts for the queue. */ 5452 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5453 5454 /* Mark the queue as inactive. */ 5455 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5456 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 5457 } 5458 5459 void 5460 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5461 uint8_t tid, uint16_t ssn) 5462 { 5463 struct iwn_node *wn = (void *)ni; 5464 int qid = 10 + tid; 5465 5466 /* Stop TX scheduler while we're changing its configuration. */ 5467 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5468 IWN5000_TXQ_STATUS_CHGACT); 5469 5470 /* Assign RA/TID translation to the queue. */ 5471 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 5472 wn->id << 4 | tid); 5473 5474 /* Enable chain-building mode for the queue. */ 5475 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 5476 5477 /* Enable aggregation for the queue. */ 5478 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5479 5480 /* Set starting sequence number from the ADDBA request. */ 5481 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5482 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5483 5484 /* Set scheduler window size and frame limit. */ 5485 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5486 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5487 5488 /* Enable interrupts for the queue. */ 5489 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5490 5491 /* Mark the queue as active. */ 5492 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5493 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 5494 } 5495 5496 void 5497 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5498 { 5499 int qid = 10 + tid; 5500 5501 /* Stop TX scheduler while we're changing its configuration. */ 5502 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5503 IWN5000_TXQ_STATUS_CHGACT); 5504 5505 /* Disable aggregation for the queue. */ 5506 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5507 5508 /* Set starting sequence number from the ADDBA request. */ 5509 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5510 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5511 5512 /* Disable interrupts for the queue. */ 5513 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5514 5515 /* Mark the queue as inactive. */ 5516 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5517 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 5518 } 5519 5520 /* 5521 * Query calibration tables from the initialization firmware. We do this 5522 * only once at first boot. Called from a process context. 5523 */ 5524 int 5525 iwn5000_query_calibration(struct iwn_softc *sc) 5526 { 5527 struct iwn5000_calib_config cmd; 5528 int error; 5529 5530 memset(&cmd, 0, sizeof cmd); 5531 cmd.ucode.once.enable = 0xffffffff; 5532 cmd.ucode.once.start = 0xffffffff; 5533 cmd.ucode.once.send = 0xffffffff; 5534 cmd.ucode.flags = 0xffffffff; 5535 DPRINTF(("sending calibration query\n")); 5536 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 5537 if (error != 0) 5538 return error; 5539 5540 /* Wait at most two seconds for calibration to complete. */ 5541 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 5542 error = tsleep(sc, PCATCH, "iwncal", 2 * hz); 5543 return error; 5544 } 5545 5546 /* 5547 * Send calibration results to the runtime firmware. These results were 5548 * obtained on first boot from the initialization firmware. 5549 */ 5550 int 5551 iwn5000_send_calibration(struct iwn_softc *sc) 5552 { 5553 int idx, error; 5554 5555 for (idx = 0; idx < 5; idx++) { 5556 if (sc->calibcmd[idx].buf == NULL) 5557 continue; /* No results available. */ 5558 DPRINTF(("send calibration result idx=%d len=%d\n", 5559 idx, sc->calibcmd[idx].len)); 5560 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 5561 sc->calibcmd[idx].len, 0); 5562 if (error != 0) { 5563 printf("%s: could not send calibration result\n", 5564 sc->sc_dev.dv_xname); 5565 return error; 5566 } 5567 } 5568 return 0; 5569 } 5570 5571 int 5572 iwn5000_send_wimax_coex(struct iwn_softc *sc) 5573 { 5574 struct iwn5000_wimax_coex wimax; 5575 5576 #ifdef notyet 5577 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 5578 /* Enable WiMAX coexistence for combo adapters. */ 5579 wimax.flags = 5580 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 5581 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 5582 IWN_WIMAX_COEX_STA_TABLE_VALID | 5583 IWN_WIMAX_COEX_ENABLE; 5584 memcpy(wimax.events, iwn6050_wimax_events, 5585 sizeof iwn6050_wimax_events); 5586 } else 5587 #endif 5588 { 5589 /* Disable WiMAX coexistence. */ 5590 wimax.flags = 0; 5591 memset(wimax.events, 0, sizeof wimax.events); 5592 } 5593 DPRINTF(("Configuring WiMAX coexistence\n")); 5594 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 5595 } 5596 5597 int 5598 iwn5000_crystal_calib(struct