xref: /openbsd-src/sys/dev/pci/if_iwn.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: if_iwn.c,v 1.112 2011/09/02 18:49:36 kettenis Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
21  * adapters.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/kernel.h>
30 #include <sys/socket.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/conf.h>
34 #include <sys/device.h>
35 #include <sys/workq.h>
36 
37 #include <machine/bus.h>
38 #include <machine/endian.h>
39 #include <machine/intr.h>
40 
41 #include <dev/pci/pcireg.h>
42 #include <dev/pci/pcivar.h>
43 #include <dev/pci/pcidevs.h>
44 
45 #if NBPFILTER > 0
46 #include <net/bpf.h>
47 #endif
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/if_ether.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63 
64 #include <dev/pci/if_iwnreg.h>
65 #include <dev/pci/if_iwnvar.h>
66 
67 static const struct pci_matchid iwn_devices[] = {
68 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_1 },
69 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_2 },
70 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_1 },
71 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_2 },
72 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_1 },
73 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_2 },
74 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_1 },
75 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_2 },
76 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_1 },
77 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_2 },
78 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_1 },
79 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_2 },
80 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_1 },
81 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_2 },
82 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_1 },
83 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_2 },
84 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_1 },
85 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_2 },
86 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_1 },
87 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_2 },
88 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_1 },
89 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_2 },
90 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_1 },
91 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_2 },
92 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_1 },
93 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_2 }
94 };
95 
96 int		iwn_match(struct device *, void *, void *);
97 void		iwn_attach(struct device *, struct device *, void *);
98 int		iwn4965_attach(struct iwn_softc *, pci_product_id_t);
99 int		iwn5000_attach(struct iwn_softc *, pci_product_id_t);
100 #if NBPFILTER > 0
101 void		iwn_radiotap_attach(struct iwn_softc *);
102 #endif
103 int		iwn_detach(struct device *, int);
104 int		iwn_activate(struct device *, int);
105 void		iwn_resume(void *, void *);
106 int		iwn_nic_lock(struct iwn_softc *);
107 int		iwn_eeprom_lock(struct iwn_softc *);
108 int		iwn_init_otprom(struct iwn_softc *);
109 int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
110 int		iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
111 		    void **, bus_size_t, bus_size_t);
112 void		iwn_dma_contig_free(struct iwn_dma_info *);
113 int		iwn_alloc_sched(struct iwn_softc *);
114 void		iwn_free_sched(struct iwn_softc *);
115 int		iwn_alloc_kw(struct iwn_softc *);
116 void		iwn_free_kw(struct iwn_softc *);
117 int		iwn_alloc_ict(struct iwn_softc *);
118 void		iwn_free_ict(struct iwn_softc *);
119 int		iwn_alloc_fwmem(struct iwn_softc *);
120 void		iwn_free_fwmem(struct iwn_softc *);
121 int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
122 void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
123 void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
124 int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
125 		    int);
126 void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
127 void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
128 void		iwn5000_ict_reset(struct iwn_softc *);
129 int		iwn_read_eeprom(struct iwn_softc *);
130 void		iwn4965_read_eeprom(struct iwn_softc *);
131 void		iwn4965_print_power_group(struct iwn_softc *, int);
132 void		iwn5000_read_eeprom(struct iwn_softc *);
133 void		iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
134 void		iwn_read_eeprom_enhinfo(struct iwn_softc *);
135 struct		ieee80211_node *iwn_node_alloc(struct ieee80211com *);
136 void		iwn_newassoc(struct ieee80211com *, struct ieee80211_node *,
137 		    int);
138 int		iwn_media_change(struct ifnet *);
139 int		iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
140 void		iwn_iter_func(void *, struct ieee80211_node *);
141 void		iwn_calib_timeout(void *);
142 int		iwn_ccmp_decap(struct iwn_softc *, struct mbuf *,
143 		    struct ieee80211_key *);
144 void		iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
145 		    struct iwn_rx_data *);
146 void		iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
147 		    struct iwn_rx_data *);
148 #ifndef IEEE80211_NO_HT
149 void		iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
150 		    struct iwn_rx_data *);
151 #endif
152 void		iwn5000_rx_calib_results(struct iwn_softc *,
153 		    struct iwn_rx_desc *, struct iwn_rx_data *);
154 void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
155 		    struct iwn_rx_data *);
156 void		iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
157 		    struct iwn_rx_data *);
158 void		iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
159 		    struct iwn_rx_data *);
160 void		iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
161 		    uint8_t);
162 void		iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
163 void		iwn_notif_intr(struct iwn_softc *);
164 void		iwn_wakeup_intr(struct iwn_softc *);
165 void		iwn_fatal_intr(struct iwn_softc *);
166 int		iwn_intr(void *);
167 void		iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
168 		    uint16_t);
169 void		iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
170 		    uint16_t);
171 void		iwn5000_reset_sched(struct iwn_softc *, int, int);
172 int		iwn_tx(struct iwn_softc *, struct mbuf *,
173 		    struct ieee80211_node *);
174 void		iwn_start(struct ifnet *);
175 void		iwn_watchdog(struct ifnet *);
176 int		iwn_ioctl(struct ifnet *, u_long, caddr_t);
177 int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
178 int		iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
179 		    int);
180 int		iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
181 		    int);
182 int		iwn_set_link_quality(struct iwn_softc *,
183 		    struct ieee80211_node *);
184 int		iwn_add_broadcast_node(struct iwn_softc *, int);
185 void		iwn_updateedca(struct ieee80211com *);
186 void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
187 int		iwn_set_critical_temp(struct iwn_softc *);
188 int		iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
189 void		iwn4965_power_calibration(struct iwn_softc *, int);
190 int		iwn4965_set_txpower(struct iwn_softc *, int);
191 int		iwn5000_set_txpower(struct iwn_softc *, int);
192 int		iwn4965_get_rssi(const struct iwn_rx_stat *);
193 int		iwn5000_get_rssi(const struct iwn_rx_stat *);
194 int		iwn_get_noise(const struct iwn_rx_general_stats *);
195 int		iwn4965_get_temperature(struct iwn_softc *);
196 int		iwn5000_get_temperature(struct iwn_softc *);
197 int		iwn_init_sensitivity(struct iwn_softc *);
198 void		iwn_collect_noise(struct iwn_softc *,
199 		    const struct iwn_rx_general_stats *);
200 int		iwn4965_init_gains(struct iwn_softc *);
201 int		iwn5000_init_gains(struct iwn_softc *);
202 int		iwn4965_set_gains(struct iwn_softc *);
203 int		iwn5000_set_gains(struct iwn_softc *);
204 void		iwn_tune_sensitivity(struct iwn_softc *,
205 		    const struct iwn_rx_stats *);
206 int		iwn_send_sensitivity(struct iwn_softc *);
207 int		iwn_set_pslevel(struct iwn_softc *, int, int, int);
208 int		iwn_send_temperature_offset(struct iwn_softc *);
209 int		iwn_send_btcoex(struct iwn_softc *);
210 int		iwn5000_runtime_calib(struct iwn_softc *);
211 int		iwn_config(struct iwn_softc *);
212 int		iwn_scan(struct iwn_softc *, uint16_t);
213 int		iwn_auth(struct iwn_softc *);
214 int		iwn_run(struct iwn_softc *);
215 int		iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
216 		    struct ieee80211_key *);
217 void		iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
218 		    struct ieee80211_key *);
219 #ifndef IEEE80211_NO_HT
220 int		iwn_ampdu_rx_start(struct ieee80211com *,
221 		    struct ieee80211_node *, uint8_t);
222 void		iwn_ampdu_rx_stop(struct ieee80211com *,
223 		    struct ieee80211_node *, uint8_t);
224 int		iwn_ampdu_tx_start(struct ieee80211com *,
225 		    struct ieee80211_node *, uint8_t);
226 void		iwn_ampdu_tx_stop(struct ieee80211com *,
227 		    struct ieee80211_node *, uint8_t);
228 void		iwn4965_ampdu_tx_start(struct iwn_softc *,
229 		    struct ieee80211_node *, uint8_t, uint16_t);
230 void		iwn4965_ampdu_tx_stop(struct iwn_softc *,
231 		    uint8_t, uint16_t);
232 void		iwn5000_ampdu_tx_start(struct iwn_softc *,
233 		    struct ieee80211_node *, uint8_t, uint16_t);
234 void		iwn5000_ampdu_tx_stop(struct iwn_softc *,
235 		    uint8_t, uint16_t);
236 #endif
237 int		iwn5000_query_calibration(struct iwn_softc *);
238 int		iwn5000_send_calibration(struct iwn_softc *);
239 int		iwn5000_send_wimax_coex(struct iwn_softc *);
240 int		iwn5000_crystal_calib(struct iwn_softc *);
241 int		iwn5000_temp_offset_calib(struct iwn_softc *);
242 int		iwn4965_post_alive(struct iwn_softc *);
243 int		iwn5000_post_alive(struct iwn_softc *);
244 int		iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
245 		    int);
246 int		iwn4965_load_firmware(struct iwn_softc *);
247 int		iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
248 		    const uint8_t *, int);
249 int		iwn5000_load_firmware(struct iwn_softc *);
250 int		iwn_read_firmware_leg(struct iwn_softc *,
251 		    struct iwn_fw_info *);
252 int		iwn_read_firmware_tlv(struct iwn_softc *,
253 		    struct iwn_fw_info *, uint16_t);
254 int		iwn_read_firmware(struct iwn_softc *);
255 int		iwn_clock_wait(struct iwn_softc *);
256 int		iwn_apm_init(struct iwn_softc *);
257 void		iwn_apm_stop_master(struct iwn_softc *);
258 void		iwn_apm_stop(struct iwn_softc *);
259 int		iwn4965_nic_config(struct iwn_softc *);
260 int		iwn5000_nic_config(struct iwn_softc *);
261 int		iwn_hw_prepare(struct iwn_softc *);
262 int		iwn_hw_init(struct iwn_softc *);
263 void		iwn_hw_stop(struct iwn_softc *);
264 int		iwn_init(struct ifnet *);
265 void		iwn_stop(struct ifnet *, int);
266 
267 #ifdef IWN_DEBUG
268 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
269 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
270 int iwn_debug = 0;
271 #else
272 #define DPRINTF(x)
273 #define DPRINTFN(n, x)
274 #endif
275 
276 struct cfdriver iwn_cd = {
277 	NULL, "iwn", DV_IFNET
278 };
279 
280 struct cfattach iwn_ca = {
281 	sizeof (struct iwn_softc), iwn_match, iwn_attach, iwn_detach,
282 	iwn_activate
283 };
284 
285 int
286 iwn_match(struct device *parent, void *match, void *aux)
287 {
288 	return pci_matchbyid((struct pci_attach_args *)aux, iwn_devices,
289 	    nitems(iwn_devices));
290 }
291 
292 void
293 iwn_attach(struct device *parent, struct device *self, void *aux)
294 {
295 	struct iwn_softc *sc = (struct iwn_softc *)self;
296 	struct ieee80211com *ic = &sc->sc_ic;
297 	struct ifnet *ifp = &ic->ic_if;
298 	struct pci_attach_args *pa = aux;
299 	const char *intrstr;
300 	pci_intr_handle_t ih;
301 	pcireg_t memtype, reg;
302 	int i, error;
303 
304 	sc->sc_pct = pa->pa_pc;
305 	sc->sc_pcitag = pa->pa_tag;
306 	sc->sc_dmat = pa->pa_dmat;
307 
308 	/*
309 	 * Get the offset of the PCI Express Capability Structure in PCI
310 	 * Configuration Space.
311 	 */
312 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
313 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
314 	if (error == 0) {
315 		printf(": PCIe capability structure not found!\n");
316 		return;
317 	}
318 
319 	/* Clear device-specific "PCI retry timeout" register (41h). */
320 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
321 	if (reg & 0xff00)
322 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
323 
324 	/* Hardware bug workaround. */
325 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
326 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
327 		DPRINTF(("PCIe INTx Disable set\n"));
328 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
329 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
330 		    PCI_COMMAND_STATUS_REG, reg);
331 	}
332 
333 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
334 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
335 	    &sc->sc_sh, NULL, &sc->sc_sz, 0);
336 	if (error != 0) {
337 		printf(": can't map mem space\n");
338 		return;
339 	}
340 
341 	/* Install interrupt handler. */
342 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
343 		printf(": can't map interrupt\n");
344 		return;
345 	}
346 	intrstr = pci_intr_string(sc->sc_pct, ih);
347 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc,
348 	    sc->sc_dev.dv_xname);
349 	if (sc->sc_ih == NULL) {
350 		printf(": can't establish interrupt");
351 		if (intrstr != NULL)
352 			printf(" at %s", intrstr);
353 		printf("\n");
354 		return;
355 	}
356 	printf(": %s", intrstr);
357 
358 	/* Read hardware revision and attach. */
359 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
360 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
361 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
362 	else
363 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
364 	if (error != 0) {
365 		printf(": could not attach device\n");
366 		return;
367 	}
368 
369 	if ((error = iwn_hw_prepare(sc)) != 0) {
370 		printf(": hardware not ready\n");
371 		return;
372 	}
373 
374 	/* Read MAC address, channels, etc from EEPROM. */
375 	if ((error = iwn_read_eeprom(sc)) != 0) {
376 		printf(": could not read EEPROM\n");
377 		return;
378 	}
379 
380 	/* Allocate DMA memory for firmware transfers. */
381 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
382 		printf(": could not allocate memory for firmware\n");
383 		return;
384 	}
385 
386 	/* Allocate "Keep Warm" page. */
387 	if ((error = iwn_alloc_kw(sc)) != 0) {
388 		printf(": could not allocate keep warm page\n");
389 		goto fail1;
390 	}
391 
392 	/* Allocate ICT table for 5000 Series. */
393 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
394 	    (error = iwn_alloc_ict(sc)) != 0) {
395 		printf(": could not allocate ICT table\n");
396 		goto fail2;
397 	}
398 
399 	/* Allocate TX scheduler "rings". */
400 	if ((error = iwn_alloc_sched(sc)) != 0) {
401 		printf(": could not allocate TX scheduler rings\n");
402 		goto fail3;
403 	}
404 
405 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
406 	for (i = 0; i < sc->ntxqs; i++) {
407 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
408 			printf(": could not allocate TX ring %d\n", i);
409 			goto fail4;
410 		}
411 	}
412 
413 	/* Allocate RX ring. */
414 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
415 		printf(": could not allocate RX ring\n");
416 		goto fail4;
417 	}
418 
419 	/* Clear pending interrupts. */
420 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
421 
422 	/* Count the number of available chains. */
423 	sc->ntxchains =
424 	    ((sc->txchainmask >> 2) & 1) +
425 	    ((sc->txchainmask >> 1) & 1) +
426 	    ((sc->txchainmask >> 0) & 1);
427 	sc->nrxchains =
428 	    ((sc->rxchainmask >> 2) & 1) +
429 	    ((sc->rxchainmask >> 1) & 1) +
430 	    ((sc->rxchainmask >> 0) & 1);
431 	printf(", MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains,
432 	    sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr));
433 
434 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
435 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
436 	ic->ic_state = IEEE80211_S_INIT;
437 
438 	/* Set device capabilities. */
439 	ic->ic_caps =
440 	    IEEE80211_C_WEP |		/* WEP */
441 	    IEEE80211_C_RSN |		/* WPA/RSN */
442 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
443 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
444 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
445 	    IEEE80211_C_PMGT;		/* power saving supported */
446 
447 #ifndef IEEE80211_NO_HT
448 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
449 		/* Set HT capabilities. */
450 		ic->ic_htcaps =
451 #if IWN_RBUF_SIZE == 8192
452 		    IEEE80211_HTCAP_AMSDU7935 |
453 #endif
454 		    IEEE80211_HTCAP_CBW20_40 |
455 		    IEEE80211_HTCAP_SGI20 |
456 		    IEEE80211_HTCAP_SGI40;
457 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
458 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
459 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
460 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
461 		else
462 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
463 	}
464 #endif	/* !IEEE80211_NO_HT */
465 
466 	/* Set supported legacy rates. */
467 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
468 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
469 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
470 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
471 		    ieee80211_std_rateset_11a;
472 	}
473 #ifndef IEEE80211_NO_HT
474 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
475 		/* Set supported HT rates. */
476 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
477 		if (sc->nrxchains > 1)
478 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
479 		if (sc->nrxchains > 2)
480 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
481 	}
482 #endif
483 
484 	/* IBSS channel undefined for now. */
485 	ic->ic_ibss_chan = &ic->ic_channels[0];
486 
487 	ifp->if_softc = sc;
488 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
489 	ifp->if_ioctl = iwn_ioctl;
490 	ifp->if_start = iwn_start;
491 	ifp->if_watchdog = iwn_watchdog;
492 	IFQ_SET_READY(&ifp->if_snd);
493 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
494 
495 	if_attach(ifp);
496 	ieee80211_ifattach(ifp);
497 	ic->ic_node_alloc = iwn_node_alloc;
498 	ic->ic_newassoc = iwn_newassoc;
499 	ic->ic_updateedca = iwn_updateedca;
500 	ic->ic_set_key = iwn_set_key;
501 	ic->ic_delete_key = iwn_delete_key;
502 #ifndef IEEE80211_NO_HT
503 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
504 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
505 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
506 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
507 #endif
508 
509 	/* Override 802.11 state transition machine. */
510 	sc->sc_newstate = ic->ic_newstate;
511 	ic->ic_newstate = iwn_newstate;
512 	ieee80211_media_init(ifp, iwn_media_change, ieee80211_media_status);
513 
514 	sc->amrr.amrr_min_success_threshold =  1;
515 	sc->amrr.amrr_max_success_threshold = 15;
516 
517 #if NBPFILTER > 0
518 	iwn_radiotap_attach(sc);
519 #endif
520 	timeout_set(&sc->calib_to, iwn_calib_timeout, sc);
521 	return;
522 
523 	/* Free allocated memory if something failed during attachment. */
524 fail4:	while (--i >= 0)
525 		iwn_free_tx_ring(sc, &sc->txq[i]);
526 	iwn_free_sched(sc);
527 fail3:	if (sc->ict != NULL)
528 		iwn_free_ict(sc);
529 fail2:	iwn_free_kw(sc);
530 fail1:	iwn_free_fwmem(sc);
531 }
532 
533 int
534 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
535 {
536 	struct iwn_ops *ops = &sc->ops;
537 
538 	ops->load_firmware = iwn4965_load_firmware;
539 	ops->read_eeprom = iwn4965_read_eeprom;
540 	ops->post_alive = iwn4965_post_alive;
541 	ops->nic_config = iwn4965_nic_config;
542 	ops->update_sched = iwn4965_update_sched;
543 	ops->get_temperature = iwn4965_get_temperature;
544 	ops->get_rssi = iwn4965_get_rssi;
545 	ops->set_txpower = iwn4965_set_txpower;
546 	ops->init_gains = iwn4965_init_gains;
547 	ops->set_gains = iwn4965_set_gains;
548 	ops->add_node = iwn4965_add_node;
549 	ops->tx_done = iwn4965_tx_done;
550 #ifndef IEEE80211_NO_HT
551 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
552 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
553 #endif
554 	sc->ntxqs = IWN4965_NTXQUEUES;
555 	sc->ndmachnls = IWN4965_NDMACHNLS;
556 	sc->broadcast_id = IWN4965_ID_BROADCAST;
557 	sc->rxonsz = IWN4965_RXONSZ;
558 	sc->schedsz = IWN4965_SCHEDSZ;
559 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
560 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
561 	sc->fwsz = IWN4965_FWSZ;
562 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
563 	sc->limits = &iwn4965_sensitivity_limits;
564 	sc->fwname = "iwn-4965";
565 	/* Override chains masks, ROM is known to be broken. */
566 	sc->txchainmask = IWN_ANT_AB;
567 	sc->rxchainmask = IWN_ANT_ABC;
568 
569 	return 0;
570 }
571 
572 int
573 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
574 {
575 	struct iwn_ops *ops = &sc->ops;
576 
577 	ops->load_firmware = iwn5000_load_firmware;
578 	ops->read_eeprom = iwn5000_read_eeprom;
579 	ops->post_alive = iwn5000_post_alive;
580 	ops->nic_config = iwn5000_nic_config;
581 	ops->update_sched = iwn5000_update_sched;
582 	ops->get_temperature = iwn5000_get_temperature;
583 	ops->get_rssi = iwn5000_get_rssi;
584 	ops->set_txpower = iwn5000_set_txpower;
585 	ops->init_gains = iwn5000_init_gains;
586 	ops->set_gains = iwn5000_set_gains;
587 	ops->add_node = iwn5000_add_node;
588 	ops->tx_done = iwn5000_tx_done;
589 #ifndef IEEE80211_NO_HT
590 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
591 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
592 #endif
593 	sc->ntxqs = IWN5000_NTXQUEUES;
594 	sc->ndmachnls = IWN5000_NDMACHNLS;
595 	sc->broadcast_id = IWN5000_ID_BROADCAST;
596 	sc->rxonsz = IWN5000_RXONSZ;
597 	sc->schedsz = IWN5000_SCHEDSZ;
598 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
599 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
600 	sc->fwsz = IWN5000_FWSZ;
601 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
602 
603 	switch (sc->hw_type) {
604 	case IWN_HW_REV_TYPE_5100:
605 		sc->limits = &iwn5000_sensitivity_limits;
606 		sc->fwname = "iwn-5000";
607 		/* Override chains masks, ROM is known to be broken. */
608 		sc->txchainmask = IWN_ANT_B;
609 		sc->rxchainmask = IWN_ANT_AB;
610 		break;
611 	case IWN_HW_REV_TYPE_5150:
612 		sc->limits = &iwn5150_sensitivity_limits;
613 		sc->fwname = "iwn-5150";
614 		break;
615 	case IWN_HW_REV_TYPE_5300:
616 	case IWN_HW_REV_TYPE_5350:
617 		sc->limits = &iwn5000_sensitivity_limits;
618 		sc->fwname = "iwn-5000";
619 		break;
620 	case IWN_HW_REV_TYPE_1000:
621 		sc->limits = &iwn1000_sensitivity_limits;
622 		sc->fwname = "iwn-1000";
623 		break;
624 	case IWN_HW_REV_TYPE_6000:
625 		sc->limits = &iwn6000_sensitivity_limits;
626 		sc->fwname = "iwn-6000";
627 		if (pid == PCI_PRODUCT_INTEL_WL_6200_1 ||
628 		    pid == PCI_PRODUCT_INTEL_WL_6200_2) {
629 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
630 			/* Override chains masks, ROM is known to be broken. */
631 			sc->txchainmask = IWN_ANT_BC;
632 			sc->rxchainmask = IWN_ANT_BC;
633 		}
634 		break;
635 	case IWN_HW_REV_TYPE_6050:
636 		sc->limits = &iwn6000_sensitivity_limits;
637 		sc->fwname = "iwn-6050";
638 		break;
639 	case IWN_HW_REV_TYPE_6005:
640 		sc->limits = &iwn6000_sensitivity_limits;
641 		sc->fwname = "iwn-6005";
642 		break;
643 	default:
644 		printf(": adapter type %d not supported\n", sc->hw_type);
645 		return ENOTSUP;
646 	}
647 	return 0;
648 }
649 
650 #if NBPFILTER > 0
651 /*
652  * Attach the interface to 802.11 radiotap.
