xref: /openbsd-src/sys/dev/pci/if_iwn.c (revision 99fd087599a8791921855f21bd7e36130f39aadc)
1 /*	$OpenBSD: if_iwn.c,v 1.221 2019/11/06 14:52:35 stsp Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
21  * adapters.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/kernel.h>
30 #include <sys/rwlock.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/conf.h>
35 #include <sys/device.h>
36 #include <sys/task.h>
37 #include <sys/endian.h>
38 
39 #include <machine/bus.h>
40 #include <machine/intr.h>
41 
42 #include <dev/pci/pcireg.h>
43 #include <dev/pci/pcivar.h>
44 #include <dev/pci/pcidevs.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/if_ether.h>
55 
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_mira.h>
59 #include <net80211/ieee80211_radiotap.h>
60 #include <net80211/ieee80211_priv.h> /* for SEQ_LT */
61 #undef DPRINTF /* defined in ieee80211_priv.h */
62 
63 #include <dev/pci/if_iwnreg.h>
64 #include <dev/pci/if_iwnvar.h>
65 
66 static const struct pci_matchid iwn_devices[] = {
67 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_1 },
68 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_2 },
69 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_1 },
70 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_2 },
71 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_1 },
72 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_2 },
73 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_1 },
74 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_2 },
75 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_1 },
76 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_2 },
77 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_1 },
78 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_2 },
79 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_1 },
80 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_2 },
81 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_1 },
82 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_2 },
83 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_1 },
84 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_2 },
85 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_1 },
86 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_2 },
87 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_1 },
88 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_2 },
89 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_1 },
90 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_2 },
91 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_1 },
92 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_2 },
93 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_1 },
94 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_2 },
95 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_1 },
96 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_2 },
97 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_1 },
98 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_2 },
99 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_1 },
100 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_2 },
101 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_1 },
102 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_2 },
103 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_1 },
104 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_2 },
105 };
106 
107 int		iwn_match(struct device *, void *, void *);
108 void		iwn_attach(struct device *, struct device *, void *);
109 int		iwn4965_attach(struct iwn_softc *, pci_product_id_t);
110 int		iwn5000_attach(struct iwn_softc *, pci_product_id_t);
111 #if NBPFILTER > 0
112 void		iwn_radiotap_attach(struct iwn_softc *);
113 #endif
114 int		iwn_detach(struct device *, int);
115 int		iwn_activate(struct device *, int);
116 void		iwn_wakeup(struct iwn_softc *);
117 void		iwn_init_task(void *);
118 int		iwn_nic_lock(struct iwn_softc *);
119 int		iwn_eeprom_lock(struct iwn_softc *);
120 int		iwn_init_otprom(struct iwn_softc *);
121 int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
122 int		iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
123 		    void **, bus_size_t, bus_size_t);
124 void		iwn_dma_contig_free(struct iwn_dma_info *);
125 int		iwn_alloc_sched(struct iwn_softc *);
126 void		iwn_free_sched(struct iwn_softc *);
127 int		iwn_alloc_kw(struct iwn_softc *);
128 void		iwn_free_kw(struct iwn_softc *);
129 int		iwn_alloc_ict(struct iwn_softc *);
130 void		iwn_free_ict(struct iwn_softc *);
131 int		iwn_alloc_fwmem(struct iwn_softc *);
132 void		iwn_free_fwmem(struct iwn_softc *);
133 int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
134 void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
135 void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
136 int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
137 		    int);
138 void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
139 void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
140 void		iwn5000_ict_reset(struct iwn_softc *);
141 int		iwn_read_eeprom(struct iwn_softc *);
142 void		iwn4965_read_eeprom(struct iwn_softc *);
143 void		iwn4965_print_power_group(struct iwn_softc *, int);
144 void		iwn5000_read_eeprom(struct iwn_softc *);
145 void		iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
146 void		iwn_read_eeprom_enhinfo(struct iwn_softc *);
147 struct		ieee80211_node *iwn_node_alloc(struct ieee80211com *);
148 void		iwn_newassoc(struct ieee80211com *, struct ieee80211_node *,
149 		    int);
150 int		iwn_media_change(struct ifnet *);
151 int		iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
152 void		iwn_iter_func(void *, struct ieee80211_node *);
153 void		iwn_calib_timeout(void *);
154 int		iwn_ccmp_decap(struct iwn_softc *, struct mbuf *,
155 		    struct ieee80211_node *);
156 void		iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
157 		    struct iwn_rx_data *);
158 void		iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
159 		    struct iwn_rx_data *, struct mbuf_list *);
160 void		iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
161 		    struct iwn_rx_data *);
162 void		iwn5000_rx_calib_results(struct iwn_softc *,
163 		    struct iwn_rx_desc *, struct iwn_rx_data *);
164 void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
165 		    struct iwn_rx_data *);
166 void		iwn_ampdu_txq_advance(struct iwn_softc *, struct iwn_tx_ring *,
167 		    int, int);
168 void		iwn_ampdu_tx_done(struct iwn_softc *, struct iwn_tx_ring *,
169 		    struct iwn_rx_desc *, uint16_t, struct iwn_txagg_status *,
170 		    int, uint32_t);
171 void		iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
172 		    struct iwn_rx_data *);
173 void		iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
174 		    struct iwn_rx_data *);
175 void		iwn_tx_done_free_txdata(struct iwn_softc *,
176 		    struct iwn_tx_data *);
177 void		iwn_clear_oactive(struct iwn_softc *, struct iwn_tx_ring *);
178 void		iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
179 		    uint8_t, int, int, uint16_t);
180 void		iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
181 void		iwn_notif_intr(struct iwn_softc *);
182 void		iwn_wakeup_intr(struct iwn_softc *);
183 void		iwn_fatal_intr(struct iwn_softc *);
184 int		iwn_intr(void *);
185 void		iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
186 		    uint16_t);
187 void		iwn4965_reset_sched(struct iwn_softc *, int, int);
188 void		iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
189 		    uint16_t);
190 void		iwn5000_reset_sched(struct iwn_softc *, int, int);
191 int		iwn_tx(struct iwn_softc *, struct mbuf *,
192 		    struct ieee80211_node *);
193 int		iwn_rval2ridx(int);
194 void		iwn_start(struct ifnet *);
195 void		iwn_watchdog(struct ifnet *);
196 int		iwn_ioctl(struct ifnet *, u_long, caddr_t);
197 int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
198 int		iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
199 		    int);
200 int		iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
201 		    int);
202 int		iwn_set_link_quality(struct iwn_softc *,
203 		    struct ieee80211_node *);
204 int		iwn_add_broadcast_node(struct iwn_softc *, int, int);
205 void		iwn_updateedca(struct ieee80211com *);
206 void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
207 int		iwn_set_critical_temp(struct iwn_softc *);
208 int		iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
209 void		iwn4965_power_calibration(struct iwn_softc *, int);
210 int		iwn4965_set_txpower(struct iwn_softc *, int);
211 int		iwn5000_set_txpower(struct iwn_softc *, int);
212 int		iwn4965_get_rssi(const struct iwn_rx_stat *);
213 int		iwn5000_get_rssi(const struct iwn_rx_stat *);
214 int		iwn_get_noise(const struct iwn_rx_general_stats *);
215 int		iwn4965_get_temperature(struct iwn_softc *);
216 int		iwn5000_get_temperature(struct iwn_softc *);
217 int		iwn_init_sensitivity(struct iwn_softc *);
218 void		iwn_collect_noise(struct iwn_softc *,
219 		    const struct iwn_rx_general_stats *);
220 int		iwn4965_init_gains(struct iwn_softc *);
221 int		iwn5000_init_gains(struct iwn_softc *);
222 int		iwn4965_set_gains(struct iwn_softc *);
223 int		iwn5000_set_gains(struct iwn_softc *);
224 void		iwn_tune_sensitivity(struct iwn_softc *,
225 		    const struct iwn_rx_stats *);
226 int		iwn_send_sensitivity(struct iwn_softc *);
227 int		iwn_set_pslevel(struct iwn_softc *, int, int, int);
228 int		iwn_send_temperature_offset(struct iwn_softc *);
229 int		iwn_send_btcoex(struct iwn_softc *);
230 int		iwn_send_advanced_btcoex(struct iwn_softc *);
231 int		iwn5000_runtime_calib(struct iwn_softc *);
232 int		iwn_config(struct iwn_softc *);
233 uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, uint8_t);
234 uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
235 uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
236 int		iwn_scan(struct iwn_softc *, uint16_t, int);
237 void		iwn_scan_abort(struct iwn_softc *);
238 int		iwn_bgscan(struct ieee80211com *);
239 int		iwn_auth(struct iwn_softc *, int);
240 int		iwn_run(struct iwn_softc *);
241 int		iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
242 		    struct ieee80211_key *);
243 void		iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
244 		    struct ieee80211_key *);
245 void		iwn_update_htprot(struct ieee80211com *,
246 		    struct ieee80211_node *);
247 int		iwn_ampdu_rx_start(struct ieee80211com *,
248 		    struct ieee80211_node *, uint8_t);
249 void		iwn_ampdu_rx_stop(struct ieee80211com *,
250 		    struct ieee80211_node *, uint8_t);
251 int		iwn_ampdu_tx_start(struct ieee80211com *,
252 		    struct ieee80211_node *, uint8_t);
253 void		iwn_ampdu_tx_stop(struct ieee80211com *,
254 		    struct ieee80211_node *, uint8_t);
255 void		iwn4965_ampdu_tx_start(struct iwn_softc *,
256 		    struct ieee80211_node *, uint8_t, uint16_t);
257 void		iwn4965_ampdu_tx_stop(struct iwn_softc *,
258 		    uint8_t, uint16_t);
259 void		iwn5000_ampdu_tx_start(struct iwn_softc *,
260 		    struct ieee80211_node *, uint8_t, uint16_t);
261 void		iwn5000_ampdu_tx_stop(struct iwn_softc *,
262 		    uint8_t, uint16_t);
263 int		iwn5000_query_calibration(struct iwn_softc *);
264 int		iwn5000_send_calibration(struct iwn_softc *);
265 int		iwn5000_send_wimax_coex(struct iwn_softc *);
266 int		iwn5000_crystal_calib(struct iwn_softc *);
267 int		iwn6000_temp_offset_calib(struct iwn_softc *);
268 int		iwn2000_temp_offset_calib(struct iwn_softc *);
269 int		iwn4965_post_alive(struct iwn_softc *);
270 int		iwn5000_post_alive(struct iwn_softc *);
271 int		iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
272 		    int);
273 int		iwn4965_load_firmware(struct iwn_softc *);
274 int		iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
275 		    const uint8_t *, int);
276 int		iwn5000_load_firmware(struct iwn_softc *);
277 int		iwn_read_firmware_leg(struct iwn_softc *,
278 		    struct iwn_fw_info *);
279 int		iwn_read_firmware_tlv(struct iwn_softc *,
280 		    struct iwn_fw_info *, uint16_t);
281 int		iwn_read_firmware(struct iwn_softc *);
282 int		iwn_clock_wait(struct iwn_softc *);
283 int		iwn_apm_init(struct iwn_softc *);
284 void		iwn_apm_stop_master(struct iwn_softc *);
285 void		iwn_apm_stop(struct iwn_softc *);
286 int		iwn4965_nic_config(struct iwn_softc *);
287 int		iwn5000_nic_config(struct iwn_softc *);
288 int		iwn_hw_prepare(struct iwn_softc *);
289 int		iwn_hw_init(struct iwn_softc *);
290 void		iwn_hw_stop(struct iwn_softc *);
291 int		iwn_init(struct ifnet *);
292 void		iwn_stop(struct ifnet *);
293 
294 #ifdef IWN_DEBUG
295 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
296 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
297 int iwn_debug = 1;
298 #else
299 #define DPRINTF(x)
300 #define DPRINTFN(n, x)
301 #endif
302 
303 struct cfdriver iwn_cd = {
304 	NULL, "iwn", DV_IFNET
305 };
306 
307 struct cfattach iwn_ca = {
308 	sizeof (struct iwn_softc), iwn_match, iwn_attach, iwn_detach,
309 	iwn_activate
310 };
311 
312 int
313 iwn_match(struct device *parent, void *match, void *aux)
314 {
315 	return pci_matchbyid((struct pci_attach_args *)aux, iwn_devices,
316 	    nitems(iwn_devices));
317 }
318 
319 void
320 iwn_attach(struct device *parent, struct device *self, void *aux)
321 {
322 	struct iwn_softc *sc = (struct iwn_softc *)self;
323 	struct ieee80211com *ic = &sc->sc_ic;
324 	struct ifnet *ifp = &ic->ic_if;
325 	struct pci_attach_args *pa = aux;
326 	const char *intrstr;
327 	pci_intr_handle_t ih;
328 	pcireg_t memtype, reg;
329 	int i, error;
330 
331 	sc->sc_pct = pa->pa_pc;
332 	sc->sc_pcitag = pa->pa_tag;
333 	sc->sc_dmat = pa->pa_dmat;
334 
335 	/*
336 	 * Get the offset of the PCI Express Capability Structure in PCI
337 	 * Configuration Space.
338 	 */
339 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
340 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
341 	if (error == 0) {
342 		printf(": PCIe capability structure not found!\n");
343 		return;
344 	}
345 
346 	/* Clear device-specific "PCI retry timeout" register (41h). */
347 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
348 	if (reg & 0xff00)
349 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
350 
351 	/* Hardware bug workaround. */
352 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
353 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
354 		DPRINTF(("PCIe INTx Disable set\n"));
355 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
356 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
357 		    PCI_COMMAND_STATUS_REG, reg);
358 	}
359 
360 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
361 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
362 	    &sc->sc_sh, NULL, &sc->sc_sz, 0);
363 	if (error != 0) {
364 		printf(": can't map mem space\n");
365 		return;
366 	}
367 
368 	/* Install interrupt handler. */
369 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
370 		printf(": can't map interrupt\n");
371 		return;
372 	}
373 	intrstr = pci_intr_string(sc->sc_pct, ih);
374 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc,
375 	    sc->sc_dev.dv_xname);
376 	if (sc->sc_ih == NULL) {
377 		printf(": can't establish interrupt");
378 		if (intrstr != NULL)
379 			printf(" at %s", intrstr);
380 		printf("\n");
381 		return;
382 	}
383 	printf(": %s", intrstr);
384 
385 	/* Read hardware revision and attach. */
386 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0x1f;
387 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
388 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
389 	else
390 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
391 	if (error != 0) {
392 		printf(": could not attach device\n");
393 		return;
394 	}
395 
396 	if ((error = iwn_hw_prepare(sc)) != 0) {
397 		printf(": hardware not ready\n");
398 		return;
399 	}
400 
401 	/* Read MAC address, channels, etc from EEPROM. */
402 	if ((error = iwn_read_eeprom(sc)) != 0) {
403 		printf(": could not read EEPROM\n");
404 		return;
405 	}
406 
407 	/* Allocate DMA memory for firmware transfers. */
408 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
409 		printf(": could not allocate memory for firmware\n");
410 		return;
411 	}
412 
413 	/* Allocate "Keep Warm" page. */
414 	if ((error = iwn_alloc_kw(sc)) != 0) {
415 		printf(": could not allocate keep warm page\n");
416 		goto fail1;
417 	}
418 
419 	/* Allocate ICT table for 5000 Series. */
420 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
421 	    (error = iwn_alloc_ict(sc)) != 0) {
422 		printf(": could not allocate ICT table\n");
423 		goto fail2;
424 	}
425 
426 	/* Allocate TX scheduler "rings". */
427 	if ((error = iwn_alloc_sched(sc)) != 0) {
428 		printf(": could not allocate TX scheduler rings\n");
429 		goto fail3;
430 	}
431 
432 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
433 	for (i = 0; i < sc->ntxqs; i++) {
434 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
435 			printf(": could not allocate TX ring %d\n", i);
436 			goto fail4;
437 		}
438 	}
439 
440 	/* Allocate RX ring. */
441 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
442 		printf(": could not allocate RX ring\n");
443 		goto fail4;
444 	}
445 
446 	/* Clear pending interrupts. */
447 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
448 
449 	/* Count the number of available chains. */
450 	sc->ntxchains =
451 	    ((sc->txchainmask >> 2) & 1) +
452 	    ((sc->txchainmask >> 1) & 1) +
453 	    ((sc->txchainmask >> 0) & 1);
454 	sc->nrxchains =
455 	    ((sc->rxchainmask >> 2) & 1) +
456 	    ((sc->rxchainmask >> 1) & 1) +
457 	    ((sc->rxchainmask >> 0) & 1);
458 	printf(", MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains,
459 	    sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr));
460 
461 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
462 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
463 	ic->ic_state = IEEE80211_S_INIT;
464 
465 	/* Set device capabilities. */
466 	ic->ic_caps =
467 	    IEEE80211_C_WEP |		/* WEP */
468 	    IEEE80211_C_RSN |		/* WPA/RSN */
469 	    IEEE80211_C_SCANALL |	/* device scans all channels at once */
470 	    IEEE80211_C_SCANALLBAND |	/* driver scans all bands at once */
471 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
472 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
473 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
474 	    IEEE80211_C_PMGT;		/* power saving supported */
475 
476 	/* No optional HT features supported for now, */
477 	ic->ic_htcaps = 0;
478 	ic->ic_htxcaps = 0;
479 	ic->ic_txbfcaps = 0;
480 	ic->ic_aselcaps = 0;
481 	ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */);
482 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
483 		ic->ic_caps |= (IEEE80211_C_QOS | IEEE80211_C_TX_AMPDU);
484 		/* Set HT capabilities. */
485 		ic->ic_htcaps = IEEE80211_HTCAP_SGI20;
486 #ifdef notyet
487 		ic->ic_htcaps |=
488 #if IWN_RBUF_SIZE == 8192
489 		    IEEE80211_HTCAP_AMSDU7935 |
490 #endif
491 		    IEEE80211_HTCAP_CBW20_40 |
492 		    IEEE80211_HTCAP_SGI40;
493 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
494 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
495 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
496 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
497 		else
498 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
499 #endif	/* notyet */
500 	}
501 
502 	/* Set supported legacy rates. */
503 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
504 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
505 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
506 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
507 		    ieee80211_std_rateset_11a;
508 	}
509 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
510 		/* Set supported HT rates. */
511 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
512 #ifdef notyet
513 		if (sc->nrxchains > 1)
514 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 8-15 */
515 		if (sc->nrxchains > 2)
516 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
517 #endif
518 	}
519 
520 	/* IBSS channel undefined for now. */
521 	ic->ic_ibss_chan = &ic->ic_channels[0];
522 
523 	ifp->if_softc = sc;
524 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
525 	ifp->if_ioctl = iwn_ioctl;
526 	ifp->if_start = iwn_start;
527 	ifp->if_watchdog = iwn_watchdog;
528 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
529 
530 	if_attach(ifp);
531 	ieee80211_ifattach(ifp);
532 	ic->ic_node_alloc = iwn_node_alloc;
533 	ic->ic_bgscan_start = iwn_bgscan;
534 	ic->ic_newassoc = iwn_newassoc;
535 	ic->ic_updateedca = iwn_updateedca;
536 	ic->ic_set_key = iwn_set_key;
537 	ic->ic_delete_key = iwn_delete_key;
538 	ic->ic_update_htprot = iwn_update_htprot;
539 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
540 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
541 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
542 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
543 
544 	/* Override 802.11 state transition machine. */
545 	sc->sc_newstate = ic->ic_newstate;
546 	ic->ic_newstate = iwn_newstate;
547 	ieee80211_media_init(ifp, iwn_media_change, ieee80211_media_status);
548 
549 	sc->amrr.amrr_min_success_threshold =  1;
550 	sc->amrr.amrr_max_success_threshold = 15;
551 
552 #if NBPFILTER > 0
553 	iwn_radiotap_attach(sc);
554 #endif
555 	timeout_set(&sc->calib_to, iwn_calib_timeout, sc);
556 	rw_init(&sc->sc_rwlock, "iwnlock");
557 	task_set(&sc->init_task, iwn_init_task, sc);
558 	return;
559 
560 	/* Free allocated memory if something failed during attachment. */
561 fail4:	while (--i >= 0)
562 		iwn_free_tx_ring(sc, &sc->txq[i]);
563 	iwn_free_sched(sc);
564 fail3:	if (sc->ict != NULL)
565 		iwn_free_ict(sc);
566 fail2:	iwn_free_kw(sc);
567 fail1:	iwn_free_fwmem(sc);
568 }
569 
570 int
571 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
572 {
573 	struct iwn_ops *ops = &sc->ops;
574 
575 	ops->load_firmware = iwn4965_load_firmware;
576 	ops->read_eeprom = iwn4965_read_eeprom;
577 	ops->post_alive = iwn4965_post_alive;
578 	ops->nic_config = iwn4965_nic_config;
579 	ops->reset_sched = iwn4965_reset_sched;
580 	ops->update_sched = iwn4965_update_sched;
581 	ops->get_temperature = iwn4965_get_temperature;
582 	ops->get_rssi = iwn4965_get_rssi;
583 	ops->set_txpower = iwn4965_set_txpower;
584 	ops->init_gains = iwn4965_init_gains;
585 	ops->set_gains = iwn4965_set_gains;
586 	ops->add_node = iwn4965_add_node;
587 	ops->tx_done = iwn4965_tx_done;
588 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
589 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
590 	sc->ntxqs = IWN4965_NTXQUEUES;
591 	sc->first_agg_txq = IWN4965_FIRST_AGG_TXQUEUE;
592 	sc->ndmachnls = IWN4965_NDMACHNLS;
593 	sc->broadcast_id = IWN4965_ID_BROADCAST;
594 	sc->rxonsz = IWN4965_RXONSZ;
595 	sc->schedsz = IWN4965_SCHEDSZ;
596 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
597 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
598 	sc->fwsz = IWN4965_FWSZ;
599 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
600 	sc->limits = &iwn4965_sensitivity_limits;
601 	sc->fwname = "iwn-4965";
602 	/* Override chains masks, ROM is known to be broken. */
603 	sc->txchainmask = IWN_ANT_AB;
604 	sc->rxchainmask = IWN_ANT_ABC;
605 
606 	return 0;
607 }
608 
609 int
610 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
611 {
612 	struct iwn_ops *ops = &sc->ops;
613 
614 	ops->load_firmware = iwn5000_load_firmware;
615 	ops->read_eeprom = iwn5000_read_eeprom;
616 	ops->post_alive = iwn5000_post_alive;
617 	ops->nic_config = iwn5000_nic_config;
618 	ops->reset_sched = iwn5000_reset_sched;
619 	ops->update_sched = iwn5000_update_sched;
620 	ops->get_temperature = iwn5000_get_temperature;
621 	ops->get_rssi = iwn5000_get_rssi;
622 	ops->set_txpower = iwn5000_set_txpower;
623 	ops->init_gains = iwn5000_init_gains;
624 	ops->set_gains = iwn5000_set_gains;
625 	ops->add_node = iwn5000_add_node;
626 	ops->tx_done = iwn5000_tx_done;
627 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
628 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
629 	sc->ntxqs = IWN5000_NTXQUEUES;
630 	sc->first_agg_txq = IWN5000_FIRST_AGG_TXQUEUE;
631 	sc->ndmachnls = IWN5000_NDMACHNLS;
632 	sc->broadcast_id = IWN5000_ID_BROADCAST;
633 	sc->rxonsz = IWN5000_RXONSZ;
634 	sc->schedsz = IWN5000_SCHEDSZ;
635 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
636 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
637 	sc->fwsz = IWN5000_FWSZ;
638 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
639 
640 	switch (sc->hw_type) {
641 	case IWN_HW_REV_TYPE_5100:
642 		sc->limits = &iwn5000_sensitivity_limits;
643 		sc->fwname = "iwn-5000";
644 		/* Override chains masks, ROM is known to be broken. */
645 		sc->txchainmask = IWN_ANT_B;
646 		sc->rxchainmask = IWN_ANT_AB;
647 		break;
648 	case IWN_HW_REV_TYPE_5150:
649 		sc->limits = &iwn5150_sensitivity_limits;
650 		sc->fwname = "iwn-5150";
651 		break;
652 	case IWN_HW_REV_TYPE_5300:
653 	case IWN_HW_REV_TYPE_5350:
654 		sc->limits = &iwn5000_sensitivity_limits;
655 		sc->fwname = "iwn-5000";
656 		break;
657 	case IWN_HW_REV_TYPE_1000:
658 		sc->limits = &iwn1000_sensitivity_limits;
659 		sc->fwname = "iwn-1000";
660 		break;
661 	case IWN_HW_REV_TYPE_6000:
662 		sc->limits = &iwn6000_sensitivity_limits;
663 		sc->fwname = "iwn-6000";
664 		if (pid == PCI_PRODUCT_INTEL_WL_6200_1 ||
665 		    pid == PCI_PRODUCT_INTEL_WL_6200_2) {
666 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
667 			/* Override chains masks, ROM is known to be broken. */
668 			sc->txchainmask = IWN_ANT_BC;
669 			sc->rxchainmask = IWN_ANT_BC;
670 		}
671 		break;
672 	case IWN_HW_REV_TYPE_6050:
673 		sc->limits = &iwn6000_sensitivity_limits;
674 		sc->fwname = "iwn-6050";
675 		break;
676 	case IWN_HW_REV_TYPE_6005:
677 		sc->limits = &iwn6000_sensitivity_limits;
678 		if (pid != PCI_PRODUCT_INTEL_WL_6005_1 &&
679 		    pid != PCI_PRODUCT_INTEL_WL_6005_2) {
680 			sc->fwname = "iwn-6030";
681 			sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
682 		} else
683 			sc->fwname = "iwn-6005";
684 		break;
685 	case IWN_HW_REV_TYPE_2030:
686 		sc->limits = &iwn2000_sensitivity_limits;
687 		sc->fwname = "iwn-2030";
688 		sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
689 		break;
690 	case IWN_HW_REV_TYPE_2000:
691 		sc->limits = &iwn2000_sensitivity_limits;
692 		sc->fwname = "iwn-2000";
693 		break;
694 	case IWN_HW_REV_TYPE_135:
695 		sc->limits = &iwn2000_sensitivity_limits;
696 		sc->fwname = "iwn-135";
697 		sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
698 		break;
699 	case IWN_HW_REV_TYPE_105:
700 		sc->limits = &iwn2000_sensitivity_limits;
701 		sc->fwname = "iwn-105";
702 		break;
703 	default:
704 		printf(": adapter type %d not supported\n", sc->hw_type);
705 		return ENOTSUP;
706 	}
707 	return 0;
708 }
709 
710 #if NBPFILTER > 0
711 /*
712  * Attach the interface to 802.11 radiotap.