iwn_softc *sc) 5599 { 5600 struct iwn5000_phy_calib_crystal cmd; 5601 5602 memset(&cmd, 0, sizeof cmd); 5603 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5604 cmd.ngroups = 1; 5605 cmd.isvalid = 1; 5606 cmd.cap_pin[0] = letoh32(sc->eeprom_crystal) & 0xff; 5607 cmd.cap_pin[1] = (letoh32(sc->eeprom_crystal) >> 16) & 0xff; 5608 DPRINTF(("sending crystal calibration %d, %d\n", 5609 cmd.cap_pin[0], cmd.cap_pin[1])); 5610 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5611 } 5612 5613 int 5614 iwn6000_temp_offset_calib(struct iwn_softc *sc) 5615 { 5616 struct iwn6000_phy_calib_temp_offset cmd; 5617 5618 memset(&cmd, 0, sizeof cmd); 5619 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET; 5620 cmd.ngroups = 1; 5621 cmd.isvalid = 1; 5622 if (sc->eeprom_temp != 0) 5623 cmd.offset = htole16(sc->eeprom_temp); 5624 else 5625 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 5626 DPRINTF(("setting radio sensor offset to %d\n", letoh16(cmd.offset))); 5627 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5628 } 5629 5630 int 5631 iwn2000_temp_offset_calib(struct iwn_softc *sc) 5632 { 5633 struct iwn2000_phy_calib_temp_offset cmd; 5634 5635 memset(&cmd, 0, sizeof cmd); 5636 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET; 5637 cmd.ngroups = 1; 5638 cmd.isvalid = 1; 5639 if (sc->eeprom_rawtemp != 0) { 5640 cmd.offset_low = htole16(sc->eeprom_rawtemp); 5641 cmd.offset_high = htole16(sc->eeprom_temp); 5642 } else { 5643 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 5644 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 5645 } 5646 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 5647 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n", 5648 letoh16(cmd.offset_low), letoh16(cmd.offset_high), 5649 letoh16(cmd.burnt_voltage_ref))); 5650 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5651 } 5652 5653 /* 5654 * This function is called after the runtime firmware notifies us of its 5655 * readiness (called in a process context). 5656 */ 5657 int 5658 iwn4965_post_alive(struct iwn_softc *sc) 5659 { 5660 int error, qid; 5661 5662 if ((error = iwn_nic_lock(sc)) != 0) 5663 return error; 5664 5665 /* Clear TX scheduler state in SRAM. */ 5666 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5667 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 5668 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 5669 5670 /* Set physical address of TX scheduler rings (1KB aligned). */ 5671 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5672 5673 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5674 5675 /* Disable chain mode for all our 16 queues. */ 5676 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 5677 5678 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 5679 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 5680 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5681 5682 /* Set scheduler window size. */ 5683 iwn_mem_write(sc, sc->sched_base + 5684 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 5685 /* Set scheduler frame limit. */ 5686 iwn_mem_write(sc, sc->sched_base + 5687 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5688 IWN_SCHED_LIMIT << 16); 5689 } 5690 5691 /* Enable interrupts for all our 16 queues. */ 5692 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 5693 /* Identify TX FIFO rings (0-7). */ 5694 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 5695 5696 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5697 for (qid = 0; qid < 7; qid++) { 5698 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 5699 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5700 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 5701 } 5702 iwn_nic_unlock(sc); 5703 return 0; 5704 } 5705 5706 /* 5707 * This function is called after the initialization or runtime firmware 5708 * notifies us of its readiness (called in a process context). 5709 */ 5710 int 5711 iwn5000_post_alive(struct iwn_softc *sc) 5712 { 5713 int error, qid; 5714 5715 /* Switch to using ICT interrupt mode. */ 5716 iwn5000_ict_reset(sc); 5717 5718 if ((error = iwn_nic_lock(sc)) != 0) 5719 return error; 5720 5721 /* Clear TX scheduler state in SRAM. */ 5722 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5723 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 5724 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 5725 5726 /* Set physical address of TX scheduler rings (1KB aligned). */ 5727 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5728 5729 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5730 5731 /* Enable chain mode for all queues, except command queue. */ 5732 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 5733 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 5734 5735 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 5736 