653  */
654 void
655 iwn_radiotap_attach(struct iwn_softc *sc)
656 {
657 	bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
658 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
659 
660 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
661 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
662 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
663 
664 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
665 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
666 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
667 }
668 #endif
669 
670 int
671 iwn_detach(struct device *self, int flags)
672 {
673 	struct iwn_softc *sc = (struct iwn_softc *)self;
674 	struct ifnet *ifp = &sc->sc_ic.ic_if;
675 	int qid;
676 
677 	timeout_del(&sc->calib_to);
678 
679 	/* Uninstall interrupt handler. */
680 	if (sc->sc_ih != NULL)
681 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
682 
683 	/* Free DMA resources. */
684 	iwn_free_rx_ring(sc, &sc->rxq);
685 	for (qid = 0; qid < sc->ntxqs; qid++)
686 		iwn_free_tx_ring(sc, &sc->txq[qid]);
687 	iwn_free_sched(sc);
688 	iwn_free_kw(sc);
689 	if (sc->ict != NULL)
690 		iwn_free_ict(sc);
691 	iwn_free_fwmem(sc);
692 
693 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
694 
695 	ieee80211_ifdetach(ifp);
696 	if_detach(ifp);
697 
698 	return 0;
699 }
700 
701 int
702 iwn_activate(struct device *self, int act)
703 {
704 	struct iwn_softc *sc = (struct iwn_softc *)self;
705 	struct ifnet *ifp = &sc->sc_ic.ic_if;
706 
707 	switch (act) {
708 	case DVACT_SUSPEND:
709 		if (ifp->if_flags & IFF_RUNNING)
710 			iwn_stop(ifp, 0);
711 		break;
712 	case DVACT_RESUME:
713 		workq_queue_task(NULL, &sc->sc_resume_wqt, 0,
714 		    iwn_resume, sc, NULL);
715 		break;
716 	}
717 
718 	return 0;
719 }
720 
721 void
722 iwn_resume(void *arg1, void *arg2)
723 {
724 	struct iwn_softc *sc = arg1;
725 	struct ifnet *ifp = &sc->sc_ic.ic_if;
726 	pcireg_t reg;
727 	int s;
728 
729 	/* Clear device-specific "PCI retry timeout" register (41h). */
730 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
731 	if (reg & 0xff00)
732 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
733 
734 	s = splnet();
735 	while (sc->sc_flags & IWN_FLAG_BUSY)
736 		tsleep(&sc->sc_flags, 0, "iwnpwr", 0);
737 	sc->sc_flags |= IWN_FLAG_BUSY;
738 
739 	if (ifp->if_flags & IFF_UP)
740 		iwn_init(ifp);
741 
742 	sc->sc_flags &= ~IWN_FLAG_BUSY;
743 	wakeup(&sc->sc_flags);
744 	splx(s);
745 }
746 
747 int
748 iwn_nic_lock(struct iwn_softc *sc)
749 {
750 	int ntries;
751 
752 	/* Request exclusive access to NIC. */
753 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
754 
755 	/* Spin until we actually get the lock. */
756 	for (ntries = 0; ntries < 1000; ntries++) {
757 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
758 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
759 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
760 			return 0;
761 		DELAY(10);
762 	}
763 	return ETIMEDOUT;
764 }
765 
766 static __inline void
767 iwn_nic_unlock(struct iwn_softc *sc)
768 {
769 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
770 }
771 
772 static __inline uint32_t
773 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
774 {
775 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
776 	IWN_BARRIER_READ_WRITE(sc);
777 	return IWN_READ(sc, IWN_PRPH_RDATA);
778 }
779 
780 static __inline void
781 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
782 {
783 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
784 	IWN_BARRIER_WRITE(sc);
785 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
786 }
787 
788 static __inline void
789 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
790 {
791 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
792 }
793 
794 static __inline void
795 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
796 {
797 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
798 }
799 
800 static __inline void
801 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
802     const uint32_t *data, int count)
803 {
804 	for (; count > 0; count--, data++, addr += 4)
805 		iwn_prph_write(sc, addr, *data);
806 }
807 
808 static __inline uint32_t
809 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
810 {
811 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
812 	IWN_BARRIER_READ_WRITE(sc);
813 	return IWN_READ(sc, IWN_MEM_RDATA);
814 }
815 
816 static __inline void
817 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
818 {
819 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
820 	IWN_BARRIER_WRITE(sc);
821 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
822 }
823 
824 static __inline void
825 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
826 {
827 	uint32_t tmp;
828 
829 	tmp = iwn_mem_read(sc, addr & ~3);
830 	if (addr & 3)
831 		tmp = (tmp & 0x0000ffff) | data << 16;
832 	else
833 		tmp = (tmp & 0xffff0000) | data;
834 	iwn_mem_write(sc, addr & ~3, tmp);
835 }
836 
837 static __inline void
838 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
839     int count)
840 {
841 	for (; count > 0; count--, addr += 4)
842 		*data++ = iwn_mem_read(sc, addr);
843 }
844 
845 static __inline void
846 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
847     int count)
848 {
849 	for (; count > 0; count--, addr += 4)
850 		iwn_mem_write(sc, addr, val);
851 }
852 
853 int
854 iwn_eeprom_lock(struct iwn_softc *sc)
855 {
856 	int i, ntries;
857 
858 	for (i = 0; i < 100; i++) {
859 		/* Request exclusive access to EEPROM. */
860 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
861 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
862 
863 		/* Spin until we actually get the lock. */
864 		for (ntries = 0; ntries < 100; ntries++) {
865 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
866 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
867 				return 0;
868 			DELAY(10);
869 		}
870 	}
871 	return ETIMEDOUT;
872 }
873 
874 static __inline void
875 iwn_eeprom_unlock(struct iwn_softc *sc)
876 {
877 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
878 }
879 
880 /*
881  * Initialize access by host to One Time Programmable ROM.
882  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
883  */
884 int
885 iwn_init_otprom(struct iwn_softc *sc)
886 {
887 	uint16_t prev, base, next;
888 	int count, error;
889 
890 	/* Wait for clock stabilization before accessing prph. */
891 	if ((error = iwn_clock_wait(sc)) != 0)
892 		return error;
893 
894 	if ((error = iwn_nic_lock(sc)) != 0)
895 		return error;
896 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
897 	DELAY(5);
898 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
899 	iwn_nic_unlock(sc);
900 
901 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
902 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
903 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
904 		    IWN_RESET_LINK_PWR_MGMT_DIS);
905 	}
906 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
907 	/* Clear ECC status. */
908 	IWN_SETBITS(sc, IWN_OTP_GP,
909 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
910 
911 	/*
912 	 * Find the block before last block (contains the EEPROM image)
913 	 * for HW without OTP shadow RAM.
914 	 */
915 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
916 		/* Switch to absolute addressing mode. */
917 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
918 		base = 0;
919 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
920 			error = iwn_read_prom_data(sc, base, &next, 2);
921 			if (error != 0)
922 				return error;
923 			if (next == 0)	/* End of linked-list. */
924 				break;
925 			prev = base;
926 			base = letoh16(next);
927 		}
928 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
929 			return EIO;
930 		/* Skip "next" word. */
931 		sc->prom_base = prev + 1;
932 	}
933 	return 0;
934 }
935 
936 int
937 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
938 {
939 	uint8_t *out = data;
940 	uint32_t val, tmp;
941 	int ntries;
942 
943 	addr += sc->prom_base;
944 	for (; count > 0; count -= 2, addr++) {
945 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
946 		for (ntries = 0; ntries < 10; ntries++) {
947 			val = IWN_READ(sc, IWN_EEPROM);
948 			if (val & IWN_EEPROM_READ_VALID)
949 				break;
950 			DELAY(5);
951 		}
952 		if (ntries == 10) {
953 			printf("%s: timeout reading ROM at 0x%x\n",
954 			    sc->sc_dev.dv_xname, addr);
955 			return ETIMEDOUT;
956 		}
957 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
958 			/* OTPROM, check for ECC errors. */
959 			tmp = IWN_READ(sc, IWN_OTP_GP);
960 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
961 				printf("%s: OTPROM ECC error at 0x%x\n",
962 				    sc->sc_dev.dv_xname, addr);
963 				return EIO;
964 			}
965 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
966 				/* Correctable ECC error, clear bit. */
967 				IWN_SETBITS(sc, IWN_OTP_GP,
968 				    IWN_OTP_GP_ECC_CORR_STTS);
969 			}
970 		}
971 		*out++ = val >> 16;
972 		if (count > 1)
973 			*out++ = val >> 24;
974 	}
975 	return 0;
976 }
977 
978 int
979 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
980     bus_size_t size, bus_size_t alignment)
981 {
982 	int nsegs, error;
983 
984 	dma->tag = tag;
985 	dma->size = size;
986 
987 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
988 	    &dma->map);
989 	if (error != 0)
990 		goto fail;
991 
992 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
993 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO);
994 	if (error != 0)
995 		goto fail;
996 
997 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
998 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
999 	if (error != 0)
1000 		goto fail;
1001 
1002 	error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
1003 	    BUS_DMA_NOWAIT);
1004 	if (error != 0)
1005 		goto fail;
1006 
1007 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1008 
1009 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1010 	if (kvap != NULL)
1011 		*kvap = dma->vaddr;
1012 
1013 	return 0;
1014 
1015 fail:	iwn_dma_contig_free(dma);
1016 	return error;
1017 }
1018 
1019 void
1020 iwn_dma_contig_free(struct iwn_dma_info *dma)
1021 {
1022 	if (dma->map != NULL) {
1023 		if (dma->vaddr != NULL) {
1024 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1025 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1026 			bus_dmamap_unload(dma->tag, dma->map);
1027 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1028 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1029 			dma->vaddr = NULL;
1030 		}
1031 		bus_dmamap_destroy(dma->tag, dma->map);
1032 		dma->map = NULL;
1033 	}
1034 }
1035 
1036 int
1037 iwn_alloc_sched(struct iwn_softc *sc)
1038 {
1039 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1040 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1041 	    (void **)&sc->sched, sc->schedsz, 1024);
1042 }
1043 
1044 void
1045 iwn_free_sched(struct iwn_softc *sc)
1046 {
1047 	iwn_dma_contig_free(&sc->sched_dma);
1048 }
1049 
1050 int
1051 iwn_alloc_kw(struct iwn_softc *sc)
1052 {
1053 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1054 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1055 	    4096);
1056 }
1057 
1058 void
1059 iwn_free_kw(struct iwn_softc *sc)
1060 {
1061 	iwn_dma_contig_free(&sc->kw_dma);
1062 }
1063 
1064 int
1065 iwn_alloc_ict(struct iwn_softc *sc)
1066 {
1067 	/* ICT table must be aligned on a 4KB boundary. */
1068 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1069 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1070 }
1071 
1072 void
1073 iwn_free_ict(struct iwn_softc *sc)
1074 {
1075 	iwn_dma_contig_free(&sc->ict_dma);
1076 }
1077 
1078 int
1079 iwn_alloc_fwmem(struct iwn_softc *sc)
1080 {
1081 	/* Must be aligned on a 16-byte boundary. */
1082 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1083 	    sc->fwsz, 16);
1084 }
1085 
1086 void
1087 iwn_free_fwmem(struct iwn_softc *sc)
1088 {
1089 	iwn_dma_contig_free(&sc->fw_dma);
1090 }
1091 
1092 int
1093 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1094 {
1095 	bus_size_t size;
1096 	int i, error;
1097 
1098 	ring->cur = 0;
1099 
1100 	/* Allocate RX descriptors (256-byte aligned). */
1101 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1102 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1103 	    (void **)&ring->desc, size, 256);
1104 	if (error != 0) {
1105 		printf("%s: could not allocate RX ring DMA memory\n",
1106 		    sc->sc_dev.dv_xname);
1107 		goto fail;
1108 	}
1109 
1110 	/* Allocate RX status area (16-byte aligned). */
1111 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1112 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1113 	if (error != 0) {
1114 		printf("%s: could not allocate RX status DMA memory\n",
1115 		    sc->sc_dev.dv_xname);
1116 		goto fail;
1117 	}
1118 
1119 	/*
1120 	 * Allocate and map RX buffers.
1121 	 */
1122 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1123 		struct iwn_rx_data *data = &ring->data[i];
1124 
1125 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1126 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1127 		    &data->map);
1128 		if (error != 0) {
1129 			printf("%s: could not create RX buf DMA map\n",
1130 			    sc->sc_dev.dv_xname);
1131 			goto fail;
1132 		}
1133 
1134 		data->m = MCLGETI(NULL, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1135 		if (data->m == NULL) {
1136 			printf("%s: could not allocate RX mbuf\n",
1137 			    sc->sc_dev.dv_xname);
1138 			error = ENOBUFS;
1139 			goto fail;
1140 		}
1141 
1142 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1143 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1144 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1145 		if (error != 0) {
1146 			printf("%s: can't not map mbuf (error %d)\n",
1147 			    sc->sc_dev.dv_xname, error);
1148 			goto fail;
1149 		}
1150 
1151 		/* Set physical address of RX buffer (256-byte aligned). */
1152 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1153 	}
1154 
1155 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1156 	    BUS_DMASYNC_PREWRITE);
1157 
1158 	return 0;
1159 
1160 fail:	iwn_free_rx_ring(sc, ring);
1161 	return error;
1162 }
1163 
1164 void
1165 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1166 {
1167 	int ntries;
1168 
1169 	if (iwn_nic_lock(sc) == 0) {
1170 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1171 		for (ntries = 0; ntries < 1000; ntries++) {
1172 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1173 			    IWN_FH_RX_STATUS_IDLE)
1174 				break;
1175 			DELAY(10);
1176 		}
1177 		iwn_nic_unlock(sc);
1178 	}
1179 	ring->cur = 0;
1180 	sc->last_rx_valid = 0;
1181 }
1182 
1183 void
1184 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1185 {
1186 	int i;
1187 
1188 	iwn_dma_contig_free(&ring->desc_dma);
1189 	iwn_dma_contig_free(&ring->stat_dma);
1190 
1191 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1192 		struct iwn_rx_data *data = &ring->data[i];
1193 
1194 		if (data->m != NULL) {
1195 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1196 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1197 			bus_dmamap_unload(sc->sc_dmat, data->map);
1198 			m_freem(data->m);
1199 		}
1200 		if (data->map != NULL)
1201 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1202 	}
1203 }
1204 
1205 int
1206 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1207 {
1208 	bus_addr_t paddr;
1209 	bus_size_t size;
1210 	int i, error;
1211 
1212 	ring->qid = qid;
1213 	ring->queued = 0;
1214 	ring->cur = 0;
1215 
1216 	/* Allocate TX descriptors (256-byte aligned). */
1217 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1218 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1219 	    (void **)&ring->desc, size, 256);
1220 	if (error != 0) {
1221 		printf("%s: could not allocate TX ring DMA memory\n",
1222 		    sc->sc_dev.dv_xname);
1223 		goto fail;
1224 	}
1225 	/*
1226 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1227 	 * to allocate commands space for other rings.
1228 	 * XXX Do we really need to allocate descriptors for other rings?
1229 	 */
1230 	if (qid > 4)
1231 		return 0;
1232 
1233 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1234 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1235 	    (void **)&ring->cmd, size, 4);
1236 	if (error != 0) {
1237 		printf("%s: could not allocate TX cmd DMA memory\n",
1238 		    sc->sc_dev.dv_xname);
1239 		goto fail;
1240 	}
1241 
1242 	paddr = ring->cmd_dma.paddr;
1243 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1244 		struct iwn_tx_data *data = &ring->data[i];
1245 
1246 		data->cmd_paddr = paddr;
1247 		data->scratch_paddr = paddr + 12;
1248 		paddr += sizeof (struct iwn_tx_cmd);
1249 
1250 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1251 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1252 		    &data->map);
1253 		if (error != 0) {
1254 			printf("%s: could not create TX buf DMA map\n",
1255 			    sc->sc_dev.dv_xname);
1256 			goto fail;
1257 		}
1258 	}
1259 	return 0;
1260 
1261 fail:	iwn_free_tx_ring(sc, ring);
1262 	return error;
1263 }
1264 
1265 void
1266 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1267 {
1268 	int i;
1269 
1270 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1271 		struct iwn_tx_data *data = &ring->data[i];
1272 
1273 		if (data->m != NULL) {
1274 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1275 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1276 			bus_dmamap_unload(sc->sc_dmat, data->map);
1277 			m_freem(data->m);
1278 			data->m = NULL;
1279 		}
1280 	}
1281 	/* Clear TX descriptors. */
1282 	memset(ring->desc, 0, ring->desc_dma.size);
1283 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1284 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1285 	sc->qfullmsk &= ~(1 << ring->qid);
1286 	ring->queued = 0;
1287 	ring->cur = 0;
1288 }
1289 
1290 void
1291 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1292 {
1293 	int i;
1294 
1295 	iwn_dma_contig_free(&ring->desc_dma);
1296 	iwn_dma_contig_free(&ring->cmd_dma);
1297 
1298 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1299 		struct iwn_tx_data *data = &ring->data[i];
1300 
1301 		if (data->m != NULL) {
1302 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1303 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1304 			bus_dmamap_unload(sc->sc_dmat, data->map);
1305 			m_freem(data->m);
1306 		}
1307 		if (data->map != NULL)
1308 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1309 	}
1310 }
1311 
1312 void
1313 iwn5000_ict_reset(struct iwn_softc *sc)
1314 {
1315 	/* Disable interrupts. */
1316 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1317 
1318 	/* Reset ICT table. */
1319 	memset(sc->ict, 0, IWN_ICT_SIZE);
1320 	sc->ict_cur = 0;
1321 
1322 	/* Set physical address of ICT table (4KB aligned). */
1323 	DPRINTF(("enabling ICT\n"));
1324 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1325 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1326 
1327 	/* Enable periodic RX interrupt. */
1328 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1329 	/* Switch to ICT interrupt mode in driver. */
1330 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1331 
1332 	/* Re-enable interrupts. */
1333 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1334 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1335 }
1336 
1337 int
1338 iwn_read_eeprom(struct iwn_softc *sc)
1339 {
1340 	struct iwn_ops *ops = &sc->ops;
1341 	struct ieee80211com *ic = &sc->sc_ic;
1342 	uint16_t val;
1343 	int error;
1344 
1345 	/* Check whether adapter has an EEPROM or an OTPROM. */
1346 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1347 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1348 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1349 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1350 	    "OTPROM" : "EEPROM"));
1351 
1352 	/* Adapter has to be powered on for EEPROM access to work. */
1353 	if ((error = iwn_apm_init(sc)) != 0) {
1354 		printf("%s: could not power ON adapter\n",
1355 		    sc->sc_dev.dv_xname);
1356 		return error;
1357 	}
1358 
1359 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1360 		printf("%s: bad ROM signature\n", sc->sc_dev.dv_xname);
1361 		return EIO;
1362 	}
1363 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1364 		printf("%s: could not lock ROM (error=%d)\n",
1365 		    sc->sc_dev.dv_xname, error);
1366 		return error;
1367 	}
1368 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1369 		if ((error = iwn_init_otprom(sc)) != 0) {
1370 			printf("%s: could not initialize OTPROM\n",
1371 			    sc->sc_dev.dv_xname);
1372 			return error;
1373 		}
1374 	}
1375 
1376 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1377 	DPRINTF(("SKU capabilities=0x%04x\n", letoh16(val)));
1378 	/* Check if HT support is bonded out. */
1379 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1380 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1381 
1382 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1383 	sc->rfcfg = letoh16(val);
1384 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1385 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1386 	if (sc->txchainmask == 0)
1387 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1388 	if (sc->rxchainmask == 0)
1389 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1390 
1391 	/* Read MAC address. */
1392 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1393 
1394 	/* Read adapter-specific information from EEPROM. */
1395 	ops->read_eeprom(sc);
1396 
1397 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1398 
1399 	iwn_eeprom_unlock(sc);
1400 	return 0;
1401 }
1402 
1403 void
1404 iwn4965_read_eeprom(struct iwn_softc *sc)
1405 {
1406 	uint32_t addr;
1407 	uint16_t val;
1408 	int i;
1409 
1410 	/* Read regulatory domain (4 ASCII characters). */
1411 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1412 
1413 	/* Read the list of authorized channels (20MHz ones only). */
1414 	for (i = 0; i < 5; i++) {
1415 		addr = iwn4965_regulatory_bands[i];
1416 		iwn_read_eeprom_channels(sc, i, addr);
1417 	}
1418 
1419 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1420 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1421 	sc->maxpwr2GHz = val & 0xff;
1422 	sc->maxpwr5GHz = val >> 8;
1423 	/* Check that EEPROM values are within valid range. */
1424 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1425 		sc->maxpwr5GHz = 38;
1426 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1427 		sc->maxpwr2GHz = 38;
1428 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1429 
1430 	/* Read samples for each TX power group. */
1431 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1432 	    sizeof sc->bands);
1433 
1434 	/* Read voltage at which samples were taken. */
1435 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1436 	sc->eeprom_voltage = (int16_t)letoh16(val);
1437 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1438 
1439 #ifdef IWN_DEBUG
1440 	/* Print samples. */
1441 	if (iwn_debug > 0) {
1442 		for (i = 0; i < IWN_NBANDS; i++)
1443 			iwn4965_print_power_group(sc, i);
1444 	}
1445 #endif
1446 }
1447 
1448 #ifdef IWN_DEBUG
1449 void
1450 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1451 {
1452 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1453 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1454 	int j, c;
1455 
1456 	printf("===band %d===\n", i);
1457 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1458 	printf("chan1 num=%d\n", chans[0].num);
1459 	for (c = 0; c < 2; c++) {
1460 		for (j = 0; j < IWN_NSAMPLES; j++) {
1461 			printf("chain %d, sample %d: temp=%d gain=%d "
1462 			    "power=%d pa_det=%d\n", c, j,
1463 			    chans[0].samples[c][j].temp,
1464 			    chans[0].samples[c][j].gain,
1465 			    chans[0].samples[c][j].power,
1466 			    chans[0].samples[c][j].pa_det);
1467 		}
1468 	}
1469 	printf("chan2 num=%d\n", chans[1].num);
1470 	for (c = 0; c < 2; c++) {
1471 		for (j = 0; j < IWN_NSAMPLES; j++) {
1472 			printf("chain %d, sample %d: temp=%d gain=%d "
1473 			    "power=%d pa_det=%d\n", c, j,
1474 			    chans[1].samples[c][j].temp,
1475 			    chans[1].samples[c][j].gain,
1476 			    chans[1].samples[c][j].power,
1477 			    chans[1].samples[c][j].pa_det);
1478 		}
1479 	}
1480 }
1481 #endif
1482 
1483 void
1484 iwn5000_read_eeprom(struct iwn_softc *sc)
1485 {
1486 	struct iwn5000_eeprom_calib_hdr hdr;
1487 	int32_t volt;
1488 	uint32_t base, addr;
1489 	uint16_t val;
1490 	int i;
1491 
1492 	/* Read regulatory domain (4 ASCII characters). */
1493 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1494 	base = letoh16(val);
1495 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1496 	    sc->eeprom_domain, 4);
1497 
1498 	/* Read the list of authorized channels (20MHz ones only). */
1499 	for (i = 0; i < 5; i++) {
1500 		addr = base + iwn5000_regulatory_bands[i];
1501 		iwn_read_eeprom_channels(sc, i, addr);
1502 	}
1503 
1504 	/* Read enhanced TX power information for 6000 Series. */
1505 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1506 		iwn_read_eeprom_enhinfo(sc);
1507 
1508 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1509 	base = letoh16(val);
1510 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1511 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1512 	    hdr.version, hdr.pa_type, letoh16(hdr.volt)));
1513 	sc->calib_ver = hdr.version;
1514 
1515 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1516 		/* Compute temperature offset. */
1517 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1518 		sc->eeprom_temp = letoh16(val);
1519 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1520 		volt = letoh16(val);
1521 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1522 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1523 		    sc->eeprom_temp, volt, sc->temp_off));
1524 	} else {
1525 		/* Read crystal calibration. */
1526 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1527 		    &sc->eeprom_crystal, sizeof (uint32_t));
1528 		DPRINTF(("crystal calibration 0x%08x\n",
1529 		    letoh32(sc->eeprom_crystal)));
1530 	}
1531 }
1532 
1533 void
1534 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1535 {
1536 	struct ieee80211com *ic = &sc->sc_ic;
1537 	const struct iwn_chan_band *band = &iwn_bands[n];
1538 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1539 	uint8_t chan;
1540 	int i;
1541 
1542 	iwn_read_prom_data(sc, addr, channels,
1543 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1544 
1545 	for (i = 0; i < band->nchan; i++) {
1546 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1547 			continue;
1548 
1549 		chan = band->chan[i];
1550 
1551 		if (n == 0) {	/* 2GHz band */
1552 			ic->ic_channels[chan].ic_freq =
1553 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1554 			ic->ic_channels[chan].ic_flags =
1555 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1556 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1557 
1558 		} else {	/* 5GHz band */
1559 			/*
1560 			 * Some adapters support channels 7, 8, 11 and 12
1561 			 * both in the 2GHz and 4.9GHz bands.