713  */
714 void
715 iwn_radiotap_attach(struct iwn_softc *sc)
716 {
717 	bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
718 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
719 
720 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
721 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
722 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
723 
724 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
725 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
726 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
727 }
728 #endif
729 
730 int
731 iwn_detach(struct device *self, int flags)
732 {
733 	struct iwn_softc *sc = (struct iwn_softc *)self;
734 	struct ifnet *ifp = &sc->sc_ic.ic_if;
735 	int qid;
736 
737 	timeout_del(&sc->calib_to);
738 	task_del(systq, &sc->init_task);
739 
740 	/* Uninstall interrupt handler. */
741 	if (sc->sc_ih != NULL)
742 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
743 
744 	/* Free DMA resources. */
745 	iwn_free_rx_ring(sc, &sc->rxq);
746 	for (qid = 0; qid < sc->ntxqs; qid++)
747 		iwn_free_tx_ring(sc, &sc->txq[qid]);
748 	iwn_free_sched(sc);
749 	iwn_free_kw(sc);
750 	if (sc->ict != NULL)
751 		iwn_free_ict(sc);
752 	iwn_free_fwmem(sc);
753 
754 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
755 
756 	ieee80211_ifdetach(ifp);
757 	if_detach(ifp);
758 
759 	return 0;
760 }
761 
762 int
763 iwn_activate(struct device *self, int act)
764 {
765 	struct iwn_softc *sc = (struct iwn_softc *)self;
766 	struct ifnet *ifp = &sc->sc_ic.ic_if;
767 
768 	switch (act) {
769 	case DVACT_SUSPEND:
770 		if (ifp->if_flags & IFF_RUNNING)
771 			iwn_stop(ifp);
772 		break;
773 	case DVACT_WAKEUP:
774 		iwn_wakeup(sc);
775 		break;
776 	}
777 
778 	return 0;
779 }
780 
781 void
782 iwn_wakeup(struct iwn_softc *sc)
783 {
784 	pcireg_t reg;
785 
786 	/* Clear device-specific "PCI retry timeout" register (41h). */
787 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
788 	if (reg & 0xff00)
789 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
790 	iwn_init_task(sc);
791 }
792 
793 void
794 iwn_init_task(void *arg1)
795 {
796 	struct iwn_softc *sc = arg1;
797 	struct ifnet *ifp = &sc->sc_ic.ic_if;
798 	int s;
799 
800 	rw_enter_write(&sc->sc_rwlock);
801 	s = splnet();
802 
803 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
804 		iwn_init(ifp);
805 
806 	splx(s);
807 	rw_exit_write(&sc->sc_rwlock);
808 }
809 
810 int
811 iwn_nic_lock(struct iwn_softc *sc)
812 {
813 	int ntries;
814 
815 	/* Request exclusive access to NIC. */
816 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
817 
818 	/* Spin until we actually get the lock. */
819 	for (ntries = 0; ntries < 1000; ntries++) {
820 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
821 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
822 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
823 			return 0;
824 		DELAY(10);
825 	}
826 	return ETIMEDOUT;
827 }
828 
829 static __inline void
830 iwn_nic_unlock(struct iwn_softc *sc)
831 {
832 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
833 }
834 
835 static __inline uint32_t
836 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
837 {
838 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
839 	IWN_BARRIER_READ_WRITE(sc);
840 	return IWN_READ(sc, IWN_PRPH_RDATA);
841 }
842 
843 static __inline void
844 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
845 {
846 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
847 	IWN_BARRIER_WRITE(sc);
848 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
849 }
850 
851 static __inline void
852 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
853 {
854 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
855 }
856 
857 static __inline void
858 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
859 {
860 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
861 }
862 
863 static __inline void
864 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
865     const uint32_t *data, int count)
866 {
867 	for (; count > 0; count--, data++, addr += 4)
868 		iwn_prph_write(sc, addr, *data);
869 }
870 
871 static __inline uint32_t
872 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
873 {
874 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
875 	IWN_BARRIER_READ_WRITE(sc);
876 	return IWN_READ(sc, IWN_MEM_RDATA);
877 }
878 
879 static __inline void
880 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
881 {
882 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
883 	IWN_BARRIER_WRITE(sc);
884 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
885 }
886 
887 static __inline void
888 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
889 {
890 	uint32_t tmp;
891 
892 	tmp = iwn_mem_read(sc, addr & ~3);
893 	if (addr & 3)
894 		tmp = (tmp & 0x0000ffff) | data << 16;
895 	else
896 		tmp = (tmp & 0xffff0000) | data;
897 	iwn_mem_write(sc, addr & ~3, tmp);
898 }
899 
900 #ifdef IWN_DEBUG
901 
902 static __inline void
903 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
904     int count)
905 {
906 	for (; count > 0; count--, addr += 4)
907 		*data++ = iwn_mem_read(sc, addr);
908 }
909 
910 #endif
911 
912 static __inline void
913 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
914     int count)
915 {
916 	for (; count > 0; count--, addr += 4)
917 		iwn_mem_write(sc, addr, val);
918 }
919 
920 int
921 iwn_eeprom_lock(struct iwn_softc *sc)
922 {
923 	int i, ntries;
924 
925 	for (i = 0; i < 100; i++) {
926 		/* Request exclusive access to EEPROM. */
927 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
928 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
929 
930 		/* Spin until we actually get the lock. */
931 		for (ntries = 0; ntries < 100; ntries++) {
932 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
933 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
934 				return 0;
935 			DELAY(10);
936 		}
937 	}
938 	return ETIMEDOUT;
939 }
940 
941 static __inline void
942 iwn_eeprom_unlock(struct iwn_softc *sc)
943 {
944 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
945 }
946 
947 /*
948  * Initialize access by host to One Time Programmable ROM.
949  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
950  */
951 int
952 iwn_init_otprom(struct iwn_softc *sc)
953 {
954 	uint16_t prev, base, next;
955 	int count, error;
956 
957 	/* Wait for clock stabilization before accessing prph. */
958 	if ((error = iwn_clock_wait(sc)) != 0)
959 		return error;
960 
961 	if ((error = iwn_nic_lock(sc)) != 0)
962 		return error;
963 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
964 	DELAY(5);
965 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
966 	iwn_nic_unlock(sc);
967 
968 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
969 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
970 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
971 		    IWN_RESET_LINK_PWR_MGMT_DIS);
972 	}
973 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
974 	/* Clear ECC status. */
975 	IWN_SETBITS(sc, IWN_OTP_GP,
976 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
977 
978 	/*
979 	 * Find the block before last block (contains the EEPROM image)
980 	 * for HW without OTP shadow RAM.
981 	 */
982 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
983 		/* Switch to absolute addressing mode. */
984 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
985 		base = 0;
986 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
987 			error = iwn_read_prom_data(sc, base, &next, 2);
988 			if (error != 0)
989 				return error;
990 			if (next == 0)	/* End of linked-list. */
991 				break;
992 			prev = base;
993 			base = letoh16(next);
994 		}
995 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
996 			return EIO;
997 		/* Skip "next" word. */
998 		sc->prom_base = prev + 1;
999 	}
1000 	return 0;
1001 }
1002 
1003 int
1004 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1005 {
1006 	uint8_t *out = data;
1007 	uint32_t val, tmp;
1008 	int ntries;
1009 
1010 	addr += sc->prom_base;
1011 	for (; count > 0; count -= 2, addr++) {
1012 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1013 		for (ntries = 0; ntries < 10; ntries++) {
1014 			val = IWN_READ(sc, IWN_EEPROM);
1015 			if (val & IWN_EEPROM_READ_VALID)
1016 				break;
1017 			DELAY(5);
1018 		}
1019 		if (ntries == 10) {
1020 			printf("%s: timeout reading ROM at 0x%x\n",
1021 			    sc->sc_dev.dv_xname, addr);
1022 			return ETIMEDOUT;
1023 		}
1024 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1025 			/* OTPROM, check for ECC errors. */
1026 			tmp = IWN_READ(sc, IWN_OTP_GP);
1027 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1028 				printf("%s: OTPROM ECC error at 0x%x\n",
1029 				    sc->sc_dev.dv_xname, addr);
1030 				return EIO;
1031 			}
1032 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1033 				/* Correctable ECC error, clear bit. */
1034 				IWN_SETBITS(sc, IWN_OTP_GP,
1035 				    IWN_OTP_GP_ECC_CORR_STTS);
1036 			}
1037 		}
1038 		*out++ = val >> 16;
1039 		if (count > 1)
1040 			*out++ = val >> 24;
1041 	}
1042 	return 0;
1043 }
1044 
1045 int
1046 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1047     bus_size_t size, bus_size_t alignment)
1048 {
1049 	int nsegs, error;
1050 
1051 	dma->tag = tag;
1052 	dma->size = size;
1053 
1054 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1055 	    &dma->map);
1056 	if (error != 0)
1057 		goto fail;
1058 
1059 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1060 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO);
1061 	if (error != 0)
1062 		goto fail;
1063 
1064 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1065 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
1066 	if (error != 0)
1067 		goto fail;
1068 
1069 	error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
1070 	    BUS_DMA_NOWAIT);
1071 	if (error != 0)
1072 		goto fail;
1073 
1074 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1075 
1076 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1077 	if (kvap != NULL)
1078 		*kvap = dma->vaddr;
1079 
1080 	return 0;
1081 
1082 fail:	iwn_dma_contig_free(dma);
1083 	return error;
1084 }
1085 
1086 void
1087 iwn_dma_contig_free(struct iwn_dma_info *dma)
1088 {
1089 	if (dma->map != NULL) {
1090 		if (dma->vaddr != NULL) {
1091 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1092 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1093 			bus_dmamap_unload(dma->tag, dma->map);
1094 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1095 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1096 			dma->vaddr = NULL;
1097 		}
1098 		bus_dmamap_destroy(dma->tag, dma->map);
1099 		dma->map = NULL;
1100 	}
1101 }
1102 
1103 int
1104 iwn_alloc_sched(struct iwn_softc *sc)
1105 {
1106 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1107 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1108 	    (void **)&sc->sched, sc->schedsz, 1024);
1109 }
1110 
1111 void
1112 iwn_free_sched(struct iwn_softc *sc)
1113 {
1114 	iwn_dma_contig_free(&sc->sched_dma);
1115 }
1116 
1117 int
1118 iwn_alloc_kw(struct iwn_softc *sc)
1119 {
1120 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1121 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1122 	    4096);
1123 }
1124 
1125 void
1126 iwn_free_kw(struct iwn_softc *sc)
1127 {
1128 	iwn_dma_contig_free(&sc->kw_dma);
1129 }
1130 
1131 int
1132 iwn_alloc_ict(struct iwn_softc *sc)
1133 {
1134 	/* ICT table must be aligned on a 4KB boundary. */
1135 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1136 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1137 }
1138 
1139 void
1140 iwn_free_ict(struct iwn_softc *sc)
1141 {
1142 	iwn_dma_contig_free(&sc->ict_dma);
1143 }
1144 
1145 int
1146 iwn_alloc_fwmem(struct iwn_softc *sc)
1147 {
1148 	/* Must be aligned on a 16-byte boundary. */
1149 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1150 	    sc->fwsz, 16);
1151 }
1152 
1153 void
1154 iwn_free_fwmem(struct iwn_softc *sc)
1155 {
1156 	iwn_dma_contig_free(&sc->fw_dma);
1157 }
1158 
1159 int
1160 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1161 {
1162 	bus_size_t size;
1163 	int i, error;
1164 
1165 	ring->cur = 0;
1166 
1167 	/* Allocate RX descriptors (256-byte aligned). */
1168 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1169 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1170 	    (void **)&ring->desc, size, 256);
1171 	if (error != 0) {
1172 		printf("%s: could not allocate RX ring DMA memory\n",
1173 		    sc->sc_dev.dv_xname);
1174 		goto fail;
1175 	}
1176 
1177 	/* Allocate RX status area (16-byte aligned). */
1178 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1179 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1180 	if (error != 0) {
1181 		printf("%s: could not allocate RX status DMA memory\n",
1182 		    sc->sc_dev.dv_xname);
1183 		goto fail;
1184 	}
1185 
1186 	/*
1187 	 * Allocate and map RX buffers.
1188 	 */
1189 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1190 		struct iwn_rx_data *data = &ring->data[i];
1191 
1192 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1193 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1194 		    &data->map);
1195 		if (error != 0) {
1196 			printf("%s: could not create RX buf DMA map\n",
1197 			    sc->sc_dev.dv_xname);
1198 			goto fail;
1199 		}
1200 
1201 		data->m = MCLGETI(NULL, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1202 		if (data->m == NULL) {
1203 			printf("%s: could not allocate RX mbuf\n",
1204 			    sc->sc_dev.dv_xname);
1205 			error = ENOBUFS;
1206 			goto fail;
1207 		}
1208 
1209 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1210 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1211 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1212 		if (error != 0) {
1213 			printf("%s: can't map mbuf (error %d)\n",
1214 			    sc->sc_dev.dv_xname, error);
1215 			goto fail;
1216 		}
1217 
1218 		/* Set physical address of RX buffer (256-byte aligned). */
1219 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1220 	}
1221 
1222 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1223 	    BUS_DMASYNC_PREWRITE);
1224 
1225 	return 0;
1226 
1227 fail:	iwn_free_rx_ring(sc, ring);
1228 	return error;
1229 }
1230 
1231 void
1232 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1233 {
1234 	int ntries;
1235 
1236 	if (iwn_nic_lock(sc) == 0) {
1237 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1238 		for (ntries = 0; ntries < 1000; ntries++) {
1239 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1240 			    IWN_FH_RX_STATUS_IDLE)
1241 				break;
1242 			DELAY(10);
1243 		}
1244 		iwn_nic_unlock(sc);
1245 	}
1246 	ring->cur = 0;
1247 	sc->last_rx_valid = 0;
1248 }
1249 
1250 void
1251 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1252 {
1253 	int i;
1254 
1255 	iwn_dma_contig_free(&ring->desc_dma);
1256 	iwn_dma_contig_free(&ring->stat_dma);
1257 
1258 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1259 		struct iwn_rx_data *data = &ring->data[i];
1260 
1261 		if (data->m != NULL) {
1262 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1263 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1264 			bus_dmamap_unload(sc->sc_dmat, data->map);
1265 			m_freem(data->m);
1266 		}
1267 		if (data->map != NULL)
1268 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1269 	}
1270 }
1271 
1272 int
1273 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1274 {
1275 	bus_addr_t paddr;
1276 	bus_size_t size;
1277 	int i, error;
1278 
1279 	ring->qid = qid;
1280 	ring->queued = 0;
1281 	ring->cur = 0;
1282 
1283 	/* Allocate TX descriptors (256-byte aligned). */
1284 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1285 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1286 	    (void **)&ring->desc, size, 256);
1287 	if (error != 0) {
1288 		printf("%s: could not allocate TX ring DMA memory\n",
1289 		    sc->sc_dev.dv_xname);
1290 		goto fail;
1291 	}
1292 
1293 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1294 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1295 	    (void **)&ring->cmd, size, 4);
1296 	if (error != 0) {
1297 		printf("%s: could not allocate TX cmd DMA memory\n",
1298 		    sc->sc_dev.dv_xname);
1299 		goto fail;
1300 	}
1301 
1302 	paddr = ring->cmd_dma.paddr;
1303 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1304 		struct iwn_tx_data *data = &ring->data[i];
1305 
1306 		data->cmd_paddr = paddr;
1307 		data->scratch_paddr = paddr + 12;
1308 		paddr += sizeof (struct iwn_tx_cmd);
1309 
1310 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1311 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1312 		    &data->map);
1313 		if (error != 0) {
1314 			printf("%s: could not create TX buf DMA map\n",
1315 			    sc->sc_dev.dv_xname);
1316 			goto fail;
1317 		}
1318 	}
1319 	return 0;
1320 
1321 fail:	iwn_free_tx_ring(sc, ring);
1322 	return error;
1323 }
1324 
1325 void
1326 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1327 {
1328 	int i;
1329 
1330 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1331 		struct iwn_tx_data *data = &ring->data[i];
1332 
1333 		if (data->m != NULL) {
1334 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1335 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1336 			bus_dmamap_unload(sc->sc_dmat, data->map);
1337 			m_freem(data->m);
1338 			data->m = NULL;
1339 		}
1340 	}
1341 	/* Clear TX descriptors. */
1342 	memset(ring->desc, 0, ring->desc_dma.size);
1343 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1344 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1345 	sc->qfullmsk &= ~(1 << ring->qid);
1346 	ring->queued = 0;
1347 	ring->cur = 0;
1348 }
1349 
1350 void
1351 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1352 {
1353 	int i;
1354 
1355 	iwn_dma_contig_free(&ring->desc_dma);
1356 	iwn_dma_contig_free(&ring->cmd_dma);
1357 
1358 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1359 		struct iwn_tx_data *data = &ring->data[i];
1360 
1361 		if (data->m != NULL) {
1362 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1363 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1364 			bus_dmamap_unload(sc->sc_dmat, data->map);
1365 			m_freem(data->m);
1366 		}
1367 		if (data->map != NULL)
1368 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1369 	}
1370 }
1371 
1372 void
1373 iwn5000_ict_reset(struct iwn_softc *sc)
1374 {
1375 	/* Disable interrupts. */
1376 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1377 
1378 	/* Reset ICT table. */
1379 	memset(sc->ict, 0, IWN_ICT_SIZE);
1380 	sc->ict_cur = 0;
1381 
1382 	/* Set physical address of ICT table (4KB aligned). */
1383 	DPRINTF(("enabling ICT\n"));
1384 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1385 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1386 
1387 	/* Enable periodic RX interrupt. */
1388 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1389 	/* Switch to ICT interrupt mode in driver. */
1390 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1391 
1392 	/* Re-enable interrupts. */
1393 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1394 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1395 }
1396 
1397 int
1398 iwn_read_eeprom(struct iwn_softc *sc)
1399 {
1400 	struct iwn_ops *ops = &sc->ops;
1401 	struct ieee80211com *ic = &sc->sc_ic;
1402 	uint16_t val;
1403 	int error;
1404 
1405 	/* Check whether adapter has an EEPROM or an OTPROM. */
1406 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1407 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1408 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1409 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1410 	    "OTPROM" : "EEPROM"));
1411 
1412 	/* Adapter has to be powered on for EEPROM access to work. */
1413 	if ((error = iwn_apm_init(sc)) != 0) {
1414 		printf("%s: could not power ON adapter\n",
1415 		    sc->sc_dev.dv_xname);
1416 		return error;
1417 	}
1418 
1419 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1420 		printf("%s: bad ROM signature\n", sc->sc_dev.dv_xname);
1421 		return EIO;
1422 	}
1423 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1424 		printf("%s: could not lock ROM (error=%d)\n",
1425 		    sc->sc_dev.dv_xname, error);
1426 		return error;
1427 	}
1428 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1429 		if ((error = iwn_init_otprom(sc)) != 0) {
1430 			printf("%s: could not initialize OTPROM\n",
1431 			    sc->sc_dev.dv_xname);
1432 			return error;
1433 		}
1434 	}
1435 
1436 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1437 	DPRINTF(("SKU capabilities=0x%04x\n", letoh16(val)));
1438 	/* Check if HT support is bonded out. */
1439 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1440 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1441 
1442 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1443 	sc->rfcfg = letoh16(val);
1444 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1445 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1446 	if (sc->txchainmask == 0)
1447 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1448 	if (sc->rxchainmask == 0)
1449 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1450 
1451 	/* Read MAC address. */
1452 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1453 
1454 	/* Read adapter-specific information from EEPROM. */
1455 	ops->read_eeprom(sc);
1456 
1457 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1458 
1459 	iwn_eeprom_unlock(sc);
1460 	return 0;
1461 }
1462 
1463 void
1464 iwn4965_read_eeprom(struct iwn_softc *sc)
1465 {
1466 	uint32_t addr;
1467 	uint16_t val;
1468 	int i;
1469 
1470 	/* Read regulatory domain (4 ASCII characters). */
1471 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1472 
1473 	/* Read the list of authorized channels (20MHz ones only). */
1474 	for (i = 0; i < 5; i++) {
1475 		addr = iwn4965_regulatory_bands[i];
1476 		iwn_read_eeprom_channels(sc, i, addr);
1477 	}
1478 
1479 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1480 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1481 	sc->maxpwr2GHz = val & 0xff;
1482 	sc->maxpwr5GHz = val >> 8;
1483 	/* Check that EEPROM values are within valid range. */
1484 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1485 		sc->maxpwr5GHz = 38;
1486 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1487 		sc->maxpwr2GHz = 38;
1488 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1489 
1490 	/* Read samples for each TX power group. */
1491 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1492 	    sizeof sc->bands);
1493 
1494 	/* Read voltage at which samples were taken. */
1495 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1496 	sc->eeprom_voltage = (int16_t)letoh16(val);
1497 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1498 
1499 #ifdef IWN_DEBUG
1500 	/* Print samples. */
1501 	if (iwn_debug > 0) {
1502 		for (i = 0; i < IWN_NBANDS; i++)
1503 			iwn4965_print_power_group(sc, i);
1504 	}
1505 #endif
1506 }
1507 
1508 #ifdef IWN_DEBUG
1509 void
1510 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1511 {
1512 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1513 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1514 	int j, c;
1515 
1516 	printf("===band %d===\n", i);
1517 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1518 	printf("chan1 num=%d\n", chans[0].num);
1519 	for (c = 0; c < 2; c++) {
1520 		for (j = 0; j < IWN_NSAMPLES; j++) {
1521 			printf("chain %d, sample %d: temp=%d gain=%d "
1522 			    "power=%d pa_det=%d\n", c, j,
1523 			    chans[0].samples[c][j].temp,
1524 			    chans[0].samples[c][j].gain,
1525 			    chans[0].samples[c][j].power,
1526 			    chans[0].samples[c][j].pa_det);
1527 		}
1528 	}
1529 	printf("chan2 num=%d\n", chans[1].num);
1530 	for (c = 0; c < 2; c++) {
1531 		for (j = 0; j < IWN_NSAMPLES; j++) {
1532 			printf("chain %d, sample %d: temp=%d gain=%d "
1533 			    "power=%d pa_det=%d\n", c, j,
1534 			    chans[1].samples[c][j].temp,
1535 			    chans[1].samples[c][j].gain,
1536 			    chans[1].samples[c][j].power,
1537 			    chans[1].samples[c][j].pa_det);
1538 		}
1539 	}
1540 }
1541 #endif
1542 
1543 void
1544 iwn5000_read_eeprom(struct iwn_softc *sc)
1545 {
1546 	struct iwn5000_eeprom_calib_hdr hdr;
1547 	int32_t volt;
1548 	uint32_t base, addr;
1549 	uint16_t val;
1550 	int i;
1551 
1552 	/* Read regulatory domain (4 ASCII characters). */
1553 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1554 	base = letoh16(val);
1555 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1556 	    sc->eeprom_domain, 4);
1557 
1558 	/* Read the list of authorized channels (20MHz ones only). */
1559 	for (i = 0; i < 5; i++) {
1560 		addr = base + iwn5000_regulatory_bands[i];
1561 		iwn_read_eeprom_channels(sc, i, addr);
1562 	}
1563 
1564 	/* Read enhanced TX power information for 6000 Series. */
1565 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1566 		iwn_read_eeprom_enhinfo(sc);
1567 
1568 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1569 	base = letoh16(val);
1570 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1571 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1572 	    hdr.version, hdr.pa_type, letoh16(hdr.volt)));
1573 	sc->calib_ver = hdr.version;
1574 
1575 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1576 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1577 	    sc->hw_type == IWN_HW_REV_TYPE_135 ||
1578 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1579 		sc->eeprom_voltage = letoh16(hdr.volt);
1580 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1581 		sc->eeprom_temp = letoh16(val);
1582 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1583 		sc->eeprom_rawtemp = letoh16(val);
1584 	}
1585 
1586 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1587 		/* Compute temperature offset. */
1588 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1589 		sc->eeprom_temp = letoh16(val);
1590 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1591 		volt = letoh16(val);
1592 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1593 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1594 		    sc->eeprom_temp, volt, sc->temp_off));
1595 	} else {
1596 		/* Read crystal calibration. */
1597 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1598 		    &sc->eeprom_crystal, sizeof (uint32_t));
1599 		DPRINTF(("crystal calibration 0x%08x\n",
1600 		    letoh32(sc->eeprom_crystal)));
1601 	}
1602 }
1603 
1604 void
1605 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1606 {
1607 	struct ieee80211com *ic = &sc->sc_ic;
1608 	const struct iwn_chan_band *band = &iwn_bands[n];
1609 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1610 	uint8_t chan;
1611 	int i;
1612 
1613 	iwn_read_prom_data(sc, addr, channels,
1614 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1615 
1616 	for (i = 0; i < band->nchan; i++) {
1617 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1618 			continue;
1619 
1620 		chan = band->chan[i];
1621 
1622 		if (n == 0) {	/* 2GHz band */
1623 			ic->ic_channels[chan].ic_freq =
1624 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1625 			ic->ic_channels[chan].ic_flags =
1626 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1627 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1628 
1629 		} else {	/* 5GHz band */
1630 			/*
1631 			 * Some adapters support channels 7, 8, 11 and 12
1632 			 * both in the 2GHz and 4.9GHz bands.
1633 			 * Because of limitations in our net80211 layer,
1634 			 * we don't support them in the 4.9GHz band.
1635 			 */
1636 			if (chan <= 14)
1637 				continue;
1638 
1639 			ic->ic_channels[chan].ic_freq =
1640 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1641 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1642 			/* We have at least one valid 5GHz channel. */
1643 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1644 		}
1645 
1646 		/* Is active scan allowed on this channel? */
1647 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1648 			ic->ic_channels[chan].ic_flags |=
1649 			    IEEE80211_CHAN_PASSIVE;
1650 		}
1651 
1652 		/* Save maximum allowed TX power for this channel. */
1653 		sc->maxpwr[chan] = channels[i].maxpwr;
1654 
1655 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
1656 			ic->ic_channels[chan].ic_flags |= IEEE80211_CHAN_HT;
1657 
1658 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1659 		    chan, channels[i].flags, sc->maxpwr[chan]));
1660 	}
1661 }
1662 
1663 void
1664 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1665 {
1666 	struct iwn_eeprom_enhinfo enhinfo[35];
1667 	uint16_t val, base;
1668 	int8_t maxpwr;
1669 	int i;
1670 
1671 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1672 	base = letoh16(val);
1673 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1674 	    enhinfo, sizeof enhinfo);
1675 
1676 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1677 	for (i = 0; i < nitems(enhinfo); i++) {
1678 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1679 			continue;	/* Skip invalid entries. */
1680 
1681 		maxpwr = 0;
1682 		if (sc->txchainmask & IWN_ANT_A)
1683 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1684 		if (sc->txchainmask & IWN_ANT_B)
1685 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1686 		if (sc->txchainmask & IWN_ANT_C)
1687 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1688 		if (sc->ntxchains == 2)
1689 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1690 		else if (sc->ntxchains == 3)
1691 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1692 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1693 
1694 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1695 		sc->enh_maxpwr[i] = maxpwr;
1696 	}
1697 }
1698 
1699 struct ieee80211_node *
1700 iwn_node_alloc(struct ieee80211com *ic)
1701 {
1702 	return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1703 }
1704 
1705 void
1706 iwn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
1707 {
1708 	struct iwn_softc *sc = ic->ic_if.if_softc;
1709 	struct iwn_node *wn = (void *)ni;
1710 	uint8_t rate;
1711 	int ridx, i;
1712 
1713 	if ((ni->ni_flags & IEEE80211_NODE_HT) == 0)
1714 		ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1715 
1716 	/* Start at lowest available bit-rate, AMRR/MiRA will raise. */
1717 	ni->ni_txrate = 0;
1718 	ni->ni_txmcs = 0;
1719 
1720 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1721 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1722 		/* Map 802.11 rate to HW rate index. */
1723 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
1724 			if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID &&
1725 			    iwn_rates[ridx].rate == rate)
1726 				break;
1727 		}
1728 		wn->ridx[i] = ridx;
1729 	}
1730 }
1731 
1732 int
1733 iwn_media_change(struct ifnet *ifp)
1734 {
1735 	struct iwn_softc *sc = ifp->if_softc;
1736 	struct ieee80211com *ic = &sc->sc_ic;
1737 	uint8_t rate, ridx;
1738 	int error;
1739 
1740 	error = ieee80211_media_change(ifp);
1741 	if (error != ENETRESET)
1742 		return error;
1743 
1744 	if (ic->ic_fixed_mcs != -1)
1745 		sc->fixed_ridx = iwn_mcs2ridx[ic->ic_fixed_mcs];
1746 	if (ic->ic_fixed_rate != -1) {
1747 		rate = ic->ic_sup_rates[ic->ic_curmode].
1748 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1749 		/* Map 802.11 rate to HW rate index. */
1750 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1751 			if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID &&
1752 			    iwn_rates[ridx].rate == rate)
1753 				break;
1754 		sc->fixed_ridx = ridx;
1755 	}
1756 
1757 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1758 	    (IFF_UP | IFF_RUNNING)) {
1759 		iwn_stop(ifp);
1760 		error = iwn_init(ifp);
1761 	}
1762 	return error;
1763 }
1764 
1765 int
1766 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1767 {
1768 	struct ifnet *ifp = &ic->ic_if;
1769 	struct iwn_softc *sc = ifp->if_softc;
1770 	struct ieee80211_node *ni = ic->ic_bss;
1771 	struct iwn_node *wn = (void *)ni;
1772 	int error;
1773 
1774 	if (ic->ic_state == IEEE80211_S_RUN) {
1775 		if (nstate == IEEE80211_S_SCAN) {
1776 			/*
1777 			 * During RUN->SCAN we don't call sc_newstate() so
1778 			 * we must stop A-MPDU Tx ourselves in this case.