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 5737 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5738 5739 iwn_mem_write(sc, sc->sched_base + 5740 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 5741 /* Set scheduler window size and frame limit. */ 5742 iwn_mem_write(sc, sc->sched_base + 5743 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5744 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5745 } 5746 5747 /* Enable interrupts for all our 20 queues. */ 5748 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 5749 /* Identify TX FIFO rings (0-7). */ 5750 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 5751 5752 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5753 for (qid = 0; qid < 7; qid++) { 5754 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 5755 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5756 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 5757 } 5758 iwn_nic_unlock(sc); 5759 5760 /* Configure WiMAX coexistence for combo adapters. */ 5761 error = iwn5000_send_wimax_coex(sc); 5762 if (error != 0) { 5763 printf("%s: could not configure WiMAX coexistence\n", 5764 sc->sc_dev.dv_xname); 5765 return error; 5766 } 5767 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 5768 /* Perform crystal calibration. */ 5769 error = iwn5000_crystal_calib(sc); 5770 if (error != 0) { 5771 printf("%s: crystal calibration failed\n", 5772 sc->sc_dev.dv_xname); 5773 return error; 5774 } 5775 } 5776 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 5777 /* Query calibration from the initialization firmware. */ 5778 if ((error = iwn5000_query_calibration(sc)) != 0) { 5779 printf("%s: could not query calibration\n", 5780 sc->sc_dev.dv_xname); 5781 return error; 5782 } 5783 /* 5784 * We have the calibration results now, reboot with the 5785 * runtime firmware (call ourselves recursively!) 5786 */ 5787 iwn_hw_stop(sc); 5788 error = iwn_hw_init(sc); 5789 } else { 5790 /* Send calibration results to runtime firmware. */ 5791 error = iwn5000_send_calibration(sc); 5792 } 5793 return error; 5794 } 5795 5796 /* 5797 * The firmware boot code is small and is intended to be copied directly into 5798 * the NIC internal memory (no DMA transfer). 5799 */ 5800 int 5801 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 5802 { 5803 int error, ntries; 5804 5805 size /= sizeof (uint32_t); 5806 5807 if ((error = iwn_nic_lock(sc)) != 0) 5808 return error; 5809 5810 /* Copy microcode image into NIC memory. */ 5811 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 5812 (const uint32_t *)ucode, size); 5813 5814 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 5815 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 5816 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 5817 5818 /* Start boot load now. */ 5819 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 5820 5821 /* Wait for transfer to complete. */ 5822 for (ntries = 0; ntries < 1000; ntries++) { 5823 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 5824 IWN_BSM_WR_CTRL_START)) 5825 break; 5826 DELAY(10); 5827 } 5828 if (ntries == 1000) { 5829 printf("%s: could not load boot firmware\n", 5830 sc->sc_dev.dv_xname); 5831 iwn_nic_unlock(sc); 5832 return ETIMEDOUT; 5833 } 5834 5835 /* Enable boot after power up. */ 5836 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 5837 5838 iwn_nic_unlock(sc); 5839 return 0; 5840 } 5841 5842 int 5843 iwn4965_load_firmware(struct iwn_softc *sc) 5844 { 5845 struct iwn_fw_info *fw = &sc->fw; 5846 struct iwn_dma_info *dma = &sc->fw_dma; 5847 int error; 5848 5849 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 5850 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 5851 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 5852 BUS_DMASYNC_PREWRITE); 5853 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5854 fw->init.text, fw->init.textsz); 5855 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5856 fw->init.textsz, BUS_DMASYNC_PREWRITE); 5857 5858 /* Tell adapter where to find initialization sections. */ 5859 if ((error = iwn_nic_lock(sc)) != 0) 5860 return error; 5861 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5862 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 5863 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5864 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5865 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 5866 iwn_nic_unlock(sc); 5867 5868 /* Load firmware boot code. */ 5869 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 5870 if (error != 0) { 5871 printf("%s: could not load boot firmware\n", 5872 sc->sc_dev.dv_xname); 5873 return error; 5874 } 5875 /* Now press "execute". */ 5876 IWN_WRITE(sc, IWN_RESET, 0); 5877 5878 /* Wait at most one second for first alive notification. */ 5879 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5880 