1562 			 * Because of limitations in our net80211 layer,
1563 			 * we don't support them in the 4.9GHz band.
1564 			 */
1565 			if (chan <= 14)
1566 				continue;
1567 
1568 			ic->ic_channels[chan].ic_freq =
1569 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1570 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1571 			/* We have at least one valid 5GHz channel. */
1572 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1573 		}
1574 
1575 		/* Is active scan allowed on this channel? */
1576 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1577 			ic->ic_channels[chan].ic_flags |=
1578 			    IEEE80211_CHAN_PASSIVE;
1579 		}
1580 
1581 		/* Save maximum allowed TX power for this channel. */
1582 		sc->maxpwr[chan] = channels[i].maxpwr;
1583 
1584 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1585 		    chan, channels[i].flags, sc->maxpwr[chan]));
1586 	}
1587 }
1588 
1589 void
1590 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1591 {
1592 	struct iwn_eeprom_enhinfo enhinfo[35];
1593 	uint16_t val, base;
1594 	int8_t maxpwr;
1595 	int i;
1596 
1597 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1598 	base = letoh16(val);
1599 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1600 	    enhinfo, sizeof enhinfo);
1601 
1602 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1603 	for (i = 0; i < nitems(enhinfo); i++) {
1604 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1605 			continue;	/* Skip invalid entries. */
1606 
1607 		maxpwr = 0;
1608 		if (sc->txchainmask & IWN_ANT_A)
1609 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1610 		if (sc->txchainmask & IWN_ANT_B)
1611 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1612 		if (sc->txchainmask & IWN_ANT_C)
1613 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1614 		if (sc->ntxchains == 2)
1615 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1616 		else if (sc->ntxchains == 3)
1617 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1618 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1619 
1620 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1621 		sc->enh_maxpwr[i] = maxpwr;
1622 	}
1623 }
1624 
1625 struct ieee80211_node *
1626 iwn_node_alloc(struct ieee80211com *ic)
1627 {
1628 	return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1629 }
1630 
1631 void
1632 iwn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
1633 {
1634 	struct iwn_softc *sc = ic->ic_if.if_softc;
1635 	struct iwn_node *wn = (void *)ni;
1636 	uint8_t rate;
1637 	int ridx, i;
1638 
1639 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1640 	/* Start at lowest available bit-rate, AMRR will raise. */
1641 	ni->ni_txrate = 0;
1642 
1643 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1644 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1645 		/* Map 802.11 rate to HW rate index. */
1646 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1647 			if (iwn_rates[ridx].rate == rate)
1648 				break;
1649 		wn->ridx[i] = ridx;
1650 	}
1651 }
1652 
1653 int
1654 iwn_media_change(struct ifnet *ifp)
1655 {
1656 	struct iwn_softc *sc = ifp->if_softc;
1657 	struct ieee80211com *ic = &sc->sc_ic;
1658 	uint8_t rate, ridx;
1659 	int error;
1660 
1661 	error = ieee80211_media_change(ifp);
1662 	if (error != ENETRESET)
1663 		return error;
1664 
1665 	if (ic->ic_fixed_rate != -1) {
1666 		rate = ic->ic_sup_rates[ic->ic_curmode].
1667 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1668 		/* Map 802.11 rate to HW rate index. */
1669 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1670 			if (iwn_rates[ridx].rate == rate)
1671 				break;
1672 		sc->fixed_ridx = ridx;
1673 	}
1674 
1675 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1676 	    (IFF_UP | IFF_RUNNING)) {
1677 		iwn_stop(ifp, 0);
1678 		error = iwn_init(ifp);
1679 	}
1680 	return error;
1681 }
1682 
1683 int
1684 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1685 {
1686 	struct ifnet *ifp = &ic->ic_if;
1687 	struct iwn_softc *sc = ifp->if_softc;
1688 	int error;
1689 
1690 	timeout_del(&sc->calib_to);
1691 
1692 	switch (nstate) {
1693 	case IEEE80211_S_SCAN:
1694 		/* Make the link LED blink while we're scanning. */
1695 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1696 
1697 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1698 			printf("%s: could not initiate scan\n",
1699 			    sc->sc_dev.dv_xname);
1700 			return error;
1701 		}
1702 		ic->ic_state = nstate;
1703 		return 0;
1704 
1705 	case IEEE80211_S_ASSOC:
1706 		if (ic->ic_state != IEEE80211_S_RUN)
1707 			break;
1708 		/* FALLTHROUGH */
1709 	case IEEE80211_S_AUTH:
1710 		/* Reset state to handle reassociations correctly. */
1711 		sc->rxon.associd = 0;
1712 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1713 		sc->calib.state = IWN_CALIB_STATE_INIT;
1714 
1715 		if ((error = iwn_auth(sc)) != 0) {
1716 			printf("%s: could not move to auth state\n",
1717 			    sc->sc_dev.dv_xname);
1718 			return error;
1719 		}
1720 		break;
1721 
1722 	case IEEE80211_S_RUN:
1723 		if ((error = iwn_run(sc)) != 0) {
1724 			printf("%s: could not move to run state\n",
1725 			    sc->sc_dev.dv_xname);
1726 			return error;
1727 		}
1728 		break;
1729 
1730 	case IEEE80211_S_INIT:
1731 		sc->calib.state = IWN_CALIB_STATE_INIT;
1732 		break;
1733 	}
1734 
1735 	return sc->sc_newstate(ic, nstate, arg);
1736 }
1737 
1738 void
1739 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1740 {
1741 	struct iwn_softc *sc = arg;
1742 	struct iwn_node *wn = (struct iwn_node *)ni;
1743 
1744 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1745 }
1746 
1747 void
1748 iwn_calib_timeout(void *arg)
1749 {
1750 	struct iwn_softc *sc = arg;
1751 	struct ieee80211com *ic = &sc->sc_ic;
1752 	int s;
1753 
1754 	s = splnet();
1755 	if (ic->ic_fixed_rate == -1) {
1756 		if (ic->ic_opmode == IEEE80211_M_STA)
1757 			iwn_iter_func(sc, ic->ic_bss);
1758 		else
1759 			ieee80211_iterate_nodes(ic, iwn_iter_func, sc);
1760 	}
1761 	/* Force automatic TX power calibration every 60 secs. */
1762 	if (++sc->calib_cnt >= 120) {
1763 		uint32_t flags = 0;
1764 
1765 		DPRINTF(("sending request for statistics\n"));
1766 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1767 		    sizeof flags, 1);
1768 		sc->calib_cnt = 0;
1769 	}
1770 	splx(s);
1771 
1772 	/* Automatic rate control triggered every 500ms. */
1773 	timeout_add_msec(&sc->calib_to, 500);
1774 }
1775 
1776 int
1777 iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_key *k)
1778 {
1779 	struct ieee80211_frame *wh;
1780 	uint64_t pn, *prsc;
1781 	uint8_t *ivp;
1782 	uint8_t tid;
1783 	int hdrlen;
1784 
1785 	wh = mtod(m, struct ieee80211_frame *);
1786 	hdrlen = ieee80211_get_hdrlen(wh);
1787 	ivp = (uint8_t *)wh + hdrlen;
1788 
1789 	/* Check that ExtIV bit is be set. */
1790 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1791 		DPRINTF(("CCMP decap ExtIV not set\n"));
1792 		return 1;
1793 	}
1794 	tid = ieee80211_has_qos(wh) ?
1795 	    ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1796 	prsc = &k->k_rsc[tid];
1797 
1798 	/* Extract the 48-bit PN from the CCMP header. */
1799 	pn = (uint64_t)ivp[0]       |
1800 	     (uint64_t)ivp[1] <<  8 |
1801 	     (uint64_t)ivp[4] << 16 |
1802 	     (uint64_t)ivp[5] << 24 |
1803 	     (uint64_t)ivp[6] << 32 |
1804 	     (uint64_t)ivp[7] << 40;
1805 	if (pn <= *prsc) {
1806 		/*
1807 		 * Not necessarily a replayed frame since we did not check
1808 		 * the sequence number of the 802.11 header yet.
1809 		 */
1810 		DPRINTF(("CCMP replayed\n"));
1811 		return 1;
1812 	}
1813 	/* Update last seen packet number. */
1814 	*prsc = pn;
1815 
1816 	/* Clear Protected bit and strip IV. */
1817 	wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1818 	ovbcopy(wh, mtod(m, caddr_t) + IEEE80211_CCMP_HDRLEN, hdrlen);
1819 	m_adj(m, IEEE80211_CCMP_HDRLEN);
1820 	/* Strip MIC. */
1821 	m_adj(m, -IEEE80211_CCMP_MICLEN);
1822 	return 0;
1823 }
1824 
1825 /*
1826  * Process an RX_PHY firmware notification.  This is usually immediately
1827  * followed by an MPDU_RX_DONE notification.
1828  */
1829 void
1830 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1831     struct iwn_rx_data *data)
1832 {
1833 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1834 
1835 	DPRINTFN(2, ("received PHY stats\n"));
1836 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1837 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1838 
1839 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1840 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1841 	sc->last_rx_valid = 1;
1842 }
1843 
1844 /*
1845  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1846  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1847  */
1848 void
1849 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1850     struct iwn_rx_data *data)
1851 {
1852 	struct iwn_ops *ops = &sc->ops;
1853 	struct ieee80211com *ic = &sc->sc_ic;
1854 	struct ifnet *ifp = &ic->ic_if;
1855 	struct iwn_rx_ring *ring = &sc->rxq;
1856 	struct ieee80211_frame *wh;
1857 	struct ieee80211_rxinfo rxi;
1858 	struct ieee80211_node *ni;
1859 	struct mbuf *m, *m1;
1860 	struct iwn_rx_stat *stat;
1861 	caddr_t head;
1862 	uint32_t flags;
1863 	int error, len, rssi;
1864 
1865 	if (desc->type == IWN_MPDU_RX_DONE) {
1866 		/* Check for prior RX_PHY notification. */
1867 		if (!sc->last_rx_valid) {
1868 			DPRINTF(("missing RX_PHY\n"));
1869 			return;
1870 		}
1871 		sc->last_rx_valid = 0;
1872 		stat = &sc->last_rx_stat;
1873 	} else
1874 		stat = (struct iwn_rx_stat *)(desc + 1);
1875 
1876 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1877 	    BUS_DMASYNC_POSTREAD);
1878 
1879 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1880 		printf("%s: invalid RX statistic header\n",
1881 		    sc->sc_dev.dv_xname);
1882 		return;
1883 	}
1884 	if (desc->type == IWN_MPDU_RX_DONE) {
1885 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1886 		head = (caddr_t)(mpdu + 1);
1887 		len = letoh16(mpdu->len);
1888 	} else {
1889 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
1890 		len = letoh16(stat->len);
1891 	}
1892 
1893 	flags = letoh32(*(uint32_t *)(head + len));
1894 
1895 	/* Discard frames with a bad FCS early. */
1896 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1897 		DPRINTFN(2, ("RX flags error %x\n", flags));
1898 		ifp->if_ierrors++;
1899 		return;
1900 	}
1901 	/* Discard frames that are too short. */
1902 	if (len < sizeof (*wh)) {
1903 		DPRINTF(("frame too short: %d\n", len));
1904 		ic->ic_stats.is_rx_tooshort++;
1905 		ifp->if_ierrors++;
1906 		return;
1907 	}
1908 
1909 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1910 	if (m1 == NULL) {
1911 		ic->ic_stats.is_rx_nombuf++;
1912 		ifp->if_ierrors++;
1913 		return;
1914 	}
1915 	bus_dmamap_unload(sc->sc_dmat, data->map);
1916 
1917 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1918 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1919 	if (error != 0) {
1920 		m_freem(m1);
1921 
1922 		/* Try to reload the old mbuf. */
1923 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1924 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1925 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1926 		if (error != 0) {
1927 			panic("%s: could not load old RX mbuf",
1928 			    sc->sc_dev.dv_xname);
1929 		}
1930 		/* Physical address may have changed. */
1931 		ring->desc[ring->cur] =
1932 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
1933 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1934 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1935 		    BUS_DMASYNC_PREWRITE);
1936 		ifp->if_ierrors++;
1937 		return;
1938 	}
1939 
1940 	m = data->m;
1941 	data->m = m1;
1942 	/* Update RX descriptor. */
1943 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1944 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1945 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1946 	    BUS_DMASYNC_PREWRITE);
1947 
1948 	/* Finalize mbuf. */
1949 	m->m_pkthdr.rcvif = ifp;
1950 	m->m_data = head;
1951 	m->m_pkthdr.len = m->m_len = len;
1952 
1953 	/* Grab a reference to the source node. */
1954 	wh = mtod(m, struct ieee80211_frame *);
1955 	ni = ieee80211_find_rxnode(ic, wh);
1956 
1957 	rxi.rxi_flags = 0;
1958 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1959 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1960 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
1961 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
1962 		if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) {
1963 			ic->ic_stats.is_ccmp_dec_errs++;
1964 			ifp->if_ierrors++;
1965 			m_freem(m);
1966 			return;
1967 		}
1968 		/* Check whether decryption was successful or not. */
1969 		if ((desc->type == IWN_MPDU_RX_DONE &&
1970 		     (flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) !=
1971 		      (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) ||
1972 		    (desc->type != IWN_MPDU_RX_DONE &&
1973 		     (flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) {
1974 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
1975 			ic->ic_stats.is_ccmp_dec_errs++;
1976 			ifp->if_ierrors++;
1977 			m_freem(m);
1978 			return;
1979 		}
1980 		if (iwn_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) {
1981 			ifp->if_ierrors++;
1982 			m_freem(m);
1983 			return;
1984 		}
1985 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1986 	}
1987 
1988 	rssi = ops->get_rssi(stat);
1989 
1990 #if NBPFILTER > 0
1991 	if (sc->sc_drvbpf != NULL) {
1992 		struct mbuf mb;
1993 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1994 
1995 		tap->wr_flags = 0;
1996 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
1997 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1998 		tap->wr_chan_freq =
1999 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2000 		tap->wr_chan_flags =
2001 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2002 		tap->wr_dbm_antsignal = (int8_t)rssi;
2003 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2004 		tap->wr_tsft = stat->tstamp;
2005 		switch (stat->rate) {
2006 		/* CCK rates. */
2007 		case  10: tap->wr_rate =   2; break;
2008 		case  20: tap->wr_rate =   4; break;
2009 		case  55: tap->wr_rate =  11; break;
2010 		case 110: tap->wr_rate =  22; break;
2011 		/* OFDM rates. */
2012 		case 0xd: tap->wr_rate =  12; break;
2013 		case 0xf: tap->wr_rate =  18; break;
2014 		case 0x5: tap->wr_rate =  24; break;
2015 		case 0x7: tap->wr_rate =  36; break;
2016 		case 0x9: tap->wr_rate =  48; break;
2017 		case 0xb: tap->wr_rate =  72; break;
2018 		case 0x1: tap->wr_rate =  96; break;
2019 		case 0x3: tap->wr_rate = 108; break;
2020 		/* Unknown rate: should not happen. */
2021 		default:  tap->wr_rate =   0;
2022 		}
2023 
2024 		mb.m_data = (caddr_t)tap;
2025 		mb.m_len = sc->sc_rxtap_len;
2026 		mb.m_next = m;
2027 		mb.m_nextpkt = NULL;
2028 		mb.m_type = 0;
2029 		mb.m_flags = 0;
2030 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
2031 	}
2032 #endif
2033 
2034 	/* Send the frame to the 802.11 layer. */
2035 	rxi.rxi_rssi = rssi;
2036 	rxi.rxi_tstamp = 0;	/* unused */
2037 	ieee80211_input(ifp, m, ni, &rxi);
2038 
2039 	/* Node is no longer needed. */
2040 	ieee80211_release_node(ic, ni);
2041 }
2042 
2043 #ifndef IEEE80211_NO_HT
2044 /* Process an incoming Compressed BlockAck. */
2045 void
2046 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2047     struct iwn_rx_data *data)
2048 {
2049 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2050 	struct iwn_tx_ring *txq;
2051 
2052 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2053 	    BUS_DMASYNC_POSTREAD);
2054 
2055 	txq = &sc->txq[letoh16(ba->qid)];
2056 	/* XXX TBD */
2057 }
2058 #endif
2059 
2060 /*
2061  * Process a CALIBRATION_RESULT notification sent by the initialization
2062  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2063  */
2064 void
2065 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2066     struct iwn_rx_data *data)
2067 {
2068 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2069 	int len, idx = -1;
2070 
2071 	/* Runtime firmware should not send such a notification. */
2072 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2073 		return;
2074 
2075 	len = (letoh32(desc->len) & 0x3fff) - 4;
2076 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2077 	    BUS_DMASYNC_POSTREAD);
2078 
2079 	switch (calib->code) {
2080 	case IWN5000_PHY_CALIB_DC:
2081 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2082 			idx = 0;
2083 		break;
2084 	case IWN5000_PHY_CALIB_LO:
2085 		idx = 1;
2086 		break;
2087 	case IWN5000_PHY_CALIB_TX_IQ:
2088 		idx = 2;
2089 		break;
2090 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2091 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2092 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2093 			idx = 3;
2094 		break;
2095 	case IWN5000_PHY_CALIB_BASE_BAND:
2096 		idx = 4;
2097 		break;
2098 	}
2099 	if (idx == -1)	/* Ignore other results. */
2100 		return;
2101 
2102 	/* Save calibration result. */
2103 	if (sc->calibcmd[idx].buf != NULL)
2104 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2105 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2106 	if (sc->calibcmd[idx].buf == NULL) {
2107 		DPRINTF(("not enough memory for calibration result %d\n",
2108 		    calib->code));
2109 		return;
2110 	}
2111 	DPRINTF(("saving calibration result code=%d len=%d\n",
2112 	    calib->code, len));
2113 	sc->calibcmd[idx].len = len;
2114 	memcpy(sc->calibcmd[idx].buf, calib, len);
2115 }
2116 
2117 /*
2118  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2119  * The latter is sent by the firmware after each received beacon.
2120  */
2121 void
2122 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2123     struct iwn_rx_data *data)
2124 {
2125 	struct iwn_ops *ops = &sc->ops;
2126 	struct ieee80211com *ic = &sc->sc_ic;
2127 	struct iwn_calib_state *calib = &sc->calib;
2128 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2129 	int temp;
2130 
2131 	/* Ignore statistics received during a scan. */
2132 	if (ic->ic_state != IEEE80211_S_RUN)
2133 		return;
2134 
2135 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2136 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2137 
2138 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2139 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2140 
2141 	/* Test if temperature has changed. */
2142 	if (stats->general.temp != sc->rawtemp) {
2143 		/* Convert "raw" temperature to degC. */
2144 		sc->rawtemp = stats->general.temp;
2145 		temp = ops->get_temperature(sc);
2146 		DPRINTFN(2, ("temperature=%dC\n", temp));
2147 
2148 		/* Update TX power if need be (4965AGN only). */
2149 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2150 			iwn4965_power_calibration(sc, temp);
2151 	}
2152 
2153 	if (desc->type != IWN_BEACON_STATISTICS)
2154 		return;	/* Reply to a statistics request. */
2155 
2156 	sc->noise = iwn_get_noise(&stats->rx.general);
2157 
2158 	/* Test that RSSI and noise are present in stats report. */
2159 	if (letoh32(stats->rx.general.flags) != 1) {
2160 		DPRINTF(("received statistics without RSSI\n"));
2161 		return;
2162 	}
2163 
2164 	/*
2165 	 * XXX Differential gain calibration makes the 6005 firmware
2166 	 * crap out, so skip it for now.  This effectively disables
2167 	 * sensitivity tuning as well.
2168 	 */
2169 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2170 		return;
2171 
2172 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2173 		iwn_collect_noise(sc, &stats->rx.general);
2174 	else if (calib->state == IWN_CALIB_STATE_RUN)
2175 		iwn_tune_sensitivity(sc, &stats->rx);
2176 }
2177 
2178 /*
2179  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2180  * and 5000 adapters have different incompatible TX status formats.
2181  */
2182 void
2183 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2184     struct iwn_rx_data *data)
2185 {
2186 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2187 
2188 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2189 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2190 	iwn_tx_done(sc, desc, stat->ackfailcnt, letoh32(stat->status) & 0xff);
2191 }
2192 
2193 void
2194 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2195     struct iwn_rx_data *data)
2196 {
2197 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2198 
2199 #ifdef notyet
2200 	/* Reset TX scheduler slot. */
2201 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2202 #endif
2203 
2204 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2205 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2206 	iwn_tx_done(sc, desc, stat->ackfailcnt, letoh16(stat->status) & 0xff);
2207 }
2208 
2209 /*
2210  * Adapter-independent backend for TX_DONE firmware notifications.