1779 			 */
1780 			ieee80211_stop_ampdu_tx(ic, ni, -1);
1781 			ieee80211_ba_del(ni);
1782 		}
1783 		ieee80211_mira_cancel_timeouts(&wn->mn);
1784 		timeout_del(&sc->calib_to);
1785 		sc->calib.state = IWN_CALIB_STATE_INIT;
1786 		if (sc->sc_flags & IWN_FLAG_BGSCAN)
1787 			iwn_scan_abort(sc);
1788 	}
1789 
1790 	if (ic->ic_state == IEEE80211_S_SCAN) {
1791 		if (nstate == IEEE80211_S_SCAN) {
1792 			if (sc->sc_flags & IWN_FLAG_SCANNING)
1793 				return 0;
1794 		} else
1795 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
1796 		/* Turn LED off when leaving scan state. */
1797 		iwn_set_led(sc, IWN_LED_LINK, 1, 0);
1798 	}
1799 
1800 	if (ic->ic_state >= IEEE80211_S_ASSOC &&
1801 	    nstate <= IEEE80211_S_ASSOC) {
1802 		/* Reset state to handle re- and disassociations. */
1803 		sc->rxon.associd = 0;
1804 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1805 		sc->calib.state = IWN_CALIB_STATE_INIT;
1806 		error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
1807 		if (error != 0)
1808 			printf("%s: RXON command failed\n",
1809 			    sc->sc_dev.dv_xname);
1810 	}
1811 
1812 	switch (nstate) {
1813 	case IEEE80211_S_SCAN:
1814 		/* Make the link LED blink while we're scanning. */
1815 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1816 
1817 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 0)) != 0) {
1818 			printf("%s: could not initiate scan\n",
1819 			    sc->sc_dev.dv_xname);
1820 			return error;
1821 		}
1822 		if (ifp->if_flags & IFF_DEBUG)
1823 			printf("%s: %s -> %s\n", ifp->if_xname,
1824 			    ieee80211_state_name[ic->ic_state],
1825 			    ieee80211_state_name[nstate]);
1826 		if ((sc->sc_flags & IWN_FLAG_BGSCAN) == 0) {
1827 			ieee80211_set_link_state(ic, LINK_STATE_DOWN);
1828 			ieee80211_node_cleanup(ic, ic->ic_bss);
1829 		}
1830 		ic->ic_state = nstate;
1831 		return 0;
1832 
1833 	case IEEE80211_S_ASSOC:
1834 		if (ic->ic_state != IEEE80211_S_RUN)
1835 			break;
1836 		/* FALLTHROUGH */
1837 	case IEEE80211_S_AUTH:
1838 		if ((error = iwn_auth(sc, arg)) != 0) {
1839 			printf("%s: could not move to auth state\n",
1840 			    sc->sc_dev.dv_xname);
1841 			return error;
1842 		}
1843 		break;
1844 
1845 	case IEEE80211_S_RUN:
1846 		if ((error = iwn_run(sc)) != 0) {
1847 			printf("%s: could not move to run state\n",
1848 			    sc->sc_dev.dv_xname);
1849 			return error;
1850 		}
1851 		break;
1852 
1853 	case IEEE80211_S_INIT:
1854 		sc->calib.state = IWN_CALIB_STATE_INIT;
1855 		break;
1856 	}
1857 
1858 	return sc->sc_newstate(ic, nstate, arg);
1859 }
1860 
1861 void
1862 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1863 {
1864 	struct iwn_softc *sc = arg;
1865 	struct iwn_node *wn = (void *)ni;
1866 
1867 	if ((ni->ni_flags & IEEE80211_NODE_HT) == 0)
1868 		ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1869 }
1870 
1871 void
1872 iwn_calib_timeout(void *arg)
1873 {
1874 	struct iwn_softc *sc = arg;
1875 	struct ieee80211com *ic = &sc->sc_ic;
1876 	int s;
1877 
1878 	s = splnet();
1879 	if (ic->ic_fixed_rate == -1) {
1880 		if (ic->ic_opmode == IEEE80211_M_STA)
1881 			iwn_iter_func(sc, ic->ic_bss);
1882 		else
1883 			ieee80211_iterate_nodes(ic, iwn_iter_func, sc);
1884 	}
1885 	/* Force automatic TX power calibration every 60 secs. */
1886 	if (++sc->calib_cnt >= 120) {
1887 		uint32_t flags = 0;
1888 
1889 		DPRINTFN(2, ("sending request for statistics\n"));
1890 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1891 		    sizeof flags, 1);
1892 		sc->calib_cnt = 0;
1893 	}
1894 	splx(s);
1895 
1896 	/* Automatic rate control triggered every 500ms. */
1897 	timeout_add_msec(&sc->calib_to, 500);
1898 }
1899 
1900 int
1901 iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1902 {
1903 	struct ieee80211com *ic = &sc->sc_ic;
1904 	struct ieee80211_key *k = &ni->ni_pairwise_key;
1905 	struct ieee80211_frame *wh;
1906 	struct ieee80211_rx_ba *ba;
1907 	uint64_t pn, *prsc;
1908 	uint8_t *ivp;
1909 	uint8_t tid;
1910 	int hdrlen, hasqos;
1911 
1912 	wh = mtod(m, struct ieee80211_frame *);
1913 	hdrlen = ieee80211_get_hdrlen(wh);
1914 	ivp = (uint8_t *)wh + hdrlen;
1915 
1916 	/* Check that ExtIV bit is be set. */
1917 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1918 		DPRINTF(("CCMP decap ExtIV not set\n"));
1919 		return 1;
1920 	}
1921 	hasqos = ieee80211_has_qos(wh);
1922 	tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1923 	ba = hasqos ? &ni->ni_rx_ba[tid] : NULL;
1924 	prsc = &k->k_rsc[tid];
1925 
1926 	/* Extract the 48-bit PN from the CCMP header. */
1927 	pn = (uint64_t)ivp[0]       |
1928 	     (uint64_t)ivp[1] <<  8 |
1929 	     (uint64_t)ivp[4] << 16 |
1930 	     (uint64_t)ivp[5] << 24 |
1931 	     (uint64_t)ivp[6] << 32 |
1932 	     (uint64_t)ivp[7] << 40;
1933 	if (pn <= *prsc) {
1934 		if (hasqos && ba->ba_state == IEEE80211_BA_AGREED) {
1935 			/*
1936 			 * This is an A-MPDU subframe.
1937 			 * Such frames may be received out of order due to
1938 			 * legitimate retransmissions of failed subframes
1939 			 * in previous A-MPDUs. Duplicates will be handled
1940 			 * in ieee80211_inputm() as part of A-MPDU reordering.
1941 			 */
1942 		} else if (ieee80211_has_seq(wh)) {
1943 			/*
1944 			 * Not necessarily a replayed frame since we did not
1945 			 * check the sequence number of the 802.11 header yet.
1946 			 */
1947 			int nrxseq, orxseq;
1948 
1949 			nrxseq = letoh16(*(u_int16_t *)wh->i_seq) >>
1950 			    IEEE80211_SEQ_SEQ_SHIFT;
1951 			if (hasqos)
1952 				orxseq = ni->ni_qos_rxseqs[tid];
1953 			else
1954 				orxseq = ni->ni_rxseq;
1955 			if (nrxseq < orxseq) {
1956 				DPRINTF(("CCMP replayed (n=%d < o=%d)\n",
1957 				    nrxseq, orxseq));
1958 				ic->ic_stats.is_ccmp_replays++;
1959 				return 1;
1960 			}
1961 		} else {
1962 			DPRINTF(("CCMP replayed\n"));
1963 			ic->ic_stats.is_ccmp_replays++;
1964 			return 1;
1965 		}
1966 	}
1967 	/* Update last seen packet number. */
1968 	*prsc = pn;
1969 
1970 	/* Clear Protected bit and strip IV. */
1971 	wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1972 	memmove(mtod(m, caddr_t) + IEEE80211_CCMP_HDRLEN, wh, hdrlen);
1973 	m_adj(m, IEEE80211_CCMP_HDRLEN);
1974 	/* Strip MIC. */
1975 	m_adj(m, -IEEE80211_CCMP_MICLEN);
1976 	return 0;
1977 }
1978 
1979 /*
1980  * Process an RX_PHY firmware notification.  This is usually immediately
1981  * followed by an MPDU_RX_DONE notification.
1982  */
1983 void
1984 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1985     struct iwn_rx_data *data)
1986 {
1987 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1988 
1989 	DPRINTFN(2, ("received PHY stats\n"));
1990 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1991 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1992 
1993 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1994 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1995 	sc->last_rx_valid = IWN_LAST_RX_VALID;
1996 	/*
1997 	 * The firmware does not send separate RX_PHY
1998 	 * notifications for A-MPDU subframes.
1999 	 */
2000 	if (stat->flags & htole16(IWN_STAT_FLAG_AGG))
2001 		sc->last_rx_valid |= IWN_LAST_RX_AMPDU;
2002 }
2003 
2004 /*
2005  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2006  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2007  */
2008 void
2009 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2010     struct iwn_rx_data *data, struct mbuf_list *ml)
2011 {
2012 	struct iwn_ops *ops = &sc->ops;
2013 	struct ieee80211com *ic = &sc->sc_ic;
2014 	struct ifnet *ifp = &ic->ic_if;
2015 	struct iwn_rx_ring *ring = &sc->rxq;
2016 	struct ieee80211_frame *wh;
2017 	struct ieee80211_rxinfo rxi;
2018 	struct ieee80211_node *ni;
2019 	struct ieee80211_channel *bss_chan = NULL;
2020 	uint8_t saved_bssid[IEEE80211_ADDR_LEN] = { 0 };
2021 	struct mbuf *m, *m1;
2022 	struct iwn_rx_stat *stat;
2023 	caddr_t head;
2024 	uint32_t flags;
2025 	int error, len, rssi;
2026 	uint16_t chan;
2027 
2028 	if (desc->type == IWN_MPDU_RX_DONE) {
2029 		/* Check for prior RX_PHY notification. */
2030 		if (!sc->last_rx_valid) {
2031 			DPRINTF(("missing RX_PHY\n"));
2032 			return;
2033 		}
2034 		sc->last_rx_valid &= ~IWN_LAST_RX_VALID;
2035 		stat = &sc->last_rx_stat;
2036 		if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) &&
2037 		    (stat->flags & htole16(IWN_STAT_FLAG_AGG)) == 0) {
2038 			DPRINTF(("missing RX_PHY (expecting A-MPDU)\n"));
2039 			return;
2040 		}
2041 		if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) == 0 &&
2042 		    (stat->flags & htole16(IWN_STAT_FLAG_AGG))) {
2043 			DPRINTF(("missing RX_PHY (unexpected A-MPDU)\n"));
2044 			return;
2045 		}
2046 	} else
2047 		stat = (struct iwn_rx_stat *)(desc + 1);
2048 
2049 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2050 	    BUS_DMASYNC_POSTREAD);
2051 
2052 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2053 		printf("%s: invalid RX statistic header\n",
2054 		    sc->sc_dev.dv_xname);
2055 		return;
2056 	}
2057 	if (desc->type == IWN_MPDU_RX_DONE) {
2058 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2059 		head = (caddr_t)(mpdu + 1);
2060 		len = letoh16(mpdu->len);
2061 	} else {
2062 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2063 		len = letoh16(stat->len);
2064 	}
2065 
2066 	flags = letoh32(*(uint32_t *)(head + len));
2067 
2068 	/* Discard frames with a bad FCS early. */
2069 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2070 		DPRINTFN(2, ("RX flags error %x\n", flags));
2071 		ifp->if_ierrors++;
2072 		return;
2073 	}
2074 	/* Discard frames that are too short. */
2075 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2076 		/* Allow control frames in monitor mode. */
2077 		if (len < sizeof (struct ieee80211_frame_cts)) {
2078 			DPRINTF(("frame too short: %d\n", len));
2079 			ic->ic_stats.is_rx_tooshort++;
2080 			ifp->if_ierrors++;
2081 			return;
2082 		}
2083 	} else if (len < sizeof (*wh)) {
2084 		DPRINTF(("frame too short: %d\n", len));
2085 		ic->ic_stats.is_rx_tooshort++;
2086 		ifp->if_ierrors++;
2087 		return;
2088 	}
2089 
2090 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2091 	if (m1 == NULL) {
2092 		ic->ic_stats.is_rx_nombuf++;
2093 		ifp->if_ierrors++;
2094 		return;
2095 	}
2096 	bus_dmamap_unload(sc->sc_dmat, data->map);
2097 
2098 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2099 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2100 	if (error != 0) {
2101 		m_freem(m1);
2102 
2103 		/* Try to reload the old mbuf. */
2104 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2105 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2106 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2107 		if (error != 0) {
2108 			panic("%s: could not load old RX mbuf",
2109 			    sc->sc_dev.dv_xname);
2110 		}
2111 		/* Physical address may have changed. */
2112 		ring->desc[ring->cur] =
2113 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2114 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2115 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2116 		    BUS_DMASYNC_PREWRITE);
2117 		ifp->if_ierrors++;
2118 		return;
2119 	}
2120 
2121 	m = data->m;
2122 	data->m = m1;
2123 	/* Update RX descriptor. */
2124 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2125 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2126 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2127 	    BUS_DMASYNC_PREWRITE);
2128 
2129 	/* Finalize mbuf. */
2130 	m->m_data = head;
2131 	m->m_pkthdr.len = m->m_len = len;
2132 
2133 	/*
2134 	 * Grab a reference to the source node. Note that control frames are
2135 	 * shorter than struct ieee80211_frame but ieee80211_find_rxnode()
2136 	 * is being careful about control frames.
2137 	 */
2138 	wh = mtod(m, struct ieee80211_frame *);
2139 	if (len < sizeof (*wh) &&
2140 	   (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2141 		ic->ic_stats.is_rx_tooshort++;
2142 		ifp->if_ierrors++;
2143 		m_freem(m);
2144 		return;
2145 	}
2146 	ni = ieee80211_find_rxnode(ic, wh);
2147 
2148 	rxi.rxi_flags = 0;
2149 	if (((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL)
2150 	    && (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2151 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2152 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
2153 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
2154 		if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) {
2155 			ic->ic_stats.is_ccmp_dec_errs++;
2156 			ifp->if_ierrors++;
2157 			m_freem(m);
2158 			return;
2159 		}
2160 		/* Check whether decryption was successful or not. */
2161 		if ((desc->type == IWN_MPDU_RX_DONE &&
2162 		     (flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) !=
2163 		      (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) ||
2164 		    (desc->type != IWN_MPDU_RX_DONE &&
2165 		     (flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) {
2166 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
2167 			ic->ic_stats.is_ccmp_dec_errs++;
2168 			ifp->if_ierrors++;
2169 			m_freem(m);
2170 			return;
2171 		}
2172 		if (iwn_ccmp_decap(sc, m, ni) != 0) {
2173 			ifp->if_ierrors++;
2174 			m_freem(m);
2175 			return;
2176 		}
2177 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
2178 	}
2179 
2180 	rssi = ops->get_rssi(stat);
2181 
2182 	chan = stat->chan;
2183 	if (chan > IEEE80211_CHAN_MAX)
2184 		chan = IEEE80211_CHAN_MAX;
2185 
2186 	/* Fix current channel. */
2187 	if (ni == ic->ic_bss) {
2188 		/*
2189 		 * We may switch ic_bss's channel during scans.
2190 		 * Record the current channel so we can restore it later.
2191 		 */
2192 		bss_chan = ni->ni_chan;
2193 		IEEE80211_ADDR_COPY(&saved_bssid, ni->ni_macaddr);
2194 	}
2195 	ni->ni_chan = &ic->ic_channels[chan];
2196 
2197 #if NBPFILTER > 0
2198 	if (sc->sc_drvbpf != NULL) {
2199 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2200 		uint16_t chan_flags;
2201 
2202 		tap->wr_flags = 0;
2203 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2204 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2205 		tap->wr_chan_freq = htole16(ic->ic_channels[chan].ic_freq);
2206 		chan_flags = ic->ic_channels[chan].ic_flags;
2207 		if (ic->ic_curmode != IEEE80211_MODE_11N)
2208 			chan_flags &= ~IEEE80211_CHAN_HT;
2209 		tap->wr_chan_flags = htole16(chan_flags);
2210 		tap->wr_dbm_antsignal = (int8_t)rssi;
2211 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2212 		tap->wr_tsft = stat->tstamp;
2213 		if (stat->rflags & IWN_RFLAG_MCS) {
2214 			tap->wr_rate = (0x80 | stat->rate); /* HT MCS index */
2215 		} else {
2216 			switch (stat->rate) {
2217 			/* CCK rates. */
2218 			case  10: tap->wr_rate =   2; break;
2219 			case  20: tap->wr_rate =   4; break;
2220 			case  55: tap->wr_rate =  11; break;
2221 			case 110: tap->wr_rate =  22; break;
2222 			/* OFDM rates. */
2223 			case 0xd: tap->wr_rate =  12; break;
2224 			case 0xf: tap->wr_rate =  18; break;
2225 			case 0x5: tap->wr_rate =  24; break;
2226 			case 0x7: tap->wr_rate =  36; break;
2227 			case 0x9: tap->wr_rate =  48; break;
2228 			case 0xb: tap->wr_rate =  72; break;
2229 			case 0x1: tap->wr_rate =  96; break;
2230 			case 0x3: tap->wr_rate = 108; break;
2231 			/* Unknown rate: should not happen. */
2232 			default:  tap->wr_rate =  0;
2233 			}
2234 		}
2235 
2236 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
2237 		    m, BPF_DIRECTION_IN);
2238 	}
2239 #endif
2240 
2241 	/* Send the frame to the 802.11 layer. */
2242 	rxi.rxi_rssi = rssi;
2243 	rxi.rxi_tstamp = 0;	/* unused */
2244 	ieee80211_inputm(ifp, m, ni, &rxi, ml);
2245 
2246 	/*
2247 	 * ieee80211_inputm() might have changed our BSS.
2248 	 * Restore ic_bss's channel if we are still in the same BSS.
2249 	 */
2250 	if (ni == ic->ic_bss && IEEE80211_ADDR_EQ(saved_bssid, ni->ni_macaddr))
2251 		ni->ni_chan = bss_chan;
2252 
2253 	/* Node is no longer needed. */
2254 	ieee80211_release_node(ic, ni);
2255 }
2256 
2257 /* Process an incoming Compressed BlockAck. */
2258 void
2259 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2260     struct iwn_rx_data *data)
2261 {
2262 	struct iwn_compressed_ba *cba = (struct iwn_compressed_ba *)(desc + 1);
2263 	struct ieee80211com *ic = &sc->sc_ic;
2264 	struct ieee80211_node *ni;
2265 	struct ieee80211_tx_ba *ba;
2266 	struct iwn_node *wn;
2267 	struct iwn_tx_ring *txq;
2268 	uint16_t ssn, idx;
2269 	int qid;
2270 
2271 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*cba),
2272 	    BUS_DMASYNC_POSTREAD);
2273 
2274 	if (!IEEE80211_ADDR_EQ(ic->ic_bss->ni_macaddr, cba->macaddr))
2275 		return;
2276 
2277 	ni = ic->ic_bss;
2278 	wn = (void *)ni;
2279 
2280 	qid = le16toh(cba->qid);
2281 	if (qid < sc->first_agg_txq || qid >= sc->ntxqs)
2282 		return;
2283 
2284 	txq = &sc->txq[qid];
2285 	ssn = le16toh(cba->ssn); /* BA window starting sequence number */
2286 	idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
2287 
2288 	/* Protect against a firmware bug where the queue/TID are off. */
2289 	if (qid != sc->first_agg_txq + cba->tid)
2290 		return;
2291 	/*
2292 	 * Update Tx rate statistics.
2293 	 */
2294 	if (ic->ic_state == IEEE80211_S_RUN && cba->nframes_sent > 0) {
2295 		uint8_t nframes = cba->nframes_sent;
2296 		int read = txq->read;
2297 		wn->mn.agglen = 0;
2298 		wn->mn.ampdu_size = 0;
2299 		/* Add up the lengths of all frames before the window. */
2300 		while (nframes && read != idx) {
2301 			struct iwn_tx_data *txdata = &txq->data[read];
2302 			wn->mn.agglen++;
2303 			wn->mn.ampdu_size += txdata->totlen + IEEE80211_CRC_LEN;
2304 			read = (read + 1) % IWN_TX_RING_COUNT;
2305 			nframes--;
2306 		}
2307 		wn->mn.frames += cba->nframes_sent;
2308 		/* If firmware reports a bogus ACK counter, fix it up. */
2309 		if (cba->nframes_acked > cba->nframes_sent)
2310 			cba->nframes_acked = cba->nframes_sent;
2311 		wn->mn.retries += cba->nframes_sent - cba->nframes_acked;
2312 		if (wn->mn.txfail > wn->mn.frames)
2313 			wn->mn.txfail = wn->mn.frames;
2314 		if (wn->mn.ampdu_size > 0)
2315 			ieee80211_mira_choose(&wn->mn, ic, ni);
2316 	}
2317 
2318 	ba = &ni->ni_tx_ba[cba->tid];
2319 
2320 	if (!SEQ_LT(ssn, ba->ba_winstart)) {
2321 		ieee80211_output_ba_move_window(ic, ni, cba->tid, ssn);
2322 		iwn_ampdu_txq_advance(sc, txq, qid,
2323 		    IWN_AGG_SSN_TO_TXQ_IDX(ssn));
2324 		iwn_clear_oactive(sc, txq);
2325 	}
2326 }
2327 
2328 /*
2329  * Process a CALIBRATION_RESULT notification sent by the initialization
2330  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2331  */
2332 void
2333 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2334     struct iwn_rx_data *data)
2335 {
2336 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2337 	int len, idx = -1;
2338 
2339 	/* Runtime firmware should not send such a notification. */
2340 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2341 		return;
2342 
2343 	len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK) - 4;
2344 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2345 	    BUS_DMASYNC_POSTREAD);
2346 
2347 	switch (calib->code) {
2348 	case IWN5000_PHY_CALIB_DC:
2349 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2350 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2351 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2352 		    sc->hw_type == IWN_HW_REV_TYPE_135 ||
2353 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2354 			idx = 0;
2355 		break;
2356 	case IWN5000_PHY_CALIB_LO:
2357 		idx = 1;
2358 		break;
2359 	case IWN5000_PHY_CALIB_TX_IQ:
2360 		idx = 2;
2361 		break;
2362 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2363 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2364 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2365 			idx = 3;
2366 		break;
2367 	case IWN5000_PHY_CALIB_BASE_BAND:
2368 		idx = 4;
2369 		break;
2370 	}
2371 	if (idx == -1)	/* Ignore other results. */
2372 		return;
2373 
2374 	/* Save calibration result. */
2375 	if (sc->calibcmd[idx].buf != NULL)
2376 		free(sc->calibcmd[idx].buf, M_DEVBUF, 0);
2377 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2378 	if (sc->calibcmd[idx].buf == NULL) {
2379 		DPRINTF(("not enough memory for calibration result %d\n",
2380 		    calib->code));
2381 		return;
2382 	}
2383 	DPRINTF(("saving calibration result code=%d len=%d\n",
2384 	    calib->code, len));
2385 	sc->calibcmd[idx].len = len;
2386 	memcpy(sc->calibcmd[idx].buf, calib, len);
2387 }
2388 
2389 /*
2390  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2391  * The latter is sent by the firmware after each received beacon.
2392  */
2393 void
2394 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2395     struct iwn_rx_data *data)
2396 {
2397 	struct iwn_ops *ops = &sc->ops;
2398 	struct ieee80211com *ic = &sc->sc_ic;
2399 	struct iwn_calib_state *calib = &sc->calib;
2400 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2401 	int temp;
2402 
2403 	/* Ignore statistics received during a scan. */
2404 	if (ic->ic_state != IEEE80211_S_RUN)
2405 		return;
2406 
2407 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2408 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2409 
2410 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2411 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2412 
2413 	/* Test if temperature has changed. */
2414 	if (stats->general.temp != sc->rawtemp) {
2415 		/* Convert "raw" temperature to degC. */
2416 		sc->rawtemp = stats->general.temp;
2417 		temp = ops->get_temperature(sc);
2418 		DPRINTFN(2, ("temperature=%dC\n", temp));
2419 
2420 		/* Update TX power if need be (4965AGN only). */
2421 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2422 			iwn4965_power_calibration(sc, temp);
2423 	}
2424 
2425 	if (desc->type != IWN_BEACON_STATISTICS)
2426 		return;	/* Reply to a statistics request. */
2427 
2428 	sc->noise = iwn_get_noise(&stats->rx.general);
2429 
2430 	/* Test that RSSI and noise are present in stats report. */
2431 	if (letoh32(stats->rx.general.flags) != 1) {
2432 		DPRINTF(("received statistics without RSSI\n"));
2433 		return;
2434 	}
2435 
2436 	/*
2437 	 * XXX Differential gain calibration makes the 6005 firmware
2438 	 * crap out, so skip it for now.  This effectively disables
2439 	 * sensitivity tuning as well.
2440 	 */
2441 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2442 		return;
2443 
2444 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2445 		iwn_collect_noise(sc, &stats->rx.general);
2446 	else if (calib->state == IWN_CALIB_STATE_RUN)
2447 		iwn_tune_sensitivity(sc, &stats->rx);
2448 }
2449 
2450 void
2451 iwn_ampdu_txq_advance(struct iwn_softc *sc, struct iwn_tx_ring *txq, int qid,
2452     int idx)
2453 {
2454 	struct iwn_ops *ops = &sc->ops;
2455 
2456 	DPRINTFN(3, ("%s: txq->cur=%d txq->read=%d txq->queued=%d qid=%d "
2457 	    "idx=%d\n", __func__, txq->cur, txq->read, txq->queued, qid, idx));
2458 
2459 	while (txq->read != idx) {
2460 		struct iwn_tx_data *txdata = &txq->data[txq->read];
2461 		if (txdata->m != NULL) {
2462 			ops->reset_sched(sc, qid, txq->read);
2463 			iwn_tx_done_free_txdata(sc, txdata);
2464 			txq->queued--;
2465 		}
2466 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
2467 	}
2468 }
2469 
2470 /*
2471  * Handle A-MPDU Tx queue status report.
2472  * Tx failures come as single frames (perhaps out of order), and before failing
2473  * an A-MPDU subframe the firmware transmits it as a single frame at least once
2474  * and reports Tx success/failure here. Frames successfully transmitted in an
2475  * A-MPDU are completed when a compressed block ack notification is received.
2476  */
2477 void
2478 iwn_ampdu_tx_done(struct iwn_softc *sc, struct iwn_tx_ring *txq,
2479     struct iwn_rx_desc *desc, uint16_t status,
2480     struct iwn_txagg_status *agg_status, int nframes, uint32_t ssn)
2481 {
2482 	struct ieee80211com *ic = &sc->sc_ic;
2483 	int tid = desc->qid - sc->first_agg_txq;
2484 	struct iwn_tx_data *txdata = &txq->data[desc->idx];
2485 	struct ieee80211_node *ni = txdata->ni;
2486 	struct iwn_node *wn = (void *)ni;
2487 	int txfail = (status != IWN_TX_STATUS_SUCCESS &&
2488 	    status != IWN_TX_STATUS_DIRECT_DONE);
2489 	struct ieee80211_tx_ba *ba;
2490 
2491 	sc->sc_tx_timer = 0;
2492 
2493 	if (ic->ic_state != IEEE80211_S_RUN || nframes > 1 || ni == NULL)
2494 		return;
2495 
2496 	ba = &ni->ni_tx_ba[tid];
2497 
2498 	/* This is a final single-frame Tx attempt. */
2499 	DPRINTFN(3, ("%s: final tx status=0x%x qid=%d queued=%d idx=%d ssn=%u "
2500 	    "bitmap=0x%llx\n", __func__, status, desc->qid, txq->queued,
2501 	    desc->idx, ssn, ba->ba_bitmap));
2502 
2503 	wn->mn.frames++;
2504 	wn->mn.ampdu_size = txdata->totlen + IEEE80211_CRC_LEN;
2505 	wn->mn.agglen = 1;
2506 	if (txfail)
2507 		wn->mn.txfail++;
2508 	if (wn->mn.txfail > wn->mn.frames)
2509 		wn->mn.txfail = wn->mn.frames;
2510 	ieee80211_mira_choose(&wn->mn, ic, ni);
2511 
2512 	if (txfail)
2513 		ieee80211_tx_compressed_bar(ic, ni, tid, ssn);
2514 	else if (!SEQ_LT(ssn, ba->ba_winstart)) {
2515 		/*
2516 		 * Move window forward if SSN lies beyond end of window,
2517 		 * otherwise we can't record the ACK for this frame.
2518 		 * Non-acked frames which left holes in the bitmap near
2519 		 * the beginning of the window must be discarded.
2520 		 */
2521 		uint16_t s = ssn;
2522 		while (SEQ_LT(ba->ba_winend, s)) {
2523 			ieee80211_output_ba_move_window(ic, ni, tid, s);
2524 			iwn_ampdu_txq_advance(sc, txq, desc->qid,
2525 			    IWN_AGG_SSN_TO_TXQ_IDX(s));
2526 			s = (s + 1) % 0xfff;
2527 		}
2528 		/* SSN should now be within the window; set corresponding bit. */
2529 		ieee80211_output_ba_record_ack(ic, ni, tid, ssn);
2530 	}
2531 
2532 	/* Move window forward up to the first hole in the bitmap. */
2533 	ieee80211_output_ba_move_window_to_first_unacked(ic, ni, tid, ssn);
2534 	iwn_ampdu_txq_advance(sc, txq, desc->qid,
2535 	    IWN_AGG_SSN_TO_TXQ_IDX(ba->ba_winstart));
2536 
2537 	iwn_clear_oactive(sc, txq);
2538 }
2539 
2540 /*
2541  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2542  * and 5000 adapters have different incompatible TX status formats.