printf("%s: timeout waiting for adapter to initialize\n", 5881 sc->sc_dev.dv_xname); 5882 return error; 5883 } 5884 5885 /* Retrieve current temperature for initial TX power calibration. */ 5886 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 5887 sc->temp = iwn4965_get_temperature(sc); 5888 5889 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 5890 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 5891 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 5892 BUS_DMASYNC_PREWRITE); 5893 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5894 fw->main.text, fw->main.textsz); 5895 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5896 fw->main.textsz, BUS_DMASYNC_PREWRITE); 5897 5898 /* Tell adapter where to find runtime sections. */ 5899 if ((error = iwn_nic_lock(sc)) != 0) 5900 return error; 5901 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5902 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5903 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5904 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5905 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 5906 IWN_FW_UPDATED | fw->main.textsz); 5907 iwn_nic_unlock(sc); 5908 5909 return 0; 5910 } 5911 5912 int 5913 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 5914 const uint8_t *section, int size) 5915 { 5916 struct iwn_dma_info *dma = &sc->fw_dma; 5917 int error; 5918 5919 /* Copy firmware section into pre-allocated DMA-safe memory. */ 5920 memcpy(dma->vaddr, section, size); 5921 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 5922 5923 if ((error = iwn_nic_lock(sc)) != 0) 5924 return error; 5925 5926 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5927 IWN_FH_TX_CONFIG_DMA_PAUSE); 5928 5929 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 5930 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 5931 IWN_LOADDR(dma->paddr)); 5932 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 5933 IWN_HIADDR(dma->paddr) << 28 | size); 5934 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 5935 IWN_FH_TXBUF_STATUS_TBNUM(1) | 5936 IWN_FH_TXBUF_STATUS_TBIDX(1) | 5937 IWN_FH_TXBUF_STATUS_TFBD_VALID); 5938 5939 /* Kick Flow Handler to start DMA transfer. */ 5940 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5941 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 5942 5943 iwn_nic_unlock(sc); 5944 5945 /* Wait at most five seconds for FH DMA transfer to complete. */ 5946 return tsleep(sc, PCATCH, "iwninit", 5 * hz); 5947 } 5948 5949 int 5950 iwn5000_load_firmware(struct iwn_softc *sc) 5951 { 5952 struct iwn_fw_part *fw; 5953 int error; 5954 5955 /* Load the initialization firmware on first boot only. */ 5956 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 5957 &sc->fw.main : &sc->fw.init; 5958 5959 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 5960 fw->text, fw->textsz); 5961 if (error != 0) { 5962 printf("%s: could not load firmware %s section\n", 5963 sc->sc_dev.dv_xname, ".text"); 5964 return error; 5965 } 5966 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 5967 fw->data, fw->datasz); 5968 if (error != 0) { 5969 printf("%s: could not load firmware %s section\n", 5970 sc->sc_dev.dv_xname, ".data"); 5971 return error; 5972 } 5973 5974 /* Now press "execute". */ 5975 IWN_WRITE(sc, IWN_RESET, 0); 5976 return 0; 5977 } 5978 5979 /* 5980 * Extract text and data sections from a legacy firmware image. 5981 */ 5982 int 5983 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 5984 { 5985 const uint32_t *ptr; 5986 size_t hdrlen = 24; 5987 uint32_t rev; 5988 5989 ptr = (const uint32_t *)fw->data; 5990 rev = letoh32(*ptr++); 5991 5992 /* Check firmware API version. */ 5993 if (IWN_FW_API(rev) <= 1) { 5994 printf("%s: bad firmware, need API version >=2\n", 5995 sc->sc_dev.dv_xname); 5996 return EINVAL; 5997 } 5998 if (IWN_FW_API(rev) >= 3) { 5999 /* Skip build number (version 2 header). */ 6000 hdrlen += 4; 6001 ptr++; 6002 } 6003 if (fw->size < hdrlen) { 6004 printf("%s: firmware too short: %zu bytes\n", 6005 sc->sc_dev.dv_xname, fw->size); 6006 return EINVAL; 6007 } 6008 fw->main.textsz = letoh32(*ptr++); 6009 fw->main.datasz = letoh32(*ptr++); 6010 fw->init.textsz = letoh32(*ptr++); 6011 fw->init.datasz = letoh32(*ptr++); 6012 fw->boot.textsz = letoh32(*ptr++); 6013 6014 /* Check that all firmware sections fit. */ 6015 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 6016 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 6017 printf("%s: firmware too short: %zu bytes\n", 6018 sc->sc_dev.dv_xname, fw->size); 6019 return EINVAL; 6020 } 6021 6022 /* Get pointers to firmware sections. */ 6023 fw->main.text = (const uint8_t *)ptr; 6024 fw->main.data = fw->main.text + fw->main.textsz; 6025 fw->init.text = fw->main.data + fw->main.datasz; 6026 fw->init.data = fw->init.text + fw->init.textsz; 6027 fw->boot.text = fw->init.data + fw->init.datasz; 6028 return 0; 6029 } 6030 6031 /* 6032 * Extract text and data sections from a TLV firmware image. 