2211  */
2212 void
2213 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2214     uint8_t status)
2215 {
2216 	struct ieee80211com *ic = &sc->sc_ic;
2217 	struct ifnet *ifp = &ic->ic_if;
2218 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2219 	struct iwn_tx_data *data = &ring->data[desc->idx];
2220 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2221 
2222 	/* Update rate control statistics. */
2223 	wn->amn.amn_txcnt++;
2224 	if (ackfailcnt > 0)
2225 		wn->amn.amn_retrycnt++;
2226 
2227 	if (status != 1 && status != 2)
2228 		ifp->if_oerrors++;
2229 	else
2230 		ifp->if_opackets++;
2231 
2232 	/* Unmap and free mbuf. */
2233 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2234 	    BUS_DMASYNC_POSTWRITE);
2235 	bus_dmamap_unload(sc->sc_dmat, data->map);
2236 	m_freem(data->m);
2237 	data->m = NULL;
2238 	ieee80211_release_node(ic, data->ni);
2239 	data->ni = NULL;
2240 
2241 	sc->sc_tx_timer = 0;
2242 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2243 		sc->qfullmsk &= ~(1 << ring->qid);
2244 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2245 			ifp->if_flags &= ~IFF_OACTIVE;
2246 			(*ifp->if_start)(ifp);
2247 		}
2248 	}
2249 }
2250 
2251 /*
2252  * Process a "command done" firmware notification.  This is where we wakeup
2253  * processes waiting for a synchronous command completion.
2254  */
2255 void
2256 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2257 {
2258 	struct iwn_tx_ring *ring = &sc->txq[4];
2259 	struct iwn_tx_data *data;
2260 
2261 	if ((desc->qid & 0xf) != 4)
2262 		return;	/* Not a command ack. */
2263 
2264 	data = &ring->data[desc->idx];
2265 
2266 	/* If the command was mapped in an mbuf, free it. */
2267 	if (data->m != NULL) {
2268 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2269 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2270 		bus_dmamap_unload(sc->sc_dmat, data->map);
2271 		m_freem(data->m);
2272 		data->m = NULL;
2273 	}
2274 	wakeup(&ring->desc[desc->idx]);
2275 }
2276 
2277 /*
2278  * Process an INT_FH_RX or INT_SW_RX interrupt.
2279  */
2280 void
2281 iwn_notif_intr(struct iwn_softc *sc)
2282 {
2283 	struct iwn_ops *ops = &sc->ops;
2284 	struct ieee80211com *ic = &sc->sc_ic;
2285 	struct ifnet *ifp = &ic->ic_if;
2286 	uint16_t hw;
2287 
2288 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2289 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2290 
2291 	hw = letoh16(sc->rxq.stat->closed_count) & 0xfff;
2292 	while (sc->rxq.cur != hw) {
2293 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2294 		struct iwn_rx_desc *desc;
2295 
2296 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2297 		    BUS_DMASYNC_POSTREAD);
2298 		desc = mtod(data->m, struct iwn_rx_desc *);
2299 
2300 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2301 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2302 
2303 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2304 			iwn_cmd_done(sc, desc);
2305 
2306 		switch (desc->type) {
2307 		case IWN_RX_PHY:
2308 			iwn_rx_phy(sc, desc, data);
2309 			break;
2310 
2311 		case IWN_RX_DONE:		/* 4965AGN only. */
2312 		case IWN_MPDU_RX_DONE:
2313 			/* An 802.11 frame has been received. */
2314 			iwn_rx_done(sc, desc, data);
2315 			break;
2316 #ifndef IEEE80211_NO_HT
2317 		case IWN_RX_COMPRESSED_BA:
2318 			/* A Compressed BlockAck has been received. */
2319 			iwn_rx_compressed_ba(sc, desc, data);
2320 			break;
2321 #endif
2322 		case IWN_TX_DONE:
2323 			/* An 802.11 frame has been transmitted. */
2324 			ops->tx_done(sc, desc, data);
2325 			break;
2326 
2327 		case IWN_RX_STATISTICS:
2328 		case IWN_BEACON_STATISTICS:
2329 			iwn_rx_statistics(sc, desc, data);
2330 			break;
2331 
2332 		case IWN_BEACON_MISSED:
2333 		{
2334 			struct iwn_beacon_missed *miss =
2335 			    (struct iwn_beacon_missed *)(desc + 1);
2336 
2337 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2338 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2339 			/*
2340 			 * If more than 5 consecutive beacons are missed,
2341 			 * reinitialize the sensitivity state machine.
2342 			 */
2343 			DPRINTF(("beacons missed %d/%d\n",
2344 			    letoh32(miss->consecutive), letoh32(miss->total)));
2345 			if (ic->ic_state == IEEE80211_S_RUN &&
2346 			    letoh32(miss->consecutive) > 5)
2347 				(void)iwn_init_sensitivity(sc);
2348 			break;
2349 		}
2350 		case IWN_UC_READY:
2351 		{
2352 			struct iwn_ucode_info *uc =
2353 			    (struct iwn_ucode_info *)(desc + 1);
2354 
2355 			/* The microcontroller is ready. */
2356 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2357 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2358 			DPRINTF(("microcode alive notification version=%d.%d "
2359 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2360 			    uc->subtype, letoh32(uc->valid)));
2361 
2362 			if (letoh32(uc->valid) != 1) {
2363 				printf("%s: microcontroller initialization "
2364 				    "failed\n", sc->sc_dev.dv_xname);
2365 				break;
2366 			}
2367 			if (uc->subtype == IWN_UCODE_INIT) {
2368 				/* Save microcontroller report. */
2369 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2370 			}
2371 			/* Save the address of the error log in SRAM. */
2372 			sc->errptr = letoh32(uc->errptr);
2373 			break;
2374 		}
2375 		case IWN_STATE_CHANGED:
2376 		{
2377 			uint32_t *status = (uint32_t *)(desc + 1);
2378 
2379 			/* Enabled/disabled notification. */
2380 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2381 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2382 			DPRINTF(("state changed to %x\n", letoh32(*status)));
2383 
2384 			if (letoh32(*status) & 1) {
2385 				/* The radio button has to be pushed. */
2386 				printf("%s: Radio transmitter is off\n",
2387 				    sc->sc_dev.dv_xname);
2388 				/* Turn the interface down. */
2389 				ifp->if_flags &= ~IFF_UP;
2390 				iwn_stop(ifp, 1);
2391 				return;	/* No further processing. */
2392 			}
2393 			break;
2394 		}
2395 		case IWN_START_SCAN:
2396 		{
2397 			struct iwn_start_scan *scan =
2398 			    (struct iwn_start_scan *)(desc + 1);
2399 
2400 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2401 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2402 			DPRINTFN(2, ("scanning channel %d status %x\n",
2403 			    scan->chan, letoh32(scan->status)));
2404 
2405 			/* Fix current channel. */
2406 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2407 			break;
2408 		}
2409 		case IWN_STOP_SCAN:
2410 		{
2411 			struct iwn_stop_scan *scan =
2412 			    (struct iwn_stop_scan *)(desc + 1);
2413 
2414 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2415 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2416 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2417 			    scan->nchan, scan->status, scan->chan));
2418 
2419 			if (scan->status == 1 && scan->chan <= 14 &&
2420 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2421 				/*
2422 				 * We just finished scanning 2GHz channels,
2423 				 * start scanning 5GHz ones.
2424 				 */
2425 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2426 					break;
2427 			}
2428 			ieee80211_end_scan(ifp);
2429 			break;
2430 		}
2431 		case IWN5000_CALIBRATION_RESULT:
2432 			iwn5000_rx_calib_results(sc, desc, data);
2433 			break;
2434 
2435 		case IWN5000_CALIBRATION_DONE:
2436 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2437 			wakeup(sc);
2438 			break;
2439 		}
2440 
2441 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2442 	}
2443 
2444 	/* Tell the firmware what we have processed. */
2445 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2446 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2447 }
2448 
2449 /*
2450  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2451  * from power-down sleep mode.
2452  */
2453 void
2454 iwn_wakeup_intr(struct iwn_softc *sc)
2455 {
2456 	int qid;
2457 
2458 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2459 
2460 	/* Wakeup RX and TX rings. */
2461 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2462 	for (qid = 0; qid < sc->ntxqs; qid++) {
2463 		struct iwn_tx_ring *ring = &sc->txq[qid];
2464 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2465 	}
2466 }
2467 
2468 /*
2469  * Dump the error log of the firmware when a firmware panic occurs.  Although
2470  * we can't debug the firmware because it is neither open source nor free, it
2471  * can help us to identify certain classes of problems.
2472  */
2473 void
2474 iwn_fatal_intr(struct iwn_softc *sc)
2475 {
2476 	struct iwn_fw_dump dump;
2477 	int i;
2478 
2479 	/* Force a complete recalibration on next init. */
2480 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2481 
2482 	/* Check that the error log address is valid. */
2483 	if (sc->errptr < IWN_FW_DATA_BASE ||
2484 	    sc->errptr + sizeof (dump) >
2485 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2486 		printf("%s: bad firmware error log address 0x%08x\n",
2487 		    sc->sc_dev.dv_xname, sc->errptr);
2488 		return;
2489 	}
2490 	if (iwn_nic_lock(sc) != 0) {
2491 		printf("%s: could not read firmware error log\n",
2492 		    sc->sc_dev.dv_xname);
2493 		return;
2494 	}
2495 	/* Read firmware error log from SRAM. */
2496 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2497 	    sizeof (dump) / sizeof (uint32_t));
2498 	iwn_nic_unlock(sc);
2499 
2500 	if (dump.valid == 0) {
2501 		printf("%s: firmware error log is empty\n",
2502 		    sc->sc_dev.dv_xname);
2503 		return;
2504 	}
2505 	printf("firmware error log:\n");
2506 	printf("  error type      = \"%s\" (0x%08X)\n",
2507 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2508 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2509 	    dump.id);
2510 	printf("  program counter = 0x%08X\n", dump.pc);
2511 	printf("  source line     = 0x%08X\n", dump.src_line);
2512 	printf("  error data      = 0x%08X%08X\n",
2513 	    dump.error_data[0], dump.error_data[1]);
2514 	printf("  branch link     = 0x%08X%08X\n",
2515 	    dump.branch_link[0], dump.branch_link[1]);
2516 	printf("  interrupt link  = 0x%08X%08X\n",
2517 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2518 	printf("  time            = %u\n", dump.time[0]);
2519 
2520 	/* Dump driver status (TX and RX rings) while we're here. */
2521 	printf("driver status:\n");
2522 	for (i = 0; i < sc->ntxqs; i++) {
2523 		struct iwn_tx_ring *ring = &sc->txq[i];
2524 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2525 		    i, ring->qid, ring->cur, ring->queued);
2526 	}
2527 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2528 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
2529 }
2530 
2531 int
2532 iwn_intr(void *arg)
2533 {
2534 	struct iwn_softc *sc = arg;
2535 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2536 	uint32_t r1, r2, tmp;
2537 
2538 	/* Disable interrupts. */
2539 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2540 
2541 	/* Read interrupts from ICT (fast) or from registers (slow). */
2542 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2543 		tmp = 0;
2544 		while (sc->ict[sc->ict_cur] != 0) {
2545 			tmp |= sc->ict[sc->ict_cur];
2546 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2547 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2548 		}
2549 		tmp = letoh32(tmp);
2550 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2551 			tmp = 0;
2552 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2553 			tmp |= 0x8000;
2554 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2555 		r2 = 0;	/* Unused. */
2556 	} else {
2557 		r1 = IWN_READ(sc, IWN_INT);
2558 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2559 			return 0;	/* Hardware gone! */
2560 		r2 = IWN_READ(sc, IWN_FH_INT);
2561 	}
2562 	if (r1 == 0 && r2 == 0) {
2563 		if (ifp->if_flags & IFF_UP)
2564 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2565 		return 0;	/* Interrupt not for us. */
2566 	}
2567 
2568 	/* Acknowledge interrupts. */
2569 	IWN_WRITE(sc, IWN_INT, r1);
2570 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2571 		IWN_WRITE(sc, IWN_FH_INT, r2);
2572 
2573 	if (r1 & IWN_INT_RF_TOGGLED) {
2574 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2575 		printf("%s: RF switch: radio %s\n", sc->sc_dev.dv_xname,
2576 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2577 	}
2578 	if (r1 & IWN_INT_CT_REACHED) {
2579 		printf("%s: critical temperature reached!\n",
2580 		    sc->sc_dev.dv_xname);
2581 	}
2582 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2583 		printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
2584 		/* Dump firmware error log and stop. */
2585 		iwn_fatal_intr(sc);
2586 		ifp->if_flags &= ~IFF_UP;
2587 		iwn_stop(ifp, 1);
2588 		return 1;
2589 	}
2590 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2591 	    (r2 & IWN_FH_INT_RX)) {
2592 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2593 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2594 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2595 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2596 			    IWN_INT_PERIODIC_DIS);
2597 			iwn_notif_intr(sc);
2598 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2599 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2600 				    IWN_INT_PERIODIC_ENA);
2601 			}
2602 		} else
2603 			iwn_notif_intr(sc);
2604 	}
2605 
2606 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2607 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2608 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2609 		wakeup(sc);	/* FH DMA transfer completed. */
2610 	}
2611 
2612 	if (r1 & IWN_INT_ALIVE)
2613 		wakeup(sc);	/* Firmware is alive. */
2614 
2615 	if (r1 & IWN_INT_WAKEUP)
2616 		iwn_wakeup_intr(sc);
2617 
2618 	/* Re-enable interrupts. */
2619 	if (ifp->if_flags & IFF_UP)
2620 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2621 
2622 	return 1;
2623 }
2624 
2625 /*
2626  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2627  * 5000 adapters use a slightly different format).
2628  */
2629 void
2630 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2631     uint16_t len)
2632 {
2633 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2634 
2635 	*w = htole16(len + 8);
2636 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2637 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
2638 	    BUS_DMASYNC_PREWRITE);
2639 	if (idx < IWN_SCHED_WINSZ) {
2640 		*(w + IWN_TX_RING_COUNT) = *w;
2641 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2642 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
2643 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2644 	}
2645 }
2646 
2647 void
2648 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2649     uint16_t len)
2650 {
2651 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2652 
2653 	*w = htole16(id << 12 | (len + 8));
2654 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2655 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
2656 	    BUS_DMASYNC_PREWRITE);
2657 	if (idx < IWN_SCHED_WINSZ) {
2658 		*(w + IWN_TX_RING_COUNT) = *w;
2659 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2660 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
2661 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2662 	}
2663 }
2664 
2665 void
2666 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2667 {
2668 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2669 
2670 	*w = (*w & htole16(0xf000)) | htole16(1);
2671 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2672 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
2673 	    BUS_DMASYNC_PREWRITE);
2674 	if (idx < IWN_SCHED_WINSZ) {
2675 		*(w + IWN_TX_RING_COUNT) = *w;
2676 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2677 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
2678 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2679 	}
2680 }
2681 
2682 int
2683 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2684 {
2685 	struct ieee80211com *ic = &sc->sc_ic;
2686 	struct iwn_node *wn = (void *)ni;
2687 	struct iwn_tx_ring *ring;
2688 	struct iwn_tx_desc *desc;
2689 	struct iwn_tx_data *data;
2690 	struct iwn_tx_cmd *cmd;
2691 	struct iwn_cmd_data *tx;
2692 	const struct iwn_rate *rinfo;
2693 	struct ieee80211_frame *wh;
2694 	struct ieee80211_key *k = NULL;
2695 	struct mbuf *m1;
2696 	enum ieee80211_edca_ac ac;
2697 	uint32_t flags;
2698 	uint16_t qos;
2699 	u_int hdrlen;
2700 	bus_dma_segment_t *seg;
2701 	uint8_t *ivp, tid, ridx, txant, type;
2702 	int i, totlen, hasqos, error, pad;
2703 
2704 	wh = mtod(m, struct ieee80211_frame *);
2705 	hdrlen = ieee80211_get_hdrlen(wh);
2706 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2707 
2708 	/* Select EDCA Access Category and TX ring for this frame. */
2709 	if ((hasqos = ieee80211_has_qos(wh))) {
2710 		qos = ieee80211_get_qos(wh);
2711 		tid = qos & IEEE80211_QOS_TID;
2712 		ac = ieee80211_up_to_ac(ic, tid);
2713 	} else {
2714 		tid = 0;
2715 		ac = EDCA_AC_BE;
2716 	}
2717 
2718 	ring = &sc->txq[ac];
2719 	desc = &ring->desc[ring->cur];
2720 	data = &ring->data[ring->cur];
2721 
2722 	/* Choose a TX rate index. */
2723 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2724 	    type != IEEE80211_FC0_TYPE_DATA) {
2725 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2726 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2727 	} else if (ic->ic_fixed_rate != -1) {
2728 		ridx = sc->fixed_ridx;
2729 	} else
2730 		ridx = wn->ridx[ni->ni_txrate];
2731 	rinfo = &iwn_rates[ridx];
2732 
2733 #if NBPFILTER > 0
2734 	if (sc->sc_drvbpf != NULL) {
2735 		struct mbuf mb;
2736 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2737 
2738 		tap->wt_flags = 0;
2739 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2740 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2741 		tap->wt_rate = rinfo->rate;
2742 		tap->wt_hwqueue = ac;
2743 		if ((ic->ic_flags & IEEE80211_F_WEPON) &&
2744 		    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
2745 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2746 
2747 		mb.m_data = (caddr_t)tap;
2748 		mb.m_len = sc->sc_txtap_len;
2749 		mb.m_next = m;
2750 		mb.m_nextpkt = NULL;
2751 		mb.m_type = 0;
2752 		mb.m_flags = 0;
2753 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
2754 	}
2755 #endif
2756 
2757 	totlen = m->m_pkthdr.len;
2758 
2759 	/* Encrypt the frame if need be. */
2760 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2761 		/* Retrieve key for TX. */
2762 		k = ieee80211_get_txkey(ic, wh, ni);
2763 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
2764 			/* Do software encryption. */
2765 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
2766 				return ENOBUFS;
2767 			/* 802.11 header may have moved. */
2768 			wh = mtod(m, struct ieee80211_frame *);
2769 			totlen = m->m_pkthdr.len;
2770 
2771 		} else	/* HW appends CCMP MIC. */
2772 			totlen += IEEE80211_CCMP_HDRLEN;
2773 	}
2774 
2775 	/* Prepare TX firmware command. */
2776 	cmd = &ring->cmd[ring->cur];
2777 	cmd->code = IWN_CMD_TX_DATA;
2778 	cmd->flags = 0;
2779 	cmd->qid = ring->qid;
2780 	cmd->idx = ring->cur;
2781 
2782 	tx = (struct iwn_cmd_data *)cmd->data;
2783 	/* NB: No need to clear tx, all fields are reinitialized here. */
2784 	tx->scratch = 0;	/* clear "scratch" area */
2785 
2786 	flags = 0;
2787 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2788 		/* Unicast frame, check if an ACK is expected. */
2789 		if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
2790 		    IEEE80211_QOS_ACK_POLICY_NOACK)
2791 			flags |= IWN_TX_NEED_ACK;
2792 	}
2793 	if ((wh->i_fc[0] &
2794 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2795 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2796 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2797 
2798 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2799 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2800 
2801 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2802 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2803 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2804 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2805 			flags |= IWN_TX_NEED_RTS;
2806 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2807 		    ridx >= IWN_RIDX_OFDM6) {
2808 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2809 				flags |= IWN_TX_NEED_CTS;
2810 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2811 				flags |= IWN_TX_NEED_RTS;
2812 		}
2813 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2814 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2815 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2816 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2817 				flags |= IWN_TX_NEED_PROTECTION;
2818 			} else
2819 				flags |= IWN_TX_FULL_TXOP;
2820 		}
2821 	}
2822 
2823 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2824 	    type != IEEE80211_FC0_TYPE_DATA)
2825 		tx->id = sc->broadcast_id;
2826 	else
2827 		tx->id = wn->id;
2828 
2829 	if (type == IEEE80211_FC0_TYPE_MGT) {
2830 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2831 
2832 #ifndef IEEE80211_STA_ONLY
2833 		/* Tell HW to set timestamp in probe responses. */
2834 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2835 			flags |= IWN_TX_INSERT_TSTAMP;
2836 #endif
2837 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2838 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2839 			tx->timeout = htole16(3);
2840 		else
2841 			tx->timeout = htole16(2);
2842 	} else
2843 		tx->timeout = htole16(0);
2844 
2845 	if (hdrlen & 3) {
2846 		/* First segment length must be a multiple of 4. */
2847 		flags |= IWN_TX_NEED_PADDING;
2848 		pad = 4 - (hdrlen & 3);
2849 	} else
2850 		pad = 0;
2851 
2852 	tx->len = htole16(totlen);
2853 	tx->tid = tid;
2854 	tx->rts_ntries = 60;
2855 	tx->data_ntries = 15;
2856 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2857 	tx->plcp = rinfo->plcp;
2858 	tx->rflags = rinfo->flags;
2859 	if (tx->id == sc->broadcast_id) {
2860 		/* Group or management frame. */
2861 		tx->linkq = 0;
2862 		/* XXX Alternate between antenna A and B? */
2863 		txant = IWN_LSB(sc->txchainmask);
2864 		tx->rflags |= IWN_RFLAG_ANT(txant);
2865 	} else {
2866 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2867 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2868 	}
2869 	/* Set physical address of "scratch area". */
2870 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2871 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2872 
2873 	/* Copy 802.11 header in TX command. */
2874 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2875 
2876 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
2877 		/* Trim 802.11 header and prepend CCMP IV. */
2878 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
2879 		ivp = mtod(m, uint8_t *);
2880 		k->k_tsc++;
2881 		ivp[0] = k->k_tsc;
2882 		ivp[1] = k->k_tsc >> 8;
2883 		ivp[2] = 0;
2884 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
2885 		ivp[4] = k->k_tsc >> 16;
2886 		ivp[5] = k->k_tsc >> 24;
2887 		ivp[6] = k->k_tsc >> 32;
2888 		ivp[7] = k->k_tsc >> 40;
2889 
2890 		tx->security = IWN_CIPHER_CCMP;
2891 		/* XXX flags |= IWN_TX_AMPDU_CCMP; */
2892 		memcpy(tx->key, k->k_key, k->k_len);
2893 
2894 		/* TX scheduler includes CCMP MIC len w/5000 Series. */
2895 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
2896 			totlen += IEEE80211_CCMP_MICLEN;
2897 	} else {
2898 		/* Trim 802.11 header. */
2899 		m_adj(m, hdrlen);
2900 		tx->security = 0;
2901 	}
2902 	tx->flags = htole32(flags);
2903 
2904 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2905 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2906 	if (error != 0) {
2907 		if (error != EFBIG) {
2908 			printf("%s: can't map mbuf (error %d)\n",
2909 			    sc->sc_dev.dv_xname, error);
2910 			m_freem(m);
2911 			return error;
2912 		}
2913 		/* Too many DMA segments, linearize mbuf. */
2914 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2915 		if (m1 == NULL) {
2916 			m_freem(m);
2917 			return ENOBUFS;
2918 		}
2919 		if (m->m_pkthdr.len > MHLEN) {
2920 			MCLGET(m1, M_DONTWAIT);
2921 			if (!(m1->m_flags & M_EXT)) {
2922 				m_freem(m);
2923 				m_freem(m1);
2924 				return ENOBUFS;
2925 			}
2926 		}
2927 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, caddr_t));
2928 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2929 		m_freem(m);
2930 		m = m1;
2931 
2932 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2933 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2934 		if (error != 0) {
2935 			printf("%s: can't map mbuf (error %d)\n",
2936 			    sc->sc_dev.dv_xname, error);
2937 			m_freem(m);
2938 			return error;
2939 		}
2940 	}
2941 
2942 	data->m = m;
2943 	data->ni = ni;
2944 
2945 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2946 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2947 
2948 	/* Fill TX descriptor. */
2949 	desc->nsegs = 1 + data->map->dm_nsegs;
2950 	/* First DMA segment is used by the TX command. */
2951 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2952 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
2953 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
2954 	/* Other DMA segments are for data payload. */
2955 	seg = data->map->dm_segs;
2956 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2957 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2958 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
2959 		    seg->ds_len << 4);
2960 		seg++;
2961 	}
2962 
2963 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2964 	    BUS_DMASYNC_PREWRITE);
2965 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2966 	    (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
2967 	    BUS_DMASYNC_PREWRITE);
2968 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2969 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
2970 	    BUS_DMASYNC_PREWRITE);
2971 
2972 #ifdef notyet
2973 	/* Update TX scheduler. */
2974 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
2975 #endif
2976 
2977 	/* Kick TX ring. */
2978 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2979 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2980 
2981 	/* Mark TX ring as full if we reach a certain threshold. */
2982 	if (++ring->queued > IWN_TX_RING_HIMARK)
2983 		sc->qfullmsk |= 1 << ring->qid;
2984 
2985 	return 0;
2986 }
2987 
2988 void
2989 iwn_start(struct ifnet *ifp)
2990 {
2991 	struct iwn_softc *sc = ifp->if_softc;
2992 	struct ieee80211com *ic = &sc->sc_ic;
2993 	struct ieee80211_node *ni;
2994 	struct mbuf *m;
2995 
2996 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2997 		return;
2998 
2999 	for (;;) {
3000 		if (sc->qfullmsk != 0) {
3001 			ifp->if_flags |= IFF_OACTIVE;
3002 			break;
3003 		}
3004 		/* Send pending management frames first. */
3005 		IF_DEQUEUE(&ic->ic_mgtq, m);
3006 		if (m != NULL) {
3007 			ni = (void *)m->m_pkthdr.rcvif;
3008 			goto sendit;
3009 		}
3010 		if (ic->ic_state != IEEE80211_S_RUN)
3011 			break;
3012 
3013 		/* Encapsulate and send data frames. */
3014 		IFQ_DEQUEUE(&ifp->if_snd, m);
3015 		if (m == NULL)
3016 			break;
3017 #if NBPFILTER > 0
3018 		if (ifp->if_bpf != NULL)
3019 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
3020 #endif
3021 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
3022 			continue;
3023 sendit:
3024 #if NBPFILTER > 0
3025 		if (ic->ic_rawbpf != NULL)
3026 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
3027 #endif
3028 		if (iwn_tx(sc, m, ni) != 0) {
3029 			ieee80211_release_node(ic, ni);
3030 			ifp->if_oerrors++;
3031 			continue;
3032 		}
3033 
3034 		sc->sc_tx_timer = 5;
3035 		ifp->if_timer = 1;
3036 	}
3037 }
3038 
3039 void
3040 iwn_watchdog(struct ifnet *ifp)
3041 {
3042 	struct iwn_softc *sc = ifp->if_softc;
3043 
3044 	ifp->if_timer = 0;
3045 
3046 	if (sc->sc_tx_timer > 0) {
3047 		if (--sc->sc_tx_timer == 0) {
3048 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
3049 			ifp->if_flags &= ~IFF_UP;
3050 			iwn_stop(ifp, 1);
3051 			ifp->if_oerrors++;
3052 			return;
3053 		}
3054 		ifp->if_timer = 1;
3055 	}
3056 
3057 	ieee80211_watchdog(ifp);
3058 }
3059 
3060 int
3061 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3062 {
3063 	struct iwn_softc *sc = ifp->if_softc;
3064 	struct ieee80211com *ic = &sc->sc_ic;
3065 	struct ifaddr *ifa;
3066 	struct ifreq *ifr;
3067 	int s, error = 0;
3068 
3069 	s = splnet();
3070 	/*
3071 	 * Prevent processes from entering this function while another
3072 	 * process is tsleep'ing in it.