2543  */
2544 void
2545 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2546     struct iwn_rx_data *data)
2547 {
2548 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2549 	struct iwn_tx_ring *ring;
2550 	size_t len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK);
2551 	uint16_t status = letoh32(stat->stat.status) & 0xff;
2552 	uint32_t ssn;
2553 
2554 	if (desc->qid > IWN4965_NTXQUEUES)
2555 		return;
2556 
2557 	ring = &sc->txq[desc->qid];
2558 
2559 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2560 	    len, BUS_DMASYNC_POSTREAD);
2561 
2562 	/* Sanity checks. */
2563 	if (sizeof(*stat) > len)
2564 		return;
2565 	if (stat->nframes < 1 || stat->nframes > IWN_AMPDU_MAX)
2566 		return;
2567 	if (desc->qid < sc->first_agg_txq && stat->nframes > 1)
2568 		return;
2569 	if (desc->qid >= sc->first_agg_txq && sizeof(*stat) + sizeof(ssn) +
2570 	    stat->nframes * sizeof(stat->stat) > len)
2571 		return;
2572 
2573 	if (desc->qid < sc->first_agg_txq) {
2574 		/* XXX 4965 does not report byte count */
2575 		struct iwn_tx_data *txdata = &ring->data[desc->idx];
2576 		uint16_t framelen = txdata->totlen + IEEE80211_CRC_LEN;
2577 		int txfail = (status != IWN_TX_STATUS_SUCCESS &&
2578 		    status != IWN_TX_STATUS_DIRECT_DONE);
2579 
2580 		iwn_tx_done(sc, desc, stat->ackfailcnt, txfail, desc->qid,
2581 		    framelen);
2582 	} else {
2583 		memcpy(&ssn, &stat->stat.status + stat->nframes, sizeof(ssn));
2584 		ssn = le32toh(ssn) & 0xfff;
2585 		iwn_ampdu_tx_done(sc, ring, desc, status, stat->stat.agg_status,
2586 		    stat->nframes, ssn);
2587 	}
2588 }
2589 
2590 void
2591 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2592     struct iwn_rx_data *data)
2593 {
2594 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2595 	struct iwn_tx_ring *ring;
2596 	size_t len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK);
2597 	uint16_t status = letoh32(stat->stat.status) & 0xff;
2598 	uint32_t ssn;
2599 
2600 	if (desc->qid > IWN5000_NTXQUEUES)
2601 		return;
2602 
2603 	ring = &sc->txq[desc->qid];
2604 
2605 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2606 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2607 
2608 	/* Sanity checks. */
2609 	if (sizeof(*stat) > len)
2610 		return;
2611 	if (stat->nframes < 1 || stat->nframes > IWN_AMPDU_MAX)
2612 		return;
2613 	if (desc->qid < sc->first_agg_txq && stat->nframes > 1)
2614 		return;
2615 	if (desc->qid >= sc->first_agg_txq && sizeof(*stat) + sizeof(ssn) +
2616 	    stat->nframes * sizeof(stat->stat) > len)
2617 		return;
2618 
2619 	/* If this was not an aggregated frame, complete it now. */
2620 	if (desc->qid < sc->first_agg_txq) {
2621 		int txfail = (status != IWN_TX_STATUS_SUCCESS &&
2622 		    status != IWN_TX_STATUS_DIRECT_DONE);
2623 
2624 		/* Reset TX scheduler slot. */
2625 		iwn5000_reset_sched(sc, desc->qid, desc->idx);
2626 
2627 		iwn_tx_done(sc, desc, stat->ackfailcnt, txfail, desc->qid,
2628 		    letoh16(stat->len));
2629 	} else {
2630 		memcpy(&ssn, &stat->stat.status + stat->nframes, sizeof(ssn));
2631 		ssn = le32toh(ssn) & 0xfff;
2632 		iwn_ampdu_tx_done(sc, ring, desc, status, stat->stat.agg_status,
2633 		    stat->nframes, ssn);
2634 	}
2635 }
2636 
2637 void
2638 iwn_tx_done_free_txdata(struct iwn_softc *sc, struct iwn_tx_data *data)
2639 {
2640 	struct ieee80211com *ic = &sc->sc_ic;
2641 
2642 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2643 	    BUS_DMASYNC_POSTWRITE);
2644 	bus_dmamap_unload(sc->sc_dmat, data->map);
2645 	m_freem(data->m);
2646 	data->m = NULL;
2647 	ieee80211_release_node(ic, data->ni);
2648 	data->ni = NULL;
2649 	data->totlen = 0;
2650 }
2651 
2652 void
2653 iwn_clear_oactive(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2654 {
2655 	struct ieee80211com *ic = &sc->sc_ic;
2656 	struct ifnet *ifp = &ic->ic_if;
2657 
2658 	if (ring->queued < IWN_TX_RING_LOMARK) {
2659 		sc->qfullmsk &= ~(1 << ring->qid);
2660 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
2661 			ifq_clr_oactive(&ifp->if_snd);
2662 			(*ifp->if_start)(ifp);
2663 		}
2664 	}
2665 }
2666 
2667 /*
2668  * Adapter-independent backend for TX_DONE firmware notifications.
2669  * This handles Tx status for non-aggregation queues.
2670  */
2671 void
2672 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2673     uint8_t ackfailcnt, int txfail, int qid, uint16_t len)
2674 {
2675 	struct ieee80211com *ic = &sc->sc_ic;
2676 	struct ifnet *ifp = &ic->ic_if;
2677 	struct iwn_tx_ring *ring = &sc->txq[qid];
2678 	struct iwn_tx_data *data = &ring->data[desc->idx];
2679 	struct iwn_node *wn = (void *)data->ni;
2680 
2681 	if (data->ni == NULL)
2682 		return;
2683 
2684 	/* Update rate control statistics. */
2685 	if (data->ni->ni_flags & IEEE80211_NODE_HT) {
2686 		wn->mn.frames++;
2687 		wn->mn.ampdu_size = len;
2688 		wn->mn.agglen = 1;
2689 		if (ackfailcnt > 0)
2690 			wn->mn.retries += ackfailcnt;
2691 		if (txfail)
2692 			wn->mn.txfail++;
2693 		if (ic->ic_state == IEEE80211_S_RUN) {
2694 			if (wn->mn.retries > wn->mn.frames)
2695 				wn->mn.retries = wn->mn.frames;
2696 			if (wn->mn.txfail > wn->mn.frames)
2697 				wn->mn.txfail = wn->mn.frames;
2698 			ieee80211_mira_choose(&wn->mn, ic, data->ni);
2699 		}
2700 	} else {
2701 		wn->amn.amn_txcnt++;
2702 		if (ackfailcnt > 0)
2703 			wn->amn.amn_retrycnt++;
2704 	}
2705 	if (txfail)
2706 		ifp->if_oerrors++;
2707 
2708 	iwn_tx_done_free_txdata(sc, data);
2709 
2710 	sc->sc_tx_timer = 0;
2711 	ring->queued--;
2712 	iwn_clear_oactive(sc, ring);
2713 }
2714 
2715 /*
2716  * Process a "command done" firmware notification.  This is where we wakeup
2717  * processes waiting for a synchronous command completion.
2718  */
2719 void
2720 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2721 {
2722 	struct iwn_tx_ring *ring = &sc->txq[4];
2723 	struct iwn_tx_data *data;
2724 
2725 	if ((desc->qid & 0xf) != 4)
2726 		return;	/* Not a command ack. */
2727 
2728 	data = &ring->data[desc->idx];
2729 
2730 	/* If the command was mapped in an mbuf, free it. */
2731 	if (data->m != NULL) {
2732 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2733 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2734 		bus_dmamap_unload(sc->sc_dmat, data->map);
2735 		m_freem(data->m);
2736 		data->m = NULL;
2737 	}
2738 	wakeup(&ring->desc[desc->idx]);
2739 }
2740 
2741 /*
2742  * Process an INT_FH_RX or INT_SW_RX interrupt.
2743  */
2744 void
2745 iwn_notif_intr(struct iwn_softc *sc)
2746 {
2747 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
2748 	struct iwn_ops *ops = &sc->ops;
2749 	struct ieee80211com *ic = &sc->sc_ic;
2750 	struct ifnet *ifp = &ic->ic_if;
2751 	uint16_t hw;
2752 
2753 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2754 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2755 
2756 	hw = letoh16(sc->rxq.stat->closed_count) & 0xfff;
2757 	while (sc->rxq.cur != hw) {
2758 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2759 		struct iwn_rx_desc *desc;
2760 
2761 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2762 		    BUS_DMASYNC_POSTREAD);
2763 		desc = mtod(data->m, struct iwn_rx_desc *);
2764 
2765 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2766 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2767 
2768 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2769 			iwn_cmd_done(sc, desc);
2770 
2771 		switch (desc->type) {
2772 		case IWN_RX_PHY:
2773 			iwn_rx_phy(sc, desc, data);
2774 			break;
2775 
2776 		case IWN_RX_DONE:		/* 4965AGN only. */
2777 		case IWN_MPDU_RX_DONE:
2778 			/* An 802.11 frame has been received. */
2779 			iwn_rx_done(sc, desc, data, &ml);
2780 			break;
2781 		case IWN_RX_COMPRESSED_BA:
2782 			/* A Compressed BlockAck has been received. */
2783 			iwn_rx_compressed_ba(sc, desc, data);
2784 			break;
2785 		case IWN_TX_DONE:
2786 			/* An 802.11 frame has been transmitted. */
2787 			ops->tx_done(sc, desc, data);
2788 			break;
2789 
2790 		case IWN_RX_STATISTICS:
2791 		case IWN_BEACON_STATISTICS:
2792 			iwn_rx_statistics(sc, desc, data);
2793 			break;
2794 
2795 		case IWN_BEACON_MISSED:
2796 		{
2797 			struct iwn_beacon_missed *miss =
2798 			    (struct iwn_beacon_missed *)(desc + 1);
2799 			uint32_t missed;
2800 
2801 			if ((ic->ic_opmode != IEEE80211_M_STA) ||
2802 			    (ic->ic_state != IEEE80211_S_RUN))
2803 				break;
2804 
2805 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2806 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2807 			missed = letoh32(miss->consecutive);
2808 
2809 			/*
2810 			 * If more than 5 consecutive beacons are missed,
2811 			 * reinitialize the sensitivity state machine.
2812 			 */
2813 			if (missed > 5)
2814 				(void)iwn_init_sensitivity(sc);
2815 
2816 			/*
2817 			 * Rather than go directly to scan state, try to send a
2818 			 * directed probe request first. If that fails then the
2819 			 * state machine will drop us into scanning after timing
2820 			 * out waiting for a probe response.
2821 			 */
2822 			if (missed > ic->ic_bmissthres && !ic->ic_mgt_timer) {
2823 				if (ic->ic_if.if_flags & IFF_DEBUG)
2824 					printf("%s: receiving no beacons from "
2825 					    "%s; checking if this AP is still "
2826 					    "responding to probe requests\n",
2827 					    sc->sc_dev.dv_xname, ether_sprintf(
2828 					    ic->ic_bss->ni_macaddr));
2829 				IEEE80211_SEND_MGMT(ic, ic->ic_bss,
2830 				    IEEE80211_FC0_SUBTYPE_PROBE_REQ, 0);
2831 			}
2832 			break;
2833 		}
2834 		case IWN_UC_READY:
2835 		{
2836 			struct iwn_ucode_info *uc =
2837 			    (struct iwn_ucode_info *)(desc + 1);
2838 
2839 			/* The microcontroller is ready. */
2840 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2841 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2842 			DPRINTF(("microcode alive notification version=%d.%d "
2843 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2844 			    uc->subtype, letoh32(uc->valid)));
2845 
2846 			if (letoh32(uc->valid) != 1) {
2847 				printf("%s: microcontroller initialization "
2848 				    "failed\n", sc->sc_dev.dv_xname);
2849 				break;
2850 			}
2851 			if (uc->subtype == IWN_UCODE_INIT) {
2852 				/* Save microcontroller report. */
2853 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2854 			}
2855 			/* Save the address of the error log in SRAM. */
2856 			sc->errptr = letoh32(uc->errptr);
2857 			break;
2858 		}
2859 		case IWN_STATE_CHANGED:
2860 		{
2861 			uint32_t *status = (uint32_t *)(desc + 1);
2862 
2863 			/* Enabled/disabled notification. */
2864 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2865 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2866 			DPRINTF(("state changed to %x\n", letoh32(*status)));
2867 
2868 			if (letoh32(*status) & 1) {
2869 				/* Radio transmitter is off, power down. */
2870 				iwn_stop(ifp);
2871 				return;	/* No further processing. */
2872 			}
2873 			break;
2874 		}
2875 		case IWN_START_SCAN:
2876 		{
2877 			struct iwn_start_scan *scan =
2878 			    (struct iwn_start_scan *)(desc + 1);
2879 
2880 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2881 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2882 			DPRINTFN(2, ("scanning channel %d status %x\n",
2883 			    scan->chan, letoh32(scan->status)));
2884 
2885 			if (sc->sc_flags & IWN_FLAG_BGSCAN)
2886 				break;
2887 
2888 			/* Fix current channel. */
2889 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2890 			break;
2891 		}
2892 		case IWN_STOP_SCAN:
2893 		{
2894 			struct iwn_stop_scan *scan =
2895 			    (struct iwn_stop_scan *)(desc + 1);
2896 
2897 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2898 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2899 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2900 			    scan->nchan, scan->status, scan->chan));
2901 
2902 			if (scan->status == 1 && scan->chan <= 14 &&
2903 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2904 			    	int error;
2905 				/*
2906 				 * We just finished scanning 2GHz channels,
2907 				 * start scanning 5GHz ones.
2908 				 */
2909 				error = iwn_scan(sc, IEEE80211_CHAN_5GHZ,
2910 				    (sc->sc_flags & IWN_FLAG_BGSCAN) ? 1 : 0);
2911 				if (error == 0)
2912 					break;
2913 			}
2914 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2915 			sc->sc_flags &= ~IWN_FLAG_BGSCAN;
2916 			ieee80211_end_scan(ifp);
2917 			break;
2918 		}
2919 		case IWN5000_CALIBRATION_RESULT:
2920 			iwn5000_rx_calib_results(sc, desc, data);
2921 			break;
2922 
2923 		case IWN5000_CALIBRATION_DONE:
2924 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2925 			wakeup(sc);
2926 			break;
2927 		}
2928 
2929 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2930 	}
2931 	if_input(&sc->sc_ic.ic_if, &ml);
2932 
2933 	/* Tell the firmware what we have processed. */
2934 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2935 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2936 }
2937 
2938 /*
2939  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2940  * from power-down sleep mode.
2941  */
2942 void
2943 iwn_wakeup_intr(struct iwn_softc *sc)
2944 {
2945 	int qid;
2946 
2947 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2948 
2949 	/* Wakeup RX and TX rings. */
2950 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2951 	for (qid = 0; qid < sc->ntxqs; qid++) {
2952 		struct iwn_tx_ring *ring = &sc->txq[qid];
2953 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2954 	}
2955 }
2956 
2957 #ifdef IWN_DEBUG
2958 /*
2959  * Dump the error log of the firmware when a firmware panic occurs.  Although
2960  * we can't debug the firmware because it is neither open source nor free, it
2961  * can help us to identify certain classes of problems.
2962  */
2963 void
2964 iwn_fatal_intr(struct iwn_softc *sc)
2965 {
2966 	struct iwn_fw_dump dump;
2967 	int i;
2968 
2969 	/* Check that the error log address is valid. */
2970 	if (sc->errptr < IWN_FW_DATA_BASE ||
2971 	    sc->errptr + sizeof (dump) >
2972 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2973 		printf("%s: bad firmware error log address 0x%08x\n",
2974 		    sc->sc_dev.dv_xname, sc->errptr);
2975 		return;
2976 	}
2977 	if (iwn_nic_lock(sc) != 0) {
2978 		printf("%s: could not read firmware error log\n",
2979 		    sc->sc_dev.dv_xname);
2980 		return;
2981 	}
2982 	/* Read firmware error log from SRAM. */
2983 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2984 	    sizeof (dump) / sizeof (uint32_t));
2985 	iwn_nic_unlock(sc);
2986 
2987 	if (dump.valid == 0) {
2988 		printf("%s: firmware error log is empty\n",
2989 		    sc->sc_dev.dv_xname);
2990 		return;
2991 	}
2992 	printf("firmware error log:\n");
2993 	printf("  error type      = \"%s\" (0x%08X)\n",
2994 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2995 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2996 	    dump.id);
2997 	printf("  program counter = 0x%08X\n", dump.pc);
2998 	printf("  source line     = 0x%08X\n", dump.src_line);
2999 	printf("  error data      = 0x%08X%08X\n",
3000 	    dump.error_data[0], dump.error_data[1]);
3001 	printf("  branch link     = 0x%08X%08X\n",
3002 	    dump.branch_link[0], dump.branch_link[1]);
3003 	printf("  interrupt link  = 0x%08X%08X\n",
3004 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3005 	printf("  time            = %u\n", dump.time[0]);
3006 
3007 	/* Dump driver status (TX and RX rings) while we're here. */
3008 	printf("driver status:\n");
3009 	for (i = 0; i < sc->ntxqs; i++) {
3010 		struct iwn_tx_ring *ring = &sc->txq[i];
3011 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3012 		    i, ring->qid, ring->cur, ring->queued);
3013 	}
3014 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3015 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
3016 }
3017 #endif
3018 
3019 int
3020 iwn_intr(void *arg)
3021 {
3022 	struct iwn_softc *sc = arg;
3023 	struct ifnet *ifp = &sc->sc_ic.ic_if;
3024 	uint32_t r1, r2, tmp;
3025 
3026 	/* Disable interrupts. */
3027 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3028 
3029 	/* Read interrupts from ICT (fast) or from registers (slow). */
3030 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3031 		tmp = 0;
3032 		while (sc->ict[sc->ict_cur] != 0) {
3033 			tmp |= sc->ict[sc->ict_cur];
3034 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3035 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3036 		}
3037 		tmp = letoh32(tmp);
3038 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3039 			tmp = 0;
3040 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3041 			tmp |= 0x8000;
3042 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3043 		r2 = 0;	/* Unused. */
3044 	} else {
3045 		r1 = IWN_READ(sc, IWN_INT);
3046 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3047 			return 0;	/* Hardware gone! */
3048 		r2 = IWN_READ(sc, IWN_FH_INT);
3049 	}
3050 	if (r1 == 0 && r2 == 0) {
3051 		if (ifp->if_flags & IFF_UP)
3052 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3053 		return 0;	/* Interrupt not for us. */
3054 	}
3055 
3056 	/* Acknowledge interrupts. */
3057 	IWN_WRITE(sc, IWN_INT, r1);
3058 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3059 		IWN_WRITE(sc, IWN_FH_INT, r2);
3060 
3061 	if (r1 & IWN_INT_RF_TOGGLED) {
3062 		tmp = IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL;
3063 		printf("%s: RF switch: radio %s\n", sc->sc_dev.dv_xname,
3064 		    tmp ? "enabled" : "disabled");
3065 		if (tmp)
3066 			task_add(systq, &sc->init_task);
3067 	}
3068 	if (r1 & IWN_INT_CT_REACHED) {
3069 		printf("%s: critical temperature reached!\n",
3070 		    sc->sc_dev.dv_xname);
3071 	}
3072 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3073 		printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
3074 
3075 		/* Force a complete recalibration on next init. */
3076 		sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3077 
3078 		/* Dump firmware error log and stop. */
3079 #ifdef IWN_DEBUG
3080 		iwn_fatal_intr(sc);
3081 #endif
3082 		iwn_stop(ifp);
3083 		task_add(systq, &sc->init_task);
3084 		return 1;
3085 	}
3086 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3087 	    (r2 & IWN_FH_INT_RX)) {
3088 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3089 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3090 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3091 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3092 			    IWN_INT_PERIODIC_DIS);
3093 			iwn_notif_intr(sc);
3094 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3095 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3096 				    IWN_INT_PERIODIC_ENA);
3097 			}
3098 		} else
3099 			iwn_notif_intr(sc);
3100 	}
3101 
3102 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3103 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3104 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3105 		wakeup(sc);	/* FH DMA transfer completed. */
3106 	}
3107 
3108 	if (r1 & IWN_INT_ALIVE)
3109 		wakeup(sc);	/* Firmware is alive. */
3110 
3111 	if (r1 & IWN_INT_WAKEUP)
3112 		iwn_wakeup_intr(sc);
3113 
3114 	/* Re-enable interrupts. */
3115 	if (ifp->if_flags & IFF_UP)
3116 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3117 
3118 	return 1;
3119 }
3120 
3121 /*
3122  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3123  * 5000 adapters use a slightly different format).
3124  */
3125 void
3126 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3127     uint16_t len)
3128 {
3129 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3130 
3131 	*w = htole16(len + 8);
3132 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3133 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
3134 	    BUS_DMASYNC_PREWRITE);
3135 	if (idx < IWN_SCHED_WINSZ) {
3136 		*(w + IWN_TX_RING_COUNT) = *w;
3137 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3138 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
3139 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
3140 	}
3141 }
3142 
3143 void
3144 iwn4965_reset_sched(struct iwn_softc *sc, int qid, int idx)
3145 {
3146 	/* TBD */
3147 }
3148 
3149 void
3150 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3151     uint16_t len)
3152 {
3153 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3154 
3155 	*w = htole16(id << 12 | (len + 8));
3156 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3157 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
3158 	    BUS_DMASYNC_PREWRITE);
3159 	if (idx < IWN_SCHED_WINSZ) {
3160 		*(w + IWN_TX_RING_COUNT) = *w;
3161 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3162 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
3163 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
3164 	}
3165 }
3166 
3167 void
3168 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3169 {
3170 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3171 
3172 	*w = (*w & htole16(0xf000)) | htole16(1);
3173 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3174 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
3175 	    BUS_DMASYNC_PREWRITE);
3176 	if (idx < IWN_SCHED_WINSZ) {
3177 		*(w + IWN_TX_RING_COUNT) = *w;
3178 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3179 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
3180 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
3181 	}
3182 }
3183 
3184 int
3185 iwn_rval2ridx(int rval)
3186 {
3187 	int ridx;
3188 
3189 	for (ridx = 0; ridx < nitems(iwn_rates); ridx++) {
3190 		if (rval == iwn_rates[ridx].rate)
3191 			break;
3192 	}
3193 
3194 	return ridx;
3195 }
3196 
3197 int
3198 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3199 {
3200 	struct iwn_ops *ops = &sc->ops;
3201 	struct ieee80211com *ic = &sc->sc_ic;
3202 	struct iwn_node *wn = (void *)ni;
3203 	struct iwn_tx_ring *ring;
3204 	struct iwn_tx_desc *desc;
3205 	struct iwn_tx_data *data;
3206 	struct iwn_tx_cmd *cmd;
3207 	struct iwn_cmd_data *tx;
3208 	const struct iwn_rate *rinfo;
3209 	struct ieee80211_frame *wh;
3210 	struct ieee80211_key *k = NULL;
3211 	enum ieee80211_edca_ac ac;
3212 	int qid;
3213 	uint32_t flags;
3214 	uint16_t qos;
3215 	u_int hdrlen;
3216 	bus_dma_segment_t *seg;
3217 	uint8_t *ivp, tid, ridx, txant, type, subtype;
3218 	int i, totlen, hasqos, error, pad;
3219 
3220 	wh = mtod(m, struct ieee80211_frame *);
3221 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3222 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3223 	if (type == IEEE80211_FC0_TYPE_CTL)
3224 		hdrlen = sizeof(struct ieee80211_frame_min);
3225 	else
3226 		hdrlen = ieee80211_get_hdrlen(wh);
3227 
3228 	if ((hasqos = ieee80211_has_qos(wh))) {
3229 		/* Select EDCA Access Category and TX ring for this frame. */
3230 		struct ieee80211_tx_ba *ba;
3231 		qos = ieee80211_get_qos(wh);
3232 		tid = qos & IEEE80211_QOS_TID;
3233 		ac = ieee80211_up_to_ac(ic, tid);
3234 		qid = ac;
3235 
3236 		/* If possible, put this frame on an aggregation queue. */
3237 		if (sc->sc_tx_ba[tid].wn == wn) {
3238 			ba = &ni->ni_tx_ba[tid];
3239 			if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3240 			    ba->ba_state == IEEE80211_BA_AGREED) {
3241 				qid = sc->first_agg_txq + tid;
3242 				if (sc->qfullmsk & (1 << qid)) {
3243 					m_freem(m);
3244 					return ENOBUFS;
3245 				}
3246 			}
3247 		}
3248 	} else {
3249 		qos = 0;
3250 		tid = IWN_NONQOS_TID;
3251 		ac = EDCA_AC_BE;
3252 		qid = ac;
3253 	}
3254 
3255 	ring = &sc->txq[qid];
3256 	desc = &ring->desc[ring->cur];
3257 	data = &ring->data[ring->cur];
3258 
3259 	/* Choose a TX rate index. */
3260 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3261 	    type != IEEE80211_FC0_TYPE_DATA)
3262 		ridx = iwn_rval2ridx(ieee80211_min_basic_rate(ic));
3263 	else if (ic->ic_fixed_mcs != -1)
3264 		ridx = sc->fixed_ridx;
3265 	else if (ic->ic_fixed_rate != -1)
3266 		ridx = sc->fixed_ridx;
3267 	else {
3268 		if (ni->ni_flags & IEEE80211_NODE_HT)
3269 			ridx = iwn_mcs2ridx[ni->ni_txmcs];
3270 		else
3271 			ridx = wn->ridx[ni->ni_txrate];
3272 	}
3273 	rinfo = &iwn_rates[ridx];
3274 #if NBPFILTER > 0
3275 	if (sc->sc_drvbpf != NULL) {
3276 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3277 		uint16_t chan_flags;
3278 
3279 		tap->wt_flags = 0;
3280 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3281 		chan_flags = ni->ni_chan->ic_flags;
3282 		if (ic->ic_curmode != IEEE80211_MODE_11N)
3283 			chan_flags &= ~IEEE80211_CHAN_HT;
3284 		tap->wt_chan_flags = htole16(chan_flags);
3285 		if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3286 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3287 		    type == IEEE80211_FC0_TYPE_DATA) {
3288 			tap->wt_rate = (0x80 | ni->ni_txmcs);
3289 		} else
3290 			tap->wt_rate = rinfo->rate;
3291 		tap->wt_hwqueue = ac;
3292 		if ((ic->ic_flags & IEEE80211_F_WEPON) &&
3293 		    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
3294 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3295 
3296 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
3297 		    m, BPF_DIRECTION_OUT);
3298 	}
3299 #endif
3300 
3301 	totlen = m->m_pkthdr.len;
3302 
3303 	/* Encrypt the frame if need be. */
3304 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3305 		/* Retrieve key for TX. */
3306 		k = ieee80211_get_txkey(ic, wh, ni);
3307 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
3308 			/* Do software encryption. */
3309 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
3310 				return ENOBUFS;
3311 			/* 802.11 header may have moved. */
3312 			wh = mtod(m, struct ieee80211_frame *);
3313 			totlen = m->m_pkthdr.len;
3314 
3315 		} else	/* HW appends CCMP MIC. */
3316 			totlen += IEEE80211_CCMP_HDRLEN;
3317 	}
3318 
3319 	data->totlen = totlen;
3320 
3321 	/* Prepare TX firmware command. */
3322 	cmd = &ring->cmd[ring->cur];
3323 	cmd->code = IWN_CMD_TX_DATA;
3324 	cmd->flags = 0;
3325 	cmd->qid = ring->qid;
3326 	cmd->idx = ring->cur;
3327 
3328 	tx = (struct iwn_cmd_data *)cmd->data;
3329 	/* NB: No need to clear tx, all fields are reinitialized here. */
3330 	tx->scratch = 0;	/* clear "scratch" area */
3331 
3332 	flags = 0;
3333 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3334 		/* Unicast frame, check if an ACK is expected. */
3335 		if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
3336 		    IEEE80211_QOS_ACK_POLICY_NOACK)
3337 			flags |= IWN_TX_NEED_ACK;
3338 	}
3339 	if (type == IEEE80211_FC0_TYPE_CTL &&
3340 	    subtype == IEEE80211_FC0_SUBTYPE_BAR)
3341 		flags |= (IWN_TX_NEED_ACK | IWN_TX_IMM_BA);
3342 
3343 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3344 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3345 
3346 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3347 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3348 		int rtsthres = ic->ic_rtsthreshold;
3349 		if (ni->ni_flags & IEEE80211_NODE_HT)
3350 			rtsthres = ieee80211_mira_get_rts_threshold(&wn->mn,
3351 			    ic, ni, totlen + IEEE80211_CRC_LEN);
3352 
3353 		/* NB: Group frames are sent using CCK in 802.11b/g/n (2GHz). */
3354 		if (totlen + IEEE80211_CRC_LEN > rtsthres) {
3355 			flags |= IWN_TX_NEED_RTS;
3356 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3357 		    ridx >= IWN_RIDX_OFDM6) {
3358 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3359 				flags |= IWN_TX_NEED_CTS;
3360 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3361 				flags |= IWN_TX_NEED_RTS;
3362 		}
3363 
3364 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3365 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3366 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3367 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3368 				flags |= IWN_TX_NEED_PROTECTION;
3369 			} else
3370 				flags |= IWN_TX_FULL_TXOP;
3371 		}
3372 	}
3373 
3374 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3375 	    type != IEEE80211_FC0_TYPE_DATA)
3376 		tx->id = sc->broadcast_id;
3377 	else
3378 		tx->id = wn->id;
3379 
3380 	if (type == IEEE80211_FC0_TYPE_MGT) {
3381 #ifndef IEEE80211_STA_ONLY
3382 		/* Tell HW to set timestamp in probe responses. */
3383 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3384 			flags |= IWN_TX_INSERT_TSTAMP;
3385 #endif
3386 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3387 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3388 			tx->timeout = htole16(3);
3389 		else
3390 			tx->timeout = htole16(2);
3391 	} else
3392 		tx->timeout = htole16(0);
3393 
3394 	if (hdrlen & 3) {
3395 		/* First segment length must be a multiple of 4. */
3396 		flags |= IWN_TX_NEED_PADDING;
3397 		pad = 4 - (hdrlen & 3);
3398 	} else
3399 		pad = 0;
3400 
3401 	tx->len = htole16(totlen);
3402 	tx->tid = tid;
3403 	tx->rts_ntries = 60;
3404 	tx->data_ntries = 15;
3405 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3406 
3407 	if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3408 	    tx->id != sc->broadcast_id)
3409 		tx->plcp = rinfo->ht_plcp;
3410 	else
3411 		tx->plcp = rinfo->plcp;
3412 
3413 	if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3414 	    tx->id != sc->broadcast_id) {
3415 		tx->rflags = rinfo->ht_flags;
3416 		if (ni->ni_htcaps & IEEE80211_HTCAP_SGI20)
3417 			tx->rflags |= IWN_RFLAG_SGI;
3418 	}
3419 	else
3420 		tx->rflags = rinfo->flags;
3421 	if (tx->id == sc->broadcast_id) {
3422 		/* Group or management frame. */
3423 		tx->linkq = 0;
3424 		/* XXX Alternate between antenna A and B? */
3425 		txant = IWN_LSB(sc->txchainmask);
3426 		tx->rflags |= IWN_RFLAG_ANT(txant);
3427 	} else {
3428 		if (ni->ni_flags & IEEE80211_NODE_HT)
3429 			tx->linkq = 7 - ni->ni_txmcs; /* XXX revisit for MIMO */
3430 		else
3431 			tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3432 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3433 	}
3434 	/* Set physical address of "scratch area". */
3435 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3436 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3437 
3438 	/* Copy 802.11 header in TX command. */
3439 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3440 
3441 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
3442 		/* Trim 802.11 header and prepend CCMP IV. */
3443 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
3444 		ivp = mtod(m, uint8_t *);
3445 		k->k_tsc++;
3446 		ivp[0] = k->k_tsc;
3447 		ivp[1] = k->k_tsc >> 8;
3448 		ivp[2] = 0;
3449 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
3450 		ivp[4] = k->k_tsc >> 16;
3451 		ivp[5] = k->k_tsc >> 24;
3452 		ivp[6] = k->k_tsc >> 32;
3453 		ivp[7] = k->k_tsc >> 40;
3454 
3455 		tx->security = IWN_CIPHER_CCMP;
3456 		if (qid >= sc->first_agg_txq)
3457 			flags |= IWN_TX_AMPDU_CCMP;
3458 		memcpy(tx->key, k->k_key, k->k_len);
3459 
3460 		/* TX scheduler includes CCMP MIC len w/5000 Series. */
3461 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
3462 			totlen += IEEE80211_CCMP_MICLEN;
3463 	} else {
3464 		/* Trim 802.11 header. */
3465 		m_adj(m, hdrlen);
3466 		tx->security = 0;
3467 	}
3468 	tx->flags = htole32(flags);
3469 
3470 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3471 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3472 	if (error != 0 && error != EFBIG) {
3473 		printf("%s: can't map mbuf (error %d)\n",
3474 		    sc->sc_dev.dv_xname, error);
3475 		m_freem(m);
3476 		return error;
3477 	}
3478 	if (error != 0) {
3479 		/* Too many DMA segments, linearize mbuf. */
3480 		if (m_defrag(m, M_DONTWAIT)) {
3481 			m_freem(m);
3482 			return ENOBUFS;
3483 		}
3484 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3485 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3486 		if (error != 0) {
3487 			printf("%s: can't map mbuf (error %d)\n",
3488 			    sc->sc_dev.dv_xname, error);
3489 			m_freem(m);
3490 			return error;
3491 		}
3492 	}
3493 
3494 	data->m = m;
3495 	data->ni = ni;
3496 
3497 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3498 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3499 
3500 	/* Fill TX descriptor. */
3501 	desc->nsegs = 1 + data->map->dm_nsegs;
3502 	/* First DMA segment is used by the TX command. */
3503 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3504 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3505 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3506 	/* Other DMA segments are for data payload. */
3507 	seg = data->map->dm_segs;
3508 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3509 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3510 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3511 		    seg->ds_len << 4);
3512 		seg++;
3513 	}
3514 
3515 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3516 	    BUS_DMASYNC_PREWRITE);
3517 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3518 	    (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
3519 	    BUS_DMASYNC_PREWRITE);
3520 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3521 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
3522 	    BUS_DMASYNC_PREWRITE);
3523 
3524 	/* Update TX scheduler. */
3525 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3526 
3527 	/* Kick TX ring. */
3528 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3529 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3530 
3531 	/* Mark TX ring as full if we reach a certain threshold. */
3532 	if (++ring->queued > IWN_TX_RING_HIMARK)
3533 		sc->qfullmsk |= 1 << ring->qid;
3534 
3535 	return 0;
3536 }
3537 
3538 void
3539 iwn_start(struct ifnet *ifp)
3540 {
3541 	struct iwn_softc *sc = ifp->if_softc;
3542 	struct ieee80211com *ic = &sc->sc_ic;
3543 	struct ieee80211_node *ni;
3544 	struct mbuf *m;
3545 
3546 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
3547 		return;
3548 
3549 	for (;;) {
3550 		if (sc->qfullmsk != 0) {
3551 			ifq_set_oactive(&ifp->if_snd);
3552 			break;
3553 		}
3554 
3555 		/* Send pending management frames first. */
3556 		m = mq_dequeue(&ic->ic_mgtq);
3557 		if (m != NULL) {
3558 			ni = m->m_pkthdr.ph_cookie;
3559 			goto sendit;
3560 		}
3561 		if (ic->ic_state != IEEE80211_S_RUN ||
3562 		    (ic->ic_xflags & IEEE80211_F_TX_MGMT_ONLY))
3563 			break;
3564 
3565 		/* Encapsulate and send data frames. */
3566 		IFQ_DEQUEUE(&ifp->if_snd, m);
3567 		if (m == NULL)
3568 			break;
3569 #if NBPFILTER > 0
3570 		if (ifp->if_bpf != NULL)
3571 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
3572 #endif
3573 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
3574 			continue;
3575 sendit:
3576 #if NBPFILTER > 0
3577 		if (ic->ic_rawbpf != NULL)
3578 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
3579 #endif
3580 		if (iwn_tx(sc, m, ni) != 0) {
3581 			ieee80211_release_node(ic, ni);
3582 			ifp->if_oerrors++;
3583 			continue;
3584 		}
3585 
3586 		sc->sc_tx_timer = 5;
3587 		ifp->if_timer = 1;
3588 	}
3589 }
3590 
3591 void
3592 iwn_watchdog(struct ifnet *ifp)
3593 {
3594 	struct iwn_softc *sc = ifp->if_softc;
3595 
3596 	ifp->if_timer = 0;
3597 
3598 	if (sc->sc_tx_timer > 0) {
3599 		if (--sc->sc_tx_timer == 0) {
3600 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
3601 			iwn_stop(ifp);
3602 			ifp->if_oerrors++;
3603 			return;
3604 		}
3605 		ifp->if_timer = 1;
3606 	}
3607 
3608 	ieee80211_watchdog(ifp);
3609 }
3610 
3611 int
3612 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3613 {
3614 	struct iwn_softc *sc = ifp->if_softc;
3615 	struct ieee80211com *ic = &sc->sc_ic;
3616 	int s, error = 0;
3617 
3618 	error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
3619 	if (error)
3620 		return error;
3621 	s = splnet();
3622 
3623 	switch (cmd) {
3624 	case SIOCSIFADDR:
3625 		ifp->if_flags |= IFF_UP;
3626 		/* FALLTHROUGH */
3627 	case SIOCSIFFLAGS:
3628 		if (ifp->if_flags & IFF_UP) {
3629 			if (!(ifp->if_flags & IFF_RUNNING))
3630 				error = iwn_init(ifp);
3631 		} else {
3632 			if (ifp->if_flags & IFF_RUNNING)
3633 				iwn_stop(ifp);
3634 		}
3635 		break;
3636 
3637 	case SIOCS80211POWER:
3638 		error = ieee80211_ioctl(ifp, cmd, data);
3639 		if (error != ENETRESET)
3640 			break;
3641 		if (ic->ic_state == IEEE80211_S_RUN &&
3642 		    sc->calib.state == IWN_CALIB_STATE_RUN) {
3643 			if (ic->ic_flags & IEEE80211_F_PMGTON)
3644 				error = iwn_set_pslevel(sc, 0, 3, 0);
3645 			else	/* back to CAM */
3646 				error = iwn_set_pslevel(sc, 0, 0, 0);
3647 		} else {
3648 			/* Defer until transition to IWN_CALIB_STATE_RUN. */
3649 			error = 0;
3650 		}
3651 		break;
3652 
3653 	default:
3654 		error = ieee80211_ioctl(ifp, cmd, data);
3655 	}
3656 
3657 	if (error == ENETRESET) {
3658 		error = 0;
3659 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3660 		    (IFF_UP | IFF_RUNNING)) {
3661 			iwn_stop(ifp);
3662 			error = iwn_init(ifp);
3663 		}
3664 	}
3665 
3666 	splx(s);
3667 	rw_exit_write(&sc->sc_rwlock);
3668 	return error;
3669 }
3670 
3671 /*
3672  * Send a command to the firmware.