6033 */ 6034 int 6035 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 6036 uint16_t alt) 6037 { 6038 const struct iwn_fw_tlv_hdr *hdr; 6039 const struct iwn_fw_tlv *tlv; 6040 const uint8_t *ptr, *end; 6041 uint64_t altmask; 6042 uint32_t len; 6043 6044 if (fw->size < sizeof (*hdr)) { 6045 printf("%s: firmware too short: %zu bytes\n", 6046 sc->sc_dev.dv_xname, fw->size); 6047 return EINVAL; 6048 } 6049 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 6050 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 6051 printf("%s: bad firmware signature 0x%08x\n", 6052 sc->sc_dev.dv_xname, letoh32(hdr->signature)); 6053 return EINVAL; 6054 } 6055 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr, 6056 letoh32(hdr->build))); 6057 6058 /* 6059 * Select the closest supported alternative that is less than 6060 * or equal to the specified one. 6061 */ 6062 altmask = letoh64(hdr->altmask); 6063 while (alt > 0 && !(altmask & (1ULL << alt))) 6064 alt--; /* Downgrade. */ 6065 DPRINTF(("using alternative %d\n", alt)); 6066 6067 ptr = (const uint8_t *)(hdr + 1); 6068 end = (const uint8_t *)(fw->data + fw->size); 6069 6070 /* Parse type-length-value fields. */ 6071 while (ptr + sizeof (*tlv) <= end) { 6072 tlv = (const struct iwn_fw_tlv *)ptr; 6073 len = letoh32(tlv->len); 6074 6075 ptr += sizeof (*tlv); 6076 if (ptr + len > end) { 6077 printf("%s: firmware too short: %zu bytes\n", 6078 sc->sc_dev.dv_xname, fw->size); 6079 return EINVAL; 6080 } 6081 /* Skip other alternatives. */ 6082 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 6083 goto next; 6084 6085 switch (letoh16(tlv->type)) { 6086 case IWN_FW_TLV_MAIN_TEXT: 6087 fw->main.text = ptr; 6088 fw->main.textsz = len; 6089 break; 6090 case IWN_FW_TLV_MAIN_DATA: 6091 fw->main.data = ptr; 6092 fw->main.datasz = len; 6093 break; 6094 case IWN_FW_TLV_INIT_TEXT: 6095 fw->init.text = ptr; 6096 fw->init.textsz = len; 6097 break; 6098 case IWN_FW_TLV_INIT_DATA: 6099 fw->init.data = ptr; 6100 fw->init.datasz = len; 6101 break; 6102 case IWN_FW_TLV_BOOT_TEXT: 6103 fw->boot.text = ptr; 6104 fw->boot.textsz = len; 6105 break; 6106 case IWN_FW_TLV_ENH_SENS: 6107 if (len != 0) { 6108 printf("%s: TLV type %d has invalid size %u\n", 6109 sc->sc_dev.dv_xname, letoh16(tlv->type), 6110 len); 6111 goto next; 6112 } 6113 sc->sc_flags |= IWN_FLAG_ENH_SENS; 6114 break; 6115 case IWN_FW_TLV_PHY_CALIB: 6116 if (len != sizeof(uint32_t)) { 6117 printf("%s: TLV type %d has invalid size %u\n", 6118 sc->sc_dev.dv_xname, letoh16(tlv->type), 6119 len); 6120 goto next; 6121 } 6122 if (letoh32(*ptr) <= IWN5000_PHY_CALIB_MAX) { 6123 sc->reset_noise_gain = letoh32(*ptr); 6124 sc->noise_gain = letoh32(*ptr) + 1; 6125 } 6126 break; 6127 case IWN_FW_TLV_FLAGS: 6128 if (len < sizeof(uint32_t)) 6129 break; 6130 if (len % sizeof(uint32_t)) 6131 break; 6132 sc->tlv_feature_flags = letoh32(*ptr); 6133 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags)); 6134 break; 6135 default: 6136 DPRINTF(("TLV type %d not handled\n", 6137 letoh16(tlv->type))); 6138 break; 6139 } 6140 next: /* TLV fields are 32-bit aligned. */ 6141 ptr += (len + 3) & ~3; 6142 } 6143 return 0; 6144 } 6145 6146 int 6147 iwn_read_firmware(struct iwn_softc *sc) 6148 { 6149 struct iwn_fw_info *fw = &sc->fw; 6150 int error; 6151 6152 /* 6153 * Some PHY calibration commands are firmware-dependent; these 6154 * are the default values that will be overridden if 6155 * necessary. 6156 */ 6157 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 6158 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 6159 6160 memset(fw, 0, sizeof (*fw)); 6161 6162 /* Read firmware image from filesystem. */ 6163 if ((error = loadfirmware(sc->fwname, &fw->data, &fw->size)) != 0) { 6164 printf("%s: could not read firmware %s (error %d)\n", 6165 sc->sc_dev.dv_xname, sc->fwname, error); 6166 return error; 6167 } 6168 if (fw->size < sizeof (uint32_t)) { 6169 printf("%s: firmware too short: %zu bytes\n", 6170 sc->sc_dev.dv_xname, fw->size); 6171 free(fw->data, M_DEVBUF, fw->size); 6172 return EINVAL; 6173 } 6174 6175 /* Retrieve text and data sections. */ 6176 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 6177 error = iwn_read_firmware_leg(sc, fw); 6178 else 6179 error = iwn_read_firmware_tlv(sc, fw, 1); 6180 if (error != 0) { 6181 printf("%s: could not read firmware sections\n", 6182 sc->sc_dev.dv_xname); 6183 free(fw->data, M_DEVBUF, fw->size); 6184 return error; 6185 } 6186 6187 /* Make sure text and data sections fit in hardware memory. */ 6188 if (fw->main.textsz > sc->fw_text_maxsz || 6189 fw->main.datasz > sc->fw_data_maxsz || 6190 fw->init.textsz > sc->fw_text_maxsz || 6191 fw->init.datasz > sc->fw_data_maxsz || 6192 