3073 	 */
3074 	while ((sc->sc_flags & IWN_FLAG_BUSY) && error == 0)
3075 		error = tsleep(&sc->sc_flags, PCATCH, "iwnioc", 0);
3076 	if (error != 0) {
3077 		splx(s);
3078 		return error;
3079 	}
3080 	sc->sc_flags |= IWN_FLAG_BUSY;
3081 
3082 	switch (cmd) {
3083 	case SIOCSIFADDR:
3084 		ifa = (struct ifaddr *)data;
3085 		ifp->if_flags |= IFF_UP;
3086 #ifdef INET
3087 		if (ifa->ifa_addr->sa_family == AF_INET)
3088 			arp_ifinit(&ic->ic_ac, ifa);
3089 #endif
3090 		/* FALLTHROUGH */
3091 	case SIOCSIFFLAGS:
3092 		if (ifp->if_flags & IFF_UP) {
3093 			if (!(ifp->if_flags & IFF_RUNNING))
3094 				error = iwn_init(ifp);
3095 		} else {
3096 			if (ifp->if_flags & IFF_RUNNING)
3097 				iwn_stop(ifp, 1);
3098 		}
3099 		break;
3100 
3101 	case SIOCADDMULTI:
3102 	case SIOCDELMULTI:
3103 		ifr = (struct ifreq *)data;
3104 		error = (cmd == SIOCADDMULTI) ?
3105 		    ether_addmulti(ifr, &ic->ic_ac) :
3106 		    ether_delmulti(ifr, &ic->ic_ac);
3107 
3108 		if (error == ENETRESET)
3109 			error = 0;
3110 		break;
3111 
3112 	case SIOCS80211POWER:
3113 		error = ieee80211_ioctl(ifp, cmd, data);
3114 		if (error != ENETRESET)
3115 			break;
3116 		if (ic->ic_state == IEEE80211_S_RUN &&
3117 		    sc->calib.state == IWN_CALIB_STATE_RUN) {
3118 			if (ic->ic_flags & IEEE80211_F_PMGTON)
3119 				error = iwn_set_pslevel(sc, 0, 3, 0);
3120 			else	/* back to CAM */
3121 				error = iwn_set_pslevel(sc, 0, 0, 0);
3122 		} else {
3123 			/* Defer until transition to IWN_CALIB_STATE_RUN. */
3124 			error = 0;
3125 		}
3126 		break;
3127 
3128 	default:
3129 		error = ieee80211_ioctl(ifp, cmd, data);
3130 	}
3131 
3132 	if (error == ENETRESET) {
3133 		error = 0;
3134 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3135 		    (IFF_UP | IFF_RUNNING)) {
3136 			iwn_stop(ifp, 0);
3137 			error = iwn_init(ifp);
3138 		}
3139 	}
3140 
3141 	sc->sc_flags &= ~IWN_FLAG_BUSY;
3142 	wakeup(&sc->sc_flags);
3143 	splx(s);
3144 	return error;
3145 }
3146 
3147 /*
3148  * Send a command to the firmware.
3149  */
3150 int
3151 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3152 {
3153 	struct iwn_tx_ring *ring = &sc->txq[4];
3154 	struct iwn_tx_desc *desc;
3155 	struct iwn_tx_data *data;
3156 	struct iwn_tx_cmd *cmd;
3157 	struct mbuf *m;
3158 	bus_addr_t paddr;
3159 	int totlen, error;
3160 
3161 	desc = &ring->desc[ring->cur];
3162 	data = &ring->data[ring->cur];
3163 	totlen = 4 + size;
3164 
3165 	if (size > sizeof cmd->data) {
3166 		/* Command is too large to fit in a descriptor. */
3167 		if (totlen > MCLBYTES)
3168 			return EINVAL;
3169 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3170 		if (m == NULL)
3171 			return ENOMEM;
3172 		if (totlen > MHLEN) {
3173 			MCLGET(m, M_DONTWAIT);
3174 			if (!(m->m_flags & M_EXT)) {
3175 				m_freem(m);
3176 				return ENOMEM;
3177 			}
3178 		}
3179 		cmd = mtod(m, struct iwn_tx_cmd *);
3180 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3181 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3182 		if (error != 0) {
3183 			m_freem(m);
3184 			return error;
3185 		}
3186 		data->m = m;
3187 		paddr = data->map->dm_segs[0].ds_addr;
3188 	} else {
3189 		cmd = &ring->cmd[ring->cur];
3190 		paddr = data->cmd_paddr;
3191 	}
3192 
3193 	cmd->code = code;
3194 	cmd->flags = 0;
3195 	cmd->qid = ring->qid;
3196 	cmd->idx = ring->cur;
3197 	memcpy(cmd->data, buf, size);
3198 
3199 	desc->nsegs = 1;
3200 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3201 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3202 
3203 	if (size > sizeof cmd->data) {
3204 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3205 		    BUS_DMASYNC_PREWRITE);
3206 	} else {
3207 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3208 		    (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
3209 		    BUS_DMASYNC_PREWRITE);
3210 	}
3211 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3212 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
3213 	    BUS_DMASYNC_PREWRITE);
3214 
3215 #ifdef notyet
3216 	/* Update TX scheduler. */
3217 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3218 #endif
3219 
3220 	/* Kick command ring. */
3221 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3222 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3223 
3224 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3225 }
3226 
3227 int
3228 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3229 {
3230 	struct iwn4965_node_info hnode;
3231 	caddr_t src, dst;
3232 
3233 	/*
3234 	 * We use the node structure for 5000 Series internally (it is
3235 	 * a superset of the one for 4965AGN). We thus copy the common
3236 	 * fields before sending the command.
3237 	 */
3238 	src = (caddr_t)node;
3239 	dst = (caddr_t)&hnode;
3240 	memcpy(dst, src, 48);
3241 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3242 	memcpy(dst + 48, src + 72, 20);
3243 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3244 }
3245 
3246 int
3247 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3248 {
3249 	/* Direct mapping. */
3250 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3251 }
3252 
3253 int
3254 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3255 {
3256 	struct iwn_node *wn = (void *)ni;
3257 	struct ieee80211_rateset *rs = &ni->ni_rates;
3258 	struct iwn_cmd_link_quality linkq;
3259 	const struct iwn_rate *rinfo;
3260 	uint8_t txant;
3261 	int i, txrate;
3262 
3263 	/* Use the first valid TX antenna. */
3264 	txant = IWN_LSB(sc->txchainmask);
3265 
3266 	memset(&linkq, 0, sizeof linkq);
3267 	linkq.id = wn->id;
3268 	linkq.antmsk_1stream = txant;
3269 	linkq.antmsk_2stream = IWN_ANT_AB;
3270 	linkq.ampdu_max = 31;
3271 	linkq.ampdu_threshold = 3;
3272 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3273 
3274 	/* Start at highest available bit-rate. */
3275 	txrate = rs->rs_nrates - 1;
3276 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3277 		rinfo = &iwn_rates[wn->ridx[txrate]];
3278 		linkq.retry[i].plcp = rinfo->plcp;
3279 		linkq.retry[i].rflags = rinfo->flags;
3280 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3281 		/* Next retry at immediate lower bit-rate. */
3282 		if (txrate > 0)
3283 			txrate--;
3284 	}
3285 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3286 }
3287 
3288 /*
3289  * Broadcast node is used to send group-addressed and management frames.
3290  */
3291 int
3292 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3293 {
3294 	struct iwn_ops *ops = &sc->ops;
3295 	struct iwn_node_info node;
3296 	struct iwn_cmd_link_quality linkq;
3297 	const struct iwn_rate *rinfo;
3298 	uint8_t txant;
3299 	int i, error;
3300 
3301 	memset(&node, 0, sizeof node);
3302 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3303 	node.id = sc->broadcast_id;
3304 	DPRINTF(("adding broadcast node\n"));
3305 	if ((error = ops->add_node(sc, &node, async)) != 0)
3306 		return error;
3307 
3308 	/* Use the first valid TX antenna. */
3309 	txant = IWN_LSB(sc->txchainmask);
3310 
3311 	memset(&linkq, 0, sizeof linkq);
3312 	linkq.id = sc->broadcast_id;
3313 	linkq.antmsk_1stream = txant;
3314 	linkq.antmsk_2stream = IWN_ANT_AB;
3315 	linkq.ampdu_max = 64;
3316 	linkq.ampdu_threshold = 3;
3317 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3318 
3319 	/* Use lowest mandatory bit-rate. */
3320 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3321 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3322 	linkq.retry[0].plcp = rinfo->plcp;
3323 	linkq.retry[0].rflags = rinfo->flags;
3324 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3325 	/* Use same bit-rate for all TX retries. */
3326 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3327 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3328 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3329 	}
3330 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3331 }
3332 
3333 void
3334 iwn_updateedca(struct ieee80211com *ic)
3335 {
3336 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3337 	struct iwn_softc *sc = ic->ic_softc;
3338 	struct iwn_edca_params cmd;
3339 	int aci;
3340 
3341 	memset(&cmd, 0, sizeof cmd);
3342 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3343 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
3344 		const struct ieee80211_edca_ac_params *ac =
3345 		    &ic->ic_edca_ac[aci];
3346 		cmd.ac[aci].aifsn = ac->ac_aifsn;
3347 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin));
3348 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax));
3349 		cmd.ac[aci].txoplimit =
3350 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
3351 	}
3352 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3353 #undef IWN_EXP2
3354 }
3355 
3356 void
3357 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3358 {
3359 	struct iwn_cmd_led led;
3360 
3361 	/* Clear microcode LED ownership. */
3362 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3363 
3364 	led.which = which;
3365 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3366 	led.off = off;
3367 	led.on = on;
3368 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3369 }
3370 
3371 /*
3372  * Set the critical temperature at which the firmware will stop the radio
3373  * and notify us.
3374  */
3375 int
3376 iwn_set_critical_temp(struct iwn_softc *sc)
3377 {
3378 	struct iwn_critical_temp crit;
3379 	int32_t temp;
3380 
3381 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3382 
3383 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3384 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3385 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3386 		temp = IWN_CTOK(110);
3387 	else
3388 		temp = 110;
3389 	memset(&crit, 0, sizeof crit);
3390 	crit.tempR = htole32(temp);
3391 	DPRINTF(("setting critical temperature to %d\n", temp));
3392 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3393 }
3394 
3395 int
3396 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3397 {
3398 	struct iwn_cmd_timing cmd;
3399 	uint64_t val, mod;
3400 
3401 	memset(&cmd, 0, sizeof cmd);
3402 	memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
3403 	cmd.bintval = htole16(ni->ni_intval);
3404 	cmd.lintval = htole16(10);
3405 
3406 	/* Compute remaining time until next beacon. */
3407 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3408 	mod = letoh64(cmd.tstamp) % val;
3409 	cmd.binitval = htole32((uint32_t)(val - mod));
3410 
3411 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
3412 	    ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
3413 
3414 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3415 }
3416 
3417 void
3418 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3419 {
3420 	/* Adjust TX power if need be (delta >= 3 degC). */
3421 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3422 	if (abs(temp - sc->temp) >= 3) {
3423 		/* Record temperature of last calibration. */
3424 		sc->temp = temp;
3425 		(void)iwn4965_set_txpower(sc, 1);
3426 	}
3427 }
3428 
3429 /*
3430  * Set TX power for current channel (each rate has its own power settings).
3431  * This function takes into account the regulatory information from EEPROM,
3432  * the current temperature and the current voltage.
3433  */
3434 int
3435 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3436 {
3437 /* Fixed-point arithmetic division using a n-bit fractional part. */
3438 #define fdivround(a, b, n)	\
3439 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3440 /* Linear interpolation. */
3441 #define interpolate(x, x1, y1, x2, y2, n)	\
3442 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3443 
3444 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3445 	struct ieee80211com *ic = &sc->sc_ic;
3446 	struct iwn_ucode_info *uc = &sc->ucode_info;
3447 	struct ieee80211_channel *ch;
3448 	struct iwn4965_cmd_txpower cmd;
3449 	struct iwn4965_eeprom_chan_samples *chans;
3450 	const uint8_t *rf_gain, *dsp_gain;
3451 	int32_t vdiff, tdiff;
3452 	int i, c, grp, maxpwr;
3453 	uint8_t chan;
3454 
3455 	/* Retrieve current channel from last RXON. */
3456 	chan = sc->rxon.chan;
3457 	DPRINTF(("setting TX power for channel %d\n", chan));
3458 	ch = &ic->ic_channels[chan];
3459 
3460 	memset(&cmd, 0, sizeof cmd);
3461 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3462 	cmd.chan = chan;
3463 
3464 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3465 		maxpwr   = sc->maxpwr5GHz;
3466 		rf_gain  = iwn4965_rf_gain_5ghz;
3467 		dsp_gain = iwn4965_dsp_gain_5ghz;
3468 	} else {
3469 		maxpwr   = sc->maxpwr2GHz;
3470 		rf_gain  = iwn4965_rf_gain_2ghz;
3471 		dsp_gain = iwn4965_dsp_gain_2ghz;
3472 	}
3473 
3474 	/* Compute voltage compensation. */
3475 	vdiff = ((int32_t)letoh32(uc->volt) - sc->eeprom_voltage) / 7;
3476 	if (vdiff > 0)
3477 		vdiff *= 2;
3478 	if (abs(vdiff) > 2)
3479 		vdiff = 0;
3480 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3481 	    vdiff, letoh32(uc->volt), sc->eeprom_voltage));
3482 
3483 	/* Get channel attenuation group. */
3484 	if (chan <= 20)		/* 1-20 */
3485 		grp = 4;
3486 	else if (chan <= 43)	/* 34-43 */
3487 		grp = 0;
3488 	else if (chan <= 70)	/* 44-70 */
3489 		grp = 1;
3490 	else if (chan <= 124)	/* 71-124 */
3491 		grp = 2;
3492 	else			/* 125-200 */
3493 		grp = 3;
3494 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3495 
3496 	/* Get channel sub-band. */
3497 	for (i = 0; i < IWN_NBANDS; i++)
3498 		if (sc->bands[i].lo != 0 &&
3499 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3500 			break;
3501 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3502 		return EINVAL;
3503 	chans = sc->bands[i].chans;
3504 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3505 
3506 	for (c = 0; c < 2; c++) {
3507 		uint8_t power, gain, temp;
3508 		int maxchpwr, pwr, ridx, idx;
3509 
3510 		power = interpolate(chan,
3511 		    chans[0].num, chans[0].samples[c][1].power,
3512 		    chans[1].num, chans[1].samples[c][1].power, 1);
3513 		gain  = interpolate(chan,
3514 		    chans[0].num, chans[0].samples[c][1].gain,
3515 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3516 		temp  = interpolate(chan,
3517 		    chans[0].num, chans[0].samples[c][1].temp,
3518 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3519 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3520 		    c, power, gain, temp));
3521 
3522 		/* Compute temperature compensation. */
3523 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3524 		DPRINTF(("temperature compensation=%d (current=%d, "
3525 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3526 
3527 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3528 			/* Convert dBm to half-dBm. */
3529 			maxchpwr = sc->maxpwr[chan] * 2;
3530 			if ((ridx / 8) & 1)
3531 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3532 
3533 			pwr = maxpwr;
3534 
3535 			/* Adjust TX power based on rate. */
3536 			if ((ridx % 8) == 5)
3537 				pwr -= 15;	/* OFDM48: -7.5dB */
3538 			else if ((ridx % 8) == 6)
3539 				pwr -= 17;	/* OFDM54: -8.5dB */
3540 			else if ((ridx % 8) == 7)
3541 				pwr -= 20;	/* OFDM60: -10dB */
3542 			else
3543 				pwr -= 10;	/* Others: -5dB */
3544 
3545 			/* Do not exceed channel max TX power. */
3546 			if (pwr > maxchpwr)
3547 				pwr = maxchpwr;
3548 
3549 			idx = gain - (pwr - power) - tdiff - vdiff;
3550 			if ((ridx / 8) & 1)	/* MIMO */
3551 				idx += (int32_t)letoh32(uc->atten[grp][c]);
3552 
3553 			if (cmd.band == 0)
3554 				idx += 9;	/* 5GHz */
3555 			if (ridx == IWN_RIDX_MAX)
3556 				idx += 5;	/* CCK */
3557 
3558 			/* Make sure idx stays in a valid range. */
3559 			if (idx < 0)
3560 				idx = 0;
3561 			else if (idx > IWN4965_MAX_PWR_INDEX)
3562 				idx = IWN4965_MAX_PWR_INDEX;
3563 
3564 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3565 			    c, ridx, idx));
3566 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3567 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3568 		}
3569 	}
3570 
3571 	DPRINTF(("setting TX power for chan %d\n", chan));
3572 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3573 
3574 #undef interpolate
3575 #undef fdivround
3576 }
3577 
3578 int
3579 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3580 {
3581 	struct iwn5000_cmd_txpower cmd;
3582 
3583 	/*
3584 	 * TX power calibration is handled automatically by the firmware
3585 	 * for 5000 Series.
3586 	 */
3587 	memset(&cmd, 0, sizeof cmd);
3588 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3589 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3590 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3591 	DPRINTF(("setting TX power\n"));
3592 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3593 }
3594 
3595 /*
3596  * Retrieve the maximum RSSI (in dBm) among receivers.
3597  */
3598 int
3599 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3600 {
3601 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3602 	uint8_t mask, agc;
3603 	int rssi;
3604 
3605 	mask = (letoh16(phy->antenna) >> 4) & IWN_ANT_ABC;
3606 	agc  = (letoh16(phy->agc) >> 7) & 0x7f;
3607 
3608 	rssi = 0;
3609 	if (mask & IWN_ANT_A)
3610 		rssi = MAX(rssi, phy->rssi[0]);
3611 	if (mask & IWN_ANT_B)
3612 		rssi = MAX(rssi, phy->rssi[2]);
3613 	if (mask & IWN_ANT_C)
3614 		rssi = MAX(rssi, phy->rssi[4]);
3615 
3616 	return rssi - agc - IWN_RSSI_TO_DBM;
3617 }
3618 
3619 int
3620 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3621 {
3622 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
3623 	uint8_t agc;
3624 	int rssi;
3625 
3626 	agc = (letoh32(phy->agc) >> 9) & 0x7f;
3627 
3628 	rssi = MAX(letoh16(phy->rssi[0]) & 0xff,
3629 		   letoh16(phy->rssi[1]) & 0xff);
3630 	rssi = MAX(letoh16(phy->rssi[2]) & 0xff, rssi);
3631 
3632 	return rssi - agc - IWN_RSSI_TO_DBM;
3633 }
3634 
3635 /*
3636  * Retrieve the average noise (in dBm) among receivers.