3673  */
3674 int
3675 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3676 {
3677 	struct iwn_ops *ops = &sc->ops;
3678 	struct iwn_tx_ring *ring = &sc->txq[4];
3679 	struct iwn_tx_desc *desc;
3680 	struct iwn_tx_data *data;
3681 	struct iwn_tx_cmd *cmd;
3682 	struct mbuf *m;
3683 	bus_addr_t paddr;
3684 	int totlen, error;
3685 
3686 	desc = &ring->desc[ring->cur];
3687 	data = &ring->data[ring->cur];
3688 	totlen = 4 + size;
3689 
3690 	if (size > sizeof cmd->data) {
3691 		/* Command is too large to fit in a descriptor. */
3692 		if (totlen > MCLBYTES)
3693 			return EINVAL;
3694 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3695 		if (m == NULL)
3696 			return ENOMEM;
3697 		if (totlen > MHLEN) {
3698 			MCLGET(m, M_DONTWAIT);
3699 			if (!(m->m_flags & M_EXT)) {
3700 				m_freem(m);
3701 				return ENOMEM;
3702 			}
3703 		}
3704 		cmd = mtod(m, struct iwn_tx_cmd *);
3705 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3706 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3707 		if (error != 0) {
3708 			m_freem(m);
3709 			return error;
3710 		}
3711 		data->m = m;
3712 		paddr = data->map->dm_segs[0].ds_addr;
3713 	} else {
3714 		cmd = &ring->cmd[ring->cur];
3715 		paddr = data->cmd_paddr;
3716 	}
3717 
3718 	cmd->code = code;
3719 	cmd->flags = 0;
3720 	cmd->qid = ring->qid;
3721 	cmd->idx = ring->cur;
3722 	memcpy(cmd->data, buf, size);
3723 
3724 	desc->nsegs = 1;
3725 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3726 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3727 
3728 	if (size > sizeof cmd->data) {
3729 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3730 		    BUS_DMASYNC_PREWRITE);
3731 	} else {
3732 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3733 		    (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
3734 		    BUS_DMASYNC_PREWRITE);
3735 	}
3736 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3737 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
3738 	    BUS_DMASYNC_PREWRITE);
3739 
3740 	/* Update TX scheduler. */
3741 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3742 
3743 	/* Kick command ring. */
3744 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3745 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3746 
3747 	return async ? 0 : tsleep_nsec(desc, PCATCH, "iwncmd", SEC_TO_NSEC(1));
3748 }
3749 
3750 int
3751 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3752 {
3753 	struct iwn4965_node_info hnode;
3754 	caddr_t src, dst;
3755 
3756 	/*
3757 	 * We use the node structure for 5000 Series internally (it is
3758 	 * a superset of the one for 4965AGN). We thus copy the common
3759 	 * fields before sending the command.
3760 	 */
3761 	src = (caddr_t)node;
3762 	dst = (caddr_t)&hnode;
3763 	memcpy(dst, src, 48);
3764 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3765 	memcpy(dst + 48, src + 72, 20);
3766 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3767 }
3768 
3769 int
3770 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3771 {
3772 	/* Direct mapping. */
3773 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3774 }
3775 
3776 int
3777 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3778 {
3779 	struct ieee80211com *ic = &sc->sc_ic;
3780 	struct iwn_node *wn = (void *)ni;
3781 	struct ieee80211_rateset *rs = &ni->ni_rates;
3782 	struct iwn_cmd_link_quality linkq;
3783 	const struct iwn_rate *rinfo;
3784 	uint8_t txant;
3785 	int i, txrate;
3786 
3787 	/* Use the first valid TX antenna. */
3788 	txant = IWN_LSB(sc->txchainmask);
3789 
3790 	memset(&linkq, 0, sizeof linkq);
3791 	linkq.id = wn->id;
3792 	linkq.antmsk_1stream = txant;
3793 	linkq.antmsk_2stream = IWN_ANT_AB;
3794 	linkq.ampdu_max = IWN_AMPDU_MAX;
3795 	linkq.ampdu_threshold = 3;
3796 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3797 
3798 	if (ni->ni_flags & IEEE80211_NODE_HT) {
3799 		/* Fill LQ table with MCS 7 - 0 (XXX revisit for MIMO) */
3800 		i = 0;
3801 		for (txrate = 7; txrate >= 0; txrate--) {
3802 			rinfo = &iwn_rates[iwn_mcs2ridx[txrate]];
3803 			linkq.retry[i].plcp = rinfo->ht_plcp;
3804 			linkq.retry[i].rflags = rinfo->ht_flags;
3805 
3806 			if (ni->ni_htcaps & IEEE80211_HTCAP_SGI20)
3807 				linkq.retry[i].rflags |= IWN_RFLAG_SGI;
3808 
3809 			/* XXX set correct ant mask for MIMO rates here */
3810 			linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3811 
3812 			if (++i >= IWN_MAX_TX_RETRIES)
3813 				break;
3814 		}
3815 
3816 		/* Fill the rest with the lowest basic rate. */
3817 		rinfo = &iwn_rates[iwn_rval2ridx(ieee80211_min_basic_rate(ic))];
3818 		while (i < IWN_MAX_TX_RETRIES) {
3819 			linkq.retry[i].plcp = rinfo->plcp;
3820 			linkq.retry[i].rflags = rinfo->flags;
3821 			linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3822 			i++;
3823 		}
3824 	} else {
3825 		/* Start at highest available bit-rate. */
3826 		txrate = rs->rs_nrates - 1;
3827 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3828 			rinfo = &iwn_rates[wn->ridx[txrate]];
3829 			linkq.retry[i].plcp = rinfo->plcp;
3830 			linkq.retry[i].rflags = rinfo->flags;
3831 			linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3832 			/* Next retry at immediate lower bit-rate. */
3833 			if (txrate > 0)
3834 				txrate--;
3835 		}
3836 	}
3837 
3838 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3839 }
3840 
3841 /*
3842  * Broadcast node is used to send group-addressed and management frames.
3843  */
3844 int
3845 iwn_add_broadcast_node(struct iwn_softc *sc, int async, int ridx)
3846 {
3847 	struct iwn_ops *ops = &sc->ops;
3848 	struct iwn_node_info node;
3849 	struct iwn_cmd_link_quality linkq;
3850 	const struct iwn_rate *rinfo;
3851 	uint8_t txant;
3852 	int i, error;
3853 
3854 	memset(&node, 0, sizeof node);
3855 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3856 	node.id = sc->broadcast_id;
3857 	DPRINTF(("adding broadcast node\n"));
3858 	if ((error = ops->add_node(sc, &node, async)) != 0)
3859 		return error;
3860 
3861 	/* Use the first valid TX antenna. */
3862 	txant = IWN_LSB(sc->txchainmask);
3863 
3864 	memset(&linkq, 0, sizeof linkq);
3865 	linkq.id = sc->broadcast_id;
3866 	linkq.antmsk_1stream = txant;
3867 	linkq.antmsk_2stream = IWN_ANT_AB;
3868 	linkq.ampdu_max = IWN_AMPDU_MAX_NO_AGG;
3869 	linkq.ampdu_threshold = 3;
3870 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3871 
3872 	/* Use lowest mandatory bit-rate. */
3873 	rinfo = &iwn_rates[ridx];
3874 	linkq.retry[0].plcp = rinfo->plcp;
3875 	linkq.retry[0].rflags = rinfo->flags;
3876 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3877 	/* Use same bit-rate for all TX retries. */
3878 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3879 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3880 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3881 	}
3882 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3883 }
3884 
3885 void
3886 iwn_updateedca(struct ieee80211com *ic)
3887 {
3888 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3889 	struct iwn_softc *sc = ic->ic_softc;
3890 	struct iwn_edca_params cmd;
3891 	int aci;
3892 
3893 	memset(&cmd, 0, sizeof cmd);
3894 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3895 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
3896 		const struct ieee80211_edca_ac_params *ac =
3897 		    &ic->ic_edca_ac[aci];
3898 		cmd.ac[aci].aifsn = ac->ac_aifsn;
3899 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin));
3900 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax));
3901 		cmd.ac[aci].txoplimit =
3902 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
3903 	}
3904 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3905 #undef IWN_EXP2
3906 }
3907 
3908 void
3909 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3910 {
3911 	struct iwn_cmd_led led;
3912 
3913 	/* Clear microcode LED ownership. */
3914 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3915 
3916 	led.which = which;
3917 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3918 	led.off = off;
3919 	led.on = on;
3920 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3921 }
3922 
3923 /*
3924  * Set the critical temperature at which the firmware will stop the radio
3925  * and notify us.
3926  */
3927 int
3928 iwn_set_critical_temp(struct iwn_softc *sc)
3929 {
3930 	struct iwn_critical_temp crit;
3931 	int32_t temp;
3932 
3933 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3934 
3935 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3936 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3937 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3938 		temp = IWN_CTOK(110);
3939 	else
3940 		temp = 110;
3941 	memset(&crit, 0, sizeof crit);
3942 	crit.tempR = htole32(temp);
3943 	DPRINTF(("setting critical temperature to %d\n", temp));
3944 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3945 }
3946 
3947 int
3948 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3949 {
3950 	struct iwn_cmd_timing cmd;
3951 	uint64_t val, mod;
3952 
3953 	memset(&cmd, 0, sizeof cmd);
3954 	memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
3955 	cmd.bintval = htole16(ni->ni_intval);
3956 	cmd.lintval = htole16(10);
3957 
3958 	/* Compute remaining time until next beacon. */
3959 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3960 	mod = letoh64(cmd.tstamp) % val;
3961 	cmd.binitval = htole32((uint32_t)(val - mod));
3962 
3963 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
3964 	    ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
3965 
3966 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3967 }
3968 
3969 void
3970 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3971 {
3972 	/* Adjust TX power if need be (delta >= 3 degC). */
3973 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3974 	if (abs(temp - sc->temp) >= 3) {
3975 		/* Record temperature of last calibration. */
3976 		sc->temp = temp;
3977 		(void)iwn4965_set_txpower(sc, 1);
3978 	}
3979 }
3980 
3981 /*
3982  * Set TX power for current channel (each rate has its own power settings).
3983  * This function takes into account the regulatory information from EEPROM,
3984  * the current temperature and the current voltage.
3985  */
3986 int
3987 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3988 {
3989 /* Fixed-point arithmetic division using a n-bit fractional part. */
3990 #define fdivround(a, b, n)	\
3991 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3992 /* Linear interpolation. */
3993 #define interpolate(x, x1, y1, x2, y2, n)	\
3994 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3995 
3996 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3997 	struct ieee80211com *ic = &sc->sc_ic;
3998 	struct iwn_ucode_info *uc = &sc->ucode_info;
3999 	struct ieee80211_channel *ch;
4000 	struct iwn4965_cmd_txpower cmd;
4001 	struct iwn4965_eeprom_chan_samples *chans;
4002 	const uint8_t *rf_gain, *dsp_gain;
4003 	int32_t vdiff, tdiff;
4004 	int i, c, grp, maxpwr;
4005 	uint8_t chan;
4006 
4007 	/* Retrieve current channel from last RXON. */
4008 	chan = sc->rxon.chan;
4009 	DPRINTF(("setting TX power for channel %d\n", chan));
4010 	ch = &ic->ic_channels[chan];
4011 
4012 	memset(&cmd, 0, sizeof cmd);
4013 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4014 	cmd.chan = chan;
4015 
4016 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4017 		maxpwr   = sc->maxpwr5GHz;
4018 		rf_gain  = iwn4965_rf_gain_5ghz;
4019 		dsp_gain = iwn4965_dsp_gain_5ghz;
4020 	} else {
4021 		maxpwr   = sc->maxpwr2GHz;
4022 		rf_gain  = iwn4965_rf_gain_2ghz;
4023 		dsp_gain = iwn4965_dsp_gain_2ghz;
4024 	}
4025 
4026 	/* Compute voltage compensation. */
4027 	vdiff = ((int32_t)letoh32(uc->volt) - sc->eeprom_voltage) / 7;
4028 	if (vdiff > 0)
4029 		vdiff *= 2;
4030 	if (abs(vdiff) > 2)
4031 		vdiff = 0;
4032 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
4033 	    vdiff, letoh32(uc->volt), sc->eeprom_voltage));
4034 
4035 	/* Get channel attenuation group. */
4036 	if (chan <= 20)		/* 1-20 */
4037 		grp = 4;
4038 	else if (chan <= 43)	/* 34-43 */
4039 		grp = 0;
4040 	else if (chan <= 70)	/* 44-70 */
4041 		grp = 1;
4042 	else if (chan <= 124)	/* 71-124 */
4043 		grp = 2;
4044 	else			/* 125-200 */
4045 		grp = 3;
4046 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
4047 
4048 	/* Get channel sub-band. */
4049 	for (i = 0; i < IWN_NBANDS; i++)
4050 		if (sc->bands[i].lo != 0 &&
4051 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4052 			break;
4053 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
4054 		return EINVAL;
4055 	chans = sc->bands[i].chans;
4056 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
4057 
4058 	for (c = 0; c < 2; c++) {
4059 		uint8_t power, gain, temp;
4060 		int maxchpwr, pwr, ridx, idx;
4061 
4062 		power = interpolate(chan,
4063 		    chans[0].num, chans[0].samples[c][1].power,
4064 		    chans[1].num, chans[1].samples[c][1].power, 1);
4065 		gain  = interpolate(chan,
4066 		    chans[0].num, chans[0].samples[c][1].gain,
4067 		    chans[1].num, chans[1].samples[c][1].gain, 1);
4068 		temp  = interpolate(chan,
4069 		    chans[0].num, chans[0].samples[c][1].temp,
4070 		    chans[1].num, chans[1].samples[c][1].temp, 1);
4071 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
4072 		    c, power, gain, temp));
4073 
4074 		/* Compute temperature compensation. */
4075 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4076 		DPRINTF(("temperature compensation=%d (current=%d, "
4077 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
4078 
4079 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4080 			/* Convert dBm to half-dBm. */
4081 			maxchpwr = sc->maxpwr[chan] * 2;
4082 #ifdef notyet
4083 			if (ridx > iwn_mcs2ridx[7] && ridx < iwn_mcs2ridx[16])
4084 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
4085 #endif
4086 
4087 			pwr = maxpwr;
4088 
4089 			/* Adjust TX power based on rate. */
4090 			if ((ridx % 8) == 5)
4091 				pwr -= 15;	/* OFDM48: -7.5dB */
4092 			else if ((ridx % 8) == 6)
4093 				pwr -= 17;	/* OFDM54: -8.5dB */
4094 			else if ((ridx % 8) == 7)
4095 				pwr -= 20;	/* OFDM60: -10dB */
4096 			else
4097 				pwr -= 10;	/* Others: -5dB */
4098 
4099 			/* Do not exceed channel max TX power. */
4100 			if (pwr > maxchpwr)
4101 				pwr = maxchpwr;
4102 
4103 			idx = gain - (pwr - power) - tdiff - vdiff;
4104 			if (ridx > iwn_mcs2ridx[7]) /* MIMO */
4105 				idx += (int32_t)letoh32(uc->atten[grp][c]);
4106 
4107 			if (cmd.band == 0)
4108 				idx += 9;	/* 5GHz */
4109 			if (ridx == IWN_RIDX_MAX)
4110 				idx += 5;	/* CCK */
4111 
4112 			/* Make sure idx stays in a valid range. */
4113 			if (idx < 0)
4114 				idx = 0;
4115 			else if (idx > IWN4965_MAX_PWR_INDEX)
4116 				idx = IWN4965_MAX_PWR_INDEX;
4117 
4118 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
4119 			    c, ridx, idx));
4120 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4121 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4122 		}
4123 	}
4124 
4125 	DPRINTF(("setting TX power for chan %d\n", chan));
4126 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4127 
4128 #undef interpolate
4129 #undef fdivround
4130 }
4131 
4132 int
4133 iwn5000_set_txpower(struct iwn_softc *sc, int async)
4134 {
4135 	struct iwn5000_cmd_txpower cmd;
4136 
4137 	/*
4138 	 * TX power calibration is handled automatically by the firmware
4139 	 * for 5000 Series.
4140 	 */
4141 	memset(&cmd, 0, sizeof cmd);
4142 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
4143 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4144 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4145 	DPRINTF(("setting TX power\n"));
4146 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4147 }
4148 
4149 /*
4150  * Retrieve the maximum RSSI (in dBm) among receivers.
4151  */
4152 int
4153 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
4154 {
4155 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
4156 	uint8_t mask, agc;
4157 	int rssi;
4158 
4159 	mask = (letoh16(phy->antenna) >> 4) & IWN_ANT_ABC;
4160 	agc  = (letoh16(phy->agc) >> 7) & 0x7f;
4161 
4162 	rssi = 0;
4163 	if (mask & IWN_ANT_A)
4164 		rssi = MAX(rssi, phy->rssi[0]);
4165 	if (mask & IWN_ANT_B)
4166 		rssi = MAX(rssi, phy->rssi[2]);
4167 	if (mask & IWN_ANT_C)
4168 		rssi = MAX(rssi, phy->rssi[4]);
4169 
4170 	return rssi - agc - IWN_RSSI_TO_DBM;
4171 }
4172 
4173 int
4174 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
4175 {
4176 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4177 	uint8_t agc;
4178 	int rssi;
4179 
4180 	agc = (letoh32(phy->agc) >> 9) & 0x7f;
4181 
4182 	rssi = MAX(letoh16(phy->rssi[0]) & 0xff,
4183 		   letoh16(phy->rssi[1]) & 0xff);
4184 	rssi = MAX(letoh16(phy->rssi[2]) & 0xff, rssi);
4185 
4186 	return rssi - agc - IWN_RSSI_TO_DBM;
4187 }
4188 
4189 /*
4190  * Retrieve the average noise (in dBm) among receivers.
4191  */
4192 int
4193 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4194 {
4195 	int i, total, nbant, noise;
4196 
4197 	total = nbant = 0;
4198 	for (i = 0; i < 3; i++) {
4199 		if ((noise = letoh32(stats->noise[i]) & 0xff) == 0)
4200 			continue;
4201 		total += noise;
4202 		nbant++;
4203 	}
4204 	/* There should be at least one antenna but check anyway. */
4205 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4206 }
4207 
4208 /*
4209  * Compute temperature (in degC) from last received statistics.
4210  */
4211 int
4212 iwn4965_get_temperature(struct iwn_softc *sc)
4213 {
4214 	struct iwn_ucode_info *uc = &sc->ucode_info;
4215 	int32_t r1, r2, r3, r4, temp;
4216 
4217 	r1 = letoh32(uc->temp[0].chan20MHz);
4218 	r2 = letoh32(uc->temp[1].chan20MHz);
4219 	r3 = letoh32(uc->temp[2].chan20MHz);
4220 	r4 = letoh32(sc->rawtemp);
4221 
4222 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
4223 		return 0;
4224 
4225 	/* Sign-extend 23-bit R4 value to 32-bit. */
4226 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4227 	/* Compute temperature in Kelvin. */
4228 	temp = (259 * (r4 - r2)) / (r3 - r1);
4229 	temp = (temp * 97) / 100 + 8;
4230 
4231 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
4232 	return IWN_KTOC(temp);
4233 }
4234 
4235 int
4236 iwn5000_get_temperature(struct iwn_softc *sc)
4237 {
4238 	int32_t temp;
4239 
4240 	/*
4241 	 * Temperature is not used by the driver for 5000 Series because
4242 	 * TX power calibration is handled by firmware.
4243 	 */
4244 	temp = letoh32(sc->rawtemp);
4245 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4246 		temp = (temp / -5) + sc->temp_off;
4247 		temp = IWN_KTOC(temp);
4248 	}
4249 	return temp;
4250 }
4251 
4252 /*
4253  * Initialize sensitivity calibration state machine.
4254  */
4255 int
4256 iwn_init_sensitivity(struct iwn_softc *sc)
4257 {
4258 	struct iwn_ops *ops = &sc->ops;
4259 	struct iwn_calib_state *calib = &sc->calib;
4260 	uint32_t flags;
4261 	int error;
4262 
4263 	/* Reset calibration state machine. */
4264 	memset(calib, 0, sizeof (*calib));
4265 	calib->state = IWN_CALIB_STATE_INIT;
4266 	calib->cck_state = IWN_CCK_STATE_HIFA;
4267 	/* Set initial correlation values. */
4268 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4269 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4270 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4271 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4272 	calib->cck_x4      = 125;
4273 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4274 	calib->energy_cck  = sc->limits->energy_cck;
4275 
4276 	/* Write initial sensitivity. */
4277 	if ((error = iwn_send_sensitivity(sc)) != 0)
4278 		return error;
4279 
4280 	/* Write initial gains. */
4281 	if ((error = ops->init_gains(sc)) != 0)
4282 		return error;
4283 
4284 	/* Request statistics at each beacon interval. */
4285 	flags = 0;
4286 	DPRINTFN(2, ("sending request for statistics\n"));
4287 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4288 }
4289 
4290 /*
4291  * Collect noise and RSSI statistics for the first 20 beacons received
4292  * after association and use them to determine connected antennas and
4293  * to set differential gains.