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 6193 (fw->boot.textsz & 3) != 0) { 6194 printf("%s: firmware sections too large\n", 6195 sc->sc_dev.dv_xname); 6196 free(fw->data, M_DEVBUF, fw->size); 6197 return EINVAL; 6198 } 6199 6200 /* We can proceed with loading the firmware. */ 6201 return 0; 6202 } 6203 6204 int 6205 iwn_clock_wait(struct iwn_softc *sc) 6206 { 6207 int ntries; 6208 6209 /* Set "initialization complete" bit. */ 6210 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 6211 6212 /* Wait for clock stabilization. */ 6213 for (ntries = 0; ntries < 2500; ntries++) { 6214 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 6215 return 0; 6216 DELAY(10); 6217 } 6218 printf("%s: timeout waiting for clock stabilization\n", 6219 sc->sc_dev.dv_xname); 6220 return ETIMEDOUT; 6221 } 6222 6223 int 6224 iwn_apm_init(struct iwn_softc *sc) 6225 { 6226 pcireg_t reg; 6227 int error; 6228 6229 /* Disable L0s exit timer (NMI bug workaround). */ 6230 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 6231 /* Don't wait for ICH L0s (ICH bug workaround). */ 6232 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 6233 6234 /* Set FH wait threshold to max (HW bug under stress workaround). */ 6235 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 6236 6237 /* Enable HAP INTA to move adapter from L1a to L0s. */ 6238 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 6239 6240 /* Retrieve PCIe Active State Power Management (ASPM). */ 6241 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 6242 sc->sc_cap_off + PCI_PCIE_LCSR); 6243 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 6244 if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ 6245 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6246 else 6247 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6248 6249 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6250 sc->hw_type <= IWN_HW_REV_TYPE_1000) 6251 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 6252 6253 /* Wait for clock stabilization before accessing prph. */ 6254 if ((error = iwn_clock_wait(sc)) != 0) 6255 return error; 6256 6257 if ((error = iwn_nic_lock(sc)) != 0) 6258 return error; 6259 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 6260 /* Enable DMA and BSM (Bootstrap State Machine). */ 6261 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6262 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 6263 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 6264 } else { 6265 /* Enable DMA. */ 6266 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6267 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6268 } 6269 DELAY(20); 6270 /* Disable L1-Active. */ 6271 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 6272 iwn_nic_unlock(sc); 6273 6274 return 0; 6275 } 6276 6277 void 6278 iwn_apm_stop_master(struct iwn_softc *sc) 6279 { 6280 int ntries; 6281 6282 /* Stop busmaster DMA activity. */ 6283 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 6284 for (ntries = 0; ntries < 100; ntries++) { 6285 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 6286 return; 6287 DELAY(10); 6288 } 6289 printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); 6290 } 6291 6292 void 6293 iwn_apm_stop(struct iwn_softc *sc) 6294 { 6295 iwn_apm_stop_master(sc); 6296 6297 /* Reset the entire device. */ 6298 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 6299 DELAY(10); 6300 /* Clear "initialization complete" bit. */ 6301 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 6302 } 6303 6304 int 6305 iwn4965_nic_config(struct iwn_softc *sc) 6306 { 6307 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 6308 /* 6309 * I don't believe this to be correct but this is what the 6310 * vendor driver is doing. Probably the bits should not be 6311 * shifted in IWN_RFCFG_*. 6312 */ 6313 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6314 IWN_RFCFG_TYPE(sc->rfcfg) | 6315 IWN_RFCFG_STEP(sc->rfcfg) | 6316 IWN_RFCFG_DASH(sc->rfcfg)); 6317 } 6318 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6319 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 6320 return 0; 6321 } 6322 6323 int 6324 iwn5000_nic_config(struct iwn_softc *sc) 6325 { 6326 uint32_t tmp; 6327 int error; 6328 6329 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 6330 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6331 IWN_RFCFG_TYPE(sc->rfcfg) | 6332 IWN_RFCFG_STEP(sc->rfcfg) | 6333 IWN_RFCFG_DASH(sc->rfcfg)); 6334 } 6335 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6336 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 6337 6338 if ((error = iwn_nic_lock(sc)) != 0) 6339 return error; 6340 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 6341 6342 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 6343 /* 6344 * Select first Switching Voltage Regulator (1.32V) to 6345 * solve a stability issue related to noisy DC2DC line 6346 * in the silicon of 1000 Series. 