3637  */
3638 int
3639 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3640 {
3641 	int i, total, nbant, noise;
3642 
3643 	total = nbant = 0;
3644 	for (i = 0; i < 3; i++) {
3645 		if ((noise = letoh32(stats->noise[i]) & 0xff) == 0)
3646 			continue;
3647 		total += noise;
3648 		nbant++;
3649 	}
3650 	/* There should be at least one antenna but check anyway. */
3651 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3652 }
3653 
3654 /*
3655  * Compute temperature (in degC) from last received statistics.
3656  */
3657 int
3658 iwn4965_get_temperature(struct iwn_softc *sc)
3659 {
3660 	struct iwn_ucode_info *uc = &sc->ucode_info;
3661 	int32_t r1, r2, r3, r4, temp;
3662 
3663 	r1 = letoh32(uc->temp[0].chan20MHz);
3664 	r2 = letoh32(uc->temp[1].chan20MHz);
3665 	r3 = letoh32(uc->temp[2].chan20MHz);
3666 	r4 = letoh32(sc->rawtemp);
3667 
3668 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3669 		return 0;
3670 
3671 	/* Sign-extend 23-bit R4 value to 32-bit. */
3672 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3673 	/* Compute temperature in Kelvin. */
3674 	temp = (259 * (r4 - r2)) / (r3 - r1);
3675 	temp = (temp * 97) / 100 + 8;
3676 
3677 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3678 	return IWN_KTOC(temp);
3679 }
3680 
3681 int
3682 iwn5000_get_temperature(struct iwn_softc *sc)
3683 {
3684 	int32_t temp;
3685 
3686 	/*
3687 	 * Temperature is not used by the driver for 5000 Series because
3688 	 * TX power calibration is handled by firmware.
3689 	 */
3690 	temp = letoh32(sc->rawtemp);
3691 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3692 		temp = (temp / -5) + sc->temp_off;
3693 		temp = IWN_KTOC(temp);
3694 	}
3695 	return temp;
3696 }
3697 
3698 /*
3699  * Initialize sensitivity calibration state machine.
3700  */
3701 int
3702 iwn_init_sensitivity(struct iwn_softc *sc)
3703 {
3704 	struct iwn_ops *ops = &sc->ops;
3705 	struct iwn_calib_state *calib = &sc->calib;
3706 	uint32_t flags;
3707 	int error;
3708 
3709 	/* Reset calibration state machine. */
3710 	memset(calib, 0, sizeof (*calib));
3711 	calib->state = IWN_CALIB_STATE_INIT;
3712 	calib->cck_state = IWN_CCK_STATE_HIFA;
3713 	/* Set initial correlation values. */
3714 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3715 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3716 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3717 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3718 	calib->cck_x4      = 125;
3719 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3720 	calib->energy_cck  = sc->limits->energy_cck;
3721 
3722 	/* Write initial sensitivity. */
3723 	if ((error = iwn_send_sensitivity(sc)) != 0)
3724 		return error;
3725 
3726 	/* Write initial gains. */
3727 	if ((error = ops->init_gains(sc)) != 0)
3728 		return error;
3729 
3730 	/* Request statistics at each beacon interval. */
3731 	flags = 0;
3732 	DPRINTF(("sending request for statistics\n"));
3733 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3734 }
3735 
3736 /*
3737  * Collect noise and RSSI statistics for the first 20 beacons received
3738  * after association and use them to determine connected antennas and
3739  * to set differential gains.
3740  */
3741 void
3742 iwn_collect_noise(struct iwn_softc *sc,
3743     const struct iwn_rx_general_stats *stats)
3744 {
3745 	struct iwn_ops *ops = &sc->ops;
3746 	struct iwn_calib_state *calib = &sc->calib;
3747 	uint32_t val;
3748 	int i;
3749 
3750 	/* Accumulate RSSI and noise for all 3 antennas. */
3751 	for (i = 0; i < 3; i++) {
3752 		calib->rssi[i] += letoh32(stats->rssi[i]) & 0xff;
3753 		calib->noise[i] += letoh32(stats->noise[i]) & 0xff;
3754 	}
3755 	/* NB: We update differential gains only once after 20 beacons. */
3756 	if (++calib->nbeacons < 20)
3757 		return;
3758 
3759 	/* Determine highest average RSSI. */
3760 	val = MAX(calib->rssi[0], calib->rssi[1]);
3761 	val = MAX(calib->rssi[2], val);
3762 
3763 	/* Determine which antennas are connected. */
3764 	sc->chainmask = sc->rxchainmask;
3765 	for (i = 0; i < 3; i++)
3766 		if (val - calib->rssi[i] > 15 * 20)
3767 			sc->chainmask &= ~(1 << i);
3768 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3769 	    sc->rxchainmask, sc->chainmask));
3770 
3771 	/* If none of the TX antennas are connected, keep at least one. */
3772 	if ((sc->chainmask & sc->txchainmask) == 0)
3773 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3774 
3775 	(void)ops->set_gains(sc);
3776 	calib->state = IWN_CALIB_STATE_RUN;
3777 
3778 #ifdef notyet
3779 	/* XXX Disable RX chains with no antennas connected. */
3780 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3781 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3782 #endif
3783 
3784 	/* Enable power-saving mode if requested by user. */
3785 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3786 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3787 }
3788 
3789 int
3790 iwn4965_init_gains(struct iwn_softc *sc)
3791 {
3792 	struct iwn_phy_calib_gain cmd;
3793 
3794 	memset(&cmd, 0, sizeof cmd);
3795 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3796 	/* Differential gains initially set to 0 for all 3 antennas. */
3797 	DPRINTF(("setting initial differential gains\n"));
3798 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3799 }
3800 
3801 int
3802 iwn5000_init_gains(struct iwn_softc *sc)
3803 {
3804 	struct iwn_phy_calib cmd;
3805 
3806 	memset(&cmd, 0, sizeof cmd);
3807 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3808 	cmd.ngroups = 1;
3809 	cmd.isvalid = 1;
3810 	DPRINTF(("setting initial differential gains\n"));
3811 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3812 }
3813 
3814 int
3815 iwn4965_set_gains(struct iwn_softc *sc)
3816 {
3817 	struct iwn_calib_state *calib = &sc->calib;
3818 	struct iwn_phy_calib_gain cmd;
3819 	int i, delta, noise;
3820 
3821 	/* Get minimal noise among connected antennas. */
3822 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3823 	for (i = 0; i < 3; i++)
3824 		if (sc->chainmask & (1 << i))
3825 			noise = MIN(calib->noise[i], noise);
3826 
3827 	memset(&cmd, 0, sizeof cmd);
3828 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3829 	/* Set differential gains for connected antennas. */
3830 	for (i = 0; i < 3; i++) {
3831 		if (sc->chainmask & (1 << i)) {
3832 			/* Compute attenuation (in unit of 1.5dB). */
3833 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3834 			/* NB: delta <= 0 */
3835 			/* Limit to [-4.5dB,0]. */
3836 			cmd.gain[i] = MIN(abs(delta), 3);
3837 			if (delta < 0)
3838 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3839 		}
3840 	}
3841 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3842 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3843 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3844 }
3845 
3846 int
3847 iwn5000_set_gains(struct iwn_softc *sc)
3848 {
3849 	struct iwn_calib_state *calib = &sc->calib;
3850 	struct iwn_phy_calib_gain cmd;
3851 	int i, ant, div, delta;
3852 
3853 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3854 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3855 
3856 	memset(&cmd, 0, sizeof cmd);
3857 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3858 	cmd.ngroups = 1;
3859 	cmd.isvalid = 1;
3860 	/* Get first available RX antenna as referential. */
3861 	ant = IWN_LSB(sc->rxchainmask);
3862 	/* Set differential gains for other antennas. */
3863 	for (i = ant + 1; i < 3; i++) {
3864 		if (sc->chainmask & (1 << i)) {
3865 			/* The delta is relative to antenna "ant". */
3866 			delta = ((int32_t)calib->noise[ant] -
3867 			    (int32_t)calib->noise[i]) / div;
3868 			/* Limit to [-4.5dB,+4.5dB]. */
3869 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3870 			if (delta < 0)
3871 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3872 		}
3873 	}
3874 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3875 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3876 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3877 }
3878 
3879 /*
3880  * Tune RF RX sensitivity based on the number of false alarms detected
3881  * during the last beacon period.
3882  */
3883 void
3884 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3885 {
3886 #define inc(val, inc, max)			\
3887 	if ((val) < (max)) {			\
3888 		if ((val) < (max) - (inc))	\
3889 			(val) += (inc);		\
3890 		else				\
3891 			(val) = (max);		\
3892 		needs_update = 1;		\
3893 	}
3894 #define dec(val, dec, min)			\
3895 	if ((val) > (min)) {			\
3896 		if ((val) > (min) + (dec))	\
3897 			(val) -= (dec);		\
3898 		else				\
3899 			(val) = (min);		\
3900 		needs_update = 1;		\
3901 	}
3902 
3903 	const struct iwn_sensitivity_limits *limits = sc->limits;
3904 	struct iwn_calib_state *calib = &sc->calib;
3905 	uint32_t val, rxena, fa;
3906 	uint32_t energy[3], energy_min;
3907 	uint8_t noise[3], noise_ref;
3908 	int i, needs_update = 0;
3909 
3910 	/* Check that we've been enabled long enough. */
3911 	if ((rxena = letoh32(stats->general.load)) == 0)
3912 		return;
3913 
3914 	/* Compute number of false alarms since last call for OFDM. */
3915 	fa  = letoh32(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3916 	fa += letoh32(stats->ofdm.fa) - calib->fa_ofdm;
3917 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
3918 
3919 	/* Save counters values for next call. */
3920 	calib->bad_plcp_ofdm = letoh32(stats->ofdm.bad_plcp);
3921 	calib->fa_ofdm = letoh32(stats->ofdm.fa);
3922 
3923 	if (fa > 50 * rxena) {
3924 		/* High false alarm count, decrease sensitivity. */
3925 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3926 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3927 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3928 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3929 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3930 
3931 	} else if (fa < 5 * rxena) {
3932 		/* Low false alarm count, increase sensitivity. */
3933 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3934 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
3935 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3936 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
3937 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3938 	}
3939 
3940 	/* Compute maximum noise among 3 receivers. */
3941 	for (i = 0; i < 3; i++)
3942 		noise[i] = (letoh32(stats->general.noise[i]) >> 8) & 0xff;
3943 	val = MAX(noise[0], noise[1]);
3944 	val = MAX(noise[2], val);
3945 	/* Insert it into our samples table. */
3946 	calib->noise_samples[calib->cur_noise_sample] = val;
3947 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3948 
3949 	/* Compute maximum noise among last 20 samples. */
3950 	noise_ref = calib->noise_samples[0];
3951 	for (i = 1; i < 20; i++)
3952 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3953 
3954 	/* Compute maximum energy among 3 receivers. */
3955 	for (i = 0; i < 3; i++)
3956 		energy[i] = letoh32(stats->general.energy[i]);
3957 	val = MIN(energy[0], energy[1]);
3958 	val = MIN(energy[2], val);
3959 	/* Insert it into our samples table. */
3960 	calib->energy_samples[calib->cur_energy_sample] = val;
3961 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3962 
3963 	/* Compute minimum energy among last 10 samples. */
3964 	energy_min = calib->energy_samples[0];
3965 	for (i = 1; i < 10; i++)
3966 		energy_min = MAX(energy_min, calib->energy_samples[i]);
3967 	energy_min += 6;
3968 
3969 	/* Compute number of false alarms since last call for CCK. */
3970 	fa  = letoh32(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3971 	fa += letoh32(stats->cck.fa) - calib->fa_cck;
3972 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
3973 
3974 	/* Save counters values for next call. */
3975 	calib->bad_plcp_cck = letoh32(stats->cck.bad_plcp);
3976 	calib->fa_cck = letoh32(stats->cck.fa);
3977 
3978 	if (fa > 50 * rxena) {
3979 		/* High false alarm count, decrease sensitivity. */
3980 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3981 		calib->cck_state = IWN_CCK_STATE_HIFA;
3982 		calib->low_fa = 0;
3983 
3984 		if (calib->cck_x4 > 160) {
3985 			calib->noise_ref = noise_ref;
3986 			if (calib->energy_cck > 2)
3987 				dec(calib->energy_cck, 2, energy_min);
3988 		}
3989 		if (calib->cck_x4 < 160) {
3990 			calib->cck_x4 = 161;
3991 			needs_update = 1;
3992 		} else
3993 			inc(calib->cck_x4, 3, limits->max_cck_x4);
3994 
3995 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
3996 
3997 	} else if (fa < 5 * rxena) {
3998 		/* Low false alarm count, increase sensitivity. */
3999 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4000 		calib->cck_state = IWN_CCK_STATE_LOFA;
4001 		calib->low_fa++;
4002 
4003 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4004 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4005 		     calib->low_fa > 100)) {
4006 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4007 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4008 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4009 		}
4010 	} else {
4011 		/* Not worth to increase or decrease sensitivity. */
4012 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4013 		calib->low_fa = 0;
4014 		calib->noise_ref = noise_ref;
4015 
4016 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4017 			/* Previous interval had many false alarms. */
4018 			dec(calib->energy_cck, 8, energy_min);
4019 		}
4020 		calib->cck_state = IWN_CCK_STATE_INIT;
4021 	}
4022 
4023 	if (needs_update)
4024 		(void)iwn_send_sensitivity(sc);
4025 #undef dec
4026 #undef inc
4027 }
4028 
4029 int
4030 iwn_send_sensitivity(struct iwn_softc *sc)
4031 {
4032 	struct iwn_calib_state *calib = &sc->calib;
4033 	struct iwn_enhanced_sensitivity_cmd cmd;
4034 	int len;
4035 
4036 	memset(&cmd, 0, sizeof cmd);
4037 	len = sizeof (struct iwn_sensitivity_cmd);
4038 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4039 	/* OFDM modulation. */
4040 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
4041 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
4042 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
4043 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
4044 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
4045 	cmd.energy_ofdm_th     = htole16(62);
4046 	/* CCK modulation. */
4047 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
4048 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
4049 	cmd.energy_cck         = htole16(calib->energy_cck);
4050 	/* Barker modulation: use default values. */
4051 	cmd.corr_barker        = htole16(190);
4052 	cmd.corr_barker_mrc    = htole16(390);
4053 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4054 		goto send;
4055 	/* Enhanced sensitivity settings. */
4056 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4057 	cmd.ofdm_det_slope_mrc = htole16(668);
4058 	cmd.ofdm_det_icept_mrc = htole16(4);
4059 	cmd.ofdm_det_slope     = htole16(486);
4060 	cmd.ofdm_det_icept     = htole16(37);
4061 	cmd.cck_det_slope_mrc  = htole16(853);
4062 	cmd.cck_det_icept_mrc  = htole16(4);
4063 	cmd.cck_det_slope      = htole16(476);
4064 	cmd.cck_det_icept      = htole16(99);
4065 send:
4066 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4067 }
4068 
4069 /*
4070  * Set STA mode power saving level (between 0 and 5).
4071  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4072  */
4073 int
4074 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4075 {
4076 	struct iwn_pmgt_cmd cmd;
4077 	const struct iwn_pmgt *pmgt;
4078 	uint32_t max, skip_dtim;
4079 	pcireg_t reg;
4080 	int i;
4081 
4082 	/* Select which PS parameters to use. */
4083 	if (dtim <= 2)
4084 		pmgt = &iwn_pmgt[0][level];
4085 	else if (dtim <= 10)
4086 		pmgt = &iwn_pmgt[1][level];
4087 	else
4088 		pmgt = &iwn_pmgt[2][level];
4089 
4090 	memset(&cmd, 0, sizeof cmd);
4091 	if (level != 0)	/* not CAM */
4092 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4093 	if (level == 5)
4094 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4095 	/* Retrieve PCIe Active State Power Management (ASPM). */
4096 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4097 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4098 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4099 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4100 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4101 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4102 
4103 	if (dtim == 0) {
4104 		dtim = 1;
4105 		skip_dtim = 0;
4106 	} else
4107 		skip_dtim = pmgt->skip_dtim;
4108 	if (skip_dtim != 0) {
4109 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4110 		max = pmgt->intval[4];
4111 		if (max == (uint32_t)-1)
4112 			max = dtim * (skip_dtim + 1);
4113 		else if (max > dtim)
4114 			max = (max / dtim) * dtim;
4115 	} else
4116 		max = dtim;
4117 	for (i = 0; i < 5; i++)
4118 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4119 
4120 	DPRINTF(("setting power saving level to %d\n", level));
4121 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4122 }
4123 
4124 int
4125 iwn_send_btcoex(struct iwn_softc *sc)
4126 {
4127 	struct iwn_bluetooth cmd;
4128 
4129 	memset(&cmd, 0, sizeof cmd);
4130 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4131 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
4132 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
4133 	DPRINTF(("configuring bluetooth coexistence\n"));
4134 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
4135 }
4136 
4137 int
4138 iwn5000_runtime_calib(struct iwn_softc *sc)
4139 {
4140 	struct iwn5000_calib_config cmd;
4141 
4142 	memset(&cmd, 0, sizeof cmd);
4143 	cmd.ucode.once.enable = 0xffffffff;
4144 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4145 	DPRINTF(("configuring runtime calibration\n"));
4146 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4147 }
4148 
4149 int
4150 iwn_config(struct iwn_softc *sc)
4151 {
4152 	struct iwn_ops *ops = &sc->ops;
4153 	struct ieee80211com *ic = &sc->sc_ic;
4154 	struct ifnet *ifp = &ic->ic_if;
4155 	uint32_t txmask;
4156 	uint16_t rxchain;
4157 	int error;
4158 
4159 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4160 		/* Set radio temperature sensor offset. */
4161 		error = iwn5000_temp_offset_calib(sc);
4162 		if (error != 0) {
4163 			printf("%s: could not set temperature offset\n",
4164 			    sc->sc_dev.dv_xname);
4165 			return error;
4166 		}
4167 	}
4168 
4169 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4170 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4171 		/* Configure runtime DC calibration. */
4172 		error = iwn5000_runtime_calib(sc);
4173 		if (error != 0) {
4174 			printf("%s: could not configure runtime calibration\n",
4175 			    sc->sc_dev.dv_xname);
4176 			return error;
4177 		}
4178 	}
4179 
4180 	/* Configure valid TX chains for >=5000 Series. */
4181 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4182 		txmask = htole32(sc->txchainmask);
4183 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4184 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4185 		    sizeof txmask, 0);
4186 		if (error != 0) {
4187 			printf("%s: could not configure valid TX chains\n",
4188 			    sc->sc_dev.dv_xname);
4189 			return error;
4190 		}
4191 	}
4192 
4193 	/* Configure bluetooth coexistence. */
4194 	error = iwn_send_btcoex(sc);
4195 	if (error != 0) {
4196 		printf("%s: could not configure bluetooth coexistence\n",
4197 		    sc->sc_dev.dv_xname);
4198 		return error;
4199 	}
4200 
4201 	/* Set mode, channel, RX filter and enable RX. */
4202 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4203 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
4204 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4205 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4206 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4207 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4208 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4209 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4210 	switch (ic->ic_opmode) {
4211 	case IEEE80211_M_STA:
4212 		sc->rxon.mode = IWN_MODE_STA;
4213 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4214 		break;
4215 	case IEEE80211_M_MONITOR:
4216 		sc->rxon.mode = IWN_MODE_MONITOR;
4217 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4218 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4219 		break;
4220 	default:
4221 		/* Should not get there. */
4222 		break;
4223 	}
4224 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4225 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4226 	sc->rxon.ht_single_mask = 0xff;
4227 	sc->rxon.ht_dual_mask = 0xff;
4228 	sc->rxon.ht_triple_mask = 0xff;
4229 	rxchain =
4230 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4231 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4232 	    IWN_RXCHAIN_IDLE_COUNT(2);
4233 	sc->rxon.rxchain = htole16(rxchain);
4234 	DPRINTF(("setting configuration\n"));
4235 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4236 	if (error != 0) {
4237 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
4238 		return error;
4239 	}
4240 
4241 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4242 		printf("%s: could not add broadcast node\n",
4243 		    sc->sc_dev.dv_xname);
4244 		return error;
4245 	}
4246 
4247 	/* Configuration has changed, set TX power accordingly. */
4248 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4249 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
4250 		return error;
4251 	}
4252 
4253 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4254 		printf("%s: could not set critical temperature\n",
4255 		    sc->sc_dev.dv_xname);
4256 		return error;
4257 	}
4258 
4259 	/* Set power saving level to CAM during initialization. */
4260 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4261 		printf("%s: could not set power saving level\n",
4262 		    sc->sc_dev.dv_xname);
4263 		return error;
4264 	}
4265 	return 0;
4266 }
4267 
4268 int
4269 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4270 {
4271 	struct ieee80211com *ic = &sc->sc_ic;
4272 	struct iwn_scan_hdr *hdr;
4273 	struct iwn_cmd_data *tx;
4274 	struct iwn_scan_essid *essid;
4275 	struct iwn_scan_chan *chan;
4276 	struct ieee80211_frame *wh;
4277 	struct ieee80211_rateset *rs;
4278 	struct ieee80211_channel *c;
4279 	uint8_t *buf, *frm;
4280 	uint16_t rxchain;
4281 	uint8_t txant;
4282 	int buflen, error;
4283 
4284 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4285 	if (buf == NULL) {
4286 		printf("%s: could not allocate buffer for scan command\n",
4287 		    sc->sc_dev.dv_xname);
4288 		return ENOMEM;
4289 	}
4290 	hdr = (struct iwn_scan_hdr *)buf;
4291 	/*
4292 	 * Move to the next channel if no frames are received within 10ms
4293 	 * after sending the probe request.
4294 	 */
4295 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4296 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4297 
4298 	/* Select antennas for scanning. */
4299 	rxchain =
4300 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4301 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4302 	    IWN_RXCHAIN_DRIVER_FORCE;
4303 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4304 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4305 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4306 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4307 	} else	/* Use all available RX antennas. */
4308 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4309 	hdr->rxchain = htole16(rxchain);
4310 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4311 
4312 	tx = (struct iwn_cmd_data *)(hdr + 1);
4313 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4314 	tx->id = sc->broadcast_id;
4315 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4316 
4317 	if (flags & IEEE80211_CHAN_5GHZ) {
4318 		hdr->crc_threshold = 0xffff;
4319 		/* Send probe requests at 6Mbps. */
4320 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4321 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4322 	} else {
4323 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4324 		/* Send probe requests at 1Mbps. */
4325 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4326 		tx->rflags = IWN_RFLAG_CCK;
4327 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4328 	}
4329 	/* Use the first valid TX antenna. */
4330 	txant = IWN_LSB(sc->txchainmask);
4331 	tx->rflags |= IWN_RFLAG_ANT(txant);
4332 
4333 	essid = (struct iwn_scan_essid *)(tx + 1);
4334 	if (ic->ic_des_esslen != 0) {
4335 		essid[0].id = IEEE80211_ELEMID_SSID;
4336 		essid[0].len = ic->ic_des_esslen;
4337 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4338 	}
4339 	/*
4340 	 * Build a probe request frame.  Most of the following code is a
4341 	 * copy & paste of what is done in net80211.