4294  */
4295 void
4296 iwn_collect_noise(struct iwn_softc *sc,
4297     const struct iwn_rx_general_stats *stats)
4298 {
4299 	struct iwn_ops *ops = &sc->ops;
4300 	struct iwn_calib_state *calib = &sc->calib;
4301 	uint32_t val;
4302 	int i;
4303 
4304 	/* Accumulate RSSI and noise for all 3 antennas. */
4305 	for (i = 0; i < 3; i++) {
4306 		calib->rssi[i] += letoh32(stats->rssi[i]) & 0xff;
4307 		calib->noise[i] += letoh32(stats->noise[i]) & 0xff;
4308 	}
4309 	/* NB: We update differential gains only once after 20 beacons. */
4310 	if (++calib->nbeacons < 20)
4311 		return;
4312 
4313 	/* Determine highest average RSSI. */
4314 	val = MAX(calib->rssi[0], calib->rssi[1]);
4315 	val = MAX(calib->rssi[2], val);
4316 
4317 	/* Determine which antennas are connected. */
4318 	sc->chainmask = sc->rxchainmask;
4319 	for (i = 0; i < 3; i++)
4320 		if (val - calib->rssi[i] > 15 * 20)
4321 			sc->chainmask &= ~(1 << i);
4322 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4323 	    sc->rxchainmask, sc->chainmask));
4324 
4325 	/* If none of the TX antennas are connected, keep at least one. */
4326 	if ((sc->chainmask & sc->txchainmask) == 0)
4327 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4328 
4329 	(void)ops->set_gains(sc);
4330 	calib->state = IWN_CALIB_STATE_RUN;
4331 
4332 #ifdef notyet
4333 	/* XXX Disable RX chains with no antennas connected. */
4334 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4335 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4336 #endif
4337 
4338 	/* Enable power-saving mode if requested by user. */
4339 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4340 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4341 }
4342 
4343 int
4344 iwn4965_init_gains(struct iwn_softc *sc)
4345 {
4346 	struct iwn_phy_calib_gain cmd;
4347 
4348 	memset(&cmd, 0, sizeof cmd);
4349 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4350 	/* Differential gains initially set to 0 for all 3 antennas. */
4351 	DPRINTF(("setting initial differential gains\n"));
4352 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4353 }
4354 
4355 int
4356 iwn5000_init_gains(struct iwn_softc *sc)
4357 {
4358 	struct iwn_phy_calib cmd;
4359 
4360 	memset(&cmd, 0, sizeof cmd);
4361 	cmd.code = sc->reset_noise_gain;
4362 	cmd.ngroups = 1;
4363 	cmd.isvalid = 1;
4364 	DPRINTF(("setting initial differential gains\n"));
4365 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4366 }
4367 
4368 int
4369 iwn4965_set_gains(struct iwn_softc *sc)
4370 {
4371 	struct iwn_calib_state *calib = &sc->calib;
4372 	struct iwn_phy_calib_gain cmd;
4373 	int i, delta, noise;
4374 
4375 	/* Get minimal noise among connected antennas. */
4376 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4377 	for (i = 0; i < 3; i++)
4378 		if (sc->chainmask & (1 << i))
4379 			noise = MIN(calib->noise[i], noise);
4380 
4381 	memset(&cmd, 0, sizeof cmd);
4382 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4383 	/* Set differential gains for connected antennas. */
4384 	for (i = 0; i < 3; i++) {
4385 		if (sc->chainmask & (1 << i)) {
4386 			/* Compute attenuation (in unit of 1.5dB). */
4387 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4388 			/* NB: delta <= 0 */
4389 			/* Limit to [-4.5dB,0]. */
4390 			cmd.gain[i] = MIN(abs(delta), 3);
4391 			if (delta < 0)
4392 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4393 		}
4394 	}
4395 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4396 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4397 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4398 }
4399 
4400 int
4401 iwn5000_set_gains(struct iwn_softc *sc)
4402 {
4403 	struct iwn_calib_state *calib = &sc->calib;
4404 	struct iwn_phy_calib_gain cmd;
4405 	int i, ant, div, delta;
4406 
4407 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4408 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4409 
4410 	memset(&cmd, 0, sizeof cmd);
4411 	cmd.code = sc->noise_gain;
4412 	cmd.ngroups = 1;
4413 	cmd.isvalid = 1;
4414 	/* Get first available RX antenna as referential. */
4415 	ant = IWN_LSB(sc->rxchainmask);
4416 	/* Set differential gains for other antennas. */
4417 	for (i = ant + 1; i < 3; i++) {
4418 		if (sc->chainmask & (1 << i)) {
4419 			/* The delta is relative to antenna "ant". */
4420 			delta = ((int32_t)calib->noise[ant] -
4421 			    (int32_t)calib->noise[i]) / div;
4422 			/* Limit to [-4.5dB,+4.5dB]. */
4423 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4424 			if (delta < 0)
4425 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4426 		}
4427 	}
4428 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
4429 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
4430 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4431 }
4432 
4433 /*
4434  * Tune RF RX sensitivity based on the number of false alarms detected
4435  * during the last beacon period.
4436  */
4437 void
4438 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4439 {
4440 #define inc(val, inc, max)			\
4441 	if ((val) < (max)) {			\
4442 		if ((val) < (max) - (inc))	\
4443 			(val) += (inc);		\
4444 		else				\
4445 			(val) = (max);		\
4446 		needs_update = 1;		\
4447 	}
4448 #define dec(val, dec, min)			\
4449 	if ((val) > (min)) {			\
4450 		if ((val) > (min) + (dec))	\
4451 			(val) -= (dec);		\
4452 		else				\
4453 			(val) = (min);		\
4454 		needs_update = 1;		\
4455 	}
4456 
4457 	const struct iwn_sensitivity_limits *limits = sc->limits;
4458 	struct iwn_calib_state *calib = &sc->calib;
4459 	uint32_t val, rxena, fa;
4460 	uint32_t energy[3], energy_min;
4461 	uint8_t noise[3], noise_ref;
4462 	int i, needs_update = 0;
4463 
4464 	/* Check that we've been enabled long enough. */
4465 	if ((rxena = letoh32(stats->general.load)) == 0)
4466 		return;
4467 
4468 	/* Compute number of false alarms since last call for OFDM. */
4469 	fa  = letoh32(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4470 	fa += letoh32(stats->ofdm.fa) - calib->fa_ofdm;
4471 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4472 
4473 	/* Save counters values for next call. */
4474 	calib->bad_plcp_ofdm = letoh32(stats->ofdm.bad_plcp);
4475 	calib->fa_ofdm = letoh32(stats->ofdm.fa);
4476 
4477 	if (fa > 50 * rxena) {
4478 		/* High false alarm count, decrease sensitivity. */
4479 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4480 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4481 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4482 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4483 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4484 
4485 	} else if (fa < 5 * rxena) {
4486 		/* Low false alarm count, increase sensitivity. */
4487 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4488 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4489 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4490 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4491 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4492 	}
4493 
4494 	/* Compute maximum noise among 3 receivers. */
4495 	for (i = 0; i < 3; i++)
4496 		noise[i] = (letoh32(stats->general.noise[i]) >> 8) & 0xff;
4497 	val = MAX(noise[0], noise[1]);
4498 	val = MAX(noise[2], val);
4499 	/* Insert it into our samples table. */
4500 	calib->noise_samples[calib->cur_noise_sample] = val;
4501 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4502 
4503 	/* Compute maximum noise among last 20 samples. */
4504 	noise_ref = calib->noise_samples[0];
4505 	for (i = 1; i < 20; i++)
4506 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4507 
4508 	/* Compute maximum energy among 3 receivers. */
4509 	for (i = 0; i < 3; i++)
4510 		energy[i] = letoh32(stats->general.energy[i]);
4511 	val = MIN(energy[0], energy[1]);
4512 	val = MIN(energy[2], val);
4513 	/* Insert it into our samples table. */
4514 	calib->energy_samples[calib->cur_energy_sample] = val;
4515 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4516 
4517 	/* Compute minimum energy among last 10 samples. */
4518 	energy_min = calib->energy_samples[0];
4519 	for (i = 1; i < 10; i++)
4520 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4521 	energy_min += 6;
4522 
4523 	/* Compute number of false alarms since last call for CCK. */
4524 	fa  = letoh32(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4525 	fa += letoh32(stats->cck.fa) - calib->fa_cck;
4526 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4527 
4528 	/* Save counters values for next call. */
4529 	calib->bad_plcp_cck = letoh32(stats->cck.bad_plcp);
4530 	calib->fa_cck = letoh32(stats->cck.fa);
4531 
4532 	if (fa > 50 * rxena) {
4533 		/* High false alarm count, decrease sensitivity. */
4534 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4535 		calib->cck_state = IWN_CCK_STATE_HIFA;
4536 		calib->low_fa = 0;
4537 
4538 		if (calib->cck_x4 > 160) {
4539 			calib->noise_ref = noise_ref;
4540 			if (calib->energy_cck > 2)
4541 				dec(calib->energy_cck, 2, energy_min);
4542 		}
4543 		if (calib->cck_x4 < 160) {
4544 			calib->cck_x4 = 161;
4545 			needs_update = 1;
4546 		} else
4547 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4548 
4549 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4550 
4551 	} else if (fa < 5 * rxena) {
4552 		/* Low false alarm count, increase sensitivity. */
4553 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4554 		calib->cck_state = IWN_CCK_STATE_LOFA;
4555 		calib->low_fa++;
4556 
4557 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4558 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4559 		     calib->low_fa > 100)) {
4560 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4561 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4562 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4563 		}
4564 	} else {
4565 		/* Not worth to increase or decrease sensitivity. */
4566 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4567 		calib->low_fa = 0;
4568 		calib->noise_ref = noise_ref;
4569 
4570 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4571 			/* Previous interval had many false alarms. */
4572 			dec(calib->energy_cck, 8, energy_min);
4573 		}
4574 		calib->cck_state = IWN_CCK_STATE_INIT;
4575 	}
4576 
4577 	if (needs_update)
4578 		(void)iwn_send_sensitivity(sc);
4579 #undef dec
4580 #undef inc
4581 }
4582 
4583 int
4584 iwn_send_sensitivity(struct iwn_softc *sc)
4585 {
4586 	struct iwn_calib_state *calib = &sc->calib;
4587 	struct iwn_enhanced_sensitivity_cmd cmd;
4588 	int len;
4589 
4590 	memset(&cmd, 0, sizeof cmd);
4591 	len = sizeof (struct iwn_sensitivity_cmd);
4592 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4593 	/* OFDM modulation. */
4594 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
4595 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
4596 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
4597 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
4598 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
4599 	cmd.energy_ofdm_th     = htole16(62);
4600 	/* CCK modulation. */
4601 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
4602 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
4603 	cmd.energy_cck         = htole16(calib->energy_cck);
4604 	/* Barker modulation: use default values. */
4605 	cmd.corr_barker        = htole16(190);
4606 	cmd.corr_barker_mrc    = htole16(390);
4607 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4608 		goto send;
4609 	/* Enhanced sensitivity settings. */
4610 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4611 	cmd.ofdm_det_slope_mrc = htole16(668);
4612 	cmd.ofdm_det_icept_mrc = htole16(4);
4613 	cmd.ofdm_det_slope     = htole16(486);
4614 	cmd.ofdm_det_icept     = htole16(37);
4615 	cmd.cck_det_slope_mrc  = htole16(853);
4616 	cmd.cck_det_icept_mrc  = htole16(4);
4617 	cmd.cck_det_slope      = htole16(476);
4618 	cmd.cck_det_icept      = htole16(99);
4619 send:
4620 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4621 }
4622 
4623 /*
4624  * Set STA mode power saving level (between 0 and 5).
4625  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4626  */
4627 int
4628 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4629 {
4630 	struct iwn_pmgt_cmd cmd;
4631 	const struct iwn_pmgt *pmgt;
4632 	uint32_t max, skip_dtim;
4633 	pcireg_t reg;
4634 	int i;
4635 
4636 	/* Select which PS parameters to use. */
4637 	if (dtim <= 2)
4638 		pmgt = &iwn_pmgt[0][level];
4639 	else if (dtim <= 10)
4640 		pmgt = &iwn_pmgt[1][level];
4641 	else
4642 		pmgt = &iwn_pmgt[2][level];
4643 
4644 	memset(&cmd, 0, sizeof cmd);
4645 	if (level != 0)	/* not CAM */
4646 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4647 	if (level == 5)
4648 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4649 	/* Retrieve PCIe Active State Power Management (ASPM). */
4650 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4651 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4652 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4653 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4654 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4655 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4656 
4657 	if (dtim == 0) {
4658 		dtim = 1;
4659 		skip_dtim = 0;
4660 	} else
4661 		skip_dtim = pmgt->skip_dtim;
4662 	if (skip_dtim != 0) {
4663 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4664 		max = pmgt->intval[4];
4665 		if (max == (uint32_t)-1)
4666 			max = dtim * (skip_dtim + 1);
4667 		else if (max > dtim)
4668 			max = (max / dtim) * dtim;
4669 	} else
4670 		max = dtim;
4671 	for (i = 0; i < 5; i++)
4672 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4673 
4674 	DPRINTF(("setting power saving level to %d\n", level));
4675 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4676 }
4677 
4678 int
4679 iwn_send_btcoex(struct iwn_softc *sc)
4680 {
4681 	struct iwn_bluetooth cmd;
4682 
4683 	memset(&cmd, 0, sizeof cmd);
4684 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4685 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
4686 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
4687 	DPRINTF(("configuring bluetooth coexistence\n"));
4688 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
4689 }
4690 
4691 int
4692 iwn_send_advanced_btcoex(struct iwn_softc *sc)
4693 {
4694 	static const uint32_t btcoex_3wire[12] = {
4695 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
4696 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
4697 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
4698 	};
4699 	struct iwn_btcoex_priotable btprio;
4700 	struct iwn_btcoex_prot btprot;
4701 	int error, i;
4702 
4703 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4704 	    sc->hw_type == IWN_HW_REV_TYPE_135) {
4705 		struct iwn2000_btcoex_config btconfig;
4706 
4707 		memset(&btconfig, 0, sizeof btconfig);
4708 		btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION |
4709 		    (IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) |
4710 		    IWN_BT_SYNC_2_BT_DISABLE;
4711 		btconfig.max_kill = 5;
4712 		btconfig.bt3_t7_timer = 1;
4713 		btconfig.kill_ack = htole32(0xffff0000);
4714 		btconfig.kill_cts = htole32(0xffff0000);
4715 		btconfig.sample_time = 2;
4716 		btconfig.bt3_t2_timer = 0xc;
4717 		for (i = 0; i < 12; i++)
4718 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
4719 		btconfig.valid = htole16(0xff);
4720 		btconfig.prio_boost = htole32(0xf0);
4721 		DPRINTF(("configuring advanced bluetooth coexistence\n"));
4722 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
4723 		    sizeof(btconfig), 1);
4724 		if (error != 0)
4725 			return (error);
4726 	} else {
4727 		struct iwn6000_btcoex_config btconfig;
4728 
4729 		memset(&btconfig, 0, sizeof btconfig);
4730 		btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION |
4731 		    (IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) |
4732 		    IWN_BT_SYNC_2_BT_DISABLE;
4733 		btconfig.max_kill = 5;
4734 		btconfig.bt3_t7_timer = 1;
4735 		btconfig.kill_ack = htole32(0xffff0000);
4736 		btconfig.kill_cts = htole32(0xffff0000);
4737 		btconfig.sample_time = 2;
4738 		btconfig.bt3_t2_timer = 0xc;
4739 		for (i = 0; i < 12; i++)
4740 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
4741 		btconfig.valid = htole16(0xff);
4742 		btconfig.prio_boost = 0xf0;
4743 		DPRINTF(("configuring advanced bluetooth coexistence\n"));
4744 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
4745 		    sizeof(btconfig), 1);
4746 		if (error != 0)
4747 			return (error);
4748 	}
4749 
4750 	memset(&btprio, 0, sizeof btprio);
4751 	btprio.calib_init1 = 0x6;
4752 	btprio.calib_init2 = 0x7;
4753 	btprio.calib_periodic_low1 = 0x2;
4754 	btprio.calib_periodic_low2 = 0x3;
4755 	btprio.calib_periodic_high1 = 0x4;
4756 	btprio.calib_periodic_high2 = 0x5;
4757 	btprio.dtim = 0x6;
4758 	btprio.scan52 = 0x8;
4759 	btprio.scan24 = 0xa;
4760 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
4761 	    1);
4762 	if (error != 0)
4763 		return (error);
4764 
4765 	/* Force BT state machine change */
4766 	memset(&btprot, 0, sizeof btprot);
4767 	btprot.open = 1;
4768 	btprot.type = 1;
4769 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
4770 	if (error != 0)
4771 		return (error);
4772 
4773 	btprot.open = 0;
4774 	return (iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1));
4775 }
4776 
4777 int
4778 iwn5000_runtime_calib(struct iwn_softc *sc)
4779 {
4780 	struct iwn5000_calib_config cmd;
4781 
4782 	memset(&cmd, 0, sizeof cmd);
4783 	cmd.ucode.once.enable = 0xffffffff;
4784 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4785 	DPRINTF(("configuring runtime calibration\n"));
4786 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4787 }
4788 
4789 int
4790 iwn_config(struct iwn_softc *sc)
4791 {
4792 	struct iwn_ops *ops = &sc->ops;
4793 	struct ieee80211com *ic = &sc->sc_ic;
4794 	struct ifnet *ifp = &ic->ic_if;
4795 	uint32_t txmask;
4796 	uint16_t rxchain;
4797 	int error, ridx;
4798 
4799 	/* Set radio temperature sensor offset. */
4800 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4801 		error = iwn6000_temp_offset_calib(sc);
4802 		if (error != 0) {
4803 			printf("%s: could not set temperature offset\n",
4804 			    sc->sc_dev.dv_xname);
4805 			return error;
4806 		}
4807 	}
4808 
4809 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4810 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4811 	    sc->hw_type == IWN_HW_REV_TYPE_135 ||
4812 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4813 		error = iwn2000_temp_offset_calib(sc);
4814 		if (error != 0) {
4815 			printf("%s: could not set temperature offset\n",
4816 			    sc->sc_dev.dv_xname);
4817 			return error;
4818 		}
4819 	}
4820 
4821 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4822 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4823 		/* Configure runtime DC calibration. */
4824 		error = iwn5000_runtime_calib(sc);
4825 		if (error != 0) {
4826 			printf("%s: could not configure runtime calibration\n",
4827 			    sc->sc_dev.dv_xname);
4828 			return error;
4829 		}
4830 	}
4831 
4832 	/* Configure valid TX chains for >=5000 Series. */
4833 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4834 		txmask = htole32(sc->txchainmask);
4835 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4836 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4837 		    sizeof txmask, 0);
4838 		if (error != 0) {
4839 			printf("%s: could not configure valid TX chains\n",
4840 			    sc->sc_dev.dv_xname);
4841 			return error;
4842 		}
4843 	}
4844 
4845 	/* Configure bluetooth coexistence. */
4846 	if (sc->sc_flags & IWN_FLAG_ADV_BT_COEX)
4847 		error = iwn_send_advanced_btcoex(sc);
4848 	else
4849 		error = iwn_send_btcoex(sc);
4850 	if (error != 0) {
4851 		printf("%s: could not configure bluetooth coexistence\n",
4852 		    sc->sc_dev.dv_xname);
4853 		return error;
4854 	}
4855 
4856 	/* Set mode, channel, RX filter and enable RX. */
4857 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4858 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
4859 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4860 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4861 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4862 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4863 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
4864 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4865 		if (ic->ic_flags & IEEE80211_F_USEPROT)
4866 			sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
4867 		DPRINTF(("%s: 2ghz prot 0x%x\n", __func__,
4868 		    le32toh(sc->rxon.flags)));
4869 	}
4870 	switch (ic->ic_opmode) {
4871 	case IEEE80211_M_STA:
4872 		sc->rxon.mode = IWN_MODE_STA;
4873 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4874 		break;
4875 	case IEEE80211_M_MONITOR:
4876 		sc->rxon.mode = IWN_MODE_MONITOR;
4877 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4878 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4879 		break;
4880 	default:
4881 		/* Should not get there. */
4882 		break;
4883 	}
4884 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4885 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4886 	sc->rxon.ht_single_mask = 0xff;
4887 	sc->rxon.ht_dual_mask = 0xff;
4888 	sc->rxon.ht_triple_mask = 0xff;
4889 	rxchain =
4890 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4891 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
4892 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
4893 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4894 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4895 		rxchain |= IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask);
4896 	    	rxchain |= (IWN_RXCHAIN_DRIVER_FORCE | IWN_RXCHAIN_MIMO_FORCE);
4897 	}
4898 	sc->rxon.rxchain = htole16(rxchain);
4899 	DPRINTF(("setting configuration\n"));
4900 	DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x rxchain %x\n",
4901 	    __func__, sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
4902 	    sc->rxon.ofdm_mask, sc->rxon.rxchain));
4903 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4904 	if (error != 0) {
4905 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
4906 		return error;
4907 	}
4908 
4909 	ridx = (sc->sc_ic.ic_curmode == IEEE80211_MODE_11A) ?
4910 	    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
4911 	if ((error = iwn_add_broadcast_node(sc, 0, ridx)) != 0) {
4912 		printf("%s: could not add broadcast node\n",
4913 		    sc->sc_dev.dv_xname);
4914 		return error;
4915 	}
4916 
4917 	/* Configuration has changed, set TX power accordingly. */
4918 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4919 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
4920 		return error;
4921 	}
4922 
4923 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4924 		printf("%s: could not set critical temperature\n",
4925 		    sc->sc_dev.dv_xname);
4926 		return error;
4927 	}
4928 
4929 	/* Set power saving level to CAM during initialization. */
4930 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4931 		printf("%s: could not set power saving level\n",
4932 		    sc->sc_dev.dv_xname);
4933 		return error;
4934 	}
4935 	return 0;
4936 }
4937 
4938 uint16_t
4939 iwn_get_active_dwell_time(struct iwn_softc *sc,
4940     uint16_t flags, uint8_t n_probes)
4941 {
4942 	/* No channel? Default to 2GHz settings */
4943 	if (flags & IEEE80211_CHAN_2GHZ) {
4944 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
4945 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
4946 	}
4947 
4948 	/* 5GHz dwell time */
4949 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
4950 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4951 }
4952 
4953 /*
4954  * Limit the total dwell time to 85% of the beacon interval.
4955  *
4956  * Returns the dwell time in milliseconds.
4957  */
4958 uint16_t
4959 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4960 {
4961 	struct ieee80211com *ic = &sc->sc_ic;
4962 	struct ieee80211_node *ni = ic->ic_bss;
4963 	int bintval = 0;
4964 
4965 	/* bintval is in TU (1.024mS) */
4966 	if (ni != NULL)
4967 		bintval = ni->ni_intval;
4968 
4969 	/*
4970 	 * If it's non-zero, we should calculate the minimum of
4971 	 * it and the DWELL_BASE.
4972 	 *
4973 	 * XXX Yes, the math should take into account that bintval
4974 	 * is 1.024mS, not 1mS..
4975 	 */
4976 	if (ic->ic_state == IEEE80211_S_RUN && bintval > 0)
4977 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
4978 
4979 	/* No association context? Default */
4980 	return dwell_time;
4981 }
4982 
4983 uint16_t
4984 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4985 {
4986 	uint16_t passive;
4987 	if (flags & IEEE80211_CHAN_2GHZ) {
4988 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4989 	} else {
4990 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4991 	}
4992 
4993 	/* Clamp to the beacon interval if we're associated */
4994 	return (iwn_limit_dwell(sc, passive));
4995 }
4996 
4997 int
4998 iwn_scan(struct iwn_softc *sc, uint16_t flags, int bgscan)
4999 {
5000 	struct ieee80211com *ic = &sc->sc_ic;
5001 	struct iwn_scan_hdr *hdr;
5002 	struct iwn_cmd_data *tx;
5003 	struct iwn_scan_essid *essid;
5004 	struct iwn_scan_chan *chan;
5005 	struct ieee80211_frame *wh;
5006 	struct ieee80211_rateset *rs;
5007 	struct ieee80211_channel *c;
5008 	struct ifnet *ifp = &ic->ic_if;
5009 	uint8_t *buf, *frm;
5010 	uint16_t rxchain, dwell_active, dwell_passive;
5011 	uint8_t txant;
5012 	int buflen, error, is_active;
5013 
5014 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
5015 	if (buf == NULL) {
5016 		printf("%s: could not allocate buffer for scan command\n",
5017 		    sc->sc_dev.dv_xname);
5018 		return ENOMEM;
5019 	}
5020 	hdr = (struct iwn_scan_hdr *)buf;
5021 	/*
5022 	 * Move to the next channel if no frames are received within 10ms
5023 	 * after sending the probe request.
5024 	 */
5025 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
5026 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
5027 
5028 	if (bgscan) {
5029 		int bintval;
5030 
5031 		/* Set maximum off-channel time. */
5032 		hdr->max_out = htole32(200 * 1024);
5033 
5034 		/* Configure scan pauses which service on-channel traffic. */
5035 		bintval = ic->ic_bss->ni_intval ? ic->ic_bss->ni_intval : 100;
5036 		hdr->pause_scan = htole32(((100 / bintval) << 22) |
5037 		    ((100 % bintval) * 1024));
5038 	}
5039 
5040 	/* Select antennas for scanning. */
5041 	rxchain =
5042 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5043 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
5044 	    IWN_RXCHAIN_DRIVER_FORCE;
5045 	if ((flags & IEEE80211_CHAN_5GHZ) &&
5046 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
5047 		/*
5048 		 * On 4965 ant A and C must be avoided in 5GHz because of a
5049 		 * HW bug which causes very weak RSSI values being reported.
5050 		 */
5051 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
5052 	} else	/* Use all available RX antennas. */
5053 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5054 	hdr->rxchain = htole16(rxchain);
5055 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
5056 
5057 	tx = (struct iwn_cmd_data *)(hdr + 1);
5058 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
5059 	tx->id = sc->broadcast_id;
5060 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
5061 
5062 	if (flags & IEEE80211_CHAN_5GHZ) {
5063 		/* Send probe requests at 6Mbps. */
5064 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
5065 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
5066 	} else {
5067 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
5068 		if (bgscan && sc->hw_type == IWN_HW_REV_TYPE_4965 &&
5069 		    sc->rxon.chan > 14) {
5070 			/*
5071 			 * 4965 firmware can crash when sending probe requests
5072 			 * with CCK rates while associated to a 5GHz AP.
5073 			 * Send probe requests at 6Mbps OFDM as a workaround.
5074 			 */
5075 			tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
5076 		} else {
5077 			/* Send probe requests at 1Mbps. */
5078 			tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
5079 			tx->rflags = IWN_RFLAG_CCK;
5080 		}
5081 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
5082 	}
5083 	/* Use the first valid TX antenna. */
5084 	txant = IWN_LSB(sc->txchainmask);
5085 	tx->rflags |= IWN_RFLAG_ANT(txant);
5086 
5087 	/*
5088 	 * Only do active scanning if we're announcing a probe request
5089 	 * for a given SSID (or more, if we ever add it to the driver.)
5090 	 */
5091 	is_active = 0;
5092 
5093 	/*
5094 	 * If we're scanning for a specific SSID, add it to the command.
5095 	 */
5096 	essid = (struct iwn_scan_essid *)(tx + 1);
5097 	if (ic->ic_des_esslen != 0) {
5098 		essid[0].id = IEEE80211_ELEMID_SSID;
5099 		essid[0].len = ic->ic_des_esslen;
5100 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
5101 
5102 		is_active = 1;
5103 	}
5104 	/*
5105 	 * Build a probe request frame.  Most of the following code is a
5106 	 * copy & paste of what is done in net80211.
5107 	 */
5108 	wh = (struct ieee80211_frame *)(essid + 20);
5109 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
5110 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
5111 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
5112 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
5113 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
5114 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
5115 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
5116 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
5117 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
5118 
5119 	frm = (uint8_t *)(wh + 1);
5120 	frm = ieee80211_add_ssid(frm, NULL, 0);
5121 	frm = ieee80211_add_rates(frm, rs);
5122 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
5123 		frm = ieee80211_add_xrates(frm, rs);
5124 	if (ic->ic_flags & IEEE80211_F_HTON)
5125 		frm = ieee80211_add_htcaps(frm, ic);
5126 
5127 	/* Set length of probe request. */
5128 	tx->len = htole16(frm - (uint8_t *)wh);
5129 
5130 	/*
5131 	 * If active scanning is requested but a certain channel is
5132 	 * marked passive, we can do active scanning if we detect
5133 	 * transmissions.
5134 	 *
5135 	 * There is an issue with some firmware versions that triggers
5136 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
5137 	 * on a radar channel even though this means that we should NOT
5138 	 * send probes.
5139 	 *
5140 	 * The "good CRC threshold" is the number of frames that we
5141 	 * need to receive during our dwell time on a channel before
5142 	 * sending out probes -- setting this to a huge value will
5143 	 * mean we never reach it, but at the same time work around
5144 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
5145 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
5146 	 *
5147 	 * This was fixed in later versions along with some other
5148 	 * scan changes, and the threshold behaves as a flag in those
5149 	 * versions.
5150 	 */
5151 
5152 	/*
5153 	 * If we're doing active scanning, set the crc_threshold
5154 	 * to a suitable value.  This is different to active veruss
5155 	 * passive scanning depending upon the channel flags; the
5156 	 * firmware will obey that particular check for us.