6347 */ 6348 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 6349 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 6350 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 6351 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 6352 } 6353 iwn_nic_unlock(sc); 6354 6355 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 6356 /* Use internal power amplifier only. */ 6357 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 6358 } 6359 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 6360 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 6361 /* Indicate that ROM calibration version is >=6. */ 6362 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 6363 } 6364 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 6365 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 6366 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 6367 sc->hw_type == IWN_HW_REV_TYPE_2000 || 6368 sc->hw_type == IWN_HW_REV_TYPE_135 || 6369 sc->hw_type == IWN_HW_REV_TYPE_105) 6370 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT); 6371 return 0; 6372 } 6373 6374 /* 6375 * Take NIC ownership over Intel Active Management Technology (AMT). 6376 */ 6377 int 6378 iwn_hw_prepare(struct iwn_softc *sc) 6379 { 6380 int ntries; 6381 6382 /* Check if hardware is ready. */ 6383 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6384 for (ntries = 0; ntries < 5; ntries++) { 6385 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6386 IWN_HW_IF_CONFIG_NIC_READY) 6387 return 0; 6388 DELAY(10); 6389 } 6390 6391 /* Hardware not ready, force into ready state. */ 6392 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 6393 for (ntries = 0; ntries < 15000; ntries++) { 6394 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 6395 IWN_HW_IF_CONFIG_PREPARE_DONE)) 6396 break; 6397 DELAY(10); 6398 } 6399 if (ntries == 15000) 6400 return ETIMEDOUT; 6401 6402 /* Hardware should be ready now. */ 6403 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6404 for (ntries = 0; ntries < 5; ntries++) { 6405 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6406 IWN_HW_IF_CONFIG_NIC_READY) 6407 return 0; 6408 DELAY(10); 6409 } 6410 return ETIMEDOUT; 6411 } 6412 6413 int 6414 iwn_hw_init(struct iwn_softc *sc) 6415 { 6416 struct iwn_ops *ops = &sc->ops; 6417 int error, chnl, qid; 6418 6419 /* Clear pending interrupts. */ 6420 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6421 6422 if ((error = iwn_apm_init(sc)) != 0) { 6423 printf("%s: could not power on adapter\n", 6424 sc->sc_dev.dv_xname); 6425 return error; 6426 } 6427 6428 /* Select VMAIN power source. */ 6429 if ((error = iwn_nic_lock(sc)) != 0) 6430 return error; 6431 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 6432 iwn_nic_unlock(sc); 6433 6434 /* Perform adapter-specific initialization. */ 6435 if ((error = ops->nic_config(sc)) != 0) 6436 return error; 6437 6438 /* Initialize RX ring. */ 6439 if ((error = iwn_nic_lock(sc)) != 0) 6440 return error; 6441 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 6442 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 6443 /* Set physical address of RX ring (256-byte aligned). */ 6444 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 6445 /* Set physical address of RX status (16-byte aligned). */ 6446 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 6447 /* Enable RX. */ 6448 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 6449 IWN_FH_RX_CONFIG_ENA | 6450 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 6451 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 6452 IWN_FH_RX_CONFIG_SINGLE_FRAME | 6453 IWN_FH_RX_CONFIG_RB_TIMEOUT(0x11) | /* about 1/2 msec */ 6454 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 6455 iwn_nic_unlock(sc); 6456 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 6457 6458 if ((error = iwn_nic_lock(sc)) != 0) 6459 return error; 6460 6461 /* Initialize TX scheduler. */ 6462 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6463 6464 /* Set physical address of "keep warm" page (16-byte aligned). */ 6465 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 6466 6467 /* Initialize TX rings. */ 6468 for (qid = 0; qid < sc->ntxqs; qid++) { 6469 struct iwn_tx_ring *txq = &sc->txq[qid]; 6470 6471 /* Set physical address of TX ring (256-byte aligned). */ 6472 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 6473 txq->desc_dma.paddr >> 8); 6474 } 6475 iwn_nic_unlock(sc); 6476 6477 /* Enable DMA channels. */ 6478 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6479 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 6480 IWN_FH_TX_CONFIG_DMA_ENA | 6481 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 6482 } 6483 6484 /* Clear "radio off" and "commands blocked" bits. */ 6485 