4342 	 */
4343 	wh = (struct ieee80211_frame *)(essid + 20);
4344 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4345 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4346 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4347 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4348 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4349 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4350 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4351 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4352 
4353 	frm = (uint8_t *)(wh + 1);
4354 	frm = ieee80211_add_ssid(frm, NULL, 0);
4355 	frm = ieee80211_add_rates(frm, rs);
4356 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4357 		frm = ieee80211_add_xrates(frm, rs);
4358 #ifndef IEEE80211_NO_HT
4359 	if (ic->ic_flags & IEEE80211_F_HTON)
4360 		frm = ieee80211_add_htcaps(frm, ic);
4361 #endif
4362 
4363 	/* Set length of probe request. */
4364 	tx->len = htole16(frm - (uint8_t *)wh);
4365 
4366 	chan = (struct iwn_scan_chan *)frm;
4367 	for (c  = &ic->ic_channels[1];
4368 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4369 		if ((c->ic_flags & flags) != flags)
4370 			continue;
4371 
4372 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4373 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4374 		chan->flags = 0;
4375 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4376 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4377 		if (ic->ic_des_esslen != 0)
4378 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4379 		chan->dsp_gain = 0x6e;
4380 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4381 			chan->rf_gain = 0x3b;
4382 			chan->active  = htole16(24);
4383 			chan->passive = htole16(110);
4384 		} else {
4385 			chan->rf_gain = 0x28;
4386 			chan->active  = htole16(36);
4387 			chan->passive = htole16(120);
4388 		}
4389 		hdr->nchan++;
4390 		chan++;
4391 	}
4392 
4393 	buflen = (uint8_t *)chan - buf;
4394 	hdr->len = htole16(buflen);
4395 
4396 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4397 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4398 	free(buf, M_DEVBUF);
4399 	return error;
4400 }
4401 
4402 int
4403 iwn_auth(struct iwn_softc *sc)
4404 {
4405 	struct iwn_ops *ops = &sc->ops;
4406 	struct ieee80211com *ic = &sc->sc_ic;
4407 	struct ieee80211_node *ni = ic->ic_bss;
4408 	int error;
4409 
4410 	/* Update adapter configuration. */
4411 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4412 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4413 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4414 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4415 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4416 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4417 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4418 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4419 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4420 	switch (ic->ic_curmode) {
4421 	case IEEE80211_MODE_11A:
4422 		sc->rxon.cck_mask  = 0;
4423 		sc->rxon.ofdm_mask = 0x15;
4424 		break;
4425 	case IEEE80211_MODE_11B:
4426 		sc->rxon.cck_mask  = 0x03;
4427 		sc->rxon.ofdm_mask = 0;
4428 		break;
4429 	default:	/* Assume 802.11b/g. */
4430 		sc->rxon.cck_mask  = 0x0f;
4431 		sc->rxon.ofdm_mask = 0x15;
4432 	}
4433 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4434 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4435 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4436 	if (error != 0) {
4437 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
4438 		return error;
4439 	}
4440 
4441 	/* Configuration has changed, set TX power accordingly. */
4442 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4443 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
4444 		return error;
4445 	}
4446 	/*
4447 	 * Reconfiguring RXON clears the firmware nodes table so we must
4448 	 * add the broadcast node again.
4449 	 */
4450 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4451 		printf("%s: could not add broadcast node\n",
4452 		    sc->sc_dev.dv_xname);
4453 		return error;
4454 	}
4455 	return 0;
4456 }
4457 
4458 int
4459 iwn_run(struct iwn_softc *sc)
4460 {
4461 	struct iwn_ops *ops = &sc->ops;
4462 	struct ieee80211com *ic = &sc->sc_ic;
4463 	struct ieee80211_node *ni = ic->ic_bss;
4464 	struct iwn_node_info node;
4465 	int error;
4466 
4467 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4468 		/* Link LED blinks while monitoring. */
4469 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4470 		return 0;
4471 	}
4472 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4473 		printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
4474 		return error;
4475 	}
4476 
4477 	/* Update adapter configuration. */
4478 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4479 	/* Short preamble and slot time are negotiated when associating. */
4480 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4481 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4482 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4483 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4484 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4485 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4486 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4487 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4488 	if (error != 0) {
4489 		printf("%s: could not update configuration\n",
4490 		    sc->sc_dev.dv_xname);
4491 		return error;
4492 	}
4493 
4494 	/* Configuration has changed, set TX power accordingly. */
4495 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4496 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
4497 		return error;
4498 	}
4499 
4500 	/* Fake a join to initialize the TX rate. */
4501 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4502 	iwn_newassoc(ic, ni, 1);
4503 
4504 	/* Add BSS node. */
4505 	memset(&node, 0, sizeof node);
4506 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4507 	node.id = IWN_ID_BSS;
4508 #ifdef notyet
4509 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4510 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4511 #endif
4512 	DPRINTF(("adding BSS node\n"));
4513 	error = ops->add_node(sc, &node, 1);
4514 	if (error != 0) {
4515 		printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
4516 		return error;
4517 	}
4518 	DPRINTF(("setting link quality for node %d\n", node.id));
4519 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4520 		printf("%s: could not setup link quality for node %d\n",
4521 		    sc->sc_dev.dv_xname, node.id);
4522 		return error;
4523 	}
4524 
4525 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4526 		printf("%s: could not set sensitivity\n",
4527 		    sc->sc_dev.dv_xname);
4528 		return error;
4529 	}
4530 	/* Start periodic calibration timer. */
4531 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4532 	sc->calib_cnt = 0;
4533 	timeout_add_msec(&sc->calib_to, 500);
4534 
4535 	/* Link LED always on while associated. */
4536 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4537 	return 0;
4538 }
4539 
4540 /*
4541  * We support CCMP hardware encryption/decryption of unicast frames only.
4542  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4543  */
4544 int
4545 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4546     struct ieee80211_key *k)
4547 {
4548 	struct iwn_softc *sc = ic->ic_softc;
4549 	struct iwn_ops *ops = &sc->ops;
4550 	struct iwn_node *wn = (void *)ni;
4551 	struct iwn_node_info node;
4552 	uint16_t kflags;
4553 
4554 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4555 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4556 		return ieee80211_set_key(ic, ni, k);
4557 
4558 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4559 	if (k->k_flags & IEEE80211_KEY_GROUP)
4560 		kflags |= IWN_KFLAG_GROUP;
4561 
4562 	memset(&node, 0, sizeof node);
4563 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4564 	    sc->broadcast_id : wn->id;
4565 	node.control = IWN_NODE_UPDATE;
4566 	node.flags = IWN_FLAG_SET_KEY;
4567 	node.kflags = htole16(kflags);
4568 	node.kid = k->k_id;
4569 	memcpy(node.key, k->k_key, k->k_len);
4570 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4571 	return ops->add_node(sc, &node, 1);
4572 }
4573 
4574 void
4575 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4576     struct ieee80211_key *k)
4577 {
4578 	struct iwn_softc *sc = ic->ic_softc;
4579 	struct iwn_ops *ops = &sc->ops;
4580 	struct iwn_node *wn = (void *)ni;
4581 	struct iwn_node_info node;
4582 
4583 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4584 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4585 		/* See comment about other ciphers above. */
4586 		ieee80211_delete_key(ic, ni, k);
4587 		return;
4588 	}
4589 	if (ic->ic_state != IEEE80211_S_RUN)
4590 		return;	/* Nothing to do. */
4591 	memset(&node, 0, sizeof node);
4592 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4593 	    sc->broadcast_id : wn->id;
4594 	node.control = IWN_NODE_UPDATE;
4595 	node.flags = IWN_FLAG_SET_KEY;
4596 	node.kflags = htole16(IWN_KFLAG_INVALID);
4597 	node.kid = 0xff;
4598 	DPRINTF(("delete keys for node %d\n", node.id));
4599 	(void)ops->add_node(sc, &node, 1);
4600 }
4601 
4602 #ifndef IEEE80211_NO_HT
4603 /*
4604  * This function is called by upper layer when an ADDBA request is received
4605  * from another STA and before the ADDBA response is sent.
4606  */
4607 int
4608 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4609     uint8_t tid)
4610 {
4611 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4612 	struct iwn_softc *sc = ic->ic_softc;
4613 	struct iwn_ops *ops = &sc->ops;
4614 	struct iwn_node *wn = (void *)ni;
4615 	struct iwn_node_info node;
4616 
4617 	memset(&node, 0, sizeof node);
4618 	node.id = wn->id;
4619 	node.control = IWN_NODE_UPDATE;
4620 	node.flags = IWN_FLAG_SET_ADDBA;
4621 	node.addba_tid = tid;
4622 	node.addba_ssn = htole16(ba->ba_winstart);
4623 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4624 	    ba->ba_winstart));
4625 	return ops->add_node(sc, &node, 1);
4626 }
4627 
4628 /*
4629  * This function is called by upper layer on teardown of an HT-immediate
4630  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4631  */
4632 void
4633 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4634     uint8_t tid)
4635 {
4636 	struct iwn_softc *sc = ic->ic_softc;
4637 	struct iwn_ops *ops = &sc->ops;
4638 	struct iwn_node *wn = (void *)ni;
4639 	struct iwn_node_info node;
4640 
4641 	memset(&node, 0, sizeof node);
4642 	node.id = wn->id;
4643 	node.control = IWN_NODE_UPDATE;
4644 	node.flags = IWN_FLAG_SET_DELBA;
4645 	node.delba_tid = tid;
4646 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4647 	(void)ops->add_node(sc, &node, 1);
4648 }
4649 
4650 /*
4651  * This function is called by upper layer when an ADDBA response is received
4652  * from another STA.
4653  */
4654 int
4655 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4656     uint8_t tid)
4657 {
4658 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4659 	struct iwn_softc *sc = ic->ic_softc;
4660 	struct iwn_ops *ops = &sc->ops;
4661 	struct iwn_node *wn = (void *)ni;
4662 	struct iwn_node_info node;
4663 	int error;
4664 
4665 	/* Enable TX for the specified RA/TID. */
4666 	wn->disable_tid &= ~(1 << tid);
4667 	memset(&node, 0, sizeof node);
4668 	node.id = wn->id;
4669 	node.control = IWN_NODE_UPDATE;
4670 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4671 	node.disable_tid = htole16(wn->disable_tid);
4672 	error = ops->add_node(sc, &node, 1);
4673 	if (error != 0)
4674 		return error;
4675 
4676 	if ((error = iwn_nic_lock(sc)) != 0)
4677 		return error;
4678 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4679 	iwn_nic_unlock(sc);
4680 	return 0;
4681 }
4682 
4683 void
4684 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4685     uint8_t tid)
4686 {
4687 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4688 	struct iwn_softc *sc = ic->ic_softc;
4689 	struct iwn_ops *ops = &sc->ops;
4690 
4691 	if (iwn_nic_lock(sc) != 0)
4692 		return;
4693 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4694 	iwn_nic_unlock(sc);
4695 }
4696 
4697 void
4698 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4699     uint8_t tid, uint16_t ssn)
4700 {
4701 	struct iwn_node *wn = (void *)ni;
4702 	int qid = 7 + tid;
4703 
4704 	/* Stop TX scheduler while we're changing its configuration. */
4705 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4706 	    IWN4965_TXQ_STATUS_CHGACT);
4707 
4708 	/* Assign RA/TID translation to the queue. */
4709 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4710 	    wn->id << 4 | tid);
4711 
4712 	/* Enable chain-building mode for the queue. */
4713 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4714 
4715 	/* Set starting sequence number from the ADDBA request. */
4716 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4717 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4718 
4719 	/* Set scheduler window size. */
4720 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4721 	    IWN_SCHED_WINSZ);
4722 	/* Set scheduler frame limit. */
4723 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4724 	    IWN_SCHED_LIMIT << 16);
4725 
4726 	/* Enable interrupts for the queue. */
4727 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4728 
4729 	/* Mark the queue as active. */
4730 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4731 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4732 	    iwn_tid2fifo[tid] << 1);
4733 }
4734 
4735 void
4736 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4737 {
4738 	int qid = 7 + tid;
4739 
4740 	/* Stop TX scheduler while we're changing its configuration. */
4741 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4742 	    IWN4965_TXQ_STATUS_CHGACT);
4743 
4744 	/* Set starting sequence number from the ADDBA request. */
4745 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4746 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4747 
4748 	/* Disable interrupts for the queue. */
4749 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4750 
4751 	/* Mark the queue as inactive. */
4752 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4753 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4754 }
4755 
4756 void
4757 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4758     uint8_t tid, uint16_t ssn)
4759 {
4760 	struct iwn_node *wn = (void *)ni;
4761 	int qid = 10 + tid;
4762 
4763 	/* Stop TX scheduler while we're changing its configuration. */
4764 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4765 	    IWN5000_TXQ_STATUS_CHGACT);
4766 
4767 	/* Assign RA/TID translation to the queue. */
4768 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4769 	    wn->id << 4 | tid);
4770 
4771 	/* Enable chain-building mode for the queue. */
4772 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4773 
4774 	/* Enable aggregation for the queue. */
4775 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4776 
4777 	/* Set starting sequence number from the ADDBA request. */
4778 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4779 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4780 
4781 	/* Set scheduler window size and frame limit. */
4782 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4783 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4784 
4785 	/* Enable interrupts for the queue. */
4786 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4787 
4788 	/* Mark the queue as active. */
4789 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4790 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4791 }
4792 
4793 void
4794 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4795 {
4796 	int qid = 10 + tid;
4797 
4798 	/* Stop TX scheduler while we're changing its configuration. */
4799 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4800 	    IWN5000_TXQ_STATUS_CHGACT);
4801 
4802 	/* Disable aggregation for the queue. */
4803 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4804 
4805 	/* Set starting sequence number from the ADDBA request. */
4806 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4807 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4808 
4809 	/* Disable interrupts for the queue. */
4810 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4811 
4812 	/* Mark the queue as inactive. */
4813 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4814 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4815 }
4816 #endif	/* !IEEE80211_NO_HT */
4817 
4818 /*
4819  * Query calibration tables from the initialization firmware.  We do this
4820  * only once at first boot.  Called from a process context.
4821  */
4822 int
4823 iwn5000_query_calibration(struct iwn_softc *sc)
4824 {
4825 	struct iwn5000_calib_config cmd;
4826 	int error;
4827 
4828 	memset(&cmd, 0, sizeof cmd);
4829 	cmd.ucode.once.enable = 0xffffffff;
4830 	cmd.ucode.once.start  = 0xffffffff;
4831 	cmd.ucode.once.send   = 0xffffffff;
4832 	cmd.ucode.flags       = 0xffffffff;
4833 	DPRINTF(("sending calibration query\n"));
4834 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4835 	if (error != 0)
4836 		return error;
4837 
4838 	/* Wait at most two seconds for calibration to complete. */
4839 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4840 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4841 	return error;
4842 }
4843 
4844 /*
4845  * Send calibration results to the runtime firmware.  These results were
4846  * obtained on first boot from the initialization firmware.
4847  */
4848 int
4849 iwn5000_send_calibration(struct iwn_softc *sc)
4850 {
4851 	int idx, error;
4852 
4853 	for (idx = 0; idx < 5; idx++) {
4854 		if (sc->calibcmd[idx].buf == NULL)
4855 			continue;	/* No results available. */
4856 		DPRINTF(("send calibration result idx=%d len=%d\n",
4857 		    idx, sc->calibcmd[idx].len));
4858 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4859 		    sc->calibcmd[idx].len, 0);
4860 		if (error != 0) {
4861 			printf("%s: could not send calibration result\n",
4862 			    sc->sc_dev.dv_xname);
4863 			return error;
4864 		}
4865 	}
4866 	return 0;
4867 }
4868 
4869 int
4870 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4871 {
4872 	struct iwn5000_wimax_coex wimax;
4873 
4874 #ifdef notyet
4875 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4876 		/* Enable WiMAX coexistence for combo adapters. */
4877 		wimax.flags =
4878 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4879 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4880 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
4881 		    IWN_WIMAX_COEX_ENABLE;
4882 		memcpy(wimax.events, iwn6050_wimax_events,
4883 		    sizeof iwn6050_wimax_events);
4884 	} else
4885 #endif
4886 	{
4887 		/* Disable WiMAX coexistence. */
4888 		wimax.flags = 0;
4889 		memset(wimax.events, 0, sizeof wimax.events);
4890 	}
4891 	DPRINTF(("Configuring WiMAX coexistence\n"));
4892 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4893 }
4894 
4895 int
4896 iwn5000_crystal_calib(struct iwn_softc *sc)
4897 {
4898 	struct iwn5000_phy_calib_crystal cmd;
4899 
4900 	memset(&cmd, 0, sizeof cmd);
4901 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
4902 	cmd.ngroups = 1;
4903 	cmd.isvalid = 1;
4904 	cmd.cap_pin[0] = letoh32(sc->eeprom_crystal) & 0xff;
4905 	cmd.cap_pin[1] = (letoh32(sc->eeprom_crystal) >> 16) & 0xff;
4906 	DPRINTF(("sending crystal calibration %d, %d\n",
4907 	    cmd.cap_pin[0], cmd.cap_pin[1]));
4908 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
4909 }
4910 
4911 int
4912 iwn5000_temp_offset_calib(struct iwn_softc *sc)
4913 {
4914 	struct iwn5000_phy_calib_temp_offset cmd;
4915 
4916 	memset(&cmd, 0, sizeof cmd);
4917 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
4918 	cmd.ngroups = 1;
4919 	cmd.isvalid = 1;
4920 	if (sc->eeprom_temp != 0)
4921 		cmd.offset = htole16(sc->eeprom_temp);
4922 	else
4923 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
4924 	DPRINTF(("setting radio sensor offset to %d\n", letoh16(cmd.offset)));
4925 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
4926 }
4927 
4928 /*
4929  * This function is called after the runtime firmware notifies us of its
4930  * readiness (called in a process context).
4931  */
4932 int
4933 iwn4965_post_alive(struct iwn_softc *sc)
4934 {
4935 	int error, qid;
4936 
4937 	if ((error = iwn_nic_lock(sc)) != 0)
4938 		return error;
4939 
4940 	/* Clear TX scheduler state in SRAM. */
4941 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4942 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4943 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4944 
4945 	/* Set physical address of TX scheduler rings (1KB aligned). */
4946 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4947 
4948 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4949 
4950 	/* Disable chain mode for all our 16 queues. */
4951 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4952 
4953 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4954 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4955 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4956 
4957 		/* Set scheduler window size. */
4958 		iwn_mem_write(sc, sc->sched_base +
4959 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4960 		/* Set scheduler frame limit. */
4961 		iwn_mem_write(sc, sc->sched_base +
4962 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4963 		    IWN_SCHED_LIMIT << 16);
4964 	}
4965 
4966 	/* Enable interrupts for all our 16 queues. */
4967 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4968 	/* Identify TX FIFO rings (0-7). */
4969 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4970 
4971 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4972 	for (qid = 0; qid < 7; qid++) {
4973 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4974 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4975 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4976 	}
4977 	iwn_nic_unlock(sc);
4978 	return 0;
4979 }
4980 
4981 /*
4982  * This function is called after the initialization or runtime firmware
4983  * notifies us of its readiness (called in a process context).
4984  */
4985 int
4986 iwn5000_post_alive(struct iwn_softc *sc)
4987 {
4988 	int error, qid;
4989 
4990 	/* Switch to using ICT interrupt mode. */
4991 	iwn5000_ict_reset(sc);
4992 
4993 	if ((error = iwn_nic_lock(sc)) != 0)
4994 		return error;
4995 
4996 	/* Clear TX scheduler state in SRAM. */
4997 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4998 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
4999 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5000 
5001 	/* Set physical address of TX scheduler rings (1KB aligned). */
5002 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5003 
5004 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5005 
5006 	/* Enable chain mode for all queues, except command queue. */
5007 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5008 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5009 
5010 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5011 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5012 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5013 
5014 		iwn_mem_write(sc, sc->sched_base +
5015 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5016 		/* Set scheduler window size and frame limit. */
5017 		iwn_mem_write(sc, sc->sched_base +
5018 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5019 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5020 	}
5021 
5022 	/* Enable interrupts for all our 20 queues. */
5023 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5024 	/* Identify TX FIFO rings (0-7). */
5025 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5026 
5027 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5028 	for (qid = 0; qid < 7; qid++) {
5029 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5030 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5031 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5032 	}
5033 	iwn_nic_unlock(sc);
5034 
5035 	/* Configure WiMAX coexistence for combo adapters. */
5036 	error = iwn5000_send_wimax_coex(sc);
5037 	if (error != 0) {
5038 		printf("%s: could not configure WiMAX coexistence\n",
5039 		    sc->sc_dev.dv_xname);
5040 		return error;
5041 	}
5042 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5043 		/* Perform crystal calibration. */
5044 		error = iwn5000_crystal_calib(sc);
5045 		if (error != 0) {
5046 			printf("%s: crystal calibration failed\n",
5047 			    sc->sc_dev.dv_xname);
5048 			return error;
5049 		}
5050 	}
5051 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5052 		/* Query calibration from the initialization firmware. */
5053 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5054 			printf("%s: could not query calibration\n",
5055 			    sc->sc_dev.dv_xname);
5056 			return error;
5057 		}
5058 		/*
5059 		 * We have the calibration results now, reboot with the
5060 		 * runtime firmware (call ourselves recursively!)
5061 		 */
5062 		iwn_hw_stop(sc);
5063 		error = iwn_hw_init(sc);
5064 	} else {
5065 		/* Send calibration results to runtime firmware. */
5066 		error = iwn5000_send_calibration(sc);
5067 	}
5068 	return error;
5069 }
5070 
5071 /*
5072  * The firmware boot code is small and is intended to be copied directly into
5073  * the NIC internal memory (no DMA transfer).