5157 	 */
5158 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
5159 		hdr->crc_threshold = is_active ?
5160 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
5161 	else
5162 		hdr->crc_threshold = is_active ?
5163 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
5164 
5165 	chan = (struct iwn_scan_chan *)frm;
5166 	for (c  = &ic->ic_channels[1];
5167 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
5168 		if ((c->ic_flags & flags) != flags)
5169 			continue;
5170 
5171 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5172 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
5173 		chan->flags = 0;
5174 		if (ic->ic_des_esslen != 0)
5175 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5176 
5177 		if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
5178 			chan->flags |= htole32(IWN_CHAN_PASSIVE);
5179 		else
5180 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
5181 
5182 		/*
5183 		 * Calculate the active/passive dwell times.
5184 		 */
5185 
5186 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
5187 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
5188 
5189 		/* Make sure they're valid */
5190 		if (dwell_passive <= dwell_active)
5191 			dwell_passive = dwell_active + 1;
5192 
5193 		chan->active = htole16(dwell_active);
5194 		chan->passive = htole16(dwell_passive);
5195 
5196 		chan->dsp_gain = 0x6e;
5197 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
5198 			chan->rf_gain = 0x3b;
5199 		} else {
5200 			chan->rf_gain = 0x28;
5201 		}
5202 		hdr->nchan++;
5203 		chan++;
5204 	}
5205 
5206 	buflen = (uint8_t *)chan - buf;
5207 	hdr->len = htole16(buflen);
5208 
5209 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
5210 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5211 	if (error == 0) {
5212 		/*
5213 		 * The current mode might have been fixed during association.
5214 		 * Ensure all channels get scanned.
5215 		 */
5216 		if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media) == IFM_AUTO)
5217 			ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
5218 
5219 		sc->sc_flags |= IWN_FLAG_SCANNING;
5220 		if (bgscan)
5221 			sc->sc_flags |= IWN_FLAG_BGSCAN;
5222 	}
5223 	free(buf, M_DEVBUF, IWN_SCAN_MAXSZ);
5224 	return error;
5225 }
5226 
5227 void
5228 iwn_scan_abort(struct iwn_softc *sc)
5229 {
5230 	iwn_cmd(sc, IWN_CMD_SCAN_ABORT, NULL, 0, 1);
5231 
5232 	/* XXX Cannot wait for status response in interrupt context. */
5233 	DELAY(100);
5234 
5235 	sc->sc_flags &= ~IWN_FLAG_SCANNING;
5236 	sc->sc_flags &= ~IWN_FLAG_BGSCAN;
5237 }
5238 
5239 int
5240 iwn_bgscan(struct ieee80211com *ic)
5241 {
5242 	struct iwn_softc *sc = ic->ic_softc;
5243 	int error;
5244 
5245 	if (sc->sc_flags & IWN_FLAG_SCANNING)
5246 		return 0;
5247 
5248 	error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 1);
5249 	if (error)
5250 		printf("%s: could not initiate background scan\n",
5251 		    sc->sc_dev.dv_xname);
5252 	return error;
5253 }
5254 
5255 int
5256 iwn_auth(struct iwn_softc *sc, int arg)
5257 {
5258 	struct iwn_ops *ops = &sc->ops;
5259 	struct ieee80211com *ic = &sc->sc_ic;
5260 	struct ieee80211_node *ni = ic->ic_bss;
5261 	int error, ridx;
5262 	int bss_switch =
5263 	    (!IEEE80211_ADDR_EQ(sc->bss_node_addr, etheranyaddr) &&
5264 	    !IEEE80211_ADDR_EQ(sc->bss_node_addr, ni->ni_macaddr));
5265 
5266 	/* Update adapter configuration. */
5267 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5268 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5269 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5270 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
5271 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5272 		if (ic->ic_flags & IEEE80211_F_USEPROT)
5273 			sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
5274 		DPRINTF(("%s: 2ghz prot 0x%x\n", __func__,
5275 		    le32toh(sc->rxon.flags)));
5276 	}
5277 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5278 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5279 	else
5280 		sc->rxon.flags &= ~htole32(IWN_RXON_SHSLOT);
5281 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5282 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5283 	else
5284 		sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE);
5285 	switch (ic->ic_curmode) {
5286 	case IEEE80211_MODE_11A:
5287 		sc->rxon.cck_mask  = 0;
5288 		sc->rxon.ofdm_mask = 0x15;
5289 		break;
5290 	case IEEE80211_MODE_11B:
5291 		sc->rxon.cck_mask  = 0x03;
5292 		sc->rxon.ofdm_mask = 0;
5293 		break;
5294 	default:	/* Assume 802.11b/g/n. */
5295 		sc->rxon.cck_mask  = 0x0f;
5296 		sc->rxon.ofdm_mask = 0x15;
5297 	}
5298 	DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__,
5299 	    sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
5300 	    sc->rxon.ofdm_mask));
5301 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5302 	if (error != 0) {
5303 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
5304 		return error;
5305 	}
5306 
5307 	/* Configuration has changed, set TX power accordingly. */
5308 	if ((error = ops->set_txpower(sc, 1)) != 0) {
5309 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5310 		return error;
5311 	}
5312 	/*
5313 	 * Reconfiguring RXON clears the firmware nodes table so we must
5314 	 * add the broadcast node again.
5315 	 */
5316 	ridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ?
5317 	    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
5318 	if ((error = iwn_add_broadcast_node(sc, 1, ridx)) != 0) {
5319 		printf("%s: could not add broadcast node\n",
5320 		    sc->sc_dev.dv_xname);
5321 		return error;
5322 	}
5323 
5324 	/*
5325 	 * Make sure the firmware gets to see a beacon before we send
5326 	 * the auth request. Otherwise the Tx attempt can fail due to
5327 	 * the firmware's built-in regulatory domain enforcement.
5328 	 * Delaying here for every incoming deauth frame can result in a DoS.
5329 	 * Don't delay if we're here because of an incoming frame (arg != -1)
5330 	 * or if we're already waiting for a response (ic_mgt_timer != 0).
5331 	 * If we are switching APs after a background scan then net80211 has
5332 	 * just faked the reception of a deauth frame from our old AP, so it
5333 	 * is safe to delay in that case.
5334 	 */
5335 	if ((arg == -1 || bss_switch) && ic->ic_mgt_timer == 0)
5336 		DELAY(ni->ni_intval * 3 * IEEE80211_DUR_TU);
5337 
5338 	/* We can now clear the cached address of our previous AP. */
5339 	memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr));
5340 
5341 	return 0;
5342 }
5343 
5344 int
5345 iwn_run(struct iwn_softc *sc)
5346 {
5347 	struct iwn_ops *ops = &sc->ops;
5348 	struct ieee80211com *ic = &sc->sc_ic;
5349 	struct ieee80211_node *ni = ic->ic_bss;
5350 	struct iwn_node *wn = (void *)ni;
5351 	struct iwn_node_info node;
5352 	int error;
5353 
5354 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5355 		/* Link LED blinks while monitoring. */
5356 		iwn_set_led(sc, IWN_LED_LINK, 50, 50);
5357 		return 0;
5358 	}
5359 	if ((error = iwn_set_timing(sc, ni)) != 0) {
5360 		printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
5361 		return error;
5362 	}
5363 
5364 	/* Update adapter configuration. */
5365 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
5366 	/* Short preamble and slot time are negotiated when associating. */
5367 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
5368 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5369 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5370 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5371 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5372 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5373 
5374 	/* HT is negotiated when associating. */
5375 	if (ni->ni_flags & IEEE80211_NODE_HT) {
5376 		enum ieee80211_htprot htprot =
5377 		    (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK);
5378 		DPRINTF(("%s: htprot = %d\n", __func__, htprot));
5379 		sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot));
5380 	} else
5381 		sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3));
5382 
5383 	if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) {
5384 		/* 11a or 11n 5GHz */
5385 		sc->rxon.cck_mask  = 0;
5386 		sc->rxon.ofdm_mask = 0x15;
5387 	} else if (ni->ni_flags & IEEE80211_NODE_HT) {
5388 		/* 11n 2GHz */
5389 		sc->rxon.cck_mask  = 0x0f;
5390 		sc->rxon.ofdm_mask = 0x15;
5391 	} else {
5392 		if (ni->ni_rates.rs_nrates == 4) {
5393 			/* 11b */
5394 			sc->rxon.cck_mask  = 0x03;
5395 			sc->rxon.ofdm_mask = 0;
5396 		} else {
5397 			/* assume 11g */
5398 			sc->rxon.cck_mask  = 0x0f;
5399 			sc->rxon.ofdm_mask = 0x15;
5400 		}
5401 	}
5402 	DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__,
5403 	    sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
5404 	    sc->rxon.ofdm_mask));
5405 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5406 	if (error != 0) {
5407 		printf("%s: could not update configuration\n",
5408 		    sc->sc_dev.dv_xname);
5409 		return error;
5410 	}
5411 
5412 	/* Configuration has changed, set TX power accordingly. */
5413 	if ((error = ops->set_txpower(sc, 1)) != 0) {
5414 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5415 		return error;
5416 	}
5417 
5418 	/* Fake a join to initialize the TX rate. */
5419 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5420 	iwn_newassoc(ic, ni, 1);
5421 
5422 	/* Add BSS node. */
5423 	memset(&node, 0, sizeof node);
5424 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5425 	node.id = IWN_ID_BSS;
5426 	if (ni->ni_flags & IEEE80211_NODE_HT) {
5427 		node.htmask = (IWN_AMDPU_SIZE_FACTOR_MASK |
5428 		    IWN_AMDPU_DENSITY_MASK);
5429 		node.htflags = htole32(
5430 		    IWN_AMDPU_SIZE_FACTOR(
5431 			(ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_LE)) |
5432 		    IWN_AMDPU_DENSITY(
5433 			(ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_SS) >> 2));
5434 	}
5435 	DPRINTF(("adding BSS node\n"));
5436 	error = ops->add_node(sc, &node, 1);
5437 	if (error != 0) {
5438 		printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
5439 		return error;
5440 	}
5441 
5442 	/* Cache address of AP in case it changes after a background scan. */
5443 	IEEE80211_ADDR_COPY(sc->bss_node_addr, ni->ni_macaddr);
5444 
5445 	DPRINTF(("setting link quality for node %d\n", node.id));
5446 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5447 		printf("%s: could not setup link quality for node %d\n",
5448 		    sc->sc_dev.dv_xname, node.id);
5449 		return error;
5450 	}
5451 
5452 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5453 		printf("%s: could not set sensitivity\n",
5454 		    sc->sc_dev.dv_xname);
5455 		return error;
5456 	}
5457 	/* Start periodic calibration timer. */
5458 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5459 	sc->calib_cnt = 0;
5460 	timeout_add_msec(&sc->calib_to, 500);
5461 
5462 	ieee80211_mira_node_init(&wn->mn);
5463 
5464 	/* Link LED always on while associated. */
5465 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5466 	return 0;
5467 }
5468 
5469 /*
5470  * We support CCMP hardware encryption/decryption of unicast frames only.
5471  * HW support for TKIP really sucks.  We should let TKIP die anyway.
5472  */
5473 int
5474 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5475     struct ieee80211_key *k)
5476 {
5477 	struct iwn_softc *sc = ic->ic_softc;
5478 	struct iwn_ops *ops = &sc->ops;
5479 	struct iwn_node *wn = (void *)ni;
5480 	struct iwn_node_info node;
5481 	uint16_t kflags;
5482 
5483 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5484 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
5485 		return ieee80211_set_key(ic, ni, k);
5486 
5487 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
5488 	if (k->k_flags & IEEE80211_KEY_GROUP)
5489 		kflags |= IWN_KFLAG_GROUP;
5490 
5491 	memset(&node, 0, sizeof node);
5492 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5493 	    sc->broadcast_id : wn->id;
5494 	node.control = IWN_NODE_UPDATE;
5495 	node.flags = IWN_FLAG_SET_KEY;
5496 	node.kflags = htole16(kflags);
5497 	node.kid = k->k_id;
5498 	memcpy(node.key, k->k_key, k->k_len);
5499 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5500 	return ops->add_node(sc, &node, 1);
5501 }
5502 
5503 void
5504 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5505     struct ieee80211_key *k)
5506 {
5507 	struct iwn_softc *sc = ic->ic_softc;
5508 	struct iwn_ops *ops = &sc->ops;
5509 	struct iwn_node *wn = (void *)ni;
5510 	struct iwn_node_info node;
5511 
5512 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5513 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
5514 		/* See comment about other ciphers above. */
5515 		ieee80211_delete_key(ic, ni, k);
5516 		return;
5517 	}
5518 	if (ic->ic_state != IEEE80211_S_RUN)
5519 		return;	/* Nothing to do. */
5520 	memset(&node, 0, sizeof node);
5521 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5522 	    sc->broadcast_id : wn->id;
5523 	node.control = IWN_NODE_UPDATE;
5524 	node.flags = IWN_FLAG_SET_KEY;
5525 	node.kflags = htole16(IWN_KFLAG_INVALID);
5526 	node.kid = 0xff;
5527 	DPRINTF(("delete keys for node %d\n", node.id));
5528 	(void)ops->add_node(sc, &node, 1);
5529 }
5530 
5531 /*
5532  * This function is called by upper layer when HT protection settings in
5533  * beacons have changed.
5534  */
5535 void
5536 iwn_update_htprot(struct ieee80211com *ic, struct ieee80211_node *ni)
5537 {
5538 	struct iwn_softc *sc = ic->ic_softc;
5539 	struct iwn_ops *ops = &sc->ops;
5540 	enum ieee80211_htprot htprot;
5541 	struct iwn_rxon_assoc rxon_assoc;
5542 	int s, error;
5543 
5544 	/* Update HT protection mode setting. */
5545 	htprot = (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK) >>
5546 	    IEEE80211_HTOP1_PROT_SHIFT;
5547 	sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3));
5548 	sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot));
5549 
5550 	/* Update RXON config. */
5551 	memset(&rxon_assoc, 0, sizeof(rxon_assoc));
5552 	rxon_assoc.flags = sc->rxon.flags;
5553 	rxon_assoc.filter = sc->rxon.filter;
5554 	rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
5555 	rxon_assoc.cck_mask = sc->rxon.cck_mask;
5556 	rxon_assoc.ht_single_mask = sc->rxon.ht_single_mask;
5557 	rxon_assoc.ht_dual_mask = sc->rxon.ht_dual_mask;
5558 	rxon_assoc.ht_triple_mask = sc->rxon.ht_triple_mask;
5559 	rxon_assoc.rxchain = sc->rxon.rxchain;
5560 	rxon_assoc.acquisition = sc->rxon.acquisition;
5561 
5562 	s = splnet();
5563 
5564 	error = iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &rxon_assoc,
5565 	    sizeof(rxon_assoc), 1);
5566 	if (error != 0)
5567 		printf("%s: RXON_ASSOC command failed\n", sc->sc_dev.dv_xname);
5568 
5569 	DELAY(100);
5570 
5571 	/* All RXONs wipe the firmware's txpower table. Restore it. */
5572 	error = ops->set_txpower(sc, 1);
5573 	if (error != 0)
5574 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5575 
5576 	DELAY(100);
5577 
5578 	/* Restore power saving level */
5579 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5580 		error = iwn_set_pslevel(sc, 0, 3, 1);
5581 	else
5582 		error = iwn_set_pslevel(sc, 0, 0, 1);
5583 	if (error != 0)
5584 		printf("%s: could not set PS level\n", sc->sc_dev.dv_xname);
5585 
5586 	splx(s);
5587 }
5588 
5589 /*
5590  * This function is called by upper layer when an ADDBA request is received
5591  * from another STA and before the ADDBA response is sent.
5592  */
5593 int
5594 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5595     uint8_t tid)
5596 {
5597 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5598 	struct iwn_softc *sc = ic->ic_softc;
5599 	struct iwn_ops *ops = &sc->ops;
5600 	struct iwn_node *wn = (void *)ni;
5601 	struct iwn_node_info node;
5602 
5603 	memset(&node, 0, sizeof node);
5604 	node.id = wn->id;
5605 	node.control = IWN_NODE_UPDATE;
5606 	node.flags = IWN_FLAG_SET_ADDBA;
5607 	node.addba_tid = tid;
5608 	node.addba_ssn = htole16(ba->ba_winstart);
5609 	DPRINTF(("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5610 	    ba->ba_winstart));
5611 	/* XXX async command, so firmware may still fail to add BA agreement */
5612 	return ops->add_node(sc, &node, 1);
5613 }
5614 
5615 /*
5616  * This function is called by upper layer on teardown of an HT-immediate
5617  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5618  */
5619 void
5620 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5621     uint8_t tid)
5622 {
5623 	struct iwn_softc *sc = ic->ic_softc;
5624 	struct iwn_ops *ops = &sc->ops;
5625 	struct iwn_node *wn = (void *)ni;
5626 	struct iwn_node_info node;
5627 
5628 	memset(&node, 0, sizeof node);
5629 	node.id = wn->id;
5630 	node.control = IWN_NODE_UPDATE;
5631 	node.flags = IWN_FLAG_SET_DELBA;
5632 	node.delba_tid = tid;
5633 	DPRINTF(("DELBA RA=%d TID=%d\n", wn->id, tid));
5634 	(void)ops->add_node(sc, &node, 1);
5635 }
5636 
5637 /*
5638  * This function is called by upper layer when an ADDBA response is received
5639  * from another STA.
5640  */
5641 int
5642 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5643     uint8_t tid)
5644 {
5645 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5646 	struct iwn_softc *sc = ic->ic_softc;
5647 	struct iwn_ops *ops = &sc->ops;
5648 	struct iwn_node *wn = (void *)ni;
5649 	struct iwn_node_info node;
5650 	int qid = sc->first_agg_txq + tid;
5651 	int error;
5652 
5653 	/* Ensure we can map this TID to an aggregation queue. */
5654 	if (tid >= IWN_NUM_AMPDU_TID || ba->ba_winsize > IWN_SCHED_WINSZ ||
5655 	    qid > sc->ntxqs || (sc->agg_queue_mask & (1 << qid)))
5656 		return ENOSPC;
5657 
5658 	/* Enable TX for the specified RA/TID. */
5659 	wn->disable_tid &= ~(1 << tid);
5660 	memset(&node, 0, sizeof node);
5661 	node.id = wn->id;
5662 	node.control = IWN_NODE_UPDATE;
5663 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5664 	node.disable_tid = htole16(wn->disable_tid);
5665 	error = ops->add_node(sc, &node, 1);
5666 	if (error != 0)
5667 		return error;
5668 
5669 	if ((error = iwn_nic_lock(sc)) != 0)
5670 		return error;
5671 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5672 	iwn_nic_unlock(sc);
5673 
5674 	sc->agg_queue_mask |= (1 << qid);
5675 	sc->sc_tx_ba[tid].wn = wn;
5676 	ba->ba_bitmap = 0;
5677 
5678 	return 0;
5679 }
5680 
5681 void
5682 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5683     uint8_t tid)
5684 {
5685 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5686 	struct iwn_softc *sc = ic->ic_softc;
5687 	struct iwn_ops *ops = &sc->ops;
5688 	int qid = sc->first_agg_txq + tid;
5689 	struct iwn_node *wn = (void *)ni;
5690 	struct iwn_node_info node;
5691 
5692 	/* Discard all frames in the current window. */
5693 	iwn_ampdu_txq_advance(sc, &sc->txq[qid], qid,
5694 	    IWN_AGG_SSN_TO_TXQ_IDX(ba->ba_winend));
5695 
5696 	if (iwn_nic_lock(sc) != 0)
5697 		return;
5698 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5699 	iwn_nic_unlock(sc);
5700 
5701 	sc->agg_queue_mask &= ~(1 << qid);
5702 	sc->sc_tx_ba[tid].wn = NULL;
5703 	ba->ba_bitmap = 0;
5704 
5705 	/* Disable TX for the specified RA/TID. */
5706 	wn->disable_tid |= (1 << tid);
5707 	memset(&node, 0, sizeof node);
5708 	node.id = wn->id;
5709 	node.control = IWN_NODE_UPDATE;
5710 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5711 	node.disable_tid = htole16(wn->disable_tid);
5712 	ops->add_node(sc, &node, 1);
5713 }
5714 
5715 void
5716 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5717     uint8_t tid, uint16_t ssn)
5718 {
5719 	struct iwn_node *wn = (void *)ni;
5720 	int qid = IWN4965_FIRST_AGG_TXQUEUE + tid;
5721 	uint16_t idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
5722 
5723 	/* Stop TX scheduler while we're changing its configuration. */
5724 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5725 	    IWN4965_TXQ_STATUS_CHGACT);
5726 
5727 	/* Assign RA/TID translation to the queue. */
5728 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5729 	    wn->id << 4 | tid);
5730 
5731 	/* Enable chain-building mode for the queue. */
5732 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5733 
5734 	/* Set starting sequence number from the ADDBA request. */
5735 	sc->txq[qid].cur = sc->txq[qid].read = idx;
5736 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
5737 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5738 
5739 	/* Set scheduler window size. */
5740 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5741 	    IWN_SCHED_WINSZ);
5742 	/* Set scheduler frame limit. */
5743 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5744 	    IWN_SCHED_LIMIT << 16);
5745 
5746 	/* Enable interrupts for the queue. */
5747 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5748 
5749 	/* Mark the queue as active. */
5750 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5751 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5752 	    iwn_tid2fifo[tid] << 1);
5753 }
5754 
5755 void
5756 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5757 {
5758 	int qid = IWN4965_FIRST_AGG_TXQUEUE + tid;
5759 	uint16_t idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
5760 
5761 	/* Stop TX scheduler while we're changing its configuration. */
5762 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5763 	    IWN4965_TXQ_STATUS_CHGACT);
5764 
5765 	/* Set starting sequence number from the ADDBA request. */
5766 	sc->txq[qid].cur = sc->txq[qid].read = idx;
5767 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
5768 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5769 
5770 	/* Disable interrupts for the queue. */
5771 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5772 
5773 	/* Mark the queue as inactive. */
5774 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5775 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5776 }
5777 
5778 void
5779 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5780     uint8_t tid, uint16_t ssn)
5781 {
5782 	int qid = IWN5000_FIRST_AGG_TXQUEUE + tid;
5783 	int idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
5784 	struct iwn_node *wn = (void *)ni;
5785 
5786 	/* Stop TX scheduler while we're changing its configuration. */
5787 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5788 	    IWN5000_TXQ_STATUS_CHGACT);
5789 
5790 	/* Assign RA/TID translation to the queue. */
5791 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5792 	    wn->id << 4 | tid);
5793 
5794 	/* Enable chain-building mode for the queue. */
5795 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5796 
5797 	/* Enable aggregation for the queue. */
5798 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5799 
5800 	/* Set starting sequence number from the ADDBA request. */
5801 	sc->txq[qid].cur = sc->txq[qid].read = idx;
5802 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
5803 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5804 
5805 	/* Set scheduler window size and frame limit. */
5806 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5807 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5808 
5809 	/* Enable interrupts for the queue. */
5810 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5811 
5812 	/* Mark the queue as active. */
5813 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5814 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5815 }
5816 
5817 void
5818 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5819 {
5820 	int qid = IWN5000_FIRST_AGG_TXQUEUE + tid;
5821 	int idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
5822 
5823 	/* Stop TX scheduler while we're changing its configuration. */
5824 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5825 	    IWN5000_TXQ_STATUS_CHGACT);
5826 
5827 	/* Disable aggregation for the queue. */
5828 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5829 
5830 	/* Set starting sequence number from the ADDBA request. */
5831 	sc->txq[qid].cur = sc->txq[qid].read = idx;
5832 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
5833 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5834 
5835 	/* Disable interrupts for the queue. */
5836 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5837 
5838 	/* Mark the queue as inactive. */
5839 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5840 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5841 }
5842 
5843 /*
5844  * Query calibration tables from the initialization firmware.  We do this
5845  * only once at first boot.  Called from a process context.
5846  */
5847 int
5848 iwn5000_query_calibration(struct iwn_softc *sc)
5849 {
5850 	struct iwn5000_calib_config cmd;
5851 	int error;
5852 
5853 	memset(&cmd, 0, sizeof cmd);
5854 	cmd.ucode.once.enable = 0xffffffff;
5855 	cmd.ucode.once.start  = 0xffffffff;
5856 	cmd.ucode.once.send   = 0xffffffff;
5857 	cmd.ucode.flags       = 0xffffffff;
5858 	DPRINTF(("sending calibration query\n"));
5859 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5860 	if (error != 0)
5861 		return error;
5862 
5863 	/* Wait at most two seconds for calibration to complete. */
5864 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5865 		error = tsleep_nsec(sc, PCATCH, "iwncal", SEC_TO_NSEC(2));
5866 	return error;
5867 }
5868 
5869 /*
5870  * Send calibration results to the runtime firmware.  These results were
5871  * obtained on first boot from the initialization firmware.
5872  */
5873 int
5874 iwn5000_send_calibration(struct iwn_softc *sc)
5875 {
5876 	int idx, error;
5877 
5878 	for (idx = 0; idx < 5; idx++) {
5879 		if (sc->calibcmd[idx].buf == NULL)
5880 			continue;	/* No results available. */
5881 		DPRINTF(("send calibration result idx=%d len=%d\n",
5882 		    idx, sc->calibcmd[idx].len));
5883 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5884 		    sc->calibcmd[idx].len, 0);
5885 		if (error != 0) {
5886 			printf("%s: could not send calibration result\n",
5887 			    sc->sc_dev.dv_xname);
5888 			return error;
5889 		}
5890 	}
5891 	return 0;
5892 }
5893 
5894 int
5895 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5896 {
5897 	struct iwn5000_wimax_coex wimax;
5898 
5899 #ifdef notyet
5900 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5901 		/* Enable WiMAX coexistence for combo adapters. */
5902 		wimax.flags =
5903 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5904 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5905 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5906 		    IWN_WIMAX_COEX_ENABLE;
5907 		memcpy(wimax.events, iwn6050_wimax_events,
5908 		    sizeof iwn6050_wimax_events);
5909 	} else
5910 #endif
5911 	{
5912 		/* Disable WiMAX coexistence. */
5913 		wimax.flags = 0;
5914 		memset(wimax.events, 0, sizeof wimax.events);
5915 	}
5916 	DPRINTF(("Configuring WiMAX coexistence\n"));
5917 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5918 }
5919 
5920 int
5921 iwn5000_crystal_calib(struct iwn_softc *sc)
5922 {
5923 	struct iwn5000_phy_calib_crystal cmd;
5924 
5925 	memset(&cmd, 0, sizeof cmd);
5926 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5927 	cmd.ngroups = 1;
5928 	cmd.isvalid = 1;
5929 	cmd.cap_pin[0] = letoh32(sc->eeprom_crystal) & 0xff;
5930 	cmd.cap_pin[1] = (letoh32(sc->eeprom_crystal) >> 16) & 0xff;
5931 	DPRINTF(("sending crystal calibration %d, %d\n",
5932 	    cmd.cap_pin[0], cmd.cap_pin[1]));
5933 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5934 }
5935 
5936 int
5937 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5938 {
5939 	struct iwn6000_phy_calib_temp_offset cmd;
5940 
5941 	memset(&cmd, 0, sizeof cmd);
5942 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5943 	cmd.ngroups = 1;
5944 	cmd.isvalid = 1;
5945 	if (sc->eeprom_temp != 0)
5946 		cmd.offset = htole16(sc->eeprom_temp);
5947 	else
5948 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5949 	DPRINTF(("setting radio sensor offset to %d\n", letoh16(cmd.offset)));
5950 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5951 }
5952 
5953 int
5954 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5955 {
5956 	struct iwn2000_phy_calib_temp_offset cmd;
5957 
5958 	memset(&cmd, 0, sizeof cmd);
5959 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5960 	cmd.ngroups = 1;
5961 	cmd.isvalid = 1;
5962 	if (sc->eeprom_rawtemp != 0) {
5963 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5964 		cmd.offset_high = htole16(sc->eeprom_temp);
5965 	} else {
5966 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5967 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5968 	}
5969 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5970 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5971 	    letoh16(cmd.offset_low), letoh16(cmd.offset_high),
5972 	    letoh16(cmd.burnt_voltage_ref)));
5973 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5974 }
5975 
5976 /*
5977  * This function is called after the runtime firmware notifies us of its
5978  * readiness (called in a process context).
5979  */
5980 int
5981 iwn4965_post_alive(struct iwn_softc *sc)
5982 {
5983 	int error, qid;
5984 
5985 	if ((error = iwn_nic_lock(sc)) != 0)
5986 		return error;
5987 
5988 	/* Clear TX scheduler state in SRAM. */
5989 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5990 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5991 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5992 
5993 	/* Set physical address of TX scheduler rings (1KB aligned). */
5994 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5995 
5996 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5997 
5998 	/* Disable chain mode for all our 16 queues. */
5999 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
6000 
6001 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
6002 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
6003 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6004 
6005 		/* Set scheduler window size. */
6006 		iwn_mem_write(sc, sc->sched_base +
6007 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
6008 		/* Set scheduler frame limit. */
6009 		iwn_mem_write(sc, sc->sched_base +
6010 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6011 		    IWN_SCHED_LIMIT << 16);
6012 	}
6013 
6014 	/* Enable interrupts for all our 16 queues. */
6015 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
6016 	/* Identify TX FIFO rings (0-7). */
6017 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
6018 
6019 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6020 	for (qid = 0; qid < 7; qid++) {
6021 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
6022 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6023 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
6024 	}
6025 	iwn_nic_unlock(sc);
6026 	return 0;
6027 }
6028 
6029 /*
6030  * This function is called after the initialization or runtime firmware
6031  * notifies us of its readiness (called in a process context).