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6486 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 6487 6488 /* Clear pending interrupts. */ 6489 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6490 /* Enable interrupt coalescing. */ 6491 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 6492 /* Enable interrupts. */ 6493 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 6494 6495 /* _Really_ make sure "radio off" bit is cleared! */ 6496 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6497 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6498 6499 /* Enable shadow registers. */ 6500 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 6501 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 6502 6503 if ((error = ops->load_firmware(sc)) != 0) { 6504 printf("%s: could not load firmware\n", sc->sc_dev.dv_xname); 6505 return error; 6506 } 6507 /* Wait at most one second for firmware alive notification. */ 6508 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 6509 printf("%s: timeout waiting for adapter to initialize\n", 6510 sc->sc_dev.dv_xname); 6511 return error; 6512 } 6513 /* Do post-firmware initialization. */ 6514 return ops->post_alive(sc); 6515 } 6516 6517 void 6518 iwn_hw_stop(struct iwn_softc *sc) 6519 { 6520 int chnl, qid, ntries; 6521 6522 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 6523 6524 /* Disable interrupts. */ 6525 IWN_WRITE(sc, IWN_INT_MASK, 0); 6526 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6527 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 6528 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6529 6530 /* Make sure we no longer hold the NIC lock. */ 6531 iwn_nic_unlock(sc); 6532 6533 /* Stop TX scheduler. */ 6534 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6535 6536 /* Stop all DMA channels. */ 6537 if (iwn_nic_lock(sc) == 0) { 6538 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6539 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 6540 for (ntries = 0; ntries < 200; ntries++) { 6541 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 6542 IWN_FH_TX_STATUS_IDLE(chnl)) 6543 break; 6544 DELAY(10); 6545 } 6546 } 6547 iwn_nic_unlock(sc); 6548 } 6549 6550 /* Stop RX ring. */ 6551 iwn_reset_rx_ring(sc, &sc->rxq); 6552 6553 /* Reset all TX rings. */ 6554 for (qid = 0; qid < sc->ntxqs; qid++) 6555 iwn_reset_tx_ring(sc, &sc->txq[qid]); 6556 6557 if (iwn_nic_lock(sc) == 0) { 6558 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 6559 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6560 iwn_nic_unlock(sc); 6561 } 6562 DELAY(5); 6563 /* Power OFF adapter. */ 6564 iwn_apm_stop(sc); 6565 } 6566 6567 int 6568 iwn_init(struct ifnet *ifp) 6569 { 6570 struct iwn_softc *sc = ifp->if_softc; 6571 struct ieee80211com *ic = &sc->sc_ic; 6572 int error; 6573 6574 memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr)); 6575 6576 if ((error = iwn_hw_prepare(sc)) != 0) { 6577 printf("%s: hardware not ready\n", sc->sc_dev.dv_xname); 6578 goto fail; 6579 } 6580 6581 /* Check that the radio is not disabled by hardware switch. */ 6582 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 6583 printf("%s: radio is disabled by hardware switch\n", 6584 sc->sc_dev.dv_xname); 6585 error = EPERM; /* :-) */ 6586 goto fail; 6587 } 6588 6589 /* Read firmware images from the filesystem. */ 6590 if ((error = iwn_read_firmware(sc)) != 0) { 6591 printf("%s: could not read firmware\n", sc->sc_dev.dv_xname); 6592 goto fail; 6593 } 6594 6595 /* Initialize interrupt mask to default value. */ 6596 sc->int_mask = IWN_INT_MASK_DEF; 6597 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6598 6599 /* Initialize hardware and upload firmware. */ 6600 error = iwn_hw_init(sc); 6601 free(sc->fw.data, M_DEVBUF, sc->fw.size); 6602 if (error != 0) { 6603 printf("%s: could not initialize hardware\n", 6604 sc->sc_dev.dv_xname); 6605 goto fail; 6606 } 6607 6608 /* Configure adapter now that it is ready. */ 6609 if ((error = iwn_config(sc)) != 0) { 6610 printf("%s: could not configure device\n", 6611 sc->sc_dev.dv_xname); 6612 goto fail; 6613 } 6614 6615 ifq_clr_oactive(&ifp->if_snd); 6616 ifp->if_flags |= IFF_RUNNING; 6617 6618 if (ic->ic_opmode != IEEE80211_M_MONITOR) 6619 ieee80211_begin_scan(ifp); 6620 else 6621 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 6622 6623 return 0; 6624 6625 fail: iwn_stop(ifp, 1); 6626 return error; 6627 } 6628 6629 void 6630 iwn_stop(struct ifnet *ifp, int disable) 6631 { 6632 struct iwn_softc *sc = ifp->if_softc; 6633 struct ieee80211com *ic = &sc->sc_ic; 6634 6635 timeout_del(&sc->calib_to); 6636 ifp->if_timer = sc->sc_tx_timer = 0; 6637 ifp->if_flags &= ~IFF_RUNNING; 6638 ifq_clr_oactive(&ifp->if_snd); 6639 6640 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 6641 6642 /* Power OFF hardware. */ 6643 iwn_hw_stop(sc); 6644 } 6645