5074  */
5075 int
5076 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5077 {
5078 	int error, ntries;
5079 
5080 	size /= sizeof (uint32_t);
5081 
5082 	if ((error = iwn_nic_lock(sc)) != 0)
5083 		return error;
5084 
5085 	/* Copy microcode image into NIC memory. */
5086 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5087 	    (const uint32_t *)ucode, size);
5088 
5089 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5090 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5091 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5092 
5093 	/* Start boot load now. */
5094 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5095 
5096 	/* Wait for transfer to complete. */
5097 	for (ntries = 0; ntries < 1000; ntries++) {
5098 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5099 		    IWN_BSM_WR_CTRL_START))
5100 			break;
5101 		DELAY(10);
5102 	}
5103 	if (ntries == 1000) {
5104 		printf("%s: could not load boot firmware\n",
5105 		    sc->sc_dev.dv_xname);
5106 		iwn_nic_unlock(sc);
5107 		return ETIMEDOUT;
5108 	}
5109 
5110 	/* Enable boot after power up. */
5111 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5112 
5113 	iwn_nic_unlock(sc);
5114 	return 0;
5115 }
5116 
5117 int
5118 iwn4965_load_firmware(struct iwn_softc *sc)
5119 {
5120 	struct iwn_fw_info *fw = &sc->fw;
5121 	struct iwn_dma_info *dma = &sc->fw_dma;
5122 	int error;
5123 
5124 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5125 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5126 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5127 	    BUS_DMASYNC_PREWRITE);
5128 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5129 	    fw->init.text, fw->init.textsz);
5130 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5131 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5132 
5133 	/* Tell adapter where to find initialization sections. */
5134 	if ((error = iwn_nic_lock(sc)) != 0)
5135 		return error;
5136 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5137 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5138 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5139 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5140 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5141 	iwn_nic_unlock(sc);
5142 
5143 	/* Load firmware boot code. */
5144 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5145 	if (error != 0) {
5146 		printf("%s: could not load boot firmware\n",
5147 		    sc->sc_dev.dv_xname);
5148 		return error;
5149 	}
5150 	/* Now press "execute". */
5151 	IWN_WRITE(sc, IWN_RESET, 0);
5152 
5153 	/* Wait at most one second for first alive notification. */
5154 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5155 		printf("%s: timeout waiting for adapter to initialize\n",
5156 		    sc->sc_dev.dv_xname);
5157 		return error;
5158 	}
5159 
5160 	/* Retrieve current temperature for initial TX power calibration. */
5161 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5162 	sc->temp = iwn4965_get_temperature(sc);
5163 
5164 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5165 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5166 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5167 	    BUS_DMASYNC_PREWRITE);
5168 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5169 	    fw->main.text, fw->main.textsz);
5170 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5171 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5172 
5173 	/* Tell adapter where to find runtime sections. */
5174 	if ((error = iwn_nic_lock(sc)) != 0)
5175 		return error;
5176 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5177 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5178 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5179 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5180 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5181 	    IWN_FW_UPDATED | fw->main.textsz);
5182 	iwn_nic_unlock(sc);
5183 
5184 	return 0;
5185 }
5186 
5187 int
5188 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5189     const uint8_t *section, int size)
5190 {
5191 	struct iwn_dma_info *dma = &sc->fw_dma;
5192 	int error;
5193 
5194 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5195 	memcpy(dma->vaddr, section, size);
5196 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5197 
5198 	if ((error = iwn_nic_lock(sc)) != 0)
5199 		return error;
5200 
5201 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5202 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5203 
5204 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5205 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5206 	    IWN_LOADDR(dma->paddr));
5207 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5208 	    IWN_HIADDR(dma->paddr) << 28 | size);
5209 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5210 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5211 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5212 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5213 
5214 	/* Kick Flow Handler to start DMA transfer. */
5215 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5216 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5217 
5218 	iwn_nic_unlock(sc);
5219 
5220 	/* Wait at most five seconds for FH DMA transfer to complete. */
5221 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5222 }
5223 
5224 int
5225 iwn5000_load_firmware(struct iwn_softc *sc)
5226 {
5227 	struct iwn_fw_part *fw;
5228 	int error;
5229 
5230 	/* Load the initialization firmware on first boot only. */
5231 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5232 	    &sc->fw.main : &sc->fw.init;
5233 
5234 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5235 	    fw->text, fw->textsz);
5236 	if (error != 0) {
5237 		printf("%s: could not load firmware %s section\n",
5238 		    sc->sc_dev.dv_xname, ".text");
5239 		return error;
5240 	}
5241 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5242 	    fw->data, fw->datasz);
5243 	if (error != 0) {
5244 		printf("%s: could not load firmware %s section\n",
5245 		    sc->sc_dev.dv_xname, ".data");
5246 		return error;
5247 	}
5248 
5249 	/* Now press "execute". */
5250 	IWN_WRITE(sc, IWN_RESET, 0);
5251 	return 0;
5252 }
5253 
5254 /*
5255  * Extract text and data sections from a legacy firmware image.
5256  */
5257 int
5258 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5259 {
5260 	const uint32_t *ptr;
5261 	size_t hdrlen = 24;
5262 	uint32_t rev;
5263 
5264 	ptr = (const uint32_t *)fw->data;
5265 	rev = letoh32(*ptr++);
5266 
5267 	/* Check firmware API version. */
5268 	if (IWN_FW_API(rev) <= 1) {
5269 		printf("%s: bad firmware, need API version >=2\n",
5270 		    sc->sc_dev.dv_xname);
5271 		return EINVAL;
5272 	}
5273 	if (IWN_FW_API(rev) >= 3) {
5274 		/* Skip build number (version 2 header). */
5275 		hdrlen += 4;
5276 		ptr++;
5277 	}
5278 	if (fw->size < hdrlen) {
5279 		printf("%s: firmware too short: %d bytes\n",
5280 		    sc->sc_dev.dv_xname, fw->size);
5281 		return EINVAL;
5282 	}
5283 	fw->main.textsz = letoh32(*ptr++);
5284 	fw->main.datasz = letoh32(*ptr++);
5285 	fw->init.textsz = letoh32(*ptr++);
5286 	fw->init.datasz = letoh32(*ptr++);
5287 	fw->boot.textsz = letoh32(*ptr++);
5288 
5289 	/* Check that all firmware sections fit. */
5290 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5291 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5292 		printf("%s: firmware too short: %d bytes\n",
5293 		    sc->sc_dev.dv_xname, fw->size);
5294 		return EINVAL;
5295 	}
5296 
5297 	/* Get pointers to firmware sections. */
5298 	fw->main.text = (const uint8_t *)ptr;
5299 	fw->main.data = fw->main.text + fw->main.textsz;
5300 	fw->init.text = fw->main.data + fw->main.datasz;
5301 	fw->init.data = fw->init.text + fw->init.textsz;
5302 	fw->boot.text = fw->init.data + fw->init.datasz;
5303 	return 0;
5304 }
5305 
5306 /*
5307  * Extract text and data sections from a TLV firmware image.
5308  */
5309 int
5310 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5311     uint16_t alt)
5312 {
5313 	const struct iwn_fw_tlv_hdr *hdr;
5314 	const struct iwn_fw_tlv *tlv;
5315 	const uint8_t *ptr, *end;
5316 	uint64_t altmask;
5317 	uint32_t len;
5318 
5319 	if (fw->size < sizeof (*hdr)) {
5320 		printf("%s: firmware too short: %d bytes\n",
5321 		    sc->sc_dev.dv_xname, fw->size);
5322 		return EINVAL;
5323 	}
5324 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5325 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5326 		printf("%s: bad firmware signature 0x%08x\n",
5327 		    sc->sc_dev.dv_xname, letoh32(hdr->signature));
5328 		return EINVAL;
5329 	}
5330 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5331 	    letoh32(hdr->build)));
5332 
5333 	/*
5334 	 * Select the closest supported alternative that is less than
5335 	 * or equal to the specified one.
5336 	 */
5337 	altmask = letoh64(hdr->altmask);
5338 	while (alt > 0 && !(altmask & (1ULL << alt)))
5339 		alt--;	/* Downgrade. */
5340 	DPRINTF(("using alternative %d\n", alt));
5341 
5342 	ptr = (const uint8_t *)(hdr + 1);
5343 	end = (const uint8_t *)(fw->data + fw->size);
5344 
5345 	/* Parse type-length-value fields. */
5346 	while (ptr + sizeof (*tlv) <= end) {
5347 		tlv = (const struct iwn_fw_tlv *)ptr;
5348 		len = letoh32(tlv->len);
5349 
5350 		ptr += sizeof (*tlv);
5351 		if (ptr + len > end) {
5352 			printf("%s: firmware too short: %d bytes\n",
5353 			    sc->sc_dev.dv_xname, fw->size);
5354 			return EINVAL;
5355 		}
5356 		/* Skip other alternatives. */
5357 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5358 			goto next;
5359 
5360 		switch (letoh16(tlv->type)) {
5361 		case IWN_FW_TLV_MAIN_TEXT:
5362 			fw->main.text = ptr;
5363 			fw->main.textsz = len;
5364 			break;
5365 		case IWN_FW_TLV_MAIN_DATA:
5366 			fw->main.data = ptr;
5367 			fw->main.datasz = len;
5368 			break;
5369 		case IWN_FW_TLV_INIT_TEXT:
5370 			fw->init.text = ptr;
5371 			fw->init.textsz = len;
5372 			break;
5373 		case IWN_FW_TLV_INIT_DATA:
5374 			fw->init.data = ptr;
5375 			fw->init.datasz = len;
5376 			break;
5377 		case IWN_FW_TLV_BOOT_TEXT:
5378 			fw->boot.text = ptr;
5379 			fw->boot.textsz = len;
5380 			break;
5381 		default:
5382 			DPRINTF(("TLV type %d not handled\n",
5383 			    letoh16(tlv->type)));
5384 			break;
5385 		}
5386  next:		/* TLV fields are 32-bit aligned. */
5387 		ptr += (len + 3) & ~3;
5388 	}
5389 	return 0;
5390 }
5391 
5392 int
5393 iwn_read_firmware(struct iwn_softc *sc)
5394 {
5395 	struct iwn_fw_info *fw = &sc->fw;
5396 	int error;
5397 
5398 	memset(fw, 0, sizeof (*fw));
5399 
5400 	/* Read firmware image from filesystem. */
5401 	if ((error = loadfirmware(sc->fwname, &fw->data, &fw->size)) != 0) {
5402 		printf("%s: error, %d, could not read firmware %s\n",
5403 		    sc->sc_dev.dv_xname, error, sc->fwname);
5404 		return error;
5405 	}
5406 	if (fw->size < sizeof (uint32_t)) {
5407 		printf("%s: firmware too short: %d bytes\n",
5408 		    sc->sc_dev.dv_xname, fw->size);
5409 		free(fw->data, M_DEVBUF);
5410 		return EINVAL;
5411 	}
5412 
5413 	/* Retrieve text and data sections. */
5414 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5415 		error = iwn_read_firmware_leg(sc, fw);
5416 	else
5417 		error = iwn_read_firmware_tlv(sc, fw, 1);
5418 	if (error != 0) {
5419 		printf("%s: could not read firmware sections\n",
5420 		    sc->sc_dev.dv_xname);
5421 		free(fw->data, M_DEVBUF);
5422 		return error;
5423 	}
5424 
5425 	/* Make sure text and data sections fit in hardware memory. */
5426 	if (fw->main.textsz > sc->fw_text_maxsz ||
5427 	    fw->main.datasz > sc->fw_data_maxsz ||
5428 	    fw->init.textsz > sc->fw_text_maxsz ||
5429 	    fw->init.datasz > sc->fw_data_maxsz ||
5430 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5431 	    (fw->boot.textsz & 3) != 0) {
5432 		printf("%s: firmware sections too large\n",
5433 		    sc->sc_dev.dv_xname);
5434 		free(fw->data, M_DEVBUF);
5435 		return EINVAL;
5436 	}
5437 
5438 	/* We can proceed with loading the firmware. */
5439 	return 0;
5440 }
5441 
5442 int
5443 iwn_clock_wait(struct iwn_softc *sc)
5444 {
5445 	int ntries;
5446 
5447 	/* Set "initialization complete" bit. */
5448 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5449 
5450 	/* Wait for clock stabilization. */
5451 	for (ntries = 0; ntries < 2500; ntries++) {
5452 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5453 			return 0;
5454 		DELAY(10);
5455 	}
5456 	printf("%s: timeout waiting for clock stabilization\n",
5457 	    sc->sc_dev.dv_xname);
5458 	return ETIMEDOUT;
5459 }
5460 
5461 int
5462 iwn_apm_init(struct iwn_softc *sc)
5463 {
5464 	pcireg_t reg;
5465 	int error;
5466 
5467 	/* Disable L0s exit timer (NMI bug workaround). */
5468 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5469 	/* Don't wait for ICH L0s (ICH bug workaround). */
5470 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5471 
5472 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5473 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5474 
5475 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5476 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5477 
5478 	/* Retrieve PCIe Active State Power Management (ASPM). */
5479 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5480 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5481 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5482 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5483 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5484 	else
5485 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5486 
5487 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5488 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5489 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5490 
5491 	/* Wait for clock stabilization before accessing prph. */
5492 	if ((error = iwn_clock_wait(sc)) != 0)
5493 		return error;
5494 
5495 	if ((error = iwn_nic_lock(sc)) != 0)
5496 		return error;
5497 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5498 		/* Enable DMA and BSM (Bootstrap State Machine). */
5499 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5500 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5501 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5502 	} else {
5503 		/* Enable DMA. */
5504 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5505 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5506 	}
5507 	DELAY(20);
5508 	/* Disable L1-Active. */
5509 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5510 	iwn_nic_unlock(sc);
5511 
5512 	return 0;
5513 }
5514 
5515 void
5516 iwn_apm_stop_master(struct iwn_softc *sc)
5517 {
5518 	int ntries;
5519 
5520 	/* Stop busmaster DMA activity. */
5521 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5522 	for (ntries = 0; ntries < 100; ntries++) {
5523 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5524 			return;
5525 		DELAY(10);
5526 	}
5527 	printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
5528 }
5529 
5530 void
5531 iwn_apm_stop(struct iwn_softc *sc)
5532 {
5533 	iwn_apm_stop_master(sc);
5534 
5535 	/* Reset the entire device. */
5536 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5537 	DELAY(10);
5538 	/* Clear "initialization complete" bit. */
5539 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5540 }
5541 
5542 int
5543 iwn4965_nic_config(struct iwn_softc *sc)
5544 {
5545 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5546 		/*
5547 		 * I don't believe this to be correct but this is what the
5548 		 * vendor driver is doing. Probably the bits should not be
5549 		 * shifted in IWN_RFCFG_*.
5550 		 */
5551 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5552 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5553 		    IWN_RFCFG_STEP(sc->rfcfg) |
5554 		    IWN_RFCFG_DASH(sc->rfcfg));
5555 	}
5556 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5557 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5558 	return 0;
5559 }
5560 
5561 int
5562 iwn5000_nic_config(struct iwn_softc *sc)
5563 {
5564 	uint32_t tmp;
5565 	int error;
5566 
5567 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5568 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5569 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5570 		    IWN_RFCFG_STEP(sc->rfcfg) |
5571 		    IWN_RFCFG_DASH(sc->rfcfg));
5572 	}
5573 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5574 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5575 
5576 	if ((error = iwn_nic_lock(sc)) != 0)
5577 		return error;
5578 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5579 
5580 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5581 		/*
5582 		 * Select first Switching Voltage Regulator (1.32V) to
5583 		 * solve a stability issue related to noisy DC2DC line
5584 		 * in the silicon of 1000 Series.
5585 		 */
5586 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5587 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5588 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5589 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5590 	}
5591 	iwn_nic_unlock(sc);
5592 
5593 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5594 		/* Use internal power amplifier only. */
5595 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5596 	}
5597 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5598 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
5599 		/* Indicate that ROM calibration version is >=6. */
5600 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5601 	}
5602 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
5603 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
5604 	return 0;
5605 }
5606 
5607 /*
5608  * Take NIC ownership over Intel Active Management Technology (AMT).
5609  */
5610 int
5611 iwn_hw_prepare(struct iwn_softc *sc)
5612 {
5613 	int ntries;
5614 
5615 	/* Check if hardware is ready. */
5616 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5617 	for (ntries = 0; ntries < 5; ntries++) {
5618 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5619 		    IWN_HW_IF_CONFIG_NIC_READY)
5620 			return 0;
5621 		DELAY(10);
5622 	}
5623 
5624 	/* Hardware not ready, force into ready state. */
5625 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5626 	for (ntries = 0; ntries < 15000; ntries++) {
5627 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5628 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5629 			break;
5630 		DELAY(10);
5631 	}
5632 	if (ntries == 15000)
5633 		return ETIMEDOUT;
5634 
5635 	/* Hardware should be ready now. */
5636 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5637 	for (ntries = 0; ntries < 5; ntries++) {
5638 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5639 		    IWN_HW_IF_CONFIG_NIC_READY)
5640 			return 0;
5641 		DELAY(10);
5642 	}
5643 	return ETIMEDOUT;
5644 }
5645 
5646 int
5647 iwn_hw_init(struct iwn_softc *sc)
5648 {
5649 	struct iwn_ops *ops = &sc->ops;
5650 	int error, chnl, qid;
5651 
5652 	/* Clear pending interrupts. */
5653 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5654 
5655 	if ((error = iwn_apm_init(sc)) != 0) {
5656 		printf("%s: could not power ON adapter\n",
5657 		    sc->sc_dev.dv_xname);
5658 		return error;
5659 	}
5660 
5661 	/* Select VMAIN power source. */
5662 	if ((error = iwn_nic_lock(sc)) != 0)
5663 		return error;
5664 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5665 	iwn_nic_unlock(sc);
5666 
5667 	/* Perform adapter-specific initialization. */
5668 	if ((error = ops->nic_config(sc)) != 0)
5669 		return error;
5670 
5671 	/* Initialize RX ring. */
5672 	if ((error = iwn_nic_lock(sc)) != 0)
5673 		return error;
5674 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5675 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5676 	/* Set physical address of RX ring (256-byte aligned). */
5677 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5678 	/* Set physical address of RX status (16-byte aligned). */
5679 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5680 	/* Enable RX. */
5681 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5682 	    IWN_FH_RX_CONFIG_ENA           |
5683 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5684 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5685 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5686 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5687 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5688 	iwn_nic_unlock(sc);
5689 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5690 
5691 	if ((error = iwn_nic_lock(sc)) != 0)
5692 		return error;
5693 
5694 	/* Initialize TX scheduler. */
5695 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5696 
5697 	/* Set physical address of "keep warm" page (16-byte aligned). */
5698 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5699 
5700 	/* Initialize TX rings. */
5701 	for (qid = 0; qid < sc->ntxqs; qid++) {
5702 		struct iwn_tx_ring *txq = &sc->txq[qid];
5703 
5704 		/* Set physical address of TX ring (256-byte aligned). */
5705 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5706 		    txq->desc_dma.paddr >> 8);
5707 	}
5708 	iwn_nic_unlock(sc);
5709 
5710 	/* Enable DMA channels. */
5711 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5712 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5713 		    IWN_FH_TX_CONFIG_DMA_ENA |
5714 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5715 	}
5716 
5717 	/* Clear "radio off" and "commands blocked" bits. */
5718 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5719 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5720 
5721 	/* Clear pending interrupts. */
5722 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5723 	/* Enable interrupt coalescing. */
5724 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5725 	/* Enable interrupts. */
5726 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5727 
5728 	/* _Really_ make sure "radio off" bit is cleared! */
5729 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5730 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5731 
5732 	/* Enable shadow registers. */
5733 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
5734 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
5735 
5736 	if ((error = ops->load_firmware(sc)) != 0) {
5737 		printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
5738 		return error;
5739 	}
5740 	/* Wait at most one second for firmware alive notification. */
5741 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5742 		printf("%s: timeout waiting for adapter to initialize\n",
5743 		    sc->sc_dev.dv_xname);
5744 		return error;
5745 	}
5746 	/* Do post-firmware initialization. */
5747 	return ops->post_alive(sc);
5748 }
5749 
5750 void
5751 iwn_hw_stop(struct iwn_softc *sc)
5752 {
5753 	int chnl, qid, ntries;
5754 
5755 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5756 
5757 	/* Disable interrupts. */
5758 	IWN_WRITE(sc, IWN_INT_MASK, 0);
5759 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5760 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5761 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5762 
5763 	/* Make sure we no longer hold the NIC lock. */
5764 	iwn_nic_unlock(sc);
5765 
5766 	/* Stop TX scheduler. */
5767 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5768 
5769 	/* Stop all DMA channels. */
5770 	if (iwn_nic_lock(sc) == 0) {
5771 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5772 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5773 			for (ntries = 0; ntries < 200; ntries++) {
5774 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
5775 				    IWN_FH_TX_STATUS_IDLE(chnl))
5776 					break;
5777 				DELAY(10);
5778 			}
5779 		}
5780 		iwn_nic_unlock(sc);
5781 	}
5782 
5783 	/* Stop RX ring. */
5784 	iwn_reset_rx_ring(sc, &sc->rxq);
5785 
5786 	/* Reset all TX rings. */
5787 	for (qid = 0; qid < sc->ntxqs; qid++)
5788 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5789 
5790 	if (iwn_nic_lock(sc) == 0) {
5791 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5792 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5793 		iwn_nic_unlock(sc);
5794 	}
5795 	DELAY(5);
5796 	/* Power OFF adapter. */
5797 	iwn_apm_stop(sc);
5798 }
5799 
5800 int
5801 iwn_init(struct ifnet *ifp)
5802 {
5803 	struct iwn_softc *sc = ifp->if_softc;
5804 	struct ieee80211com *ic = &sc->sc_ic;
5805 	int error;
5806 
5807 	if ((error = iwn_hw_prepare(sc)) != 0) {
5808 		printf("%s: hardware not ready\n", sc->sc_dev.dv_xname);
5809 		goto fail;
5810 	}
5811 
5812 	/* Check that the radio is not disabled by hardware switch. */
5813 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5814 		printf("%s: radio is disabled by hardware switch\n",
5815 		    sc->sc_dev.dv_xname);
5816 		error = EPERM;	/* :-) */
5817 		goto fail;
5818 	}
5819 
5820 	/* Read firmware images from the filesystem. */
5821 	if ((error = iwn_read_firmware(sc)) != 0) {
5822 		printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
5823 		goto fail;
5824 	}
5825 
5826 	/* Initialize interrupt mask to default value. */
5827 	sc->int_mask = IWN_INT_MASK_DEF;
5828 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5829 
5830 	/* Initialize hardware and upload firmware. */
5831 	error = iwn_hw_init(sc);
5832 	free(sc->fw.data, M_DEVBUF);
5833 	if (error != 0) {
5834 		printf("%s: could not initialize hardware\n",
5835 		    sc->sc_dev.dv_xname);
5836 		goto fail;
5837 	}
5838 
5839 	/* Configure adapter now that it is ready. */
5840 	if ((error = iwn_config(sc)) != 0) {
5841 		printf("%s: could not configure device\n",
5842 		    sc->sc_dev.dv_xname);
5843 		goto fail;
5844 	}
5845 
5846 	ifp->if_flags &= ~IFF_OACTIVE;
5847 	ifp->if_flags |= IFF_RUNNING;
5848 
5849 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
5850 		ieee80211_begin_scan(ifp);
5851 	else
5852 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5853 
5854 	return 0;
5855 
5856 fail:	iwn_stop(ifp, 1);
5857 	return error;
5858 }
5859 
5860 void
5861 iwn_stop(struct ifnet *ifp, int disable)
5862 {
5863 	struct iwn_softc *sc = ifp->if_softc;
5864 	struct ieee80211com *ic = &sc->sc_ic;
5865 
5866 	ifp->if_timer = sc->sc_tx_timer = 0;
5867 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5868 
5869 	/* In case we were scanning, release the scan "lock". */
5870 	ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED;
5871 
5872 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5873 
5874 	/* Power OFF hardware. */
5875 	iwn_hw_stop(sc);
5876 }
5877