6032  */
6033 int
6034 iwn5000_post_alive(struct iwn_softc *sc)
6035 {
6036 	int error, qid;
6037 
6038 	/* Switch to using ICT interrupt mode. */
6039 	iwn5000_ict_reset(sc);
6040 
6041 	if ((error = iwn_nic_lock(sc)) != 0)
6042 		return error;
6043 
6044 	/* Clear TX scheduler state in SRAM. */
6045 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6046 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
6047 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
6048 
6049 	/* Set physical address of TX scheduler rings (1KB aligned). */
6050 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6051 
6052 	/* Disable scheduler chain extension (enabled by default in HW). */
6053 	iwn_prph_write(sc, IWN5000_SCHED_CHAINEXT_EN, 0);
6054 
6055 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6056 
6057 	/* Enable chain mode for all queues, except command queue. */
6058 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
6059 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
6060 
6061 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
6062 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
6063 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6064 
6065 		iwn_mem_write(sc, sc->sched_base +
6066 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
6067 		/* Set scheduler window size and frame limit. */
6068 		iwn_mem_write(sc, sc->sched_base +
6069 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6070 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6071 	}
6072 
6073 	/* Enable interrupts for all our 20 queues. */
6074 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
6075 	/* Identify TX FIFO rings (0-7). */
6076 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
6077 
6078 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6079 	for (qid = 0; qid < 7; qid++) {
6080 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
6081 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6082 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
6083 	}
6084 	iwn_nic_unlock(sc);
6085 
6086 	/* Configure WiMAX coexistence for combo adapters. */
6087 	error = iwn5000_send_wimax_coex(sc);
6088 	if (error != 0) {
6089 		printf("%s: could not configure WiMAX coexistence\n",
6090 		    sc->sc_dev.dv_xname);
6091 		return error;
6092 	}
6093 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
6094 		/* Perform crystal calibration. */
6095 		error = iwn5000_crystal_calib(sc);
6096 		if (error != 0) {
6097 			printf("%s: crystal calibration failed\n",
6098 			    sc->sc_dev.dv_xname);
6099 			return error;
6100 		}
6101 	}
6102 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
6103 		/* Query calibration from the initialization firmware. */
6104 		if ((error = iwn5000_query_calibration(sc)) != 0) {
6105 			printf("%s: could not query calibration\n",
6106 			    sc->sc_dev.dv_xname);
6107 			return error;
6108 		}
6109 		/*
6110 		 * We have the calibration results now, reboot with the
6111 		 * runtime firmware (call ourselves recursively!)
6112 		 */
6113 		iwn_hw_stop(sc);
6114 		error = iwn_hw_init(sc);
6115 	} else {
6116 		/* Send calibration results to runtime firmware. */
6117 		error = iwn5000_send_calibration(sc);
6118 	}
6119 	return error;
6120 }
6121 
6122 /*
6123  * The firmware boot code is small and is intended to be copied directly into
6124  * the NIC internal memory (no DMA transfer).
6125  */
6126 int
6127 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
6128 {
6129 	int error, ntries;
6130 
6131 	size /= sizeof (uint32_t);
6132 
6133 	if ((error = iwn_nic_lock(sc)) != 0)
6134 		return error;
6135 
6136 	/* Copy microcode image into NIC memory. */
6137 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
6138 	    (const uint32_t *)ucode, size);
6139 
6140 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
6141 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
6142 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
6143 
6144 	/* Start boot load now. */
6145 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
6146 
6147 	/* Wait for transfer to complete. */
6148 	for (ntries = 0; ntries < 1000; ntries++) {
6149 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
6150 		    IWN_BSM_WR_CTRL_START))
6151 			break;
6152 		DELAY(10);
6153 	}
6154 	if (ntries == 1000) {
6155 		printf("%s: could not load boot firmware\n",
6156 		    sc->sc_dev.dv_xname);
6157 		iwn_nic_unlock(sc);
6158 		return ETIMEDOUT;
6159 	}
6160 
6161 	/* Enable boot after power up. */
6162 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
6163 
6164 	iwn_nic_unlock(sc);
6165 	return 0;
6166 }
6167 
6168 int
6169 iwn4965_load_firmware(struct iwn_softc *sc)
6170 {
6171 	struct iwn_fw_info *fw = &sc->fw;
6172 	struct iwn_dma_info *dma = &sc->fw_dma;
6173 	int error;
6174 
6175 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
6176 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
6177 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
6178 	    BUS_DMASYNC_PREWRITE);
6179 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6180 	    fw->init.text, fw->init.textsz);
6181 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
6182 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
6183 
6184 	/* Tell adapter where to find initialization sections. */
6185 	if ((error = iwn_nic_lock(sc)) != 0)
6186 		return error;
6187 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6188 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
6189 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6190 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6191 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
6192 	iwn_nic_unlock(sc);
6193 
6194 	/* Load firmware boot code. */
6195 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
6196 	if (error != 0) {
6197 		printf("%s: could not load boot firmware\n",
6198 		    sc->sc_dev.dv_xname);
6199 		return error;
6200 	}
6201 	/* Now press "execute". */
6202 	IWN_WRITE(sc, IWN_RESET, 0);
6203 
6204 	/* Wait at most one second for first alive notification. */
6205 	if ((error = tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(1))) != 0) {
6206 		printf("%s: timeout waiting for adapter to initialize\n",
6207 		    sc->sc_dev.dv_xname);
6208 		return error;
6209 	}
6210 
6211 	/* Retrieve current temperature for initial TX power calibration. */
6212 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
6213 	sc->temp = iwn4965_get_temperature(sc);
6214 
6215 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
6216 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
6217 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
6218 	    BUS_DMASYNC_PREWRITE);
6219 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6220 	    fw->main.text, fw->main.textsz);
6221 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
6222 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
6223 
6224 	/* Tell adapter where to find runtime sections. */
6225 	if ((error = iwn_nic_lock(sc)) != 0)
6226 		return error;
6227 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6228 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
6229 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6230 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6231 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
6232 	    IWN_FW_UPDATED | fw->main.textsz);
6233 	iwn_nic_unlock(sc);
6234 
6235 	return 0;
6236 }
6237 
6238 int
6239 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
6240     const uint8_t *section, int size)
6241 {
6242 	struct iwn_dma_info *dma = &sc->fw_dma;
6243 	int error;
6244 
6245 	/* Copy firmware section into pre-allocated DMA-safe memory. */
6246 	memcpy(dma->vaddr, section, size);
6247 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
6248 
6249 	if ((error = iwn_nic_lock(sc)) != 0)
6250 		return error;
6251 
6252 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6253 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
6254 
6255 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
6256 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
6257 	    IWN_LOADDR(dma->paddr));
6258 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
6259 	    IWN_HIADDR(dma->paddr) << 28 | size);
6260 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
6261 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
6262 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
6263 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
6264 
6265 	/* Kick Flow Handler to start DMA transfer. */
6266 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6267 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
6268 
6269 	iwn_nic_unlock(sc);
6270 
6271 	/* Wait at most five seconds for FH DMA transfer to complete. */
6272 	return tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(5));
6273 }
6274 
6275 int
6276 iwn5000_load_firmware(struct iwn_softc *sc)
6277 {
6278 	struct iwn_fw_part *fw;
6279 	int error;
6280 
6281 	/* Load the initialization firmware on first boot only. */
6282 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
6283 	    &sc->fw.main : &sc->fw.init;
6284 
6285 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
6286 	    fw->text, fw->textsz);
6287 	if (error != 0) {
6288 		printf("%s: could not load firmware %s section\n",
6289 		    sc->sc_dev.dv_xname, ".text");
6290 		return error;
6291 	}
6292 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
6293 	    fw->data, fw->datasz);
6294 	if (error != 0) {
6295 		printf("%s: could not load firmware %s section\n",
6296 		    sc->sc_dev.dv_xname, ".data");
6297 		return error;
6298 	}
6299 
6300 	/* Now press "execute". */
6301 	IWN_WRITE(sc, IWN_RESET, 0);
6302 	return 0;
6303 }
6304 
6305 /*
6306  * Extract text and data sections from a legacy firmware image.
6307  */
6308 int
6309 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
6310 {
6311 	const uint32_t *ptr;
6312 	size_t hdrlen = 24;
6313 	uint32_t rev;
6314 
6315 	ptr = (const uint32_t *)fw->data;
6316 	rev = letoh32(*ptr++);
6317 
6318 	/* Check firmware API version. */
6319 	if (IWN_FW_API(rev) <= 1) {
6320 		printf("%s: bad firmware, need API version >=2\n",
6321 		    sc->sc_dev.dv_xname);
6322 		return EINVAL;
6323 	}
6324 	if (IWN_FW_API(rev) >= 3) {
6325 		/* Skip build number (version 2 header). */
6326 		hdrlen += 4;
6327 		ptr++;
6328 	}
6329 	if (fw->size < hdrlen) {
6330 		printf("%s: firmware too short: %zu bytes\n",
6331 		    sc->sc_dev.dv_xname, fw->size);
6332 		return EINVAL;
6333 	}
6334 	fw->main.textsz = letoh32(*ptr++);
6335 	fw->main.datasz = letoh32(*ptr++);
6336 	fw->init.textsz = letoh32(*ptr++);
6337 	fw->init.datasz = letoh32(*ptr++);
6338 	fw->boot.textsz = letoh32(*ptr++);
6339 
6340 	/* Check that all firmware sections fit. */
6341 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6342 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6343 		printf("%s: firmware too short: %zu bytes\n",
6344 		    sc->sc_dev.dv_xname, fw->size);
6345 		return EINVAL;
6346 	}
6347 
6348 	/* Get pointers to firmware sections. */
6349 	fw->main.text = (const uint8_t *)ptr;
6350 	fw->main.data = fw->main.text + fw->main.textsz;
6351 	fw->init.text = fw->main.data + fw->main.datasz;
6352 	fw->init.data = fw->init.text + fw->init.textsz;
6353 	fw->boot.text = fw->init.data + fw->init.datasz;
6354 	return 0;
6355 }
6356 
6357 /*
6358  * Extract text and data sections from a TLV firmware image.
6359  */
6360 int
6361 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6362     uint16_t alt)
6363 {
6364 	const struct iwn_fw_tlv_hdr *hdr;
6365 	const struct iwn_fw_tlv *tlv;
6366 	const uint8_t *ptr, *end;
6367 	uint64_t altmask;
6368 	uint32_t len;
6369 
6370 	if (fw->size < sizeof (*hdr)) {
6371 		printf("%s: firmware too short: %zu bytes\n",
6372 		    sc->sc_dev.dv_xname, fw->size);
6373 		return EINVAL;
6374 	}
6375 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6376 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6377 		printf("%s: bad firmware signature 0x%08x\n",
6378 		    sc->sc_dev.dv_xname, letoh32(hdr->signature));
6379 		return EINVAL;
6380 	}
6381 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
6382 	    letoh32(hdr->build)));
6383 
6384 	/*
6385 	 * Select the closest supported alternative that is less than
6386 	 * or equal to the specified one.
6387 	 */
6388 	altmask = letoh64(hdr->altmask);
6389 	while (alt > 0 && !(altmask & (1ULL << alt)))
6390 		alt--;	/* Downgrade. */
6391 	DPRINTF(("using alternative %d\n", alt));
6392 
6393 	ptr = (const uint8_t *)(hdr + 1);
6394 	end = (const uint8_t *)(fw->data + fw->size);
6395 
6396 	/* Parse type-length-value fields. */
6397 	while (ptr + sizeof (*tlv) <= end) {
6398 		tlv = (const struct iwn_fw_tlv *)ptr;
6399 		len = letoh32(tlv->len);
6400 
6401 		ptr += sizeof (*tlv);
6402 		if (ptr + len > end) {
6403 			printf("%s: firmware too short: %zu bytes\n",
6404 			    sc->sc_dev.dv_xname, fw->size);
6405 			return EINVAL;
6406 		}
6407 		/* Skip other alternatives. */
6408 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
6409 			goto next;
6410 
6411 		switch (letoh16(tlv->type)) {
6412 		case IWN_FW_TLV_MAIN_TEXT:
6413 			fw->main.text = ptr;
6414 			fw->main.textsz = len;
6415 			break;
6416 		case IWN_FW_TLV_MAIN_DATA:
6417 			fw->main.data = ptr;
6418 			fw->main.datasz = len;
6419 			break;
6420 		case IWN_FW_TLV_INIT_TEXT:
6421 			fw->init.text = ptr;
6422 			fw->init.textsz = len;
6423 			break;
6424 		case IWN_FW_TLV_INIT_DATA:
6425 			fw->init.data = ptr;
6426 			fw->init.datasz = len;
6427 			break;
6428 		case IWN_FW_TLV_BOOT_TEXT:
6429 			fw->boot.text = ptr;
6430 			fw->boot.textsz = len;
6431 			break;
6432 		case IWN_FW_TLV_ENH_SENS:
6433 			if (len !=  0) {
6434 				printf("%s: TLV type %d has invalid size %u\n",
6435 				    sc->sc_dev.dv_xname, letoh16(tlv->type),
6436 				    len);
6437 				goto next;
6438 			}
6439 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
6440 			break;
6441 		case IWN_FW_TLV_PHY_CALIB:
6442 			if (len != sizeof(uint32_t)) {
6443 				printf("%s: TLV type %d has invalid size %u\n",
6444 				    sc->sc_dev.dv_xname, letoh16(tlv->type),
6445 				    len);
6446 				goto next;
6447 			}
6448 			if (letoh32(*ptr) <= IWN5000_PHY_CALIB_MAX) {
6449 				sc->reset_noise_gain = letoh32(*ptr);
6450 				sc->noise_gain = letoh32(*ptr) + 1;
6451 			}
6452 			break;
6453 		case IWN_FW_TLV_FLAGS:
6454 			if (len < sizeof(uint32_t))
6455 				break;
6456 			if (len % sizeof(uint32_t))
6457 				break;
6458 			sc->tlv_feature_flags = letoh32(*ptr);
6459 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
6460 			break;
6461 		default:
6462 			DPRINTF(("TLV type %d not handled\n",
6463 			    letoh16(tlv->type)));
6464 			break;
6465 		}
6466  next:		/* TLV fields are 32-bit aligned. */
6467 		ptr += (len + 3) & ~3;
6468 	}
6469 	return 0;
6470 }
6471 
6472 int
6473 iwn_read_firmware(struct iwn_softc *sc)
6474 {
6475 	struct iwn_fw_info *fw = &sc->fw;
6476 	int error;
6477 
6478 	/*
6479 	 * Some PHY calibration commands are firmware-dependent; these
6480 	 * are the default values that will be overridden if
6481 	 * necessary.
6482 	 */
6483 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
6484 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
6485 
6486 	memset(fw, 0, sizeof (*fw));
6487 
6488 	/* Read firmware image from filesystem. */
6489 	if ((error = loadfirmware(sc->fwname, &fw->data, &fw->size)) != 0) {
6490 		printf("%s: could not read firmware %s (error %d)\n",
6491 		    sc->sc_dev.dv_xname, sc->fwname, error);
6492 		return error;
6493 	}
6494 	if (fw->size < sizeof (uint32_t)) {
6495 		printf("%s: firmware too short: %zu bytes\n",
6496 		    sc->sc_dev.dv_xname, fw->size);
6497 		free(fw->data, M_DEVBUF, fw->size);
6498 		return EINVAL;
6499 	}
6500 
6501 	/* Retrieve text and data sections. */
6502 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6503 		error = iwn_read_firmware_leg(sc, fw);
6504 	else
6505 		error = iwn_read_firmware_tlv(sc, fw, 1);
6506 	if (error != 0) {
6507 		printf("%s: could not read firmware sections\n",
6508 		    sc->sc_dev.dv_xname);
6509 		free(fw->data, M_DEVBUF, fw->size);
6510 		return error;
6511 	}
6512 
6513 	/* Make sure text and data sections fit in hardware memory. */
6514 	if (fw->main.textsz > sc->fw_text_maxsz ||
6515 	    fw->main.datasz > sc->fw_data_maxsz ||
6516 	    fw->init.textsz > sc->fw_text_maxsz ||
6517 	    fw->init.datasz > sc->fw_data_maxsz ||
6518 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6519 	    (fw->boot.textsz & 3) != 0) {
6520 		printf("%s: firmware sections too large\n",
6521 		    sc->sc_dev.dv_xname);
6522 		free(fw->data, M_DEVBUF, fw->size);
6523 		return EINVAL;
6524 	}
6525 
6526 	/* We can proceed with loading the firmware. */
6527 	return 0;
6528 }
6529 
6530 int
6531 iwn_clock_wait(struct iwn_softc *sc)
6532 {
6533 	int ntries;
6534 
6535 	/* Set "initialization complete" bit. */
6536 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6537 
6538 	/* Wait for clock stabilization. */
6539 	for (ntries = 0; ntries < 2500; ntries++) {
6540 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6541 			return 0;
6542 		DELAY(10);
6543 	}
6544 	printf("%s: timeout waiting for clock stabilization\n",
6545 	    sc->sc_dev.dv_xname);
6546 	return ETIMEDOUT;
6547 }
6548 
6549 int
6550 iwn_apm_init(struct iwn_softc *sc)
6551 {
6552 	pcireg_t reg;
6553 	int error;
6554 
6555 	/* Disable L0s exit timer (NMI bug workaround). */
6556 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6557 	/* Don't wait for ICH L0s (ICH bug workaround). */
6558 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6559 
6560 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6561 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6562 
6563 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6564 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6565 
6566 	/* Retrieve PCIe Active State Power Management (ASPM). */
6567 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6568 	    sc->sc_cap_off + PCI_PCIE_LCSR);
6569 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6570 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
6571 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6572 	else
6573 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6574 
6575 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6576 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6577 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6578 
6579 	/* Wait for clock stabilization before accessing prph. */
6580 	if ((error = iwn_clock_wait(sc)) != 0)
6581 		return error;
6582 
6583 	if ((error = iwn_nic_lock(sc)) != 0)
6584 		return error;
6585 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6586 		/* Enable DMA and BSM (Bootstrap State Machine). */
6587 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6588 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6589 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6590 	} else {
6591 		/* Enable DMA. */
6592 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6593 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6594 	}
6595 	DELAY(20);
6596 	/* Disable L1-Active. */
6597 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6598 	iwn_nic_unlock(sc);
6599 
6600 	return 0;
6601 }
6602 
6603 void
6604 iwn_apm_stop_master(struct iwn_softc *sc)
6605 {
6606 	int ntries;
6607 
6608 	/* Stop busmaster DMA activity. */
6609 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6610 	for (ntries = 0; ntries < 100; ntries++) {
6611 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6612 			return;
6613 		DELAY(10);
6614 	}
6615 	printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
6616 }
6617 
6618 void
6619 iwn_apm_stop(struct iwn_softc *sc)
6620 {
6621 	iwn_apm_stop_master(sc);
6622 
6623 	/* Reset the entire device. */
6624 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6625 	DELAY(10);
6626 	/* Clear "initialization complete" bit. */
6627 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6628 }
6629 
6630 int
6631 iwn4965_nic_config(struct iwn_softc *sc)
6632 {
6633 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6634 		/*
6635 		 * I don't believe this to be correct but this is what the
6636 		 * vendor driver is doing. Probably the bits should not be
6637 		 * shifted in IWN_RFCFG_*.
6638 		 */
6639 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6640 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6641 		    IWN_RFCFG_STEP(sc->rfcfg) |
6642 		    IWN_RFCFG_DASH(sc->rfcfg));
6643 	}
6644 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6645 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6646 	return 0;
6647 }
6648 
6649 int
6650 iwn5000_nic_config(struct iwn_softc *sc)
6651 {
6652 	uint32_t tmp;
6653 	int error;
6654 
6655 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6656 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6657 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6658 		    IWN_RFCFG_STEP(sc->rfcfg) |
6659 		    IWN_RFCFG_DASH(sc->rfcfg));
6660 	}
6661 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6662 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6663 
6664 	if ((error = iwn_nic_lock(sc)) != 0)
6665 		return error;
6666 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6667 
6668 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6669 		/*
6670 		 * Select first Switching Voltage Regulator (1.32V) to
6671 		 * solve a stability issue related to noisy DC2DC line
6672 		 * in the silicon of 1000 Series.
6673 		 */
6674 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6675 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6676 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6677 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6678 	}
6679 	iwn_nic_unlock(sc);
6680 
6681 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6682 		/* Use internal power amplifier only. */
6683 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6684 	}
6685 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6686 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6687 		/* Indicate that ROM calibration version is >=6. */
6688 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6689 	}
6690 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6691 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6692 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6693 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6694 	    sc->hw_type == IWN_HW_REV_TYPE_135 ||
6695 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6696 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6697 	return 0;
6698 }
6699 
6700 /*
6701  * Take NIC ownership over Intel Active Management Technology (AMT).
6702  */
6703 int
6704 iwn_hw_prepare(struct iwn_softc *sc)
6705 {
6706 	int ntries;
6707 
6708 	/* Check if hardware is ready. */
6709 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6710 	for (ntries = 0; ntries < 5; ntries++) {
6711 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6712 		    IWN_HW_IF_CONFIG_NIC_READY)
6713 			return 0;
6714 		DELAY(10);
6715 	}
6716 
6717 	/* Hardware not ready, force into ready state. */
6718 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6719 	for (ntries = 0; ntries < 15000; ntries++) {
6720 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6721 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6722 			break;
6723 		DELAY(10);
6724 	}
6725 	if (ntries == 15000)
6726 		return ETIMEDOUT;
6727 
6728 	/* Hardware should be ready now. */
6729 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6730 	for (ntries = 0; ntries < 5; ntries++) {
6731 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6732 		    IWN_HW_IF_CONFIG_NIC_READY)
6733 			return 0;
6734 		DELAY(10);
6735 	}
6736 	return ETIMEDOUT;
6737 }
6738 
6739 int
6740 iwn_hw_init(struct iwn_softc *sc)
6741 {
6742 	struct iwn_ops *ops = &sc->ops;
6743 	int error, chnl, qid;
6744 
6745 	/* Clear pending interrupts. */
6746 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6747 
6748 	if ((error = iwn_apm_init(sc)) != 0) {
6749 		printf("%s: could not power on adapter\n",
6750 		    sc->sc_dev.dv_xname);
6751 		return error;
6752 	}
6753 
6754 	/* Select VMAIN power source. */
6755 	if ((error = iwn_nic_lock(sc)) != 0)
6756 		return error;
6757 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6758 	iwn_nic_unlock(sc);
6759 
6760 	/* Perform adapter-specific initialization. */
6761 	if ((error = ops->nic_config(sc)) != 0)
6762 		return error;
6763 
6764 	/* Initialize RX ring. */
6765 	if ((error = iwn_nic_lock(sc)) != 0)
6766 		return error;
6767 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6768 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6769 	/* Set physical address of RX ring (256-byte aligned). */
6770 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6771 	/* Set physical address of RX status (16-byte aligned). */
6772 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6773 	/* Enable RX. */
6774 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6775 	    IWN_FH_RX_CONFIG_ENA           |
6776 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6777 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6778 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6779 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0x11) | /* about 1/2 msec */
6780 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6781 	iwn_nic_unlock(sc);
6782 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6783 
6784 	if ((error = iwn_nic_lock(sc)) != 0)
6785 		return error;
6786 
6787 	/* Initialize TX scheduler. */
6788 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6789 
6790 	/* Set physical address of "keep warm" page (16-byte aligned). */
6791 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6792 
6793 	/* Initialize TX rings. */
6794 	for (qid = 0; qid < sc->ntxqs; qid++) {
6795 		struct iwn_tx_ring *txq = &sc->txq[qid];
6796 
6797 		/* Set physical address of TX ring (256-byte aligned). */
6798 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6799 		    txq->desc_dma.paddr >> 8);
6800 	}
6801 	iwn_nic_unlock(sc);
6802 
6803 	/* Enable DMA channels. */
6804 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6805 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6806 		    IWN_FH_TX_CONFIG_DMA_ENA |
6807 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6808 	}
6809 
6810 	/* Clear "radio off" and "commands blocked" bits. */
6811 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6812 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6813 
6814 	/* Clear pending interrupts. */
6815 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6816 	/* Enable interrupt coalescing. */
6817 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6818 	/* Enable interrupts. */
6819 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6820 
6821 	/* _Really_ make sure "radio off" bit is cleared! */
6822 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6823 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6824 
6825 	/* Enable shadow registers. */
6826 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6827 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6828 
6829 	if ((error = ops->load_firmware(sc)) != 0) {
6830 		printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
6831 		return error;
6832 	}
6833 	/* Wait at most one second for firmware alive notification. */
6834 	if ((error = tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(1))) != 0) {
6835 		printf("%s: timeout waiting for adapter to initialize\n",
6836 		    sc->sc_dev.dv_xname);
6837 		return error;
6838 	}
6839 	/* Do post-firmware initialization. */
6840 	return ops->post_alive(sc);
6841 }
6842 
6843 void
6844 iwn_hw_stop(struct iwn_softc *sc)
6845 {
6846 	int chnl, qid, ntries;
6847 
6848 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6849 
6850 	/* Disable interrupts. */
6851 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6852 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6853 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6854 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6855 
6856 	/* Make sure we no longer hold the NIC lock. */
6857 	iwn_nic_unlock(sc);
6858 
6859 	/* Stop TX scheduler. */
6860 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6861 
6862 	/* Stop all DMA channels. */
6863 	if (iwn_nic_lock(sc) == 0) {
6864 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6865 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6866 			for (ntries = 0; ntries < 200; ntries++) {
6867 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6868 				    IWN_FH_TX_STATUS_IDLE(chnl))
6869 					break;
6870 				DELAY(10);
6871 			}
6872 		}
6873 		iwn_nic_unlock(sc);
6874 	}
6875 
6876 	/* Stop RX ring. */
6877 	iwn_reset_rx_ring(sc, &sc->rxq);
6878 
6879 	/* Reset all TX rings. */
6880 	for (qid = 0; qid < sc->ntxqs; qid++)
6881 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6882 
6883 	if (iwn_nic_lock(sc) == 0) {
6884 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6885 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6886 		iwn_nic_unlock(sc);
6887 	}
6888 	DELAY(5);
6889 	/* Power OFF adapter. */
6890 	iwn_apm_stop(sc);
6891 }
6892 
6893 int
6894 iwn_init(struct ifnet *ifp)
6895 {
6896 	struct iwn_softc *sc = ifp->if_softc;
6897 	struct ieee80211com *ic = &sc->sc_ic;
6898 	int error;
6899 
6900 	memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr));
6901 	sc->agg_queue_mask = 0;
6902 	memset(sc->sc_tx_ba, 0, sizeof(sc->sc_tx_ba));
6903 
6904 	if ((error = iwn_hw_prepare(sc)) != 0) {
6905 		printf("%s: hardware not ready\n", sc->sc_dev.dv_xname);
6906 		goto fail;
6907 	}
6908 
6909 	/* Initialize interrupt mask to default value. */
6910 	sc->int_mask = IWN_INT_MASK_DEF;
6911 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6912 
6913 	/* Check that the radio is not disabled by hardware switch. */
6914 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6915 		printf("%s: radio is disabled by hardware switch\n",
6916 		    sc->sc_dev.dv_xname);
6917 		error = EPERM;	/* :-) */
6918 		/* Re-enable interrupts. */
6919 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6920 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6921 		return error;
6922 	}
6923 
6924 	/* Read firmware images from the filesystem. */
6925 	if ((error = iwn_read_firmware(sc)) != 0) {
6926 		printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
6927 		goto fail;
6928 	}
6929 
6930 	/* Initialize hardware and upload firmware. */
6931 	error = iwn_hw_init(sc);
6932 	free(sc->fw.data, M_DEVBUF, sc->fw.size);
6933 	if (error != 0) {
6934 		printf("%s: could not initialize hardware\n",
6935 		    sc->sc_dev.dv_xname);
6936 		goto fail;
6937 	}
6938 
6939 	/* Configure adapter now that it is ready. */
6940 	if ((error = iwn_config(sc)) != 0) {
6941 		printf("%s: could not configure device\n",
6942 		    sc->sc_dev.dv_xname);
6943 		goto fail;
6944 	}
6945 
6946 	ifq_clr_oactive(&ifp->if_snd);
6947 	ifp->if_flags |= IFF_RUNNING;
6948 
6949 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6950 		ieee80211_begin_scan(ifp);
6951 	else
6952 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6953 
6954 	return 0;
6955 
6956 fail:	iwn_stop(ifp);
6957 	return error;
6958 }
6959 
6960 void
6961 iwn_stop(struct ifnet *ifp)
6962 {
6963 	struct iwn_softc *sc = ifp->if_softc;
6964 	struct ieee80211com *ic = &sc->sc_ic;
6965 
6966 	timeout_del(&sc->calib_to);
6967 	ifp->if_timer = sc->sc_tx_timer = 0;
6968 	ifp->if_flags &= ~IFF_RUNNING;
6969 	ifq_clr_oactive(&ifp->if_snd);
6970 
6971 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6972 
6973 	/* Power OFF hardware. */
6974 	iwn_hw_stop(sc);
6975 }
6976